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Abstract

In this paper, we explain how, under the one-sided Lipschitz (OSL) hypothesis,
one can find a mean square error bound for a variant of the Euler-Maruyama ap-
proximation method for stochastic switched systems. Subsequently, we explain
how this bound can be used to control a stochastic switched system in order to
make it reach a target zone with guaranteed minimum probability. The method
is illustrated on several examples from the literature.

Keywords: Stochastic systems, numerical simulation, control system
synthesis, switched control systems, nonlinear control systems.

1. Introduction

Symbolic methods for the verification and control synthesis of hybrid sys-
tems (and, particularly, “switched systems”) have received significant attention
in the past few years. However, control systems involving stochastic differential
equations remain difficult to handle with symbolic methods, and few methods
have been developed for these systems. One distinguishes two main classes of
symbolic methods for hybrid systems: indirect methods and direct methods [2].

Indirect methods proceed by constructing a finite abstraction of the original
system by discretization of the dense state space Rd (where d is the dimension of
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the state space). Among the indirect methods, one of the most successful pro-
ceeds by approximate bisimulation [10]. This method originally designed for de-
terministic switched systems has been recently extended for stochastic switched
systems [30, 31, 32]. This approach relies on the hypothesis of incremental sta-
bility of the stochastic switched system (or existence of a common/multiple Lya-
punov function). Another method is presented in [7]. The associated tool [25]
allows to generate formal abstractions for discrete-time Markov processes de-
fined over uncountable (continuous) state spaces.

Indirect methods have also been developed for the verification of safety.
Safety verification has been studied using the concept of barrier certificates [23].
The original inquiry has been later modified to cope with stochastic systems [29],
and to the design of a controller that makes the closed-loop system safe [28,
24]. Also related is the subject of stability and safety verification is the reach
avoidance problem. It has been studied using dynamic programming. This
approach has been developed both for deterministic hybrid system in [18], and
for discrete-time stochastic hybrid systems in [26].

A direct method proceeds by working directly at the level of the dense state
of the system Rd; it computes “trajectory tubes”, which are over-approximations
of the set of all the controlled trajectories starting at a given subregion of Rd. In
previous work, we have followed such a direct approach first in [9], then in [15],
using the Euler approximation scheme for calculating over-approximations of
tubes of trajectories. We show here how to extend this direct method to stochas-
tic switched systems. The method extends the deterministic approach by replac-
ing the classical Euler approximation scheme with a variant of the stochastic
Euler-Maruyama scheme [13]. The correctness of these Euler-based methods
does not rely on the hypothesis of incremental stability as in [30, 32], but on the
hypothesis of ‘one-sided Lipschitz (OSL)’ condition with constant λ P Rd (also
called ‘monotonicity’/‘dissipativity’, see [27]). It can be seen that if a stochas-
tic switched system satisfies an OSL condition with λ ă 0, then the function
V px, x1q “ }x ´ x1}2 is a common incremental Lyapunov function in the sense
of [31], from which it follows that the switched system is incrementally stable,
and can be analysed by approximate bisimulation. However, Euler-based meth-
ods also apply when the system is not incrementally stable, in which case the
constant λ is necessarily positive. We thus consider a class of systems different
from that of [31].

The plan of the paper is as follows: In Section 3, we give an explicit upper
bound on the mean square error of the tamed Euler method for SDEs under
OSL condition (Theorem 2). We apply the result in order to ensure reachability
properties of stochastic switched systems with guaranteed minimum probability
(Section 4). We conclude in Section 5.

This paper is an extended version of a paper (A. Le Coënt, L. Fribourg
and J. Vacher. Control Synthesis for Stochastic Switched Systems using the
Tamed Euler Method. In ADHS’18, IFAC-PapersOnLine 51(16), pages 259-
264. Elsevier Science Publishers, 2018). The main additional material of the
extended version is:
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• Section 3.3, which gives analytical upper bounds on expressions occurring
in Theorem 2,

• Section 3.4, which gives a lower bound on the probability of reaching a
given set R (Proposition 3), and

• Section 4.4, which proposes an optimized method of control synthesis.

2. Preliminaries

2.1. Notations

The symbols N, Ně0, R, Rą0, Rě0 denote the set of natural, nonnegative
integer, real, positive, and nonnegative real numbers.

The symbol }¨} denotes the Euclidean norm on Rd. The symbol x¨, ¨y denotes
the scalar product of two vectors of Rd. Given a point x P Rd and a positive real
r ą 0, the ball Bpx, rq of centre x and radius r is the set ty P Rd | }x´ y} ď ru.

Throughout this paper, the set U denotes a finite set of switched modes.
Given a sequence of k modes a “ pa1 ¨ ¨ ¨ akq P U

k, and a sequence of p modes
b “ pb1 ¨ ¨ ¨ bpq P Np, we denote the concatenation a ˚ b of a and b the sequence
of length k ` p: a ˚ b “ pa1 ¨ ¨ ¨ ak ¨ b1 ¨ ¨ ¨ bpq.

A sequence of non-negative integers is written in bold when it is used as
a multi-index, e.g. a “ pa1, . . . , apq P Npě0, the sum of the components of a is

denoted by |a| “ a1`¨ ¨ ¨`ap, and
`

b
a

˘

“ b!
a1!a2!...ap! is the multinomial coefficient.

2.2. Systems considered and assumptions

Let τ P Rą0 be a fixed real number, let pΩ,F ,Pq be a probability space
with normal filtration pFtqtPr0,τs, let d,m P N let W “ pW p1q, . . . ,W pmqq :
r0, τ s ˆ Ω Ñ Rm be an m-dimensional standard pWtqtPr0,τs-Brownian motion

and let x0 : Ω Ñ Rd be an F0{BpRdq-measurable mapping with Er}x0}
ps ă 8

for all p P r1,8q. Moreover, let f : Rd Ñ Rd be a continuously differentiable
function whose derivative grows at most polynomially. Formally, let us suppose
the existence of constants D P Rě0 and q P N such that, for all x, y P Rd

}fpxq ´ fpyq}2 ď D}x´ y}2p1` }x}q ` }y}qq (H1)

Let g “ pgi,jqiPt1,...,du,jPt1,...,mu : Rd Ñ Rdˆm be a globally Lipschitz continuous

function: there exists Lg P Rě0 such that, for all x, y P Rd

}gpxq ´ gpyq} ď Lg}x´ y} (H2)

Finally, let us suppose that f is globally one-sided Lipschitz with constant λ P R:

Dλ P R @x, y P Rd : xfpyq ´ fpxq, y ´ xy ď λ }y ´ x}2 (H3)

Then consider the Stochastic Differential Equations (SDE):

dXt “ fpXtqdt` gpXtqdWt, X0 “ x0 (1)
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for t P r0, τ s. The drift coefficient f is the infinitesimal mean of the process
X and the diffusion coefficient g is the infinitesimal standard deviation of the
process X. Under the above assumptions, the SDE (1) is known to have a
unique strong solution. More formally, there exists an adapted stochastic pro-
cess pXt,x0

q : r0, τ s ˆ Ω Ñ Rd with continuous sample paths fulfilling

Xt,x0
“ x0 `

ż t

0

fpXsqds`

ż t

0

gpXsqdWs

for all t P r0, τ s P-a.s. (see, e.g., ([21])).
We denote by Xt,x0 the solution of Equation (1) at time t from initial con-

dition X0,x0 “ x0 P-a.s., in which x0 is a random variable that is measurable in
F0.

Remark 1. Constants λ, Lg and D can be computed using (constrained) opti-
mization algorithms (see ([15])).

2.3. Overview of the approach

We aim at synthesizing reachability controllers for the class of systems de-
scribed above. Our approach consists in adapting reachability analysis based
control systhesis methods to stochastic systems. In [15], we successfully used
the Euler method for guaranteeing controlled reachability of deterministic sys-
tems using the Euler method in association to a new error bound relying on the
OSL property of the vector field.

Consider equation (1) with g “ 0. Classically, one knows that, if the function
f is Lipschitz continuous with Lipschitz constant L, the solution of the ODE
starting at a given initial value exists and is unique. Besides, one has:

}Xt,x0
´Xt,x1

} ď eLt}x0 ´ x1}, (2)

with two initial values xi (i “ 0, 1). This gives a rough growth bound, i.e. a
function bounding the distance of neighboring trajectories as t evolves. In [6],
it is proven that, if f is continuous and OSL with OSL constant λ, then the
solution of the ODE starting at a given initial value exists and is unique, and,
for all x0, x1 P Rn:

}Xt,x0
´Xt,x1

} ď eλt}x0 ´ x1}. (3)

This gives a more accurate growth bound because a Lipschitz function f is
always OSL, and the associated OSL constant λ is always less than or equal to
its Lipschitz counterpart L. Using the OSL constant λ, it is also possible to
bound the error }Xt,x0

´ X̃t,x1
} in function of }x0 ´ x1}, where X̃t,x1

denotes
the Euler approximate trajectory of the solution Xt,x1

. We can then conclude
that any trajectory starting from x0 close enough from a given initial condition
x1 (}x0 ´ x1} ď δ0) will remain within some bound (denoted by δt,δ0) of the

Euler trajectory X̃t,x1
. Our objective is to use a similar approach for stochastic

systems, while making as few additional hypotheses on the dynamics as possible.
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Therefore, we first explain how we can use a variant of the Euler-Maruyama
scheme called tamed Euler scheme in order to guarantee reachability of the
expectation of the state ErXt,x0

s of the stochastic system (1) in a given set.

It consists in computing an approximate Euler-based trajectory X̃t,x1 , we then

provide an error bound for Er}Xt,x0
´ X̃t,x1

}2s (Theorem 2) which allows to
write a result for the expectation of the non approximated trajectory ErXt,x0

s

(Proposition 2). This result can be extended further as a probability result (the
probability with which the state reaches the set, Proposition 3).

This reachability analysis method is then used in association with tiling
based control synthesis algorithms to ensure that the system is stabilised in a
given region of interest with a given probability (Section 4). The first algorithm
we use is based on an adaptive state-space decomposition algorithm [15, 14], and
uses an exhaustive enumeration of all possible control sequences (up to a given
length) in order to find stabilising sequences (see Section 4.3). We then propose
a faster approach (in Section 4.4) which relies on state-space discretization and
dynamic programming techniques in order to minimize the average distance of
the state with some given objective after a given number of steps. The second
algorithm is merely an enhancement of the control sequence search of the first
one, using a static tiling. Note that with both algorithms, there is no need
to compute a finite-state abstraction of the system, which means that comput-
ing a controller is done with the application of a single algorithm, unlike [31]
which requires the computation of a finite-state abstraction before computing
controllers.

Example 1. Throughout the paper, we illustrate our approach on a 2-mode
switched system borrowed from [30]. This case-study is a stochastic version of a
well-known system originally introduced as an illustrative example in [16]. The
dynamics is given by the system of equations

dx1 “ p´0.25x1 ` px2 ` p´1qp0.25qdt` wx1dW 1
t ,

dx2 “ ppp´ 3qx1 ´ 0.25x2 ` p´1qpp3´ pqqdt` wx2dW 2
t ,

where p “ 1, 2 is the mode, and we consider different values of noise w P Rą0.

3. Bounding the Error of the tamed Euler method

3.1. Tamed Euler approximation

The standard way to extend the classical Euler method for ordinary dif-
ferential equations to the SDE (1) is the Euler-Maruyama scheme ([19]). More
precisely, given z : Ω Ñ Rd an F0{BpRdq-measurable mapping with Er}z}ps ă 8
for all p P r1,8q, the explicit Euler-Maruyama (EM) method for the SDE (1) is
given by the mappings Y Nn,z : Ω Ñ Rd, n P t0, 1, . . . , Nu, which satisfy Y N0,z “ z
and

Y Nn`1,z “ Y Nn,z `
τ

N
¨ fpY Nn,zq ` gpY

N
n,zqpWpn`1qτ{N ´Wnτ{N q

for all n P t0, 1, . . . , N ´ 1u and all N P N. See ([19]). Unfortunately, the
convergence results for the EM scheme does not hold when the drift function
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f of the SDE (1) is polynomial (not an affine function). In order to consider
non affine drift functions, we adopt a refined scheme, which has been proposed
recently to overcome this difficulty ([13]). Let XN

n,z : Ω Ñ Rd,

XN
n`1,z “ XN

n,z `

τ
N ¨ fpX

N
n,zq

1` τ
N ¨ }fpX

N
n,zq}

`gpXN
n,zqpW pn`1qτ

N
´Wnτ

N
q

(4)

for all n P t0, 1, . . . , N´1u and all N P N. We refer to the numerical method
(4) as a tamed Euler scheme ([13]). In this method the drift term τ

n ¨ fpX
N
n,zq

is “tamed” by the factor 1{p1 ` τ
N ¨ }fpXN

n,zq}q for n P t0, 1, . . . , N ´ 1u and
N P N in (4). In order to establish results for the time continuous system, we
use the following time continuous interpolation of the time discrete numerical
approximations (4), also introduced in ([13]). Let X̃N

z : r0, τ sˆΩ Ñ Rd, N P N,
be a sequence of stochastic processes given by

X̃N
t,z “ X̃N

n,z `
pt´ nτ{Nq ¨ fpX̃N

n,zq

1` τ{N ¨ }fpX̃N
n,zq}

` gpX̃N
n,zqpWt ´Wnτ

N
q (5)

for all t P rnτN ,
pn`1qτ
N s, n P t0, 1 . . . , N ´ 1u and all N P N. Note that X̃N

t,z :

r0, τ s ˆΩ Ñ Rd is an adapted stochastic process with continuous sample paths
for every N P N.

We finally introduce a piecewise constant interpolation XN
t,z of the tamed

Euler scheme as follows. It is mainly used in some constants when establishing
the error bound and for proving Theorem 2.

XN
t,z :“ XN

n,z for t P r
nτ

N
,
pn` 1qτ

N
q. (6)

Note that X̃N
t,z “ XN

t,z “ XN
n,z at time t “ nτ

N for n P t0, 1, . . . , Nu.
The following theorem is proven in ([13]):

Theorem 1. Let us suppose (H1)-(H2)-(H3). Let z : Ω Ñ Rd be an F0{BpRdq-
measurable mapping with Er}z}ps ă 8 for all p P r1,8q. Then, for all p P r1,8q,
the tamed Euler scheme (4) satisfies:

sup
NPN

sup
nPt0,1,...,Nu

Er}XN
n,z}

ps ă 8

This theorem allows to ensure the strong convergence of the tamed Euler
method. Any number N of subsampling steps can thus be used. This number
is now left implicit for the sake of simplicity. From Theorem 1, it follows (cf.
Lemma 4.3, ([11])):

Lemma 1. Let us suppose (H1)-(H2)-(H3). Let z : Ω Ñ Rd be an F0{BpRdq-
measurable mapping with Er}z}ps ă 8 for all p P r1,8q. Let us consider the
time continuous interpolation of the tamed Euler scheme as defined in (5), and
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the piecewise constant interpolation as defined in (6). Then, for any even inte-
ger r ě 2, there exist two constants Er,z and Fr,z such that

sup
0ďtďτ

E}Xt,z ´ X̃t,z}
r ď p∆tq

r
2 pEr,zp∆tq

r
2 ` Fr,zdq.

with ∆t “ τ{N and:

Er,z “ 2rp}fp0q}r `D2
r`1
2

p1` E sup0ďtďτ }Xt,z}
qrq

1
2 pE sup0ďtďτ }Xt,z}

2rq
1
2 q,

Fr,z “ 2rp}gp0q}2r ` LrgE sup0ďtďτ }Xt,z}
r
2 q.

Remark 2. Constants Er,z and Fr,z are computed using the constants λ and
Lg (see Remark 1), and the expected values of sup0ďtďτ }Xt,z}

p for the required
values of p at each time t “ 0, ∆t, 2∆t, . . . , N∆t. These expected values can
either be computed numerically by using a Monte Carlo method, or by evaluat-
ing analytically the expectations E sup0ďtďτ }Xt,z}

p for all required values of p.
Proposition 2 explains how such expectations can be computed for the piecewise
linear interpolation X̃t,z, the computation for Xp

t,z is the same but much simpler
since there is no time dependent term in (6). In this paper, we use the latter
approach.

3.2. Mean square error bounding

The following Theorem holds for SDE (1). This corresponds to a stochastic
version of Theorem 1 of ([15]), showing that a similar result holds on average,
using the tamed Euler method of ([13]). It is an adaptation of Theorem 4.4 in
([11]).

Theorem 2. Given the SDE system (1) satisfying (H1)-(H2)-(H3). Let δ0 P
Rě0. Suppose that z is a random variable on Rd such that

Er}x0 ´ z}
2s ď δ2

0 .

Then, we have, for all τ ě 0:

Er sup
0ďtďτ

}Xt,x0 ´ X̃t,z}
2s ď δ2

τ,δ0 ,

with δ2
τ,δ0

:“ βpτqeγτ , where:

γ “ 2p
?

∆t ` 2λ` L2
g ` 128L4

gq, and

βpτq “ 2δ2
0 ` 2τ∆tL

2
gp1` 128L2

gqpF2,zd` E2,z∆tq

` 4τ
a

∆tDpF4,zd` E4,z∆
2
t q

1
2

p1` 4E sup
0ďtďτ

}Xt,z}
2q ` 4E sup

0ďtďτ
}X̃t,z}

2qq
1
2 .

(7)

with ∆t “ τ{N .
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Proof. The proof closely follows the proof of Theorem 4.4 in ([11]). Let et “
Xt,x0 ´ X̃t,z. We have, for all 0 ď t ď τ :

det “ pfpXt,x0q ´ fpzqqdt` pgpXt,x0q ´ gpzqqdWt. (8)

Then, by using Equation (8) and the integral version of Itô formula applied to
function x ÞÑ }x}2 we obtain

}et}
2 “ }e0}

2 `

ż t

0

2xes, fpXs,x0
q ´ fpXs,zqyds

`

ż t

0

}gpXs,x0
q ´ gpXs,zq}

2ds`Mptq,

(9)

where e0 “ x0 ´ z, and

Mptq “

ż t

0

2xes, gpXs,x0q ´ gpXs,zqydWs.

So we have using (H2):

}et}
2 ď }e0}

2 `

ż t

0

2xes, fpXs,x0
q ´ fpX̃s,zqyds

` L2
g

ż t

0

}Xs,x0
´Xs,z}

2ds

`

ż t

0

2xes, fpX̃s,zq ´ fpXs,zqyds`Mptq.

(10)

So we have using (H3) and Young’s inequality:

}et}
2 ď }e0}

2 `

ż t

0

p2λ}es}
2 ` L2

g}es}
2qds

` L2
g

ż t

0

}Xs,z ´ X̃s,z}
2ds

`

ż t

0

p
1
?

∆t

}fpX̃s,zq ´ fpXs,zq}
2 `

a

∆t}es}
2qds`Mptq.

(11)

So we have using (H1), for all 0 ď t ď τ :

}et}
2 ď }e0}

2 ` p
a

∆t ` 2λ` L2
gq

ż t

0

}es}
2ds

` L2
g

ż t

0

}Xs,z ´ X̃s,z}
2ds

`
D
?

∆t

ż t

0

p1` }Xs,z}
q ` }X̃s,z}

qq}Xs,z ´ X̃s,z}
2ds

`Mptq.

(12)
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It follows using Lemma 1 for r “ 2, and Cauchy-Schwarz inequality:

Er sup
0ďsďt

}es}
2s ď E}e0}

2 ` p
a

∆t ` 2λ` L2
gq

ż t

0

E}es}2ds

` L2
gτ∆tpE2,z∆t ` F2,zdq

`
D
?

∆t
ż t

0

pEp1` }Xs,z}
q ` }X̃s,z}

qq2q
1
2 pE}Xs,z ´ X̃s,z}

4q
1
2 ds

`mptq,

(13)

where
mptq “ Er sup

0ďsďt
}Mpsq}s.

Hence, using using Lemma 1 for r “ 4, and inequality pa` bqp ď 2ppap ` bpq:

Er sup
0ďsďt

}es}
2s ď E}e0}

2 ` p
a

∆t ` 2λ` L2
gqq

ż t

0

E}es}2ds

` L2
gτ∆tpE2,z∆t ` F2,zdq

` 2Dτ
a

∆tpE4,z∆
2
t ` F4,zdq

1
2

p1` 4E sup
0ďtďτ

}Xt,z}
2q ` 4E sup

0ďtďτ
}X̃t,z}

2qq
1
2 `mptq.

(14)

On the other hand, from the Burkholder-Davis-Gundy inequality, we get:

mptq ď 16Er
ż t

0

}es}
2}gpXs,x0q ´ gpXs,zq}

2dss
1
2

Hence, using (H2):

mptq ď 16L2
gEr sup

0ďsďt
}es}

2

ż t

0

}Xs,x0 ´Xs,z}
2dss

1
2

Then, using Young’s inequality (for any α ą 0):

mptq ď 8L2
gpαEr sup

0ďsďt
}es}

2s `
1

α
Er
ż t

0

}Xs,x0
´Xs,z}

2dssq.

Hence, by using Lemma 1 for r “ 2:

mptq ď 8αL2
gEr sup

0ďsďt
}es}

2s

`
8L2

g

α

ż t

0

Er sup
0ďrďs

}er}
2sds

`
8L2

g

α
τ∆tpE2,z∆t ` F2,zdq.

(15)
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Hence, letting α “ 1
16L2

g
, we have by replacing in (14):

1

2
Er sup

0ďsďt
}es}

2s ď

δ2
0 ` p

a

∆t ` 2λ` L2
g ` 128L4

gq

ż t

0

Er sup
0ďrďs

}er}
2sds

` τpL2
g ` 128L4

gq∆tpE2,z∆t ` F2,zdq

` τ2D
a

∆tpE4,z∆
2
t ` F4,zdq

1
2

p1` 4E sup
0ďtďτ

}Xt,z}
2q ` 4E sup

0ďtďτ
}X̃t,z}

2qq
1
2 .

(16)

It results from Gronwall’s inequality:

Er sup
0ďtďτ

}et}
2s “ βpτqeγτ ,

with
γ “ 2p

?
∆t ` 2λ` L2

g ` 128L4
gq, and

βpτq “ 2δ2
0 ` 2τp∆tL

2
gp1` 128L2

gqpF2,zd` E2,z∆tq

` 4τ
a

∆tDpF4,zd` E4,z∆
2
t q

1
2

p1` 4E sup
0ďtďτ

}Xt,z}
2q ` 4E sup

0ďtďτ
}X̃t,z}

2qq
1
2 .

(17)

It follows from Theorem 2 and Jensen’s inequality:

Proposition 1. Consider two points x0 and z in Rd,and a positive real number
δ0. Suppose that x0 P Bpz, δ0q. Then EXt,x0

P BpX̃t,z, δt,δ0q for all t P r0, τ s,
where δt,δ0 is defined in (7).

3.3. Numerical pre-computation of expectations

Theorem 2 requires the knowledge of E sup0ďtďτ }X̃t,z}
2q. In this section,

we give a pre-computable upper bound of this quantity.

Proposition 2. Let X̃t,z be the piecewise linear interpolation of the solution

to equation (1) as defined in equation (5), written in the form X̃t,z “ αpzq `

βpzqt ` γpzqWt with αpzq “ X̃N
n,z ´

pnτ{Nq¨fpX̃Nn,zq

1`τ{N ¨}fpX̃Nn,zq}
, βpzq “

fpX̃Nn,zq

1`τ{N ¨}fpX̃Nn,zq}
,

γpzq “ gpX̃N
n,zq. Then

Er}X̃t,z}
2qs “

ÿ

|k|“q

ˆ

q

k

˙

Ck1,k2,k3pzqµk4,k5,k6pz, 1qt
k2`2k3`k4`

k4`k5
2 `k6 , (18)
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where k “ pk1, . . . , k6q and

Ck1,k2,k3pzq “
´

αpzqTαpzq
¯k1´

2αpzqTβpzq
¯k2´

βpzqTβpzq
¯k3

,

and

µκpz, tq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

λ
p1q
κ D k5´k4

2 ,k4,k6
pbpzqbpzqT , Pa,bpzq, Qpzqqt

k4`k5
2 `k6

if k4 ă k5 and k4 ` k5 ” 0 pmod 2q

λ
p2q
κ D k4´k5

2 ,k5,k6
papzqapzqT , Pa,bpzq, Qpzqqt

k4`k5
2 `k6

if k4 ą k5 and k4 ` k5 ” 0 pmod 2q

λ
p3q
κ Dk5,k6pPa,bpzq, Qpzqqt

k5`k6

if k4 “ k5 and k5 ” 0 pmod 2q
0 if k4 ` k5 ” 1 pmod 2q

where apzq “ 2βpzqT γpzq, bpzq “ 2αpzqT γpzq, Qpzq “ γpzqT γpzq and Dn1,...,nipA1, . . . , Aiq
being the normalized Davis polynomials [5, 12] and

Pa,bpzq “
apzqbpzqT ` bpzqapzqT

2
,

λp1qκ “ 2
k4`k5

2 `k6´1k4k6pk5 ´ k4q,

λp2qκ “ 2
k4`k5

2 `k6´1k5k6pk4 ´ k5q,

λp3qκ “ 2k5`k6k5k6.

.

Proof. First, note that we can write X̃t,z as the sum of a mean value, a linear
drift and a standard Wiener process

X̃t,z “ αpzq ` βpzqt` γpzqWt,

for z P Rd. Then, the squared norm of X̃t,z is

X̃T
t,zX̃t,z “ pαpzq ` βpzqt` γpzqWtq

T pαpzq ` βpzqt` γpzqWtq

“ αpzqTαpzq ` 2pαpzqTβpzq ` βpzqT γpzqWtqt

` βpzqTβpzqt2 ` 2αpzqT γpzqWt `W
T
t γpzq

T γpzqWt.

The Newton multinomial formula allows to express the 2qth power of the X̃t,z

norm

}X̃t,z}
2q “

ÿ

|k|“q

ˆ

q

k

˙

´

αpzqTαpzq
¯k1´

2αpzqTβpzqt
¯k2´

βpzqTβpzqt2
¯k3

´

2βpzqT γpzqWtt
¯k4´

2αpzqT γpzqWt

¯k5´

WT
t γpzq

T γpzqWt

¯k6

11



where k “ pk1, . . . , k6q. The previous equation can be written as follows

}X̃t,z}
2q “

ÿ

|k|“q

ˆ

q

k

˙

Ck1,k2,k3pzqt
k2`2k3`k4papzqTWtq

k4pbpzqTWtq
k5pWT

t QpzqWtq
k6

where apzq “ 2βpzqT γpzq, bpzq “ 2αpzqT γpzq, Qpzq “ γpzqT γpzq and

Ck1,k2,k3pzq “
´

αpzqTαpzq
¯k1´

2αpzqTβpzq
¯k2´

βpzqTβpzq
¯k3

.

We denote

µκpz, tq
def.
“ E

“

papzqTWtq
k4pbpzqTWtq

k5pWT
t QpzqWtq

k6
‰

where κ “ pk4, k5, k6q. The expectation µκpz, tq can always be written as the
high-order moment of a product of three quadratic forms [17], therefore we have

µκpz, tq “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

λ
p1q
κ D k5´k4

2 ,k4,k6
pbpzqbpzqT , Pa,bpzq, Qpzqqt

k4`k5
2 `k6

if k4 ă k5 and k4 ` k5 ” 0 pmod 2q

λ
p2q
κ D k4´k5

2 ,k5,k6
papzqapzqT , Pa,bpzq, Qpzqqt

k4`k5
2 `k6

if k4 ą k5 and k4 ` k5 ” 0 pmod 2q

λ
p3q
κ Dk5,k6pPa,bpzq, Qpzqqt

k5`k6

if k4 “ k5 and k5 ” 0 pmod 2q
0 if k4 ` k5 ” 1 pmod 2q

where Dn1,...,nipA1, . . . , Aiq denotes the normalized Davis polynomials [5, 12]
and

Pa,bpzq “
apzqbpzqT ` bpzqapzqT

2
,

λp1qκ “ 2
k4`k5

2 `k6´1k4k6pk5 ´ k4q,

λp2qκ “ 2
k4`k5

2 `k6´1k5k6pk4 ´ k5q,

λp3qκ “ 2k5`k6k5k6.

Finally, the result holds.

The normalized Davis polynomials Dn1,...,nipA1, . . . , Aiq can be computed
efficiently using recursion formulas, see [12].

From Proposition 2, we obtain an upper bound of E sup0ďtďτ }X̃t,z}
2q using

the following lemma.

Lemma 2. For every martingale Yt P L
p (where p ą 1), we have:

Er sup
0ďtďτ

}Yt}
ps ď

ˆ

p

p´ 1

˙p

Er}Yτ }ps.

Proof. See [1].
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We thus have:

E sup0ďtďτ }X̃t,z}
2q ď

ˆ

2q

2q ´ 1

˙2q
ÿ

|k|“q

ˆ

q

k

˙

Ck1,k2,k3pzqµk4,k5,k6pz, 1qt
k2`2k3`k4`

k4`k5
2 `k6

where Ck1,k2,k3pzq and µk4,k5,k6pz, 1q are given in Proposition 2. The compu-
tation of this deterministic upper-bound is much faster than the direct Monte-
Carlo approximation of the expectation. Furthermore, we get rid of the approx-
imations inherent to the use of Monte-Carlo simulations.

3.4. Probabilistic reachability

Let us suppose for simplicity that R is a ball of the form BpO, ρq where O
is the origin and ρ ą 0. Suppose that x0 P Bpz, δ0q. We have:

PrpXτ,x0
R Rq “ Prp}Xτ,x0

} ą ρq.

Furthermore:

Proposition 3. PrpXτ,x0 P Rq ě 1´
1

ρ2

ˆ

δτ,δ0 `

b

Er}X̃τ,z}
2s

˙2

.

Proof. Using Chebyshev’s inequality and triangular inequality, it follows

PrpXτ,x0 R Rq ď
1

ρ2
Er}Xτ,x0}

2s ď
1

ρ2

ˆ

b

Er}X̃τ,z ´Xτ,x0}
2s `

b

Er}X̃τ,z}
2s

˙2

.

We thus get, using the inequality of the previous section (namely, Er}X̃τ,z ´

Xτ,x0
}2 ď δ2

τ,δ0
):

PrpXτ,x0 R Rq ď
1

ρ2
pδτ,δ0q

2 `

b

Er}X̃τ,z}
2s.

Alternatively, we have:

PrpXτ,x0
P Rq ě 1´

1

ρ2

ˆ

δτ,δ0 `

b

Er}X̃τ,z}
2s

˙2

.

NB: If we have R “ BpO1, ρq where O1 is not the origin, we have:

PrpXτ,x0
P Rq ě 1´

1

ρ2

ˆ

δτ,δ0 `

b

Er}X̃τ,z ´O1}2s

˙2

.

13



3.5. Implementation

This method has been implemented in the interpreted language Octave, and
the experiments performed on a 2.80 GHz Intel Core i7-4810MQ CPU with 8
GB of memory. The implementation is an adaptation of the program described
in ([15]) for controlling deterministic switched systems, but makes use of the
tamed Euler scheme for SDEs (with the error function δt,δ0 given in Theorem 2)
instead of the classical Euler scheme.

Example 2. Consider the system of Example 1, for mode u “ 1 and w “ 0.05:
dx1 “ p´0.25x1 ` x2 ` 0.25qdt` 0.05x1dW 1

t

dx2 “ p´2x1 ´ 0.25x2 ´ 2qdt` 0.05x2dW 2
t

The program gives (for τ “ 1, ∆t “ τ{104): q “ 0, D “ 1.36, Lg “ 0.05,
λ “ 0.25; and for z “ p´4,´3.8q: E2,z “ 893.3, E4,z “ 2.14 ¨ 105, F2,z “ 0.002,
F4,z “ 4.9 ¨ 10´6.

Consider now the system corresponding to Example 1 for mode u “ 2 and
w “ 0.05:

dx1 “ p´0.25x1 ` 2x2 ´ 0.25qdt` 0.05x1dW 1
t

dx2 “ p´x1 ´ 0.25x2 ` 1qdt` 0.05x2dW 2
t

The program gives (for τ “ 1, ∆t “ τ{104): q “ 0, D “ 1.36, Lg “ 0.05,
λ “ 0.25, and, for z “ p0, 3q: E2,z “ 543.2, E4,z “ 7.94 ¨ 104, F2,z “ 0.0442,
F4,z “ 0.00178.

Both computations take less than 10s of CPU time. Simulations of the two
systems are given in Figure 1 for mode u “ 1 and starting point z “ p´4, 3.8q,
and mode u “ 2 and starting point z “ p0, 3q. The initial ball Bpz, δ0q is de-
picted in black, the final ball BpErX̃τ,zs, δτ,δ0q in red, and 200 random sampling
trajectories in blue for t P r0, τ s.

Example 3. We now consider a nonlinear model of a pendulum on a cart
borrowed from [4, 31]. The dynamics is given by:

dx1 “ x2dt` 0.03x1dW 1
t

dx2 “ p´
g
l sinx1 ´

k
mx2 `

1
ml2uqdt` 0.03x2dW 2

t

where the state px1, x2q represents the angular position and velocity of the point
mass on the pendulum, u is the control input (torque applied to the cart). The
parameters are g “ 9.8, l “ 0.5, m “ 0.6, k “ 2. The program gives for
control input u “ 0.5, τ “ 0.1, ∆t “ τ{102: q “ 1, D “ 2.56, Lg “ 0.03,
λ “ 1.446; and for z “ p0, 0q: E2,z “ 47.5, E4,z “ 1977.2 ¨105, F2,z “ 9.8 ¨10´4,
F4,z “ 9.73 ¨ 10´7.

The computation takes less than 10s of CPU time. Simulations of the system
are given in Figure 2 for control input u “ 0.5 and starting point z “ p0, 0q.
The initial ball Bpz, δ0q is depicted in black, the final ball BpErX̃τ,zs, δτ,δ0q in
red, and 200 random sampling trajectories in blue for t P r0, τ s.
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Figure 1: Simulations of Example 2 with mode u “ 1 and initial ball Bpp´4, 3.8q, 0.5q, and
mode u “ 2 and initial ball Bpp0, 3q, 0.5q; τ “ 1.

4. Sampled stochastic switched systems

4.1. Stochastic switched system as a finite collection of SDEs

We now consider a finite number of SDEs. Each SDE is referred to as a
mode j, and the set of modes is referred to as U “ t1, . . . ,Mu. We will denote
by Xj

t,x0
the solution at time t of the system:

dxptq “ fjpxptqq ` gjpxptqqdW
j
t ,

xp0q “ x0.
(19)

where x0 is a random variable that is measurable in F0. Hypotheses (H1)-
(H2)-(H3), as defined in Section 3, are naturally extended to every mode j of
U . Accordingly, constants Lg, λ, F associated to SDE (1) in Section 3, now
become Lgj , λj , Fj respectively, for each j P U .

Likewise, for each j P U , the nonnegative real pδt,δ0q
2 becomes pδjt,δ0q

2 for
each mode j; the approximate continuous-time solution of (19) starting from z,
is denoted by X̃j

t,z, and the approximate staircase solution by Xj
t,z.

4.2. Control patterns

The control laws that we now consider are “piecewise constant of duration τ”
in the sense that, every τ seconds, they select a given mode (see ([30])). We call
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Figure 2: Simulations of Example 3 with control input u “ 0.5, initial ball Bpp0, 0q, 0.01q,
τ “ 0.1.

“(control) pattern of length k” a sequence of k modes (i.e., an element of Uk).
Each pattern π of the form j1j2 ¨ ¨ ¨ jk corresponds to the selection of mode j1 for
time t P r0, τq, then mode j2 for t P rτ, 2τq, and so on, until t “ kτ . We assume
that the solution of the system is continuous at sampling instants t “ τ, 2τ, . . .
(which means that there is no “reset” of the system at sampling instants).

Given a stochastic switched system, a pattern π of length k and an initial
random variable z, one constructs the “approximate solution controlled by π”
by composing together the approximations obtained by successive application
of the modes of the pattern π. Formally, the “continuous” approximate solution
X̃π
t,z is defined at time t P r0, kτ s as follows:

• X̃π
t,z “ X̃j

t,z if π “ j P U , k “ 1 and t P r0, τ s, and

• X̃π
pk´1qτ`t1,z “ X̃j

t,z1 with z1 “ X̃π1

pk´1qτ,z if k ě 2, t1 P r0, τ s, π “ π1 ˚ j for

some j P U and π1 P Uk´1.

The “staircase” approximate solution Xπ
t,z is defined analogously. Likewise,

given an initial error radius δ0 ą 0 and a pattern π of length k ě 1, one defines
the error radius δπt,δ0 using (7) as follows:

• δπt,δ0 “ δjt,δ0 if π “ j P U , k “ 1 and t P r0, τ s, and

• δπ
pk´1qτ`t1,δ0

“ δjt1,δ1 with δ1 “ δπ
1

pk´1qτ,δ0
, if k ě 2, t1 P r0, τ s, π “ π1 ˚ j for

some j P U and π1 P Uk´1.

4.3. Controlled probabilistic reachability

Given a ball R “ BpO, ρq Ă Rd with ρ ą 0, we define the problem of
“controlled probabilistic reachability inside R” as follows:

Given a starting point z P Rd and a positive real δ0, find a pattern π of length
k such that, at t “ kτ , the image of the points located initially in Bpz, δ0q be,
on average, located as close as possible to O, and, in particular:

BpErX̃π
t,zs, δ

π
t,δ0q Ď R for t “ kτ.
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The program mentioned in Section 3.5, has been extended in order to find,
by exhaustive enumeration1, such a pattern π. This guarantees that, for all
x0 P Bpz, δ0q:

PrpXπ
kτ,x0

P Rq ě 1´
1

ρ2
p

b

Er}X̃π
kτ,z}

2s ` δπkτ,δ0q
2,

We now give two examples of application of this program.

Example 4. Consider the system of Example 1 with w “ 0.01:
dx1 “ p´0.25x1 ` ux2 ` p´1qu0.25qdt` 0.01x1dW 1

t

dx2 “ ppu´ 3qx1 ´ 0.25x2 ` p´1qup3´ uqqdt` 0.01x2dW 2
t

where u “ 1, 2.
For τ “ 0.5, ∆t “ 10´4, one finds (for all modes u “ 1, 2):

q “ 0, D “ 1.36, Lg “ 0.01, λ “ 0.25; for z “ p´4,´3.8q: E2,z “ 893.31,
E4,z “ 2.14 ¨ 105, F2,z “ 0.002, F4,z “ 4.9 ¨ 10´6; and for z “ p0, 3q: E2,z “

543.22, E4,z “ 7.94 ¨ 104, F2,z “ 0.0442, F4,z “ 0.00178.
Our program shows the probabilistic reachability inside R “ Bpp0, 0q, ρq, for all
point x0 P Bpp5, 4q, δ0q and all point y0 P Bpp´5,´4q, δ0q, with δ0 “ 0.1 and
ρ “ 7. We have, for π1 “ p2 ¨ 2 ¨ 2 ¨ 2q

PrpXπ1
4τ,x0

P Rq ě 1´
1

ρ2
p

b

Er}X̃π1

4τ,p5,4q}
2s ` δπ1

4τ,δ0
q2,

P rpXπ1
4τ,x0

P Rq ě 0.689,

and for π2 “ p1 ¨ 1 ¨ 1 ¨ 1 ¨ 1q:

PrpXπ2
5τ,y0

P Rq ě 1´
1

ρ2
p

b

Er}X̃π2

5τ,p´5,´4q}
2s ` δπ2

5τ,δ0
q2.

P rpXπ2
5τ,y0

P Rq ě 0.713

Figure 3 depicts in black the initial balls (at t “ 0) centered at p5, 4q and
p´5,´4q; and for each initial ball, the pattern that sends the ball inside R (at
time t “ kτ); the intermediate balls (at t “ τ, 2τ, . . . , pk ´ 1qτ) are depicted in
red, and 200 sampling trajectories drawn in black.

Example 5. (the slit problem)
The problem is adapted from ([20]). The controlled dynamics is:

dX “ udt` dW, X0 “ 1

with mode u P t´6,´5,´4,´3,´2, 1, 0, 1, 2, 3, 4, 5, 6u. We have (at t “ 0.5) a
slit at x P r´1,´3s. The objective is thus to control the system so that xptq P
R “ r´1,´3s (i.e., xptq P R “ BpO1, ρq with O1 “ ´2 and ρ “ 1q at t “ 0.5.

1In Section 4.4 a strategy based on the search of an optimal pattern is suggested rather
than an exhaustive search.
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Figure 3: Simulations of Example 4 from the initial balls Bpp5, 4q, 0.1q and Bpp´5,´4q, 0.1q
using patterns p2 ¨ 2 ¨ 2 ¨ 2q and p1 ¨ 1 ¨ 1 ¨ 1 ¨ 1q resp., with τ “ 0.5.

One has, for all modes: q “ 0, D “ 0, Lg “ 0, λ “ 0. For δ0 “ 0.2, an initial
point z “ 1 and a sampling time τ “ 0.5 with subsampling ∆t “ 2.5ˆ10´3, one
has for mode u “ ´6: E2,z “ 144, E4,z “ 20736, F2,z “ 4, F4,z “ 16; and for
mode u “ 0: E2,z “ 0, E4,z “ 0, F2,z “ 4, F4,z “ 16.

Suppose that all the trajectories start at x0 P Bpz, δ0q, with z “ 1 and
δ0 “ 0.2. When there is no control (u “ 0), at time t “ 0.5, the expected
value of Xt,x0

is in Bpz1, δt,δ0q with z1 “ 1 and δt,δ0 “ 0.29. From Markov’s
inequality, it follows that the trajectories pass by R “ Bp´2, 1q at t “ 0.5 with
low probability: see Figure 4. On the other hand, with control u “ ´6, at time
t “ τ “ 0.5, the expected value of Xt,x0 is now in Bpz11, δ

1
τ,δ0
q with z11 “ ´2

and δ1τ,δ0 “ 0.29. This explains why the trajectories pass by R “ Bp´2, 1q at
t “ 0.5 with high probability. We have, for x0 P Bpz, δ0q with z “ 1, δ0 “ 0.2,
t “ τ “ 0.5, ρ “ 1, O1 “ ´2:

PrpXu
τ,x0

P R “ BpO1, ρqq ě 1´
1

ρ2
p

b

Er}X̃u
τ,z ´O

1}2s ` δuτ,δ0q
2. (20)
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Figure 4: Simulations of Example 5 without control (π “ p0 ¨ 0q) and with control pattern
p´6 ¨ 0q from the initial ball Bp1, 0.2q. The initial region is in green. The red regions are
BpErX̃π

t,zs, δ
π
t,δ0
q. with z “ 1, δ0 “ 0.2 for the two patterns π “ p0 ¨ 0q (top) and π “ p´6 ¨ 0q

(bottom).

For mode u “ ´6, this gives: δuτ,δ0 “ 0.29 and Er}X̃u
τ,z ´ O1}2s “ 0.048. It

follows: PrpXu
τ,x0

P Rq ě 0.871.

4.4. Optimal control by state space discretization

In this Subsection, we are interested in solving an optimal control problem
in order to minimize the average distance of the state reached after a given
number of steps to the origin. In order to solve such optimal control problems,
it is classical to spatially discretize the set S into a finite number of cells of
equal size. Consider a partition of a compact subset S of Rd in cells. For
the sake of simplicity, we suppose that each cell C is a hypercube of Rd of
side length 2ε{

?
d, and we consider the centre of the cell, denoted 7x, as the

“representative” of the cell. Note that any point z located in the cell is such
that }z ´ 7x} ď ε. In [3] (cf. [8]), it is explained how a discretized procedure,
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based on classical techniques of dynamic programming, constructs a mapping u
which associates to each representative 7x a mode up7xq P U , corresponding to
the optimal policy at position 7x. More precisely, for any representative point
7x0,ε, the discretized procedure PROCp7x0,εq constructs a sequence of modes
u1,ε, . . . , uk,ε and a sequence of representatives 7x1,ε, . . . , 7xk,ε such that, for all
1 ď i ď k:

• ui,ε “ up7xi´1,εq.

• 7xi,ε is the representative of the cell containing ErX̃ui,ε
τ,7xi´1,ε

s.

For the sake of notation simplicity, we will now drop the index ε in symbols
ui,ε and 7xi,ε. Let us define the function nextui by: nextuip7xi´1q “ 7xi,

where 7xi is the representative of the cell containing ErX̃ui
τ,7xi´1

s. We define the
function nextπ as follows:

• if π “ u for some u P U then nextπp7xq “ nextup7xq,

• if π is of the form u ¨ π1 then nextπp7xq “ nextπ
1

pnextup7xqq.

Given a point z0 P Rd and a positive integer k, we focus on the problem of
finding the optimal pattern π˚pz0q P U

k, which, at time T “ kτ , maps z0 to a
distribution located at a minimal distance of the origin, i.e., such that:

π˚pz0q “ argminπPUkEr}Xπ
T,z0}

2s.

Let 7x0 be the representative of z0. The sequences tuiu1ďiďk and t7xiu1ďiďk
given by PROCp7x0q, are optimal in the following sense: (see, e.g., [3, 8]):

• the pattern u1 ¨ ¨ ¨uk coincides with π˚pz0q when ε is sufficiently small, and

• the discrete random variable 7xk converges in distribution to the random
variable Xu1¨¨¨uk

T,z0
when ε tends to 0.

This justifies the employment of the pattern u1 ¨ ¨ ¨uk generated by PROCp7x0q

as a (sub)optimal control pattern π for the original stochastic diffusion system 2.

Let us now, in our context, give a precise upper bound to Er}Xu1¨¨¨uk
T,z0

´7xk}
2s,

where 7xk is the representative point defined by nextu1¨¨¨ukp7x0q. We first define
λi ě 0, for 1 ď i ď k:

λi :“
b

Er}X̃ui
τ,7xi´1

´ 7xi}2s.

Let us also define ∆pu1 ¨ ¨ ¨ukq recursively by:

• ∆pu1 ¨ ¨ ¨uiq “ δuiτ,λi´1`∆pu1¨¨¨ui´1q
for i “ 2, . . . , k, and

2see, e.g., [3]
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• ∆pu1q “ δu1
τ,ε.

Without loss of understanding, we abbreviate ∆pu1 ¨ ¨ ¨uiq by ∆i. We have

Lemma 3.
b

Er}Xu1¨¨¨uk
kτ,z0

´ X̃uk
τ,7xk´1

}2s ď ∆k.

Proof. The proof is by induction on k. The case k “ 1 is trivial. Suppose k ě 2.
We have:

b

Er}Xu1¨¨¨uk
kτ,z0

´ X̃uk
τ,7xk´1

}2s ď δuk
τ,
b

Er}X
u1¨¨¨uk´1
pk´1qτ,z0

´7xk´1}
2s

On the other hand, using the triangular inequality and the induction hy-
pothesis, we have:

b

Er}Xu1¨¨¨uk´1

pk´1qτ,z0
´ 7xk´1}

2s

ď

b

Er}Xu1¨¨¨uk´1

pk´1qτ,z0
´ X̃

uk´1

τ,7xk´2
}2s `

b

Er}X̃uk´1

τ,7xk´2
´ 7xk´1}

2s

ď ∆k´1 ` λk´1.

Hence:
b

Er}Xu1¨¨¨uk
kτ,z0

´ X̃uk
τ,7xk´1

}2s ď δukτ,∆k´1`λk´1
“ ∆k. This achieves the

proof of the induction step.

We have

Theorem 3. Consider a point z0 P Rd of representative 7x0, and let 7xk “
nextu1¨¨¨ukp7x0q for sequence u1 ¨ ¨ ¨uk P U

k (generated by PROCp7x0q). We
have:

b

Er}Xu1¨¨¨uk
T,z0

´ 7xk}2s ď ∆k ` λk.

Proof. We have

1. Er}Xu1¨¨¨uk
kτ,z0

´ X̃uk
τ,7xk´1

}2s ď ∆2
k by Lemma 3, and

2. Er}X̃uk
τ,7xk´1

´ 7xk}
2s ď λ2

k by definition.

It follows, using triangular inequality:
b

Er}Xu1¨¨¨uk
T,z0

´ 7xk}2s ď ∆k ` λk.

Note that the term ∆k of the inequality right-hand side takes into account
the error introduced by the Euler scheme (with respect to the real solution of
the SDE); in contrast, in the literature (e.g. [8, 22]), the Euler error is often
disregarded, the analysis focusing just on the convergence of 7xk to the Euler
approximation X̃u1¨¨¨uk

T,z0
.

Example 6. We apply the above procedure PROCp7x0q on Example 1 with
w “ 0.01. Consider the interest set R “ Bpp0, 0q, ρq with ρ “ 7, discretized
with an accuracy ε “ 0.57. We compute (sub)optimal patterns for the entire
set, using different lengths of patterns, and simulate the induced controller for
200 initial conditions randomly selected in R. Simulations are given in Figure
5. The procedure took 11.8 seconds of computation for patterns of length 1, 47.4
seconds of computation for patterns of length 3, 152.0 seconds of computation
for patterns of length 5.
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Figure 5: Simulations of Example 6 with the controller induced by PROCp7x0q, for patterns
of length 1 (top), length 3 (center), and length 5 (bottom). The blue circle is the set R “

Bpp0, 0q, 7q, the red marker is the target state (the origin), the black lines are the controlled
trajectories.
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We now compare the results yielded by PROCp7x0q with those of Exam-
ple 4. The sub-optimal procedure returns patterns ensuring the probabilistic
reachability inside R “ Bpp0, 0q, ρq, for all point x0 P Bpp5, 4q, δ0q and all point
y0 P Bpp´5,´4q, δ0q, with δ0 “ 0.1 and ρ “ 7. For x0 P Bpp5, 4q, δ0q, the
procedure returns pattern π1 “ p1 ¨ 2 ¨ 2 ¨ 2q ensuring a probability

PrpXπ1
4τ,x0

P Rq ě 0.801,

and for x0 P Bpp´5,´4q, δ0q, the procedure returns pattern π2 “ p2 ¨ 2 ¨ 2 ¨ 1 ¨ 1q,
with probability

PrpXπ2
5τ,y0

P Rq ě 0.802.

The probabilities are thus higher than in Example 4. Simulations are shown in
Figure 6, depicting in black the initial balls (at t “ 0) centered at p5, 4q and
p´5,´4q; and for each initial ball, the pattern that sends the ball inside R (at
time t “ kτ); the intermediate balls (at t “ τ, 2τ, . . . , pk ´ 1qτ) are depicted in
red, and 200 sampling trajectories drawn in black.

Figure 6: Simulations of Example 6 from the initial balls Bpp5, 4q, 0.1q and Bpp´5,´4q, 0.1q
using patterns p1 ¨ 2 ¨ 2 ¨ 2q and p2 ¨ 2 ¨ 2 ¨ 1 ¨ 1q resp., with τ “ 0.5.
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Example 7. We consider nonlinear Example 3. Let us recall the dynamics:
dx1 “ x2dt` 0.03x1dW 1

t

dx2 “ p´
g
l sinx1 ´

k
mx2 `

1
ml2uqdt` 0.03x2dW 2

t

We consider the set of control inputs u P t´1.5,´1,´0.5, 0, 0.5, 1, 1.5u. In
order to reproduce the results of [31], we slightly modify the procedure so that
the interest set is R “ Bpp0, 0q, ρq with ρ “ 1.0, but the optimization objective
is to minimize the average distance with the target state xobj “ p0.5, 0q. The
state space is discretized with an accuracy ε “ 0.02. We compute (sub)optimal
patterns for the entire set R, using patterns of length 1, and simulate the induced
controller for 30 initial conditions randomly selected in R. Simulations are given
in Figure 7. The procedure took 127 seconds of computation for patterns of
length 1.

5. Final remarks and future work

We have established a mean-square error bound on an Euler-like method
to simulate stochastic differential equations that satisfy a one-sided Lipschitz
(OSL) condition. An advantage of our method is that the OSL assumption is
weaker than the condition under which classical methods converge. From the
mean square error bound, we have inferred a lower bound on the probability to
reach a given set R at a given time. This allows us to determine a control pattern
(in term of sequences of control modes) which makes the stochastic switched
system reach a target with guaranteed minimum probability. Besides, instead
of searching over all possible sequences of modes (which is a process exponential
in the length of sequences), we have proposed an optimized method inferring
a ‘best’ pattern, which may entail a significant gain in time and space. In the
future, we plan to experiment our method with significantly larger examples
than those given here.
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Figure 7: Simulations of Example 7 projected on the first dimension, with the controller
induced by PROCp7x0q for patterns of length 1. The red line is the target state xobj “ p0.5, 0q,
the black lines are the controlled trajectories.
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