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Introduction

Symbolic methods for the verification and control synthesis of hybrid systems (and, particularly, "switched systems") have received significant attention in the past few years. However, control systems involving stochastic differential equations remain difficult to handle with symbolic methods, and few methods have been developed for these systems. One distinguishes two main classes of symbolic methods for hybrid systems: indirect methods and direct methods [START_REF] Asarin | Effective synthesis of switching controllers for linear systems[END_REF].

Indirect methods proceed by constructing a finite abstraction of the original system by discretization of the dense state space R d (where d is the dimension of the state space). Among the indirect methods, one of the most successful proceeds by approximate bisimulation [START_REF] Girard | Approximately bisimilar symbolic models for incrementally stable switched systems[END_REF]. This method originally designed for deterministic switched systems has been recently extended for stochastic switched systems [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF][START_REF] Zamani | Symbolic control of stochastic systems via approximately bisimilar finite abstractions[END_REF][START_REF] Zamani | Towards scalable synthesis of stochastic control systems[END_REF]. This approach relies on the hypothesis of incremental stability of the stochastic switched system (or existence of a common/multiple Lyapunov function). Another method is presented in [START_REF] Esmaeil | Formal abstractions for automated verification and synthesis of stochastic systems[END_REF]. The associated tool [START_REF] Soudjani | Faust ˆ2: Formal abstractions of uncountable-state stochastic processes[END_REF] allows to generate formal abstractions for discrete-time Markov processes defined over uncountable (continuous) state spaces.

Indirect methods have also been developed for the verification of safety. Safety verification has been studied using the concept of barrier certificates [START_REF] Prajna | Barrier certificates for nonlinear model validation[END_REF]. The original inquiry has been later modified to cope with stochastic systems [START_REF] Wisniewski | Stochastic safety analysis of stochastic hybrid systems[END_REF], and to the design of a controller that makes the closed-loop system safe [START_REF] Wieland | Constructive safety using control barrier functions[END_REF][START_REF] Zakiyullah | Stabilization with guaranteed safety using control lyapunov-barrier function[END_REF]. Also related is the subject of stability and safety verification is the reach avoidance problem. It has been studied using dynamic programming. This approach has been developed both for deterministic hybrid system in [START_REF] Margellos | Hamilton-Jacobi formulation for reach-avoid differential games[END_REF], and for discrete-time stochastic hybrid systems in [START_REF] Summers | Verification of discrete time stochastic hybrid systems: A stochastic reach-avoid decision problem[END_REF].

A direct method proceeds by working directly at the level of the dense state of the system R d ; it computes "trajectory tubes", which are over-approximations of the set of all the controlled trajectories starting at a given subregion of R d . In previous work, we have followed such a direct approach first in [START_REF] Fribourg | Finite controlled invariants for sampled switched systems[END_REF], then in [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF], using the Euler approximation scheme for calculating over-approximations of tubes of trajectories. We show here how to extend this direct method to stochastic switched systems. The method extends the deterministic approach by replacing the classical Euler approximation scheme with a variant of the stochastic Euler-Maruyama scheme [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally lipschitz continuous coefficients[END_REF]. The correctness of these Euler-based methods does not rely on the hypothesis of incremental stability as in [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF][START_REF] Zamani | Towards scalable synthesis of stochastic control systems[END_REF], but on the hypothesis of 'one-sided Lipschitz (OSL)' condition with constant λ P R d (also called 'monotonicity'/'dissipativity', see [START_REF] Von Renesse | Existence and uniqueness of solutions of stochastic functional differential equations[END_REF]). It can be seen that if a stochastic switched system satisfies an OSL condition with λ ă 0, then the function V px, x 1 q " }x ´x1 } 2 is a common incremental Lyapunov function in the sense of [START_REF] Zamani | Symbolic control of stochastic systems via approximately bisimilar finite abstractions[END_REF], from which it follows that the switched system is incrementally stable, and can be analysed by approximate bisimulation. However, Euler-based methods also apply when the system is not incrementally stable, in which case the constant λ is necessarily positive. We thus consider a class of systems different from that of [START_REF] Zamani | Symbolic control of stochastic systems via approximately bisimilar finite abstractions[END_REF].

The plan of the paper is as follows: In Section 3, we give an explicit upper bound on the mean square error of the tamed Euler method for SDEs under OSL condition (Theorem 2). We apply the result in order to ensure reachability properties of stochastic switched systems with guaranteed minimum probability (Section 4). We conclude in Section 5.

This paper is an extended version of a paper (A. Le Coënt, L. Fribourg and J. Vacher. Control Synthesis for Stochastic Switched Systems using the Tamed Euler Method. In ADHS'18, IFAC-PapersOnLine 51 [START_REF] Liberzon | Switching in systems and control[END_REF], pages 259-264. Elsevier Science Publishers, 2018). The main additional material of the extended version is:

• Section 3.3, which gives analytical upper bounds on expressions occurring in Theorem 2,

• Section 3.4, which gives a lower bound on the probability of reaching a given set R (Proposition 3), and

• Section 4.4, which proposes an optimized method of control synthesis.

Preliminaries

Notations

The symbols N, N ě0 , R, R ą0 , R ě0 denote the set of natural, nonnegative integer, real, positive, and nonnegative real numbers.

The symbol }¨} denotes the Euclidean norm on R d . The symbol x¨, ¨y denotes the scalar product of two vectors of R d . Given a point x P R d and a positive real r ą 0, the ball Bpx, rq of centre x and radius r is the set ty P R d | }x ´y} ď ru.

Throughout this paper, the set U denotes a finite set of switched modes. Given a sequence of k modes a " pa 1 ¨¨¨a k q P U k , and a sequence of p modes b " pb 1 ¨¨¨b p q P N p , we denote the concatenation a ˚b of a and b the sequence of length k `p: a ˚b " pa 1 ¨¨¨a k ¨b1 ¨¨¨b p q.

A sequence of non-negative integers is written in bold when it is used as a multi-index, e.g. a " pa 1 , . . . , a p q P N p ě0 , the sum of the components of a is denoted by |a| " a 1 `¨¨¨`a p , and `b a ˘" b! a1!a2!...ap! is the multinomial coefficient.

Systems considered and assumptions

Let τ P R ą0 be a fixed real number, let pΩ, F, Pq be a probability space with normal filtration pF t q tPr0,τ s , let d, m P N let W " pW p1q , . . . , W pmq q : r0, τ s ˆΩ Ñ R m be an m-dimensional standard pW t q tPr0,τ s -Brownian motion and let x 0 : Ω Ñ R d be an F 0 {BpR d q-measurable mapping with Er}x 0 } p s ă 8 for all p P r1, 8q. Moreover, let f : R d Ñ R d be a continuously differentiable function whose derivative grows at most polynomially. Formally, let us suppose the existence of constants D P R ě0 and q P N such that, for all x, y P R d }f pxq ´f pyq} 2 ď D}x ´y} 2 p1 `}x} q `}y} q q (H1)

Let g " pg i,j q iPt1,...,du,jPt1,...,mu : R d Ñ R dˆm be a globally Lipschitz continuous function: there exists L g P R ě0 such that, for all x, y P R d }gpxq ´gpyq} ď L g }x ´y} (H2)

Finally, let us suppose that f is globally one-sided Lipschitz with constant λ P R:

Dλ P R @x, y P R d : xf pyq ´f pxq, y ´xy ď λ }y ´x} 2 (H3)

Then consider the Stochastic Differential Equations (SDE):

dX t " f pX t qdt `gpX t qdW t , X 0 " x 0 (1) 
for t P r0, τ s. The drift coefficient f is the infinitesimal mean of the process X and the diffusion coefficient g is the infinitesimal standard deviation of the process X. Under the above assumptions, the SDE (1) is known to have a unique strong solution. More formally, there exists an adapted stochastic process pX t,x0 q : r0, τ s ˆΩ Ñ R d with continuous sample paths fulfilling

X t,x0 " x 0 `ż t 0 f pX s qds `ż t 0 gpX s qdW s
for all t P r0, τ s P-a.s. (see, e.g., ([21])). We denote by X t,x0 the solution of Equation ( 1) at time t from initial condition X 0,x0 " x 0 P-a.s., in which x 0 is a random variable that is measurable in F 0 .

Remark 1. Constants λ, L g and D can be computed using (constrained) optimization algorithms (see ( [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF])).

Overview of the approach

We aim at synthesizing reachability controllers for the class of systems described above. Our approach consists in adapting reachability analysis based control systhesis methods to stochastic systems. In [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF], we successfully used the Euler method for guaranteeing controlled reachability of deterministic systems using the Euler method in association to a new error bound relying on the OSL property of the vector field.

Consider equation (1) with g " 0. Classically, one knows that, if the function f is Lipschitz continuous with Lipschitz constant L, the solution of the ODE starting at a given initial value exists and is unique. Besides, one has:

}X t,x0 ´Xt,x1 } ď e Lt }x 0 ´x1 }, (2) 
with two initial values x i (i " 0, 1). This gives a rough growth bound, i.e. a function bounding the distance of neighboring trajectories as t evolves. In [START_REF] Donchev | Stability and euler approximation of one-sided lipschitz differential inclusions[END_REF], it is proven that, if f is continuous and OSL with OSL constant λ, then the solution of the ODE starting at a given initial value exists and is unique, and, for all x 0 , x 1 P R n :

}X t,x0 ´Xt,x1 } ď e λt }x 0 ´x1 }. (3) 
This gives a more accurate growth bound because a Lipschitz function f is always OSL, and the associated OSL constant λ is always less than or equal to its Lipschitz counterpart L. Using the OSL constant λ, it is also possible to bound the error }X t,x0 ´X t,x1 } in function of }x 0 ´x1 }, where Xt,x1 denotes the Euler approximate trajectory of the solution X t,x1 . We can then conclude that any trajectory starting from x 0 close enough from a given initial condition x 1 (}x 0 ´x1 } ď δ 0 ) will remain within some bound (denoted by δ t,δ0 ) of the Euler trajectory Xt,x1 . Our objective is to use a similar approach for stochastic systems, while making as few additional hypotheses on the dynamics as possible.

Therefore, we first explain how we can use a variant of the Euler-Maruyama scheme called tamed Euler scheme in order to guarantee reachability of the expectation of the state ErX t,x0 s of the stochastic system (1) in a given set. It consists in computing an approximate Euler-based trajectory Xt,x1 , we then provide an error bound for Er}X t,x0 ´X t,x1 } 2 s (Theorem 2) which allows to write a result for the expectation of the non approximated trajectory ErX t,x0 s (Proposition 2). This result can be extended further as a probability result (the probability with which the state reaches the set, Proposition 3).

This reachability analysis method is then used in association with tiling based control synthesis algorithms to ensure that the system is stabilised in a given region of interest with a given probability (Section 4). The first algorithm we use is based on an adaptive state-space decomposition algorithm [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF][START_REF] Le Coënt | An improved algorithm for the control synthesis of nonlinear sampled switched systems[END_REF], and uses an exhaustive enumeration of all possible control sequences (up to a given length) in order to find stabilising sequences (see Section 4.3). We then propose a faster approach (in Section 4.4) which relies on state-space discretization and dynamic programming techniques in order to minimize the average distance of the state with some given objective after a given number of steps. The second algorithm is merely an enhancement of the control sequence search of the first one, using a static tiling. Note that with both algorithms, there is no need to compute a finite-state abstraction of the system, which means that computing a controller is done with the application of a single algorithm, unlike [START_REF] Zamani | Symbolic control of stochastic systems via approximately bisimilar finite abstractions[END_REF] which requires the computation of a finite-state abstraction before computing controllers.

Example 1. Throughout the paper, we illustrate our approach on a 2-mode switched system borrowed from [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF]. This case-study is a stochastic version of a well-known system originally introduced as an illustrative example in [START_REF] Liberzon | Switching in systems and control[END_REF]. The dynamics is given by the system of equations dx 1 " p´0.25x 1 `px 2 `p´1q p 0.25qdt `wx 1 dW 1 t , dx 2 " ppp ´3qx 1 ´0.25x 2 `p´1q p p3 ´pqqdt `wx 2 dW 2 t , where p " 1, 2 is the mode, and we consider different values of noise w P R ą0 .

Bounding the Error of the tamed Euler method

Tamed Euler approximation

The standard way to extend the classical Euler method for ordinary differential equations to the SDE (1) is the Euler-Maruyama scheme ( [START_REF] Maruyama | Continuous Markov processes and stochastic equations[END_REF]). More precisely, given z : Ω Ñ R d an F 0 {BpR d q-measurable mapping with Er}z} p s ă 8 for all p P r1, 8q, the explicit Euler-Maruyama (EM) method for the SDE (1) is given by the mappings

Y N n,z : Ω Ñ R d , n P t0, 1, . . . , N u, which satisfy Y N 0,z " z and Y N n`1,z " Y N n,z `τ N ¨f pY N n,z q `gpY N n,z qpW pn`1qτ {N ´Wnτ{N q
for all n P t0, 1, . . . , N ´1u and all N P N. See ( [START_REF] Maruyama | Continuous Markov processes and stochastic equations[END_REF]). Unfortunately, the convergence results for the EM scheme does not hold when the drift function f of the SDE (1) is polynomial (not an affine function). In order to consider non affine drift functions, we adopt a refined scheme, which has been proposed recently to overcome this difficulty ( [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally lipschitz continuous coefficients[END_REF]). Let

X N n,z : Ω Ñ R d , X N n`1,z " X N n,z `τ N ¨f pX N n,z q 1 `τ N ¨}f pX N n,z q} `gpX N n,z qpW pn`1qτ N ´W nτ N q (4) 
for all n P t0, 1, . . . , N ´1u and all N P N. We refer to the numerical method (4) as a tamed Euler scheme ( [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally lipschitz continuous coefficients[END_REF]). In this method the drift term τ n ¨f pX N n,z q is "tamed" by the factor 1{p1 `τ N ¨}f pX N n,z q}q for n P t0, 1, . . . , N ´1u and N P N in (4). In order to establish results for the time continuous system, we use the following time continuous interpolation of the time discrete numerical approximations (4), also introduced in ([13]). Let XN z : r0, τ s ˆΩ Ñ R d , N P N, be a sequence of stochastic processes given by

XN t,z " XN n,z `pt ´nτ {N q ¨f p XN n,z q 1 `τ {N ¨}f p XN n,z q} `gp XN n,z qpW t ´W nτ N q (5) 
for all t P r nτ N , pn`1qτ N s, n P t0, 1 . . . , N ´1u and all N P N. Note that XN t,z : r0, τ s ˆΩ Ñ R d is an adapted stochastic process with continuous sample paths for every N P N.

We finally introduce a piecewise constant interpolation X N t,z of the tamed Euler scheme as follows. It is mainly used in some constants when establishing the error bound and for proving Theorem 2.

X N t,z :" X N n,z for t P r nτ N , pn `1qτ N q. (6) 
Note that XN t,z " X N t,z " X N n,z at time t " nτ N for n P t0, 1, . . . , N u. The following theorem is proven in ( [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally lipschitz continuous coefficients[END_REF]): Theorem 1. Let us suppose (H1)-(H2)-(H3). Let z : Ω Ñ R d be an F 0 {BpR d qmeasurable mapping with Er}z} p s ă 8 for all p P r1, 8q. Then, for all p P r1, 8q, the tamed Euler scheme (4) satisfies:

sup N PN sup nPt0,1,...,N u Er}X N n,z } p s ă 8
This theorem allows to ensure the strong convergence of the tamed Euler method. Any number N of subsampling steps can thus be used. This number is now left implicit for the sake of simplicity. From Theorem 1, it follows (cf. Lemma 4.3,[START_REF] Higham | Strong convergence of Euler-type methods for nonlinear stochastic differential equations[END_REF])): Lemma 1. Let us suppose (H1)-(H2)-(H3). Let z : Ω Ñ R d be an F 0 {BpR d qmeasurable mapping with Er}z} p s ă 8 for all p P r1, 8q. Let us consider the time continuous interpolation of the tamed Euler scheme as defined in [START_REF] Davis | On the construction of a class of invariant polynomials in several matrices, extending the zonal polynomials[END_REF], and the piecewise constant interpolation as defined in [START_REF] Donchev | Stability and euler approximation of one-sided lipschitz differential inclusions[END_REF]. Then, for any even integer r ě 2, there exist two constants E r,z and F r,z such that

sup 0ďtďτ E}X t,z ´X t,z } r ď p∆ t q r 2 pE r,z p∆ t q r 2 `Fr,z dq. with ∆ t " τ {N and: E r,z " 2 r p}f p0q} r `D2 r`1 2 p1 `E sup 0ďtďτ }X t,z } qr q 1 2 pE sup 0ďtďτ }X t,z } 2r q 1 2 q, F r,z " 2 r p}gp0q} 2r `Lr g E sup 0ďtďτ }X t,z } r 2 q.
Remark 2. Constants E r,z and F r,z are computed using the constants λ and L g (see Remark 1), and the expected values of sup 0ďtďτ }X t,z } p for the required values of p at each time t " 0, ∆t, 2∆t, . . . , N ∆t. These expected values can either be computed numerically by using a Monte Carlo method, or by evaluating analytically the expectations E sup 0ďtďτ }X t,z } p for all required values of p. Proposition 2 explains how such expectations can be computed for the piecewise linear interpolation Xt,z , the computation for X p t,z is the same but much simpler since there is no time dependent term in [START_REF] Donchev | Stability and euler approximation of one-sided lipschitz differential inclusions[END_REF]. In this paper, we use the latter approach.

Mean square error bounding

The following Theorem holds for SDE [START_REF] Arnold | Stochastic differential equations[END_REF]. This corresponds to a stochastic version of Theorem 1 of ( [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF]), showing that a similar result holds on average, using the tamed Euler method of ( [START_REF] Hutzenthaler | Strong convergence of an explicit numerical method for SDEs with nonglobally lipschitz continuous coefficients[END_REF]). It is an adaptation of Theorem 4.4 in ( [START_REF] Higham | Strong convergence of Euler-type methods for nonlinear stochastic differential equations[END_REF]).

Theorem 2. Given the SDE system (1) satisfying (H1)-(H2)-(H3). Let δ 0 P R ě0 . Suppose that z is a random variable on R d such that Er}x 0 ´z} 2 s ď δ 2 0 .

Then, we have, for all τ ě 0:

Er sup 0ďtďτ }X t,x0 ´X t,z } 2 s ď δ 2 τ,δ0 ,
with δ 2 τ,δ0 :" βpτ qe γτ , where:

γ " 2p ? ∆ t `2λ `L2 g `128L 4
g q, and

βpτ q " 2δ 2 0 `2τ ∆ t L 2 g p1 `128L 2 g qpF 2,z d `E2,z ∆ t q `4τ a ∆ t DpF 4,z d `E4,z ∆ 2 t q 1 2 p1 `4E sup 0ďtďτ }X t,z } 2q `4E sup 0ďtďτ } Xt,z } 2q q 1 2 . ( 7 
)
with ∆ t " τ {N .

Proof. The proof closely follows the proof of Theorem 4.4 in ( [START_REF] Higham | Strong convergence of Euler-type methods for nonlinear stochastic differential equations[END_REF]). Let e t " X t,x0 ´X t,z . We have, for all 0 ď t ď τ : de t " pf pX t,x0 q ´f pzqqdt `pgpX t,x0 q ´gpzqqdW t .

Then, by using Equation ( 8) and the integral version of Itô formula applied to function x Þ Ñ }x} 2 we obtain

}e t } 2 " }e 0 } 2 `ż t 0 2xe s , f pX s,x0 q ´f pX s,z qyds `ż t 0 }gpX s,x0 q ´gpX s,z q} 2 ds `M ptq, (9) 
where e 0 " x 0 ´z, and M ptq "

ż t 0 2xe s , gpX s,x0 q ´gpX s,z qydW s .
So we have using (H2):

}e t } 2 ď }e 0 } 2 `ż t 0 2xe s , f pX s,x0 q ´f p Xs,z qyds `L2 g ż t 0 }X s,x0 ´Xs,z } 2 ds `ż t 0 2xe s , f p Xs,z q ´f pX s,z qyds `M ptq. (10) 
So we have using (H3) and Young's inequality:

}e t } 2 ď }e 0 } 2 `ż t 0 p2λ}e s } 2 `L2 g }e s } 2 qds `L2 g ż t 0 }X s,z ´X s,z } 2 ds `ż t 0 p 1 ? ∆ t }f p Xs,z q ´f pX s,z q} 2 `a∆ t }e s } 2 qds `M ptq. (11) 
So we have using (H1), for all 0 ď t ď τ :

}e t } 2 ď }e 0 } 2 `pa ∆ t `2λ `L2 g q ż t 0 }e s } 2 ds `L2 g ż t 0 }X s,z ´X s,z } 2 ds `D ? ∆ t ż t 0 p1 `}X s,z } q `} Xs,z } q q}X s,z ´X s,z } 2 ds `M ptq. (12) 
It follows using Lemma 1 for r " 2, and Cauchy-Schwarz inequality:

Er sup 0ďsďt }e s } 2 s ď E}e 0 } 2 `pa ∆ t `2λ `L2 g q ż t 0 E}e s } 2 ds `L2 g τ ∆ t pE 2,z ∆ t `F2,z dq `D ? ∆ t ż t 0 pEp1 `}X s,z } q `} Xs,z } q q 2 q 1 2 pE}X s,z ´X s,z } 4 q 1 2 ds `mptq, (13) 
where mptq " Er sup 0ďsďt }M psq}s.

Hence, using using Lemma 1 for r " 4, and inequality pa `bq p ď 2 p pa p `bp q:

Er sup 0ďsďt }e s } 2 s ď E}e 0 } 2 `pa ∆ t `2λ `L2 g qq ż t 0 E}e s } 2 ds `L2 g τ ∆ t pE 2,z ∆ t `F2,z dq `2Dτ a ∆ t pE 4,z ∆ 2 t `F4,z dq 1 2 p1 `4E sup 0ďtďτ }X t,z } 2q `4E sup 0ďtďτ } Xt,z } 2q q 1 2 `mptq. (14) 
On the other hand, from the Burkholder-Davis-Gundy inequality, we get:

mptq ď 16Er ż t 0 }e s } 2 }gpX s,x0 q ´gpX s,z q} 2 dss 1 2
Hence, using (H2):

mptq ď 16L 2 g Er sup 0ďsďt }e s } 2 ż t 0 }X s,x0 ´Xs,z } 2 dss 1 2
Then, using Young's inequality (for any α ą 0):

mptq ď 8L 2 g pαEr sup 0ďsďt }e s } 2 s `1 α Er ż t 0 }X s,x0 ´Xs,z } 2 dssq.
Hence, by using Lemma 1 for r " 2:

mptq ď 8αL 2 g Er sup 0ďsďt }e s } 2 s `8L 2 g α ż t 0 Er sup 0ďrďs }e r } 2 sds `8L 2 g α τ ∆ t pE 2,z ∆ t `F2,z dq. (15) 
Hence, letting α " 1 16L 2 g , we have by replacing in ( 14):

1 2 Er sup 0ďsďt }e s } 2 s ď δ 2 0 `pa ∆ t `2λ `L2 g `128L 4 g q ż t 0 Er sup 0ďrďs }e r } 2 sds `τ pL 2 g `128L 4 g q∆ t pE 2,z ∆ t `F2,z dq `τ 2D a ∆ t pE 4,z ∆ 2 t `F4,z dq 1 2 p1 `4E sup 0ďtďτ }X t,z } 2q `4E sup 0ďtďτ } Xt,z } 2q q 1 2 . ( 16 
)
It results from Gronwall's inequality:

Er sup 0ďtďτ }e t } 2 s " βpτ qe γτ , with γ " 2p ? ∆ t `2λ `L2 g `128L 4
g q, and

βpτ q " 2δ 2 0 `2τ p∆ t L 2 g p1 `128L 2 g qpF 2,z d `E2,z ∆ t q `4τ a ∆ t DpF 4,z d `E4,z ∆ 2 t q 1 2 p1 `4E sup 0ďtďτ }X t,z } 2q `4E sup 0ďtďτ } Xt,z } 2q q 1 2 . (17) 
It follows from Theorem 2 and Jensen's inequality:

Proposition 1. Consider two points x 0 and z in R d ,and a positive real number δ 0 . Suppose that x 0 P Bpz, δ 0 q. Then EX t,x0 P Bp Xt,z , δ t,δ0 q for all t P r0, τ s, where δ t,δ0 is defined in (7).

Numerical pre-computation of expectations

Theorem 2 requires the knowledge of E sup 0ďtďτ } Xt,z } 2q . In this section, we give a pre-computable upper bound of this quantity.

Proposition 2. Let Xt,z be the piecewise linear interpolation of the solution to equation (1) as defined in equation [START_REF] Davis | On the construction of a class of invariant polynomials in several matrices, extending the zonal polynomials[END_REF], written in the form Xt,z " αpzq βpzqt

`γpzqW t with αpzq " XN n,z ´pnτ{Nq¨fp XN n,z q 1`τ {N ¨}f p XN n,z q} , βpzq " f p XN n,z q 1`τ {N ¨}f p XN n,z q} , γpzq " gp XN n,z q. Then Er} Xt,z } 2q s " ÿ |k|"q ˆq k ˙Ck1,k2,k3 pzqµ k4,k5,k6 pz, 1qt k2`2k3`k4`k 4 `k5 2 `k6 , ( 18 
)
where k " pk 1 , . . . , k 6 q. The previous equation can be written as follows

} Xt,z } 2q " ÿ |k|"q
ˆq k ˙Ck1,k2,k3 pzqt k2`2k3`k4 papzq T W t q k4 pbpzq T W t q k5 pW T t QpzqW t q k6

where apzq " 2βpzq T γpzq, bpzq " 2αpzq T γpzq, Qpzq " γpzq T γpzq and C k1,k2,k3 pzq " ´αpzq T αpzq ¯k1 ´2αpzq T βpzq ¯k2 ´βpzq T βpzq ¯k3 .

We denote µ κ pz, tq def.

" E " papzq T W t q k4 pbpzq T W t q k5 pW T t QpzqW t q k6 ‰ where κ " pk 4 , k 5 , k 6 q. The expectation µ κ pz, tq can always be written as the high-order moment of a product of three quadratic forms [START_REF]The moments of products of quadratic forms in normal variables[END_REF], therefore we have

µ κ pz, tq " $ ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' % λ p1q κ D k 5 ´k4 2 ,k4,k6 pbpzqbpzq T , P a,b pzq, Qpzqqt k 4 `k5 2 `k6 if k 4 ă k 5 and k 4 `k5 " 0 pmod 2q λ p2q κ D k 4 ´k5 2 ,k5,k6 papzqapzq T , P a,b pzq, Qpzqqt k 4 `k5 2 `k6 if k 4 ą k 5 and k 4 `k5 " 0 pmod 2q λ p3q κ D k5,k6 pP a,b pzq, Qpzqqt k5`k6
if k 4 " k 5 and k 5 " 0 pmod 2q 0 if k 4 `k5 " 1 pmod 2q where D n1,...,ni pA 1 , . . . , A i q denotes the normalized Davis polynomials [START_REF] Davis | On the construction of a class of invariant polynomials in several matrices, extending the zonal polynomials[END_REF][START_REF] Hillier | Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors[END_REF] and

P a,b pzq " apzqbpzq T `bpzqapzq T 2 , λ p1q κ " 2 k 4 `k5 2 
`k6´1 k 4 k 6 pk 5 ´k4 q,

λ p2q κ " 2 k 4 `k5 2 
`k6´1 k 5 k 6 pk 4 ´k5 q, λ p3q κ " 2 k5`k6 k 5 k 6 . Finally, the result holds.

The normalized Davis polynomials D n1,...,ni pA 1 , . . . , A i q can be computed efficiently using recursion formulas, see [START_REF] Hillier | Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors[END_REF].

From Proposition 2, we obtain an upper bound of E sup 0ďtďτ } Xt,z } 2q using the following lemma. Lemma 2. For every martingale Y t P L p (where p ą 1), we have:

Er sup 0ďtďτ }Y t } p s ď ˆp p ´1 ˙p Er}Y τ } p s.
Proof. See [START_REF] Arnold | Stochastic differential equations[END_REF].

We thus have:

E sup 0ďtďτ } Xt,z } 2q ď ˆ2q 2q ´1 ˙2q ÿ |k|"q ˆq k ˙Ck1,k2,k3 pzqµ k4,k5,k6 pz, 1qt k2`2k3`k4`k 4 `k5 2 `k6
where C k1,k2,k3 pzq and µ k4,k5,k6 pz, 1q are given in Proposition 2. The computation of this deterministic upper-bound is much faster than the direct Monte-Carlo approximation of the expectation. Furthermore, we get rid of the approximations inherent to the use of Monte-Carlo simulations.

Probabilistic reachability

Let us suppose for simplicity that R is a ball of the form BpO, ρq where O is the origin and ρ ą 0. Suppose that x 0 P Bpz, δ 0 q. We have:

P rpX τ,x0 R Rq " P rp}X τ,x0 } ą ρq. Furthermore: Proposition 3. P rpX τ,x0 P Rq ě 1 ´1 ρ 2 ˆδτ,δ0 `bEr} Xτ,z } 2 s ˙2 .
Proof. Using Chebyshev's inequality and triangular inequality, it follows

P rpX τ,x0 R Rq ď 1 ρ 2 Er}X τ,x0 } 2 s ď 1 ρ 2 ˆbEr} Xτ,z ´Xτ,x0 } 2 s `bEr} Xτ,z } 2 s ˙2 .
We thus get, using the inequality of the previous section (namely, Er} Xτ,z Xτ,x0 } 2 ď δ 2 τ,δ0 ):

P rpX τ,x0 R Rq ď 1 ρ 2 pδ τ,δ0 q 2 `bEr} Xτ,z } 2 s.
Alternatively, we have:

P rpX τ,x0 P Rq ě 1 ´1 ρ 2 ˆδτ,δ0 `bEr} Xτ,z } 2 s ˙2 .
NB: If we have R " BpO 1 , ρq where O 1 is not the origin, we have:

P rpX τ,x0 P Rq ě 1 ´1 ρ 2 ˆδτ,δ0 `bEr} Xτ,z ´O1 } 2 s ˙2 .

Implementation

This method has been implemented in the interpreted language Octave, and the experiments performed on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of memory. The implementation is an adaptation of the program described in ( [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF]) for controlling deterministic switched systems, but makes use of the tamed Euler scheme for SDEs (with the error function δ t,δ0 given in Theorem 2) instead of the classical Euler scheme.

Example 2. Consider the system of Example 1, for mode u " 1 and w " 0.05:

dx 1 " p´0.25x 1 `x2 `0.25qdt `0.05x 1 dW 1 t dx 2 " p´2x 1 ´0.25x 2 ´2qdt `0.05x 2 dW 2 t
The program gives (for τ " 1, ∆ t " τ {10 4 ): q " 0, D " 1.36, L g " 0.05, λ " 0.25; and for z " p´4, ´3.8q: E 2,z " 893.3, E 4,z " 2.14 ¨10 5 , F 2,z " 0.002, F 4,z " 4.9 ¨10 ´6. Consider now the system corresponding to Example 1 for mode u " 2 and w " 0.05:

dx 1 " p´0.25x 1 `2x 2 ´0.25qdt `0.05x 1 dW 1 t dx 2 " p´x 1 ´0.25x 2 `1qdt `0.05x 2 dW 2 t
The program gives (for τ " 1, ∆ t " τ {10 4 ): q " 0, D " 1.36, L g " 0.05, λ " 0.25, and, for z " p0, 3q: E 2,z " 543.2, E 4,z " 7.94 ¨10 4 , F 2,z " 0.0442, F 4,z " 0.00178. Both computations take less than 10s of CPU time. Simulations of the two systems are given in Figure 1 for mode u " 1 and starting point z " p´4, 3.8q, and mode u " 2 and starting point z " p0, 3q. The initial ball Bpz, δ 0 q is depicted in black, the final ball BpEr Xτ,z s, δ τ,δ0 q in red, and 200 random sampling trajectories in blue for t P r0, τ s.

Example 3. We now consider a nonlinear model of a pendulum on a cart borrowed from [START_REF] Borri | Symbolic models for nonlinear control systems affected by disturbances[END_REF][START_REF] Zamani | Symbolic control of stochastic systems via approximately bisimilar finite abstractions[END_REF]. The dynamics is given by:

dx 1 " x 2 dt `0.03x 1 dW 1 t dx 2 " p´g l sin x 1 ´k m x 2 `1 ml 2 uqdt `0.03x 2 dW 2 t
where the state px 1 , x 2 q represents the angular position and velocity of the point mass on the pendulum, u is the control input (torque applied to the cart). The parameters are g " 9.8, l " 0.5, m " 0.6, k " 2. The program gives for control input u " 0.5, τ " 0.1, ∆ t " τ {10 2 : q " 1, D " 2.56, L g " 0.03, λ " 1.446; and for z " p0, 0q:

E 2,z " 47.5, E 4,z " 1977.2 ¨10 5 , F 2,z " 9.8 ¨10 ´4, F 4,z " 9.73 ¨10 ´7.
The computation takes less than 10s of CPU time. Simulations of the system are given in Figure 2 for control input u " 0.5 and starting point z " p0, 0q. The initial ball Bpz, δ 0 q is depicted in black, the final ball BpEr Xτ,z s, δ τ,δ0 q in red, and 200 random sampling trajectories in blue for t P r0, τ s. 

Sampled stochastic switched systems

Stochastic switched system as a finite collection of SDEs

We now consider a finite number of SDEs. Each SDE is referred to as a mode j, and the set of modes is referred to as U " t1, . . . , M u. We will denote by X j t,x0 the solution at time t of the system:

dxptq " f j pxptqq `gj pxptqqdW j t , xp0q " x 0 .

(
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where x 0 is a random variable that is measurable in F 0 . Hypotheses (H1)-(H2)-(H3), as defined in Section 3, are naturally extended to every mode j of U . Accordingly, constants L g , λ, F associated to SDE (1) in Section 3, now become L gj , λ j , F j respectively, for each j P U . Likewise, for each j P U , the nonnegative real pδ t,δ0 q 2 becomes pδ j t,δ0 q 2 for each mode j; the approximate continuous-time solution of [START_REF] Maruyama | Continuous Markov processes and stochastic equations[END_REF] starting from z, is denoted by Xj t,z , and the approximate staircase solution by X j t,z .

Control patterns

The control laws that we now consider are "piecewise constant of duration τ " in the sense that, every τ seconds, they select a given mode (see ( [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF])). We call "(control) pattern of length k" a sequence of k modes (i.e., an element of U k ). Each pattern π of the form j 1 j 2 ¨¨¨j k corresponds to the selection of mode j 1 for time t P r0, τ q, then mode j 2 for t P rτ, 2τ q, and so on, until t " kτ . We assume that the solution of the system is continuous at sampling instants t " τ, 2τ, . . . (which means that there is no "reset" of the system at sampling instants).

Given a stochastic switched system, a pattern π of length k and an initial random variable z, one constructs the "approximate solution controlled by π" by composing together the approximations obtained by successive application of the modes of the pattern π. Formally, the "continuous" approximate solution Xπ t,z is defined at time t P r0, kτ s as follows:

• Xπ t,z " Xj t,z if π " j P U , k " 1 and t P r0, τ s, and

• Xπ pk´1qτ `t1 ,z " Xj t,z 1 with z 1 " Xπ 1 pk´1qτ,z if k ě 2, t 1 P r0, τ s, π " π 1 ˚j for some j P U and π 1 P U k´1 .

The "staircase" approximate solution X π t,z is defined analogously. Likewise, given an initial error radius δ 0 ą 0 and a pattern π of length k ě 1, one defines the error radius δ π t,δ0 using (7) as follows:

• δ π t,δ0 " δ j t,δ0 if π " j P U , k " 1 and t P r0, τ s, and

• δ π pk´1qτ `t1 ,δ0 " δ j t 1 ,δ 1 with δ 1 " δ π 1 pk´1qτ,δ0
, if k ě 2, t 1 P r0, τ s, π " π 1 ˚j for some j P U and π 1 P U k´1 .

Controlled probabilistic reachability

Given a ball R " BpO, ρq Ă R d with ρ ą 0, we define the problem of "controlled probabilistic reachability inside R" as follows:

Given a starting point z P R d and a positive real δ 0 , find a pattern π of length k such that, at t " kτ , the image of the points located initially in Bpz, δ 0 q be, on average, located as close as possible to O, and, in particular:

BpEr Xπ t,z s, δ π t,δ0 q Ď R for t " kτ.
The program mentioned in Section 3.5, has been extended in order to find, by exhaustive enumeration1 , such a pattern π. This guarantees that, for all x 0 P Bpz, δ 0 q:

P rpX π kτ,x0 P Rq ě 1 ´1 ρ 2 p b Er} Xπ kτ,z } 2 s `δπ kτ,δ0 q 2 ,
We now give two examples of application of this program.

Example 4. Consider the system of Example 1 with w " 0.01:

dx 1 " p´0.25x 1 `ux 2 `p´1q u 0.25qdt `0.01x 1 dW 1 t dx 2 " ppu ´3qx 1 ´0.25x 2 `p´1q u p3 ´uqqdt `0.01x 2 dW 2 t
where u " 1, 2.

For τ " 0.5, ∆ t " 10 ´4, one finds (for all modes u " 1, 2): q " 0, D " 1.36, L g " 0.01, λ " 0.25; for z " p´4, ´3.8q: E 2,z " 893.31, E 4,z " 2.14 ¨10 5 , F 2,z " 0.002, F 4,z " 4.9 ¨10 ´6; and for z " p0, 3q: E 2,z " 543.22, E 4,z " 7.94 ¨10 4 , F 2,z " 0.0442, F 4,z " 0.00178. Our program shows the probabilistic reachability inside R " Bpp0, 0q, ρq, for all point x 0 P Bpp5, 4q, δ 0 q and all point y 0 P Bpp´5, ´4q, δ 0 q, with δ 0 " 0.1 and ρ " 7. We have, for π 1 " p2 ¨2 ¨2 ¨2q

P rpX π1 4τ,x0 P Rq ě 1 ´1 ρ 2 p b Er} Xπ1 4τ,p5,4q } 2 s `δπ1 4τ,δ0 q 2 , 
P rpX π1 4τ,x0 P Rq ě 0.689, and for π 2 " p1 ¨1 ¨1 ¨1 ¨1q:

P rpX π2 5τ,y0 P Rq ě 1 ´1 ρ 2 p b Er} Xπ2 5τ,p´5,´4q } 2 s `δπ2 5τ,δ0 q 2 .
P rpX π2 5τ,y0 P Rq ě 0.713 Figure 3 depicts in black the initial balls (at t " 0) centered at p5, 4q and p´5, ´4q; and for each initial ball, the pattern that sends the ball inside R (at time t " kτ ); the intermediate balls (at t " τ, 2τ, . . . , pk ´1qτ ) are depicted in red, and 200 sampling trajectories drawn in black.

Example 5. (the slit problem)

The problem is adapted from ( [START_REF] Morzfeld | Implicit sampling for path integral control, Monte Carlo localization, and SLAM[END_REF]). The controlled dynamics is:

dX " udt `dW, X 0 " 1 with mode u P t´6, ´5, ´4, ´3, ´2, 1, 0, 1, 2, 3, 4, 5, 6u. We have (at t " 0.5) a slit at x P r´1, ´3s. The objective is thus to control the system so that xptq P R " r´1, ´3s (i.e., xptq P R " BpO 1 , ρq with O 1 " ´2 and ρ " 1q at t " 0.5. One has, for all modes: q " 0, D " 0, L g " 0, λ " 0. For δ 0 " 0.2, an initial point z " 1 and a sampling time τ " 0.5 with subsampling ∆ t " 2.5 ˆ10 ´3, one has for mode u " ´6: E 2,z " 144, E 4,z " 20736, F 2,z " 4, F 4,z " 16; and for mode u " 0: E 2,z " 0, E 4,z " 0, F 2,z " 4, F 4,z " 16.

Suppose that all the trajectories start at x 0 P Bpz, δ 0 q, with z " 1 and δ 0 " 0.2. When there is no control (u " 0), at time t " 0.5, the expected value of X t,x0 is in Bpz 1 , δ t,δ0 q with z 1 " 1 and δ t,δ0 " 0.29. From Markov's inequality, it follows that the trajectories pass by R " Bp´2, 1q at t " 0.5 with low probability: see Figure 4. On the other hand, with control u " ´6, at time t " τ " 0.5, the expected value of X t,x0 is now in Bpz 1 1 , δ 1 τ,δ0 q with z 1 1 " ´2 and δ 1 τ,δ0 " 0.29. This explains why the trajectories pass by R " Bp´2, 1q at t " 0.5 with high probability. We have, for x 0 P Bpz, δ 0 q with z " 1, δ 0 " 0.2, t " τ " 0.5, ρ " 1, O 1 " ´2:

P rpX u τ,x0 P R " BpO 1 , ρqq ě 1 ´1 ρ 2 p b Er} Xu τ,z ´O1 } 2 s `δu τ,δ0 q 2 . ( 20 
)
Figure 4: Simulations of Example 5 without control (π " p0 ¨0q) and with control pattern p´6 ¨0q from the initial ball Bp1, 0.2q. The initial region is in green. The red regions are BpEr Xπ t,z s, δ π t,δ 0 q. with z " 1, δ 0 " 0.2 for the two patterns π " p0 ¨0q (top) and π " p´6 ¨0q (bottom).

For mode u " ´6, this gives: δ u τ,δ0 " 0.29 and Er} Xu τ,z ´O1 } 2 s " 0.048. It follows: P rpX u τ,x0 P Rq ě 0.871.

Optimal control by state space discretization

In this Subsection, we are interested in solving an optimal control problem in order to minimize the average distance of the state reached after a given number of steps to the origin. In order to solve such optimal control problems, it is classical to spatially discretize the set S into a finite number of cells of equal size. Consider a partition of a compact subset S of R d in cells. For the sake of simplicity, we suppose that each cell C is a hypercube of R d of side length 2ε{ ? d, and we consider the centre of the cell, denoted 7x, as the "representative" of the cell. Note that any point z located in the cell is such that }z ´7x} ď ε. In [START_REF] Bertsekas | Convergence of discretization procedures in dynamic programming[END_REF] (cf. [START_REF] Esmaeil | Adaptive and sequential gridding procedures for the abstraction and verification of stochastic processes[END_REF]), it is explained how a discretized procedure, based on classical techniques of dynamic programming, constructs a mapping u which associates to each representative 7x a mode up7xq P U , corresponding to the optimal policy at position 7x. More precisely, for any representative point 7x 0,ε , the discretized procedure P ROCp7x 0,ε q constructs a sequence of modes u 1,ε , . . . , u k,ε and a sequence of representatives 7x 1,ε , . . . , 7x k,ε such that, for all 1 ď i ď k:

• u i,ε " up7x i´1,ε q.
• 7x i,ε is the representative of the cell containing Er Xui,ε τ,7xi´1,ε s. For the sake of notation simplicity, we will now drop the index ε in symbols u i,ε and 7x i,ε . Let us define the function next ui by: next ui p7x i´1 q " 7x i , where 7x i is the representative of the cell containing Er Xui τ,7xi´1 s. We define the function next π as follows:

• if π " u for some u P U then next π p7xq " next u p7xq,

• if π is of the form u ¨π1 then next π p7xq " next π 1 pnext u p7xqq.

Given a point z 0 P R d and a positive integer k, we focus on the problem of finding the optimal pattern π ˚pz 0 q P U k , which, at time T " kτ , maps z 0 to a distribution located at a minimal distance of the origin, i.e., such that:

π ˚pz 0 q " argmin πPU k Er}X π T,z0 } 2 s.
Let 7x 0 be the representative of z 0 . The sequences tu i u 1ďiďk and t7x i u 1ďiďk given by P ROCp7x 0 q, are optimal in the following sense: (see, e.g., [START_REF] Bertsekas | Convergence of discretization procedures in dynamic programming[END_REF][START_REF] Esmaeil | Adaptive and sequential gridding procedures for the abstraction and verification of stochastic processes[END_REF]):

• the pattern u 1 ¨¨¨u k coincides with π ˚pz 0 q when ε is sufficiently small, and

• the discrete random variable 7x k converges in distribution to the random variable X u1¨¨¨u k T,z0

when ε tends to 0.

This justifies the employment of the pattern u 1 ¨¨¨u k generated by P ROCp7x 0 q as a (sub)optimal control pattern π for the original stochastic diffusion system2 .

Let us now, in our context, give a precise upper bound to Er}X u1¨¨¨u k T,z0

´7x k } 2 s, where 7x k is the representative point defined by next u1¨¨¨u k p7x 0 q. We first define λ i ě 0, for 1 ď i ď k:

λ i :" b Er} Xui τ,7xi´1 ´7x i } 2 s.
Let us also define ∆pu 1 ¨¨¨u k q recursively by:

• ∆pu 1 ¨¨¨u i q " δ ui τ,λi´1`∆pu1¨¨¨ui´1q for i " 2, . . . , k, and

• ∆pu 1 q " δ u1 τ,ε .

Without loss of understanding, we abbreviate ∆pu 1 ¨¨¨u i q by ∆ i . We have

Lemma 3. b Er}X u1¨¨¨u k kτ,z0 ´X u k τ,7x k´1 } 2 s ď ∆ k .
Proof. The proof is by induction on k. The case k " 1 is trivial. Suppose k ě 2.

We have:

b Er}X u1¨¨¨u k kτ,z0 ´X u k τ,7x k´1 } 2 s ď δ u k τ, b Er}X u 1 ¨¨¨u k´1 pk´1qτ,z 0 ´7x k´1 } 2 s
On the other hand, using the triangular inequality and the induction hypothesis, we have:

b Er}X

u1¨¨¨u k´1 pk´1qτ,z0 ´7x k´1 } 2 s ď b Er}X u1¨¨¨u k´1 pk´1qτ,z0 ´X u k´1 τ,7x k´2 } 2 s `bEr} Xu k´1 τ,7x k´2 ´7x k´1 } 2 s ď ∆ k´1 `λk´1 . Hence: b Er}X u1¨¨¨u k kτ,z0 ´X u k τ,7x k´1 } 2 s ď δ u k τ,∆ k´1 `λk´1 " ∆ k .
This achieves the proof of the induction step.

We have Theorem 3. Consider a point z 0 P R d of representative 7x 0 , and let 7x k " next u1¨¨¨u k p7x 0 q for sequence u 1 ¨¨¨u k P U k (generated by P ROCp7x 0 q). We have:

b

Er}X u1¨¨¨u k T,z0 ´7x k } 2 s ď ∆ k `λk .
Proof. We have 

´7x k } 2 s ď ∆ k `λk .
Note that the term ∆ k of the inequality right-hand side takes into account the error introduced by the Euler scheme (with respect to the real solution of the SDE); in contrast, in the literature (e.g. [START_REF] Esmaeil | Adaptive and sequential gridding procedures for the abstraction and verification of stochastic processes[END_REF][START_REF] Pham | On some recent aspects of stochastic control and their applications[END_REF]), the Euler error is often disregarded, the analysis focusing just on the convergence of 7x k to the Euler approximation Xu1¨¨¨u k T,z0 . Example 6. We apply the above procedure P ROCp7x 0 q on Example 1 with w " 0.01. Consider the interest set R " Bpp0, 0q, ρq with ρ " 7, discretized with an accuracy ε " 0.57. We compute (sub)optimal patterns for the entire set, using different lengths of patterns, and simulate the induced controller for 200 initial conditions randomly selected in R. Simulations are given in Figure 5. The procedure took 11.8 seconds of computation for patterns of length 1, 47.4 seconds of computation for patterns of length 3, 152.0 seconds of computation for patterns of length 5. We now compare the results yielded by P ROCp7x 0 q with those of Example 4. The sub-optimal procedure returns patterns ensuring the probabilistic reachability inside R " Bpp0, 0q, ρq, for all point x 0 P Bpp5, 4q, δ 0 q and all point y 0 P Bpp´5, ´4q, δ 0 q, with δ 0 " 0.1 and ρ " 7. For x 0 P Bpp5, 4q, δ 0 q, the procedure returns pattern π 1 " p1 ¨2 ¨2 ¨2q ensuring a probability P rpX π1 4τ,x0 P Rq ě 0.801, and for x 0 P Bpp´5, ´4q, δ 0 q, the procedure returns pattern π 2 " p2 ¨2 ¨2 ¨1 ¨1q, with probability P rpX π2 5τ,y0 P Rq ě 0.802. The probabilities are thus higher than in Example 4. Simulations are shown in Figure 6, depicting in black the initial balls (at t " 0) centered at p5, 4q and p´5, ´4q; and for each initial ball, the pattern that sends the ball inside R (at time t " kτ ); the intermediate balls (at t " τ, 2τ, . . . , pk ´1qτ ) are depicted in red, and 200 sampling trajectories drawn in black. We consider the set of control inputs u P t´1.5, ´1, ´0.5, 0, 0.5, 1, 1.5u. In order to reproduce the results of [START_REF] Zamani | Symbolic control of stochastic systems via approximately bisimilar finite abstractions[END_REF], we slightly modify the procedure so that the interest set is R " Bpp0, 0q, ρq with ρ " 1.0, but the optimization objective is to minimize the average distance with the target state x obj " p0.5, 0q. The state space is discretized with an accuracy ε " 0.02. We compute (sub)optimal patterns for the entire set R, using patterns of length 1, and simulate the induced controller for 30 initial conditions randomly selected in R. Simulations are given in Figure 7. The procedure took 127 seconds of computation for patterns of length 1.

Final remarks and future work

We have established a mean-square error bound on an Euler-like method to simulate stochastic differential equations that satisfy a one-sided Lipschitz (OSL) condition. An advantage of our method is that the OSL assumption is weaker than the condition under which classical methods converge. From the mean square error bound, we have inferred a lower bound on the probability to reach a given set R at a given time. This allows us to determine a control pattern (in term of sequences of control modes) which makes the stochastic switched system reach a target with guaranteed minimum probability. Besides, instead of searching over all possible sequences of modes (which is a process exponential in the length of sequences), we have proposed an optimized method inferring a 'best' pattern, which may entail a significant gain in time and space. In the future, we plan to experiment our method with significantly larger examples than those given here. 
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 1 Figure 1: Simulations of Example 2 with mode u " 1 and initial ball Bpp´4, 3.8q, 0.5q, and mode u " 2 and initial ball Bpp0, 3q, 0.5q; τ " 1.
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 2 Figure 2: Simulations of Example 3 with control input u " 0.5, initial ball Bpp0, 0q, 0.01q, τ " 0.1.
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 3 Figure 3: Simulations of Example 4 from the initial balls Bpp5, 4q, 0.1q and Bpp´5, ´4q, 0.1q using patterns p2 ¨2 ¨2 ¨2q and p1 ¨1 ¨1 ¨1 ¨1q resp., with τ " 0.5.
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 5 Figure 5: Simulations of Example 6 with the controller induced by P ROCp7x 0 q, for patterns of length 1 (top), length 3 (center), and length 5 (bottom). The blue circle is the set R " Bpp0, 0q, 7q, the red marker is the target state (the origin), the black lines are the controlled trajectories.

Figure 6 :Example 7 . 1 t dx 2 "

 6712 Figure 6: Simulations of Example 6 from the initial balls Bpp5, 4q, 0.1q and Bpp´5, ´4q, 0.1q using patterns p1 ¨2 ¨2 ¨2q and p2 ¨2 ¨2 ¨1 ¨1q resp., with τ " 0.5.
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 7 Figure 7: Simulations of Example 7 projected on the first dimension, with the controller induced by P ROCp7x 0 q for patterns of length 1. The red line is the target state x obj " p0.5, 0q, the black lines are the controlled trajectories.

In Section 4.4 a strategy based on the search of an optimal pattern is suggested rather than an exhaustive search.

see, e.g.,[START_REF] Bertsekas | Convergence of discretization procedures in dynamic programming[END_REF] 
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where k " pk 1 , . . . , k 6 q and C k1,k2,k3 pzq " ´αpzq T αpzq ¯k1 ´2αpzq T βpzq ¯k2 ´βpzq T βpzq ¯k3 , and

where apzq " 2βpzq T γpzq, bpzq " 2αpzq T γpzq, Qpzq " γpzq T γpzq and D n1,...,ni pA 1 , . . . , A i q being the normalized Davis polynomials [START_REF] Davis | On the construction of a class of invariant polynomials in several matrices, extending the zonal polynomials[END_REF][START_REF] Hillier | Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors[END_REF] and

`k6´1 k 5 k 6 pk 4 ´k5 q, λ p3q κ " 2 k5`k6 k 5 k 6 . . Proof. First, note that we can write Xt,z as the sum of a mean value, a linear drift and a standard Wiener process Xt,z " αpzq `βpzqt `γpzqW t , for z P R d . Then, the squared norm of Xt,z is XT t,z Xt,z " pαpzq `βpzqt `γpzqW t q T pαpzq `βpzqt `γpzqW t q " αpzq T αpzq `2pαpzq T βpzq `βpzq T γpzqW t qt `βpzq T βpzqt 2 `2αpzq T γpzqW t `W T t γpzq T γpzqW t .

The Newton multinomial formula allows to express the 2q th power of the Xt,z norm

ˆq k ˙´αpzq T αpzq ¯k1 ´2αpzq T βpzqt ¯k2 ´βpzq T βpzqt 2 ¯k3 ´2βpzq T γpzqW t t ¯k4 ´2αpzq T γpzqW t ¯k5 ´W T t γpzq T γpzqW t ¯k6