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Deep reinforcement learning for market making in

corporate bonds: beating the curse of dimensionality*

Olivier Guéant�, Iuliia Manziuk�

Abstract

In corporate bond markets, which are mainly OTC markets, market makers play
a central role by providing bid and ask prices for a large number of bonds to asset
managers from all around the globe. Determining the optimal bid and ask quotes that
a market maker should set for a given universe of bonds is a complex task. Useful
models exist, most of them inspired by that of Avellaneda and Stoikov. These models
describe the complex optimization problem faced by market makers: proposing bid
and ask prices in an optimal way for making money out of the di�erence between bid
and ask prices while mitigating the market risk associated with holding inventory.
While most of the models only tackle one-asset market making, they can often be
generalized to a multi-asset framework. However, the problem of solving numerically
the equations characterizing the optimal bid and ask quotes is seldom tackled in
the literature, especially in high dimension. In this paper, our goal is to propose
a numerical method for approximating the optimal bid and ask quotes over a large
universe of bonds in a model à la Avellaneda-Stoikov. Because we aim at considering
a large universe of bonds, classical �nite di�erence methods as those discussed in the
literature cannot be used and we present therefore a discrete-time method inspired
by reinforcement learning techniques. More precisely, the approach we propose is a
model-based actor-critic-like algorithm involving deep neural networks.
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1 Introduction

On both sides of the Atlantic ocean, the corporate bond markets traditionally operate
through market makers (also called dealers) providing liquidity on the one hand, and
clients consuming this liquidity on the other.1

These mainly OTC markets have undergone a large number of changes since the
subprime crisis. First, central banks imposed a low-interest rate environment and
purchased numerous securities including corporate bonds. This has resulted in a
large number of bond issuances by �rms which traditionally borrowed cash through
the corporate bond market and by riskier newcomers as investors were looking for
higher returns. Subsequently, we have seen a very important increase in the size of
corporate bond markets. For instance, the Bank for International Settlement esti-
mates that the European corporate bond market has seen its size multiplied by 3
in the 10 years following the start of the subprime crisis. Secondly, concerning the
secondary market, numerous reforms were introduced in the years following the crisis
both in the US and in Europe: Basel III, Volcker rule, Dodd-Frank Act, etc. The
deleveraging phenomenon in almost all banks after the crisis was therefore reinforced
by regulations, reducing the intermediation capacities of many market makers (see
the famous note by Goldman Sachs [8]). Meanwhile, the corporate bond markets on
both sides of the Atlantic ocean have undergone electroni�cation in a process speci�c
to these markets (see for instance [19]). This electroni�cation process is dominated
by Multi-dealer-to-client (MD2C) platforms operated by companies like Bloomberg,
Tradeweb, MarketAxess, etc. They allow clients to send the same request for quote
(RFQ) to several dealers simultaneously and therefore instantly put dealers into com-
petition.2

Regarding how market makers operate, electroni�cation is also in progress with
major market participants replacing traders by algorithms to be able to (i) stream
quotes for a large universe of bonds and (ii) automatically answer a large proportion
of the RFQs they receive.

Determining the optimal bid and ask quotes that a market maker should set for a
given universe of bonds is a complex task. Useful models exist, most of them inspired
by that of Avellaneda and Stoikov [1] who revived an old paper by Ho and Stoll [15];
e.g. Cartea, Jaimungal, and Ricci [6], Guéant, Lehalle, and Fernandez-Tapia [11],
Guéant [10], etc. These models describe the complex optimization problem faced by
market makers: proposing bid and ask prices in an optimal way for making money
out of the di�erence between bid and ask prices while mitigating the market risk
associated with holding inventory.

1Of course, there are also inter-dealer broker markets but the focus of the paper will not be on them.
2Despite the many e�orts of entrepreneurs and major groups like BlackRock, there has been no paradigm

shift in corporate bond markets from OTC to all-to-all trading � i.e. no shift towards (central) limit order
books.
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While most of the models only tackle one-asset market making, they can often be
generalized to tackle multi-asset market making (see for instance [10]). However, the
problem of solving numerically the equations characterizing the optimal bid and ask
quotes is seldom tackled in the literature, especially as far as high-dimensional cases
are concerned.3

In this paper, our goal is to propose a numerical method for approximating the
optimal bid and ask quotes over a large universe of bonds in a model inspired by [10].
Because we want our method to scale to high-dimensional cases, classical �nite dif-
ference methods as those discussed in the literature (see also the appendix) are not
appropriate. We propose instead a discrete-time method inspired by the reinforcement
learning (RL) literature. More precisely, the approach we propose is a model-based
actor-critic-like algorithm involving deep neural networks.

The recent advances on strategy board games and video games, especially the re-
search works published by research teams at Google DeepMind (see for instance [20]
and [21]), have shed a renewed light on the power of reinforcement learning techniques
for solving problems in the �eld of dynamic optimization. In �nance, several e�orts
have been made to use ideas from RL or approximate dynamic programming in order
to solve classical and less classical problems. The most famous paper is the paper
�Deep hedging� [5] co-written by researchers from J.P. Morgan in which the authors
use deep recurrent neural networks to �nd the optimal way to hedge a European pay-
o�. Beyond European payo�s, the case of American options (i.e. the addition of an
optimal stopping problem) has been tackled, for instance in [3]. Theoretical pricing
bounds have been proposed in the interesting paper [14] dealing with XVA problems.
General methods have also been proposed by Pham et al. [2, 16, 17], themselves in-
spired by the BSDE solver of Jentzen et al. [13] who approximate the solution of some
speci�c nonlinear partial di�erential equations in dimension up to 100. Although not
written with the vocabulary of reinforcement learning, most of these papers share
ideas with the methods discussed in the RL community.

The craze around RL-�avored techniques has impacted several �elds in �nance
and it is interesting to notice that market making has not yet been tackled. There
are several reasons for this. The �rst one is obvious: pricing and hedging derivatives
are the main topics of quantitative �nance. There is consequently no surprise that
these topics (with a focus on option hedging rather than option pricing in fact) were
addressed �rst. But the nature of the di�erent problems that could be tackled are
also very important. Market making models are models in which the dynamics of the
state process is described by that of point processes and the control of point processes
has always been less studied than that of continuous semi-martingales (see [12] for a
general paper on the control of point processes). Moreover, point processes prevent
the massive use of automatic di�erentiation in a recursive way as in papers like �Deep
hedging� [5]. However, unlike many problems in �nance, the problem of a corporate

3One important exception is the recent paper [4] by Bergault and Guéant who proposed a factorial
approach to approximate the optimal quotes.
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bond market maker has no natural time horizon and should be regarded as a station-
ary or ergodic problem; and RL techniques are well suited to tackle in�nite horizon
problems.

In Section 2 we introduce notation and present the market making model in con-
tinuous time. In Section 3 we show how the problem can be transformed into a
discrete-time one and we present our actor-critic-like methodology for approximating
the value function and the optimal strategies (here the optimal quotes). In Section 4,
we present numerical examples in low dimension to compare with the proceed of a
�nite di�erence method and examples in high dimension for which �nite di�erence
methods cannot be used. In the appendix, we recall the �nite di�erence method classi-
cally used to solve the Hamilton-Jacobi-Bellman equations associated with our model.

2 The classical model in continuous time

2.1 Notation

Let
(

Ω, (Ft)t∈R+
,P
)
be a �ltered probability space, with (Ft)t∈R+

satisfying the usual

conditions. We assume that all the stochastic processes introduced in this paper are
de�ned on Ω and adapted to the �ltration (Ft)t∈R+

.

We consider a market maker in charge of d bonds. For each bond i ∈ {1, . . . , d},
we consider that there exists a reference price for bond i at any time t, denoted by Sit
� it could be based on the Composite Bloomberg Bond Trader (CBBT) mid-price but
other options are possible. We assume that the dynamics of prices is given by

dSit = σidW i
t ,

where
(
W 1, . . . ,W d

)
is a d-dimensional Brownian motion with a correlation matrix

denoted by
(
ρi,j
)

1≤i,j≤d. We denote by Σ the covariance matrix
(
ρi,jσiσj

)
1≤i,j≤d.

For each bond i ∈ {1, . . . , d}, we assume that the number of RFQs arriving at the

bid (respectively at the ask) is a Poisson process with intensity λi,bRFQ (resp. λi,aRFQ).
We assume that the Poisson processes are independent and independent from the
Brownian motions driving reference prices.

When a buy RFQ4 on bond i is received at time t by the market maker, we as-
sume that the size of the request is given by ∆i (one size for each bond)5. If the

market maker answers a price to that request, that price is denoted by Si,bt = Sit−δ
i,b
t

where δi,bt is assumed to be Ft−-measurable. Similarly, for a sell RFQ on bond i, we
assume that the size of the request is given by ∆i and, if the market maker answers
a price to that request, that price is denoted by Si,at = Sit + δi,at where δi,at is assumed

4In a buy RFQ, the market maker is proposed to buy the bond.
5This hypothesis can be relaxed very easily (see for instance [4]).
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to be Ft−-measurable. The probability to trade following a buy (resp. sell) RFQ on
bond i given a bid quote Si − δi,b (resp. ask quote Si + δi,a) is denoted by f i,b

(
δi,b
)

(resp. f i,a
(
δi,a
)
).

Throughout this paper, and in line with classical hypotheses in market making
models (see [10, 11]), we assume that, for all i ∈ {1, . . . , d}:

� f i,b and f i,a are twice continuously di�erentiable,

� f i,b and f i,a are decreasing, with ∀δ ∈ R, f i,b′(δ) < 0 and f i,a
′
(δ) < 0,

� limδ→+∞ f
i,b(δ) = limδ→+∞ f

i,a(δ) = 0,

� f i,b and f i,a satisfy

sup
δ

f i,b(δ)f i,b
′′
(δ)(

f i,b
′
(δ)
)2 < 2 and sup

δ

f i,a(δ)f i,a
′′
(δ)(

f i,a′(δ)
)2 < 2. (1)

For each bond i, we denote by N i,b and N i,a the point processes associated with the
number of transactions at the bid and at the ask. In particular, the inventory in
bond i at time t, denoted by qit, has the following dynamics:

dqit = ∆idN i,b
t −∆idN i,a

t .

In what follows, we assume that risk limits are imposed to the market maker in the
form of inventory limits −Qi and Qi (multiple of ∆i) for each bond i. Therefore, the

intensity of the trade processes N i,b and N i,a at time t, denoted by λi,bt and λi,at , are:

λi,bt = λi,bRFQf
i,b(δi,bt )1qit−<Qi ,

λi,at = λi,aRFQf
i,a(δi,at )1qit−>−Qi .

In particular, ∀t, qt ∈ Q =
∏d
i=1{−Qi,−Qi + ∆i, . . . , Qi −∆i, Qi}.

The resulting cash process of the market maker is (Xt)t where

dXt =
d∑
i=1

−Si,bt ∆idN i,b
t + Si,at ∆idN i,a

t

=
d∑
i=1

−
(
Sit − δ

i,b
t

)
∆idN i,b

t +
(
Sit + δi,at

)
∆idN i,a

t

=
d∑
i=1

(
δi,bt ∆idN i,b

t + δi,at ∆idN i,a
t

)
−

d∑
i=1

dqitS
i
t

The Mark-to-Market (MtM) value of the portfolio � hereafter the pro�t and loss
(PnL) � at time t is therefore PnLt = Xt +

∑d
i=1 q

i
tS

i
t . It has the following dynamics:

dPnLt =

d∑
i=1

δi,bt ∆idN i,b
t + δi,at ∆idN i,a

t + qitσ
idW i

t .
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2.2 Optimization problem and Bellman equations

Several objective functions have been proposed in the market making literature.
Avellaneda and Stoikov initially used in [1] an expected utility objective function.
Cartea et al. used in most of their papers (see [7] for an overview) a risk-adjusted
expected value of the PnL over a �nite time horizon. Guéant showed in [10] that
these two kinds of objective function lead to similar optimal quoting strategies. In
this paper, we start with an in�nite-horizon version of the classical risk-adjusted ex-
pected PnL objective function with a positive discount rate denoted by r.6

More precisely, the problem consists in maximizing

E
[∫ +∞

0
e−rt (dPnLt − ψ(qt)dt)

]
,

where ψ : Rd → R+ penalizes inventory. A classical penalty function is proportional
to the instantaneous variance of the MtM value of the portfolio, i.e.

ψ : q ∈ Rd 7→ 1

2
γq′Σq,

where γ > 0 is the risk aversion parameter of the market maker. It is in line with
most papers presented in [7] and consistent with the initial model of Avellaneda and
Stoikov and its resolution by Guéant et al. in [11]. A �nancially relevant alternative
consists in considering a penalty proportional to the standard deviation of the MtM
value of the portfolio, or equivalently to the Value at Risk in the Gaussian case that
we consider. In that case, we consider a penalty function of the form

ψ : q 7→ 1

2
γ
√
q′Σq,

where γ weighs the risk adjustment to be made to the expected PnL.

The stochastic optimal control problem is therefore the following:

sup
(δi,b,δi,a)

1≤i≤d
∈A2d

E

[∫ +∞

0
e−rt

(
d∑
i=1

(
δi,bt ∆idN i,b

t + δi,at ∆idN i,a
t

)
− ψ(qt)dt

)]

= sup
(δi,b,δi,a)

1≤i≤d
∈A2d

E

[∫ +∞

0
e−rt

(
d∑
i=1

(
δi,bt ∆iλi,bRFQf

i,b(δi,bt )1qit−>−Qi

+ δi,at ∆iλi,aRFQf
i,a(δi,at )1qit−<Qi

)
− ψ(qt)

)
dt

]
,

where A is the set of predictable processes.

6As discussed in Section 2.3 below, we are in fact interested in the ergodic problem (maximization of
the average reward) but the introduction of a discount rate is necessary for mathematical and numerical
reasons.
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We know from classical stochastic optimal control theory that we can restrict
ourselves to closed-loop controls, also called policies in the reinforcement learning
community. In other words, with a slight abuse of notations, we can look for a family
of functions (q ∈ Q 7→ δi,b(q), q ∈ Q 7→ δi,a(q))1≤i≤d and control processes such that

∀(i, s) ∈ {1, . . . , d} × {b, a}, ∀t, δi,st = δi,s(qt−).

For a given policy δ =
(
δi,b, δi,a

)
1≤i≤d, we can de�ne the value function associated

with that policy: θ̃δr : q ∈ Q 7→ θ̃δr(q). This value function is the unique solution of
the following linear Bellman equation:

−rθ̃δr(q)− ψ(q) +
d∑
i=1

1qi<Qiλ
i,b
RFQf

i,b(δi,b(q))
(
δi,b(q)∆i + θ̃δr

(
q + ∆iei

)
− θ̃δr(q)

)
+

d∑
i=1

1qi>−Qiλ
i,a
RFQf

i,a(δi,a(q))
(
δi,a(q)∆i + θ̃δr

(
q −∆iei

)
− θ̃δr(q)

)
= 0. (2)

We also associate with this stochastic optimal control problem a Hamilton-Jacobi-
Bellman equation, satis�ed by the optimal value function θ̃∗r : q ∈ Q 7→ θ̃∗r(q):

0 = −rθ̃∗r(q)− ψ(q) +

d∑
i=1

1qi<QiH i,b

(
θ̃∗r(q)− θ̃∗r

(
q + ∆iei

)
∆i

)

+
d∑
i=1

1qi>−QiH i,a

(
θ̃∗r(q)− θ̃∗r

(
q −∆iei

)
∆i

)
, (3)

where the Hamiltonian functions are

H i,b(p) = ∆iλi,bRFQ sup
δ∈R

f i,b(δ)(δ − p),

H i,a(p) = ∆iλi,aRFQ sup
δ∈R

f i,a(δ)(δ − p),

and where
(
e1, . . . , ed

)
are the vectors of the canonical basis of Rd.

In [10], the author studied similar equations in the �nite-horizon case. The gen-
eral analysis of this type of equations, in both the �nite-horizon and in�nite-horizon
cases, is carried out in the paper [12] about optimal control on graphs.7 We know in
particular that the optimal value function is the unique solution to Eq. (3).

7For market making purposes the �nite-horizon case can be of interest if the market maker wants to
penalize his inventory at a speci�c time, for instance to diminish the exposure to a speci�c event (a central
bank announcement, an election, etc.). However, before that �nal time, and in practice just a few hours
before that �nal time (see [10]), the in�uence of the �nal condition is so small that the optimal behavior is
almost the same as in the in�nite-horizon problem (see [12] for a proof of convergence). We believe that a
meaningful approach for taking into account a speci�c event or an increased level of uncertainty is to see
the value of the risk aversion parameter γ as a variable that can be modi�ed.
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Moreover, using a veri�cation argument as in [10], we can easily prove that the
optimal bid and ask quotes are given by the policy δ∗ =

(
δi,b∗, δi,a∗

)
1≤i≤d, where

δi,b∗(q) = f i,b
−1

−H
i,b′
(
θ̃∗r (q)−θ̃∗r(q+∆iei)

∆i

)
∆iλi,bRFQ

 , (4)

δi,a∗(q) = f i,a
−1

−H
i,a′
(
θ̃∗r (q)−θ̃∗r(q−∆iei)

∆i

)
∆iλi,aRFQ

 , (5)

and of course that θ̃δ
∗
r = θ̃∗r .

In practice, a numerical approximation of the optimal control is usually obtained
by �rst solving (numerically) the Hamilton-Jacobi-Bellman equation (3) and then ap-
plying Eqs. (4) and (5). Since θ̃∗r cannot be obtained in closed form, one classically
use a �nite di�erence numerical scheme on a grid to obtain an approximation of the
optimal value function (see the appendix for a classical approach). However, as the
size of the grid increases exponentially with the number of bonds d, the use of �nite
di�erence schemes is not possible for d greater than 4, 5, or 6 depending on the values
of the parameters and the computer infrastructure. Our main goal is therefore to
propose alternatives to methods based on grids.

2.3 Remarks on the parameters

Before we propose a numerical method which is not based on grids, let us comment
on the parameters because there are two kinds of parameters in the above market
making model.

First, there are parameters associated with the bonds and the market: the ar-
rival rates of RFQs for each bond and side (i.e. (λi,bRFQ, λ

i,a
RFQ)i), the size of trades

(i.e. (∆i)i) � assumed constant here but it could be a distribution (see [4]) �, the
probability to trade given a quote for each bond and side (i.e. (f i,b(·), f i,a(·))i),
and the covariance between bond price changes (i.e. the matrix Σ). These parame-
ters are always estimated when used as inputs of Hamilton-Jacobi-Bellman equations.

With the craze around reinforcement learning techniques, people sometimes have
in mind that optimization can now be carried out without an initial estimation of
the model parameters, that is, without a model. However, this is true only when
one has gigantic data sets. Is it the case in �nance? Perhaps in the case of limit
order book data on stock markets if one considers a problem involving a few stocks.
But it is clearly not the case when it comes to OTC markets such as corporate bond
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markets, all the more when one wants to consider a large universe of assets.8 In fact,
most of the recent scienti�c advances using reinforcement learning (Go, Atari video
games, etc.) used simulators that could provide as many samples as desired. There
is of course no such simulator of real �nancial data, and one has instead to build a
simulator using a model, hence the need to estimate parameters.

Second, there are parameters that need to be chosen: the magnitude of the risk-
adjustment in the objective function (i.e. the risk aversion parameter γ), and the
discount rate r. Regarding the magnitude of the risk adjustment, it has to be chosen
in line with the risk aversion of the market maker or that of the bank. A classical
method consists in testing di�erent values for γ and looking for the PnL pro�le
(distribution) that corresponds to the �desired� / �best acceptable� one. Regarding
the discount rate, the situation is di�erent. In fact, we do not really care about
maximizing the objective function starting from a given inventory, but we would like
instead to maximize the objective function starting from any reasonable inventory. If
we consider the stationary probability measure mδ on Q associated with the Markov
chain (qt)t driven by a policy δ, then a natural objective function to maximize is∑

q∈Q
θ̃δr(q)m

δ(q).

As it is well known in the reinforcement learning community (see Chapter 10 of [22]),
maximizing such an objective function leads to optimal strategies that are indepen-
dent of r. This is due to the fact that∑

q∈Q
rθ̃δr(q)m

δ(q) = −
∑
q∈Q

ψ(q)mδ(q)

+
∑
q∈Q

d∑
i=1

1qi<Qiλ
i,b
RFQf

i,b(δi,b(q))δi,b(q)∆imδ(q)

+
∑
q∈Q

d∑
i=1

1qi>−Qiλ
i,a
RFQf

i,a(δi,a(q))δi,a(q)∆imδ(q)

is indeed independent of r.

In other words, maximizing this type of objective function is equivalent to maxi-
mizing the ergodic constant (i.e. the average reward per unit of time) and we should
therefore choose r small to be close to the ergodic case (see [12] for the link between
stationary problems, ergodic problems, and the long-term behavior of controlled pro-
cesses on graphs) but not too small as value functions scale proportionally to 1

r and
therefore too small values of r can thus lead to numerical problems.9 In particular,

8One can simply think of the numerous methods (shrinkage, factor models, Marchenko-Pastur or other
approaches from random matrix theory, etc.) that have been proposed to clean objects as simple as
correlation matrices, just because �nancial time series are not long enough or not stationary enough.

9The ergodic case corresponding to the limit r → 0 cannot be considered directly because the value
function is only unique up to a constant in that case.
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the discount rate should not be chosen in line with a �nancial interest rate: it is
instead a purely numerical tool.

3 Going beyond grids

3.1 A discrete-time reformulation of the problem

The equations (2) and (3) characterizing the value and optimal value functions are
based on in�nitesimal (and therefore continuous-time) reasoning. However, the prob-
lem of the market maker is to propose a bid or an ask quote upon receiving a request
for quote: it is a discrete-time problem. What happens between two requests is just
the �payment� of the running penalty ψ(q) for holding inventory. We can therefore
reformulate the problem in discrete time, by focusing on the decision-making process
of market makers.

For a given policy δ, we can de�ne two types of value function. The �rst one,
consistent with the above de�nition is the value function θ̃δr at any non-RFQ time.
The second one is the value function θδr at the time of an RFQ just before the market
maker knows the bond and the side of the RFQ.

If we consider an inventory q at an arbitrary time, and de�ne by τ the duration
before the arrival of the next RFQ, it is clear that the value functions θ̃δr and θδr
associated with δ satisfy for all q ∈ Q the following equations:

θ̃δr(q) = E
[∫ τ

0
−e−rtψ(q)dt+ e−rτθδr(q)

]
= − ψ(q)

r +
∑d

i=1

(
λi,bRFQ + λi,aRFQ

) + γRLθ
δ
r(q), (6)

where

γRL =

∑d
i=1

(
λi,bRFQ + λi,aRFQ

)
r +

∑d
i=1

(
λi,bRFQ + λi,aRFQ

)
is a discount rate adapted to the discrete-time reinforcement learning reformulation
of the problem. Furthermore, for all q ∈ Q,

θδr(q) = E
[
f I,s(δI,s(q))

(
∆IδI,s(q) + θ̃δr

(
q + (1s=b − 1s=a) ∆IeI

))
+
(
1− f I,s(δI,s(q))

)
θ̃δr(q)

]
, (7)

where the expectation is over the couple of random variables (I, s) distributed in
{1, . . . , d} × {b, a} according to the probabilities

P((I, s) = (i, b)) =
λi,bRFQ∑d

j=1

(
λj,bRFQ + λj,aRFQ

)
10



and

P((I, s) = (i, a)) =
λi,aRFQ∑d

j=1

(
λj,bRFQ + λj,aRFQ

) .
In other words, the discounted running penalty (corresponding to the current in-

ventory and the frequency of RFQs) is paid �rst. Then a bond and a side are drawn
and the quoting strategy for that bond and side is applied. Finally, the client decides
to or not to transact.

In what follows, we are going to work with θδr rather than θ̃
δ
r but Eqs. (6) and (7)

allow to go from one to the other.

It is noteworthy that we can also consider optimal value functions θ̃∗r and θ
∗
r , which

satisfy for all q ∈ Q the following equations:

θ̃∗r(q) = − ψ(q)

r +
∑d

i=1

(
λi,bRFQ + λi,aRFQ

) + γRLθ
∗
r(q), (8)

and

θ∗r(q) = E
[
sup
δ∈R

(
f I,s(δ)

(
∆Iδ + θ̃∗r

(
q + (1s=b − 1s=a) ∆IeI

))
+
(
1− f I,s(δ)

)
θ̃∗r(q)

)]
. (9)

3.2 Actor-critic approach

Now that our problem is written in discrete time, we can use some of the ideas of the
reinforcement learning literature in order to approximate the optimal policy.

In a nutshell, there are two families of approaches in reinforcement learning for
approximating the optimal policy: value iteration and policy iteration.

Value iteration consists in approximating θ∗r or equivalently θ̃∗r by using a �xed
point algorithm on Eqs. (8) and (9). More precisely, we de�ne for a function θ : Q →
R the operators

Γ1 : θ 7→

q 7→ − ψ(q)

r +
∑d

i=1

(
λi,bRFQ + λi,aRFQ

) + γRLθ(q)


and

Γ2 : θ 7→
(
q 7→ E

[
sup
δ∈R

(
f I,s(δ)

(
∆Iδ + θ

(
q + (1s=b − 1s=a) ∆IeI

))
+
(
1− f I,s(δ)

)
θ(q)

)])
,

11



and we easily see that θ∗r is a �xed point of Γ2 ◦ Γ1.

Because Γ1 and Γ2 are Lipschitz functions (with respect to the ‖ · ‖∞ norm) with
Lipschitz constants equal respectively to γRL < 1 and 1, Γ2 ◦Γ1 is a contraction map-
ping. Therefore, using Banach �xed-point theorem, θ∗r can be approximated using a
classical iterative algorithm of the form θr ← Γ2 ◦Γ1(θr), with any initial function θr
� hence the name value iteration.

Nevertheless, value iteration has three important drawbacks. First, in the high-
dimensional case, value functions cannot be tabulated and need instead to be ap-
proximated. However, nothing guarantees the convergence of value iteration with
approximation, as the resulting operator has no reason anymore to be a contraction
mapping (approximation is indeed rarely a 1-Lipschitz operator with respect to the
‖ ·‖∞ norm). Second, value iteration is interested in approximating the optimal value
function but not directly the optimal strategy. This is not a problem in itself, and
it is, in fact, the case of most methods using Hamilton-Jacobi-Bellman equations.
However, because we usually approximate the value functions using neural networks,
it is not clear that a good approximation of the value function will provide a good
approximation of �nite di�erences of that value function � this is what we need to
approximate strategies (see Eqs. (4) and (5)). Third, when doing value iteration,
one requires Hamiltonian functions (because of the supremum in the de�nition of Γ2)
and then their �rst derivative to compute the optimal strategies (see again Eqs. (4)
and (5)). However, the Hamiltonian functions are often not known in closed form and
approximating them raises di�culties in the multi-bond case because, for each bond
and each side, we do not know in advance the relevant interval of approximation and
the required granularity.

Policy iteration consists instead in starting from a given policy δ, represented for
instance by a neural network with the state as an input (here the inventory in each
bond), and updating it in order to increase, for instance,

∑
q∈Q θ

δ
r(q)m

δ(q). The
methodology we propose is of this type, or more exactly of the actor-critic type, be-
cause we use an approximation of the value function in order to guide the update of
the strategy.

The approach we propose oscillates between phases of TD learning10 for evalu-
ating the value function � the critic � associated with a given quoting strategy and
phases during which the quoting strategy � the actor � is updated.

Both the value function and the quoting strategy for each bond are represented by
feedforward neural networks. It is noteworthy that, in order to normalize the learning
process across bonds, the �nal layer of the neural network(s) modeling the quoting
strategy is not a quote but rather a probability to trade. Of course, in order to go
from probabilities to quotes and vice versa, we need the functions

(
f i,s
)
i∈{1,...,d},s∈{b,a}

10TD stands for Temporal Di�erence. TD learning is a classical reinforcement technique for evaluating
value functions. See for instance [22].
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and the associated inverse functions. In this paper, we have chosen, for each bond i,
the same function for f i,b and f i,a in the form of a 4-parameter function

f i : δ 7→ 1− Φ

(
αi + βi sinh−1

(
δ − µi
σi

))
(10)

with βi > 0 (SU Johnson parametrization).11 Another related symmetry assumption
made throughout the paper is ∀i ∈ {1, . . . , d}, λi,b = λi,a.

Our algorithm in the case of d bonds can be implemented in two ways. In the
�rst variant, we need d+ 1 neural networks: one for the value function and d for the
d quoting functions � in what follows we only model the quoting strategy at the bid
and assume that δi,a(q) = δi,b(−q)12 � written in terms of probability to trade. In
this case, the input of all neural networks is the current inventory in all bonds (nor-
malized by the size of RFQs for each bond). In the second variant, we need only two
neural networks: one for the value function with the (normalized) current inventory
in all bonds as input and one for the quoting strategy with an extended set of inputs
consisting of the current inventory in all bonds and a d-dimensional one-hot vector
specifying the bond for which the network should output a quote.

In what follows, we focus on the former variant. However, we present numerical
examples involving the second variant in Section 4.4.

We denote by q ∈ Q 7→ θ[ω0](q) the neural network for the value function and by
q ∈ Q 7→ pi[ωi](q), for i ∈ {1, . . . , d}, the d neural networks for the probabilities to
trade, where ω0, . . . , ωd are the weights of the di�erent neural networks.

As far as the starting point of the learning process is concerned, we considered two
types of initial strategies for each bond. The �rst possible initial point is a naive strat-
egy that we call the myopic strategy. For bond i ∈ {1, . . . , d} and side s ∈ {b, a}, the
myopic strategy consists in the quote δi,smyopic maximizing δi,s 7→ δi,sf i,s(δi,s). This
strategy maximizes the PnL without taking into account the risk associated with
the inventory. In other words, it corresponds to the optimal strategy when the risk
penalty function ψ is equal to 0. This strategy only takes into account the very short
run, hence the name myopic. This �rst initial guess is typically used as an initial
point when our algorithm is used in the single-bond case. Using our algorithm in
dimension 1 allows to obtain approximations of the optimal quotes in the single-bond
case. These optimal quotes in the single-bond case constitute our second possible
initial point for the multi-bond case. This second possible initial point would be opti-
mal in the case of independent bonds, i.e. if the covariance matrix was diagonal. By
starting the learning process from that second initial point, it remains to learn how

11This parametrization does not satisfy supδ
fi(δ)fi′′(δ)

(fi′(δ))2
< 2 for all values of the four parameters. How-

ever, in the examples of the next section, the above inequality is satis�ed (see Figure 1 in Section 4.1).
12This assumption is compatible with the hypothesis made in all the examples of this paper that for all

i ∈ {1, . . . , d} we have f i,b = f i,a and λi,b = λi,a.
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to take account of the correlations between bonds.

For either choice of initial strategy, we pre-train p1[ω1], . . . , pd[ωd] using classical
supervised learning techniques (in our case, mini-batches with random inputs in Q
and Adam optimizer on a mean squared error) to output probabilities close to those
associated with the desired initial quotes.

As far as the neural network θ[ω0] is concerned, we pre-train it so that the initial
value function is close to that associated with the initial strategy δ. In dimension 1,
we use the linear equations (6) and (7) to obtain θδr . In the multi-bond case, we start
from a strategy δ that does not take the correlations into account. Subsequently, the
value function θδr is separable in the sense that

∀q = (q1, . . . , qd) ∈ Q, θδr(q) =
d∑
i=1

θδ
i

r (qi),

where (θδ
i

r )i are the value functions in the single-bond case. In practice, the func-
tions (θδ

i

r )i are, as above, obtained by solving the linear equations (6) and (7).

Let us now come to the algorithm itself. As discussed above, it alternates phases
of TD learning to learn the value function associated with the current strategy and
phases of policy iteration to improve the current strategy.

To carry out learning, we consider rollouts of the market making model. Each
rollout is a Monte-Carlo simulation starting from a given initial inventory. In other
words, at each step of the simulation we �rst draw a bond and a side according to the
probabilities of occurrence of RFQs for each bond and side. Then, we draw whether
or not a trade occurs according to the probability associated with our quoting strat-
egy. Finally, we change the inventory according to the occurrence of a trade, if a
trade occurred, and go to the next step of the Monte-Carlo simulation.

In our algorithm, we consider long rollouts starting from a �at inventory and short
rollouts starting from any admissible inventory, called additional rollouts. The former
rollouts are used in particular to obtain the average reward per RFQs (Rmean) that
will be used in the TD learning process. The latter rollouts are used to make more
robust the estimation of the value function. It is important to understand that we can
simulate our market making model from any given starting inventory. In particular,
exploration can be carried out with simulations starting from di�erent points that we
choose and not only by choosing di�erent actions as in most reinforcement learning
algorithms.

After shu�ing the rollout data to avoid the well-known autocorrelation bias,
we proceed with a classical TD learning of the value function (up to a translation
by Rmean) with mini-batches. Interestingly, here, we know the model and we can
therefore work with expected rewards and not simply with rewards. In other words,
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we carry out a mini-batched stochastic semi-gradient descent (where (I, s) and q are
stochastic) on the weights ω0 of the neural network θ[ω0] for minimizing

E

f I,s(δI,s(q))
∆IδI,s(q)−

ψ
(
q + (1s=b − 1s=a) ∆IeI

)
r +

∑d
i=1

(
λi,bRFQ + λi,aRFQ

)

+ γRLθ[ω
0]
(
q + (1s=b − 1s=a) ∆IeI

)
+
(
1− f I,s(δI,s(q))

)− ψ(q)

r +
∑d

i=1

(
λi,bRFQ + λi,aRFQ

) + γRLθ[ω
0](q)


−Rmean − θ[ω0](q)

2 ,
where δI,s(q) is computed using the neural network pI [ωI ], and where the gradient is
taken only on the last ω0, hence the term semi-gradient.

More precisely, if N is the number of mini-batches and K the size of each mini-
batch, this means that given a shu�ed sequence of inventories, quotes, bonds and
sides (qk,n, δk,n, Ik,n, sk,n)1≤k≤K,1≤n≤N coming from one or several rollouts, we carry
out for each n ∈ {1, . . . , N} the following gradient descent with learning rate η:

ω0 ← ω0 + η
1

K

K∑
k=1

∇ω0θ[ω0](qk,n)(θ̂k,n − θ[ω0](qk,n)),

where

θ̂k,n = f Ik,n,sk,n(δk,n)

∆Ik,nδk,n −
ψ
(
qk,n +

(
1sk,n=b − 1sk,n=a

)
∆Ik,neIk,n

)
r +

∑d
i=1

(
λi,bRFQ + λi,aRFQ

)
+ γRLθ[ω

0]
(
qk,n +

(
1sk,n=b − 1sk,n=a

)
∆Ik,neIk,n

)−Rmean

+
(
1− f Ik,n,sk,n(δk,n)

)− ψ(qk,n)

r +
∑d

i=1

(
λi,bRFQ + λi,aRFQ

) + γRLθ[ω
0](qk,n)

 .

It is noteworthy that the subtraction of Rmean in the above equations permits to
center the value functions and avoid very large values (positive or negative). This is
particularly important as the value functions scale in 1

r and as we focus on r small to
be close to the ergodic case.
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Once each TD learning phase is over, the quoting strategy is going to be improved.
For that purpose, we employ a method that is at the frontier between random search
and gradient policy. In fact, during each of the rollouts, not only the current strategy δ
was played but also a randomized version of it, for exploration.13 More precisely, we
consider for each (I, s) a slightly modi�ed policy

q 7→ δI,sε (q) = f I,s
−1 (

ν ∨
(
f I,s(δI,s(q)) + ε

)
∧ (1− ν)

)
,

where ν is a �xed small number in (0, 1), and where ε is a centered random vari-
able (exploration noise) with a distribution to be chosen. Then, we consider that
exploration goes into the right or wrong direction depending on whether

f I,s(δI,sε (q))

∆IδI,sε (q)−ψ(q+(1s=b−1s=a) ∆IeI)

r+
∑d

i=1

(
λi,bRFQ+λi,aRFQ

)+γRLθ[ω
0](q+(1s=b−1s=a) ∆IeI)


+
(
1− f I,s(δI,sε (q))

)− ψ(q)

r +
∑d

i=1

(
λi,bRFQ + λi,aRFQ

) + γRLθ[ω
0](q)

 (11)

is above or below

f I,s(δI,s(q))

∆IδI,s(q)−ψ(q+(1s=b−1s=a) ∆IeI)

r+
∑d

i=1

(
λi,bRFQ+λi,aRFQ

)+γRLθ[ω
0](q+(1s=b−1s=a) ∆IeI)


+
(
1− f I,s(δI,s(q))

)− ψ(q)

r +
∑d

i=1

(
λi,bRFQ + λi,aRFQ

) + γRLθ[ω
0](q)

 . (12)

More precisely, we consider the same rollouts as above and we split the resulting
data set into d data sets corresponding to RFQs over each of the d bonds. For
each of these d data sets, we compute the di�erence between (11) and (12) and
normalize it by dividing by the standard deviation over that data set. We then
change the weights of the neural network de�ning each actor so as to go in the
right direction, with a gradient proportional to the above normalized di�erence
and proportional to f I,s(δI,sε (q))− f I,s(δI,s(q)).

In mathematical terms, for each bond i we have a sequence of inventories,
normalized di�erences between (11) and (12), and perturbations in the proba-
bility space denoted by (ql,m, dVl,m, dpl,m)1≤l≤L,1≤m≤M , where M is the number
of mini-batches, each being of size L. The corresponding updates for bond i
consist for all m ∈ {1, . . . ,M} in the gradient ascent

ωi ← ωi + η̃
1

L

L∑
l=1

∇ωipi[ωi](ql,m)dVl,mdpl,m,

13We only explore locally in the sense that the list of states in the rollout is only that given by the use
of the strategy δ. The randomized version of the strategy only helps answering the question: �what if we
did di�erently for that state?�.
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where η̃ is a unique learning rate for all bonds.

It is noteworthy that this method is slightly di�erent from a gradient ascent
towards the greedy policy associated with a given value function. The di�er-
ence lies in the fact that random noises are used here whereas a pure gradient
ascent would use a deterministic automatic di�erentiation to decide upon the
direction of improvement of each actor. Using random noises enables to ex-
plore more and, besides, it allows a normalization that makes easier the choice
of hyperparameters.14

Another important remark regarding our methodology is that we progres-
sively increase the boundaries of the problem. In other words, periodically,
after a given number of updates of the critic and the actor, we increase each
risk limit by ∆i in order to �nally reach Qi. This means that the initial roll-
outs are carried out over a small state space and that the state space expands
progressively. This idea, which we call reverse Matryoshka dolls principle, is
an idea that cannot be used with grids but that perfectly �ts our deep learning
framework.

Algorithm 1 Market Making RL Algorithm
Input: A market making model with d bonds, maximal risk limits, and initial quotes for

each bond
1: Initialization

2: for i ∈ {1, . . . , d} do
3: Pre-train actor i's neural network to the initial quote for bond i
4: end for

5: Compute the 1-dimensional value function for each bond
6: Pre-train the critic's neural network to the resulting value function in the zero-

correlation case
7: Updates

8: for j = 1..NB STEPS do

9: if j modulo NB STEPS BETWEEN INCREASE = 0 and maximal risk limits are not
reached then

10: Increase the risk limits
11: end if

12: Carry out rollouts (standard and additional) with the current policy
13: Update the critic using TD learning
14: Update the policy by updating each of the d neural networks of the actor
15: end for

Output: d neural networks for the d quote functions (1 for each bond).

14The risk with high-dimensional problems is indeed to design a method that requires the choice of a
number of hyperparameters that increases with the dimension.
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4 Numerical results

4.1 A set of 20 corporate bonds

In order to illustrate our reinforcement learning method, we consider a set of
20 European corporate bonds. The characteristics of the bonds and the asso-
ciated RFQs are documented in the following tables.15

We start with Table 1 in which we document the characteristics of the RFQs
for each bond. Regarding the size of RFQs, it is indicated in numéraire, but
the size has to be in number of bonds to be used in our model. We decided to
divide the size by 100 in order to go from numéraire to number of bonds. This
means that we make the assumption that bonds are at par. Of course, we can
divide by the current price instead of 100 and update the model periodically,
but given the bonds that we consider, dividing by 100 is satisfactory and is a
second-order assumption compared to the assumption of constant sizes.

Bond Arrival rate Average size of RFQs
identi�er λbRFQ = λaRFQ in numéraire
BOND.1 0.275 700000
BOND.2 0.175 300000
BOND.3 0.1 900000
BOND.4 0.15 1200000
BOND.5 0.025 1000000
BOND.6 0.1 600000
BOND.7 0.05 800000
BOND.8 0.175 900000
BOND.9 0.4 200000
BOND.10 0.125 1300000
BOND.11 0.4 500000
BOND.12 0.425 1000000
BOND.13 0.575 500000
BOND.14 0.325 700000
BOND.15 0.4 500000
BOND.16 0.2 1000000
BOND.17 0.125 500000
BOND.18 0.125 800000
BOND.19 0.3 1100000
BOND.20 0.325 1200000

Table 1: Characteristics of the RFQs received by the market maker.

15For con�dentiality reasons, the bonds are identi�ed by numbers and not by their Bloomberg or Reuters
identi�er.
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Table 2 below documents the probability to trade following an answer to an
RFQ. The parametrization is that of Eq. (10) (SU Johnson).

Bond identi�er α β µ σ
BOND.1 0.4 0.6 0.096 0.086
BOND.2 0.4 0.6 0.0576 0.0516
BOND.3 0.4 0.6 0.1728 0.1548
BOND.4 0.4 0.6 0.0528 0.0473
BOND.5 0.4 0.6 0.3408 0.3053
BOND.6 0.4 0.6 0.1008 0.0903
BOND.7 0.4 0.6 0.1872 0.1677
BOND.8 0.4 0.6 0.2496 0.2236
BOND.9 0.4 0.6 0.1248 0.1118
BOND.10 0.4 0.6 0.0096 0.0086
BOND.11 0.4 0.6 0.096 0.086
BOND.12 0.4 0.6 0.192 0.172
BOND.13 0.4 0.6 0.048 0.043
BOND.14 0.4 0.6 0.3312 0.2967
BOND.15 0.4 0.6 0.144 0.129
BOND.16 0.4 0.6 0.0576 0.0516
BOND.17 0.4 0.6 0.0672 0.0602
BOND.18 0.4 0.6 0.2832 0.2537
BOND.19 0.4 0.6 0.1584 0.1419
BOND.20 0.4 0.6 0.12 0.1075

Table 2: Characteristics of the probability to trade (SU Johnson, see Eq. (10)).

De�ning h : z 7→ 1 − Φ
(
0.4 + 0.6 sinh−1 (z)

)
, the function z 7→ h(z)h′′(z)

h′(z)2
is

always below 2 as it can be seen in Figure 1. Therefore, we are in the conditions
where all the theoretical results of the literature apply.
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Figure 1: Check of the conditions (1). Left: large scale. Right: zoom on the maximum.
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The covariance matrix between the price variations of the 20 bonds is doc-
umented in Table 3 below.
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Table 3: Covariance matrix.
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4.2 Results in the case ψ(q) = 1
2γ
√
q′Σq

We �rst start with examples corresponding to a penalty function of the form

ψ(q) =
1

2
γ
√
q′Σq.

This penalty is proportional to the instantaneous standard deviation of the
MtM value of the portfolio. It penalizes inventory in a way proportional to
the volatility of bond prices in the single-bond case, and takes account of the
correlation between bonds in the multi-bond case. This penalty is less severe
than the quadratic penalty, proportional to the variance of the MtM value of
the portfolio, used in Section 4.3 and in some papers of the literature (see for
instance [7] and [10]).

4.2.1 Single-bond cases

We start with examples of single-bond market making. Our focus is on the
comparison between results obtained by using the �nite di�erence method pre-
sented in the appendix (hereafter PDE method16) and results obtained by using
our reinforcement learning algorithm. In what follows we consider γ = 5 · 10−2

and r = 10−4. The risk limits were set to 5 times the size of RFQs.

For the method using a �nite di�erence scheme, we �rst had to choose how
to interpolate the Hamiltonian functions. Our methodology was to try several
intervals and choices of granularity for each Hamiltonian function. If an ap-
proximation of the optimal value function could be obtained (i.e. if the interval
of interpolation was large enough), then we computed the associated optimal
quotes and compared the value function associated with these optimal quotes
to the approximation of the optimal value function. We validated our interpo-
lation and approximation when the two were almost equal.

In Table 4 and Figures 2, 3, 4, 5, and 6 we document the results we obtained
with the �nite di�erence scheme of the appendix.

On the left panels of the �gures, we plotted the optimal value function and
the value function associated with the optimal quotes (which should be exactly
the same).17 The value functions are those of the continuous-time model (i.e.
at any time, not speci�cally at an RFQ time). On the central panels we plot-
ted the optimal quotes along with the myopic quotes. Eventually, on the right
panels, we plotted the associated probability to trade.

16This method is indeed inspired by partial di�erential equation techniques.
17We subtracted the maximum of each function before plotting.
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The average rewards per RFQ obtained when using the optimal quotes com-
puted with our PDE method are reported in Table 4. The reported �gures were
obtained with Monte-Carlo simulations of 3000 RFQs.

Bond identi�er Average reward per RFQ
BOND.1 199.1
BOND.2 53.3
BOND.3 354.4
BOND.4 180
BOND.5 391.6
BOND.6 155.2
BOND.7 240
BOND.8 569.3
BOND.9 75.5
BOND.10 43.4
BOND.11 145.8
BOND.12 552.2
BOND.13 81.3
BOND.14 653.8
BOND.15 208.5
BOND.16 171.4
BOND.17 90.2
BOND.18 527.7
BOND.l9 469.4
BOND.20 473.7

Table 4: Average rewards per RFQ for the optimal quotes computed with the �nite di�er-
ence method (Monte-Carlo simulation).

We see in Figures 2, 3, 4, 5, and 6 that the optimal quote function at the
bid q 7→ δb∗(q) is an increasing function and that the optimal quote function
at the ask q 7→ δa∗(q) is a decreasing function. This means, as expected, that
a market maker with a long (resp. short) inventory wants to decrease (resp.
increase) the probability to buy and increase (resp. decrease) the probability to
sell. The plots of probabilities (right panels) are quite instructive as the shape
of the functions highly depends on the liquidity and the volatility of the bond.
For instance, for the two illiquid and volatile bonds BOND.5 and BOND.7 (see
Tables 1 and 3 for the value of λi,bRFQ = λi,aRFQ and σi) the optimal quotes are
associated with very low probabilities (< 10%) to buy when the inventory is
positive or even equal to 0 and those probabilities jump to more that 40% when
the inventory is negative (in fact less than −∆).
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Figure 2: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.
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Figure 3: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.
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Figure 4: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.
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Figure 5: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.
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Figure 6: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.
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For our RL algorithm, we considered again γ = 5 · 10−2 and r = 10−4. Re-
garding risk limits, it is noteworthy that in the single-bond case, we did not
use our reverse Matryoshka dolls principle and considered risk limits equal to
5 times the RFQ size. For both the critic and the actor, we considered neural
networks with 2 hidden layers and 10 nodes in each of these layers with ReLU
activation functions. The �nal layer of each neural network contains one node
and the activation function is a�ne in the case of the critic and sigmoid in the
case of the actor. This is of course a large network compared to the task to be
carried out but there is no problem of over�tting here. As far as pre-training
is concerned, we used myopic quotes as described in Section 3. Regarding the
learning phase, for most bonds we considered 50 steps of the algorithm, i.e.
50 steps of TD learning and 50 steps of policy improvement. For 5 bonds we
decided to increase this number of steps to either 100 or 200. At each step,
we carried out 1 rollout of length 10000 starting from a zero inventory and
100 additional rollouts of length 100 starting from a random inventory. The
noise ε in each rollout is distributed uniformly in [−0.05, 0.05] and we chose the
probability limit ν = 0.005. The learning rate for the critic is η = 5 · 10−8 and
we used mini-batches of size 70. The learning rate for the actor is η̃ = 0.01 and
we used mini-batches of size 50.

The results are shown in Figures 7, 8, 9, 10, 11, 12, 13, and 14 along with
the comparison between the PDE method and our RL algorithm.18
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Figure 7: Comparison between the two numerical methods.

18It is noteworthy that the value function obtained with the �nite di�erence scheme is an approximation
of θ̃∗r and we had therefore to use Eq. (6) to be able to plot θ∗r and only then carry out the comparison to
the value function obtained with TD learning.
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Figure 8: Comparison between the two numerical methods.
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Figure 9: Comparison between the two numerical methods.
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Figure 10: Comparison between the two numerical methods.
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Figure 11: Comparison between the two numerical methods.
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Figure 12: Comparison between the two numerical methods.
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Figure 13: Comparison between the two numerical methods.

34



−60000 −40000 −20000 0 20000 40000 60000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0
Value funct on

RL
PDE

−60000 −40000 −20000 0 20000 40000

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Quotes
RL
PDE

−60000 −40000 −20000 0 20000 40000

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Probab l t es to trade

RL
PDE

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
f funct on

0 10 20 30 40 50
420

430

440

450

460

470

Average reward per RFQ

0 2 4 6 8
468.0

468.5

469.0

469.5

470.0

470.5

471.0

Average reward per RFQ 10 last steps

Bond BOND.20 compar son of PDE and RL quotes, 
 probabilities to trade and value functions

Figure 14: Comparison between the two numerical methods.

As it can be easily seen, the results with the two methods are often very close
in terms of probability to trade (though sometimes not in terms of quotes) and
they are always comparable when it comes to the average reward per RFQ (see
the values in the bottom right panel of the �gures and the values in Table 4).
In particular, in terms of performance, our algorithm is competitive for the
single-bond case. The question is now to see how it scales to the multi-bond
case.

4.2.2 2-bond cases

In order to validate our RL approach in the multi-dimensional case, we �rst
consider several cases with two bonds. With two bonds, we can indeed compute
the optimal quotes with the PDE method and the RL approach and compare
the results as we did in the single-bond case. In particular, in the 2-bond case,
we can see the in�uence of the correlation between bond prices through the
shape of the value function and that of the optimal quote functions, and check
whether our RL method manages, as with the PDE method, to account for
correlation.

We �rst start with the case of BOND.1 and BOND.6. Our choice is moti-
vated by the high correlation (98%) between the price variations of these two
bonds.19

For our RL algorithm, we considered γ = 5 · 10−2 and r = 10−4. We con-
sidered risk limits equal to 5 times the RFQ size and kept them unchanged
during learning. For the critic and for the actor, we considered neural networks

19This correlation can easily be computed from the �gures of Table 3.
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with 2 hidden layers and 12 nodes in each of these layers with ReLU activation
functions. Again, the �nal layer of each neural network contains one node and
the activation function is a�ne in the case of the critic and sigmoid in the case
of the actor. For the pre-training phase, we used for each bond the quotes
obtained by our RL algorithm in the single-bond case. For the learning phase
we considered 500 steps, i.e. 500 steps of TD learning and 500 steps of policy
improvement. At each step we carried out 1 rollout of length 10000 starting
from a zero inventory and 100 additional rollouts of length 100 starting from
a random inventory. The noise ε in each rollout is distributed uniformly in
[−0.05, 0.05] and we chose the probability limit ν = 0.005. The learning rate
for the critic is η = 5 · 10−8 and we used mini-batches of size 70. The learning
rate for the actor is η̃ = 0.01 and we used mini-batches of size 50.

The learning curve of the algorithm is plotted in Figure 15.20
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Figure 15: Average reward per RFQ � Learning process for the 2-bond case.

We see that the average reward per RFQ increases during the learning phase.
This means that our algorithm takes account of the correlation between the
two bonds, although the improvement in terms of average reward per RFQ is
rather small (from ' 194 to ' 198). Interestingly, the average reward per RFQ
obtained when using the optimal quotes computed with the �nite di�erence
method is 197.9 and there is therefore no discrepancy.

In Figure 16 and 17, we plotted the optimal (bid) quotes computed with our
two methods � the di�erence between the two in terms of probability to trade
is in Figure 18. The value functions are documented in Figure 19.

20We plotted the moving median over the last 40 points (or less if less points were available).
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Figure 16: Optimal bid quotes obtained with our RL algorithm.
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Figure 17: Optimal bid quotes obtained with our �nite di�erence method.
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Figure 18: Comparison of the probabilities to trade obtained with the two methods.
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Figure 19: Top left: Optimal value function obtained with our RL algorithm. Top right:
Optimal value function obtained with our �nite di�erence method. Bottom: Comparison
of the two.

We see in Figures 16 and 17 that the optimal bid quotes depend on the cur-
rent inventory in both the bond that is requested and the other bond. Because
the correlation between the two bonds is positive, the optimal bid quote func-
tions are increasing with respect to both coordinates. This means that being
long one bond reduces the willingness to buy and increases the willingness the
sell the other bond.

Regarding value functions, we see that correlations are taken into account
as the plots of the value functions are not plots of separable functions.

It is interesting to notice that the approximations obtained with the two
methods are di�erent, even though the average rewards per RFQ are similar.
It is noteworthy that the more extreme the inventories, the more di�erent the
quotes and the value of the value function. This may be linked to the fact that
we learn more slowly at points that are seldom visited in Monte-Carlo simula-
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tions.

Let us now consider another 2-bond case where bonds have low correlation.
We have chosen BOND.18 and BOND.20, as the correlation between their price
variations is 7%. We used the same algorithm parametrization as in the previ-
ous 2-bond case.

The learning curve and the value function obtained by our RL algorithm
are plotted in Figures 20 and 21 respectively.
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Figure 20: Average reward per RFQ � Learning process.
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Figure 21: Optimal value function obtained with our RL algorithm.
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We clearly see that the algorithm does not learn anything. This is expected
because there is almost nothing to learn as the algorithm starts from the quotes
obtained by our RL algorithm in the single-bond cases (i.e. ignoring correla-
tion). For the sake of completeness, the average reward per RFQ obtained
using the optimal quotes computed with the �nite di�erence method is 490.3,
almost in line with the values of Figure 21. We also see that the value function
looks separable.

4.2.3 8-bond case

In addition to cases with two bonds we consider our target cases where the
market maker takes account of his position in a large number of bonds. We
consider cases with 8 and 20 bonds. Of course, in these cases, there is no
possibility of comparison to a solution based on �nite di�erences. The goal is
therefore to verify that the RL algorithm enables to obtain a strategy with a
higher average reward per RFQ than that obtained without accounting for the
correlation structure between bonds.

Let us start with the case of the 8 most volatile bonds in our set of bonds
(see Section 4.1).

We considered γ = 5 · 10−2 and r = 10−4 as above. Risk limits were chosen
equal to 5 times the RFQ size at the beginning of the learning process and were
increased every 500 steps by the RFQ size for each bond until the maximum
risk limits equal to 10 times the RFQ size were reached (this is the reverse
Matryoshka dolls principle), except for BOND.5 � due to its low liquidity and
high volatility � for which we chose a risk limit of 5 times the associated RFQ
size. For the critic and the actor, we considered neural networks with 2 hidden
layers and 18 nodes in each of these layers with ReLU activation functions. As
above, the �nal layer of each neural network contains one node and the acti-
vation function is a�ne in the case of the critic and sigmoid in the case of the
actor. For the pre-training we used the quotes obtained by our RL algorithm
in the single-bond case for each bond. For the learning phase we considered
3000 steps, i.e. 3000 steps of TD learning and 3000 steps of policy improvement
for each of the 8 bonds. At each step we carried out 1 rollout of length 10000
starting from a zero inventory and 100 additional rollouts of length 100 starting
from a random inventory. The noise ε in each rollout is distributed uniformly
in [−0.05, 0.05] and we chose the probability limit ν = 0.005. The learning rate
for the critic is η = 5 · 10−8 and we used mini-batches of size 50. The learning
rate for the actor is η̃ = 0.01 and we used mini-batches of size 50.

In Figure 22 we see the learning curve in terms of average reward per RFQ.
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We see that there is a sharp increase in average reward per RFQ over the
�rst 500 steps and that the algorithm then continues to improve progressively
the quoting strategy. This important improvement is linked to the correlation
structure of the 8 chosen bonds and to the fact that we chose volatile bonds,
for which the possibility of hedging provides signi�cant value.
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Figure 22: Average reward per RFQ � Learning process for the 8-bond case.

4.2.4 20-bond case

Let us now come to the 20-bond case for which our RL algorithm can be ap-
plied, but not the �nite di�erence method.

We considered γ = 5 · 10−2 and r = 10−4 as above. Risk limits were chosen
equal to 5 times the RFQ size at the beginning of the learning process and were
increased every 500 steps by the RFQ size for each bond until the maximum
risk limits equal to 10 times the RFQ size were reached, except for BOND.5 for
which we chose a risk limit of 5 times the associated RFQ size, as above. For
the critic and the actor, we considered neural networks with 2 hidden layers and
30 nodes in each of these layers with ReLU activation functions. As above, the
�nal layer of each neural network contains one node and the activation function
is a�ne in the case of the critic and sigmoid in the case of the actor. For the
pre-training we used the quotes obtained by our RL algorithm in the single-
bond case for each bond. For the learning phase we considered 5000 steps, i.e.
5000 steps of TD learning and 5000 steps of policy improvement for each of the
20 bonds. At each step we carried out 1 rollout of length 10000 starting from a
zero inventory and 100 additional rollouts of length 100 starting from a random
inventory. The noise ε in each rollout is distributed uniformly in [−0.05, 0.05]
and we chose the probability limit ν = 0.005. The learning rate for the critic
is η = 5 · 10−8 and we used mini-batches of size 70. The learning rate for the
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actor is η̃ = 0.01 and we used mini-batches of size 50.

In Figure 23 we see the evolution of the average reward per RFQ during the
learning process.
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Figure 23: Average reward per RFQ � Learning process for the 20-bond case.

As in the above cases, we clearly see that correlations are taken into account.

As a conclusion, we clearly see that our algorithm scales to dimension 20.
Furthermore, it is important to mention that (i) the relevant size for the neural
networks seems to scale linearly with the number of bonds, and so does the
number of steps to reach the maximum average reward per RFQ, and (ii) the
same hyperparameters (learning rate, batch size, rollout size, etc.) can be used
independently of the dimension.

4.3 Results in the case ψ(q) = 1
2γq

′Σq

We now come to the case of a penalty function of the form

ψ(q) =
1

2
γq′Σq.

This penalty, proportional to the instantaneous variance of the MtM value of
the portfolio, is the penalty function used in many market making models such
as those of Cartea et al. [7] or in Guéant [10]. In many cases, the expected
utility framework with CARA utility function used in the original paper of
Avellaneda and Stoikov [1] or in Guéant et al. [11] can also be reduced to
the maximization of the expected PnL minus a penalty of the above form up
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to a change in the intensity functions (see [18]). If quadratic penalties are
often considered in academic papers, they are known to be strong (maybe too
strong) and to penalize large inventories a lot more than the penalty function
of Section 4.2.

4.3.1 Single-bond cases

As in the previous case, we start with examples of single-bond market making
and compare the results obtained by using the PDE method of the appendix
and the results obtained with our RL algorithm. In what follows we consider
γ = 2 · 10−5 and r = 10−4. The risk limits were set to 5 times the size of RFQs.

As above, for the �nite di�erence approach, we used interpolations of the
Hamiltonian functions. The results are documented in Table 5 and Figures 24,
25, 26, 27, and 28.

Bond identi�er Average reward per RFQ
BOND.1 213.8
BOND.2 59
BOND.3 404
BOND.4 203.1
BOND.5 302.2
BOND.6 182.6
BOND.7 270.2
BOND.8 522.7
BOND.9 83.2
BOND.10 43.2
BOND.11 156.1
BOND.12 520.8
BOND.13 83.1
BOND.14 602.2
BOND.15 224.3
BOND.16 188
BOND.17 109.6
BOND.18 464.8
BOND.19 439.8
BOND.20 489

Table 5: Average reward per RFQ for the optimal quotes computed with the �nite di�erence
method.
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Figure 24: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.

44



−40000 −20000 0 20000 40000

−400000

−350000

−300000

−250000

−200000

−150000

−100000

−50000

0

Value function for bond BOND.5
 (gamma = 2.0e-05)

Optimal value function
Value function of the optimal quotes

−40000 −20000 0 20000 40000

0

5

10

15

20

25

30

Optimal bid (*) and ask (+)
 quotes for bond BOND.5
 (gamma = 2.0e-05)

bid quotes
ask quotes
Myopic quote

−40000 −20000 0 20000 40000

0.0

0.2

0.4

0.6

0.8

Optimal bid (*) and ask (+)
 probability to trade for bond BOND.5

 (gamma = 2.0e-05)
probability to trade (bid)
probability to trade (ask)

−30000 −20000 −10000 0 10000 20000 30000

−4000

−3000

−2000

−1000

0

Value function for bond BOND.6
 (gamma = 2.0e-05)

Optimal value function
Value function of the optimal quotes

−30000 −20000 −10000 0 10000 20000 30000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Optimal bid (*) and ask (+)
 quotes for bond BOND.6
 (gamma = 2.0e-05)

bid quotes
ask quotes
Myopic quote

−30000 −20000 −10000 0 10000 20000 30000
0.0

0.1

0.2

0.3

0.4

0.5

Optimal bid (*) and ask (+)
 probability to trade for bond BOND.6

 (gamma = 2.0e-05)
probability to trade (bid)
probability to trade (ask)

−40000−30000−20000−10000 0 10000200003000040000

−50000

−40000

−30000

−20000

−10000

0

Value function for bond BOND.7
 (gamma = 2.0e-05)

Optimal value function
Value function of the optimal quotes

−40000−30000−20000−10000 0 10000200003000040000

0

1

2

3

4

5

6

Optimal bid (*) and ask (+)
 quotes for bond BOND.7
 (gamma = 2.0e-05)

bid quotes
ask quotes
Myopic quote

−40000−30000−20000−10000 0 10000200003000040000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Optimal bid (*) and ask (+)
 probability to trade for bond BOND.7

 (gamma = 2.0e-05)
probability to trade (bid)
probability to trade (ask)

−40000 −20000 0 20000 40000
−50000

−40000

−30000

−20000

−10000

0

Value function for bond BOND.8
 (gamma = 2.0e-05)

Optimal value function
Value function of the optimal quotes

−40000 −20000 0 20000 40000

0

1

2

3

4

5

Optimal bid (*) and ask (+)
 quotes for bond BOND.8
 (gamma = 2.0e-05)

bid quotes
ask quotes
Myopic quote

−40000 −20000 0 20000 40000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Optimal bid (*) and ask (+)
 probability to trade for bond BOND.8

 (gamma = 2.0e-05)
probability to trade (bid)
probability to trade (ask)

Figure 25: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.
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Figure 26: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.
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Figure 27: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.
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Figure 28: Value functions, optimal quotes, and optimal probabilities to trade with the
�nite di�erence approach.
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For our RL algorithm, we considered again γ = 2 · 10−5 and r = 10−4. The
initial risk limits were set to 3 times the size of RFQ and gradually augmented
with the help of the previously described reverse Matryoshka dolls principle to
5 times the size of RFQ by the end of the learning process. For both the critic
and the actor, we considered neural networks with 2 hidden layers and 10 nodes
in each of these layers with ReLU activation functions. The �nal layer of each
neural network contains one node and the activation function is a�ne in the
case of the critic and sigmoid in the case of the actor. As far as pre-training is
concerned, we used myopic quotes as described above. Regarding the learning
phase, for most bonds we considered 50 steps of the algorithm, i.e. 50 steps of
TD learning and 50 steps of policy improvement. For 5 bonds we decided to
increase this number of steps to either 100, 150, or 200. At each step, we carried
out 1 rollout of length 10000 starting from a zero inventory and 100 additional
rollouts of length 100 starting from a random inventory. The noise ε in each
rollout is distributed uniformly in [−0.05, 0.05] and we chose the probability
limit ν = 0.005. The learning rate for the critic is η = 5 · 10−8 and we used
mini-batches of size 70. The learning rate for the actor is η̃ = 0.01 and we used
mini-batches of size 50.

The results are shown in Figures 29, 30, 31, 32, 33, 34, 35, and 36 along with
the comparison between the �nite di�erence method and our RL algorithm.
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Figure 29: Comparison between the two numerical methods.
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Figure 30: Comparison between the two numerical methods.
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Figure 31: Comparison between the two numerical methods.
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Figure 32: Comparison between the two numerical methods.
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Figure 33: Comparison between the two numerical methods.
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Figure 34: Comparison between the two numerical methods.
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Figure 35: Comparison between the two numerical methods.
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Figure 36: Comparison between the two numerical methods.

As it can be easily seen, the results with the two methods are often very close
in terms of probability to trade (though sometimes not in terms of quotes and
value functions) and they are always comparable when it comes to the average
reward per RFQ (see the values in the bottom right panel of the �gures and the
values in Table 5). It should be noticed that the quality of the approximation
in the case of the penalty function considered in this section is not as good as
in the case of the penalty function of Section 4.2, especially for large values
of inventories. This e�ect is related to the fact that the variance penalty is
much stronger than the standard deviation penalty which makes large inventory
holdings more unfavorable and therefore more rarely visited over the course of
the learning process. Nevertheless, in terms of performance, our algorithm is
competitive for the single-bond case. The question is now to see how it scales
to the multi-bond case for the variance penalty function.

4.3.2 2-bond cases

As above, in order to validate our RL approach in the multi-bond case, we
�rst consider a case with two bonds and compare the approximation obtained
with the RL approach to the approximation obtained with the �nite di�erence
approach. We want indeed to verify whether our RL approach captures the
in�uence of the correlation between bond prices.

We start with the case of a market maker in charge of BOND.1 and BOND.6.

For our RL algorithm, we considered γ = 2 · 10−5 and r = 10−4. The risk
limits were set to 3 times the RFQ size at the beginning of the learning process
and were increased every 50 steps by the RFQ size for each bond according to
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the previously described reverse Matryoshka dolls principle until the maximum
risk limits equal to 5 times the RFQ size were reached. For the critic and the
actor, we considered neural networks with 2 hidden layers and 12 nodes in each
of these layers with ReLU activation functions. Again, the �nal layer of each
neural network contains one node and the activation function is a�ne in the
case of the critic and sigmoid in the case of the actor. For the pre-training
we used the quotes obtained by the RL algorithm in the single-bond case for
each bond. For the learning phase we considered 500 steps, i.e. 500 steps of
TD learning and 500 steps of policy improvement for each bond. At each step
we carried out 1 rollout of length 10000 starting from a zero inventory and
100 additional rollouts of length 100 starting from a random inventory. The
noise ε in each rollout is distributed uniformly in [−0.05, 0.05] and we chose the
probability limit ν = 0.005. The learning rate for the critic is η = 1 · 10−8 and
we used mini-batches of size 70. The learning rate for the actor is η̃ = 0.01 and
we used mini-batches of size 50.

The learning curve of the algorithm is plotted in Figure 37.
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Figure 37: Average reward per RFQ � Learning process for the 2-bond case.

The average reward per RFQ increases during the learning phase. This
means that our algorithm takes account of the correlation between the two
bonds. Interestingly, the average reward per RFQ obtained when using the
optimal quotes computed with the �nite di�erence method of the appendix
is 210.1. This is almost in line with the average reward per RFQ obtained with
our RL algorithm (' 209).
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We can see in our 2-bond case that the quotes are impacted by the cor-
relation between bonds. In Figure 38, we plotted the optimal (bid) quotes
computed with our RL algorithm. The optimal (bid) quotes computed with
our �nite di�erence method are in Figure 39.
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Figure 38: Optimal quotes obtained with our RL algorithm.
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Figure 39: Optimal quotes obtained with our �nite di�erence scheme.

We see that the bid quotes are increasing with respect to the inventory in
both bonds, as expected because of the positive correlation.

As above, we also document the di�erence between the two approaches in
terms of probability to trade in Figure 40. We see that the di�erence is rather
small, except for inventories that are seldom visited by our RL algorithm.
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Figure 40: Comparison of the probabilities to trade obtained with the two methods.
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Figure 41: Top: Optimal value function obtained with our RL algorithm and the one
obtained with our �nite di�erence method. Bottom: Comparison between the two and
zoom on the center of the surface.
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The optimal value functions associated with our RL algorithm and �nite
di�erence method, and the di�erence between the two approaches are plotted
in Figure 41.

As in a single-bond case we can see here that there is a discrepancy for large
inventories. This is a consequence of the quadratic penalty function that makes
the algorithm visit less often states corresponding to large inventories.

What is important to notice is also that the value function is clearly not
separable.

4.3.3 8-bond case

In addition to cases with two bonds we consider our target cases where the
market maker takes account of his position in a large number of bonds.

Let us start with the same 8-bond case as above.

We considered γ = 2 · 10−5 and r = 10−4 as above. Risk limits were chosen
equal to 3 times the RFQ size at the beginning of the learning process and were
increased every 500 steps by the RFQ size for each bond until the maximum
risk limits equal to 5 times the RFQ size were reached. For the critic and the
actor, we considered neural networks with 2 hidden layers and 18 nodes in each
of these layers with ReLU activation functions. As above, the �nal layer of each
neural network contains one node and the activation function is a�ne in the
case of the critic and sigmoid in the case of the actor. For the pre-training we
used the quotes obtained by our RL algorithm in the single-bond case for each
bond. For the learning phase we considered 3000 steps, i.e. 3000 steps of TD
learning and 3000 steps of policy improvement for each of the 8 bonds. At each
step we carried out 1 rollout of length 10000 starting from a zero inventory and
100 additional rollouts of length 100 starting from a random inventory. The
noise ε in each rollout is distributed uniformly in [−0.05, 0.05] and we chose the
probability limit ν = 0.005. The learning rate for the critic is η = 1 · 10−8 and
we used mini-batches of size 70. The learning rate for the actor is η̃ = 0.001
and we used mini-batches of size 50.

In Figure 42 we plotted the learning curve in terms of average reward
per RFQ. As in the above case, we see that the correlation structure is well
taken into account as the average reward per RFQ goes from around 495 to
around 520.
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Figure 42: Average reward per RFQ � Learning process for the 8-bond case.

4.3.4 20-bond case

Let us now come to the 20-bond case.

We used our RL algorithm with γ = 2 · 10−5 and r = 10−4. The risk limits
were set to 3 times the RFQ size at the beginning of the learning process and
were increased every 500 steps by the RFQ size for each bond according to the
previously described reverse Matryoshka dolls principle until the maximum risk
limits were reached (10 times the RFQ size for all bonds, except for BOND.5
� due to its low liquidity and high volatility � for which we chose a risk limit
of 5 times the associated RFQ size). For the critic and the actor, we consid-
ered neural networks with 2 hidden layers and 30 nodes in each of these layers
with ReLU activation functions. Again, the �nal layer of each neural network
contains one node and the activation function is a�ne in the case of the critic
and sigmoid in the case of the actor. For the pre-training we used the quotes
obtained by our RL algorithm in the single-bond case for each bond. For the
learning phase, we considered 4000 steps, i.e. 4000 steps of TD learning and
4000 steps of policy improvement for each of the 20 bonds. At each step we
carried out 1 rollout of length 10000 starting from a zero inventory and 100
additional rollouts of length 100 starting from a random inventory. The noise ε
in each rollout is distributed uniformly in [−0.05, 0.05] and we chose the prob-
ability limit ν = 0.005. The learning rate for the critic is η = 1 · 10−8 and we
used mini-batches of size 70. The learning rate for the actor is η̃ = 0.01 and
we used mini-batches of size 50.
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In Figure 43 we see the evolution of the average reward per RFQ over the
course of the learning process.

We clearly see that the correlation structure is taken into account.
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Figure 43: Average reward per RFQ � Learning process for the 20-bond case.

4.4 The variant with one neural network for all bonds

So far, we presented examples where the RL algorithm was implemented with
one neural network for the value function and d neural networks for the actor,
i.e. one for each bond. Although optimization of actor networks can be paral-
lelized in the case of d neural networks for the actor, one can prefer to optimize
over a single neural network for the actor to make the method more scalable in
terms of memory space.

For this reason, we consider now a new implementation of our algorithm
with a single-network actor. As discussed in Section 3.2, the inputs of the actor
network is now a 2d-dimensional vector: the �rst d components are the inven-
tories, the other d is a one-hot vector (of size d) to code the bond for which the
network has to output a quote.

The advantage of this approach is obviously its scalability, but the price to
pay for this improvement is that we cannot normalize actor updates as in the
case of the multiple-network actor. As a consequence, we need to reduce the
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learning rate and that a�ects the time needed for learning.

In what follows, we only consider the case of the penalty function used in
Section 4.2. As above, we consider cases with 2, 8, and 20 bonds.

4.4.1 2-bond case

As above, we start with a 2-bond case with BOND.1 and BOND.6.

For our RL algorithm, we considered γ = 5 · 10−2 and r = 10−4. We
considered risk limits equal to 5 times the RFQ size and kept them unchanged
during learning. For the critic and the actor, we considered neural networks
with 2 hidden layers and 12 nodes in each of these layers with ReLU activation
functions. Again, the �nal layer of each neural network contains one node and
the activation function is a�ne in the case of the critic and sigmoid in the case
of the actor. For the pre-training phase, we used for each bond the quotes
obtained by our RL algorithm in the single-bond case. For the learning phase
we considered 500 steps, i.e. 500 steps of TD learning and 500 steps of policy
improvement. At each step we carried out 1 rollout of length 10000 starting
from a zero inventory and 100 additional rollouts of length 100 starting from
a random inventory. The noise ε in each rollout is distributed uniformly in
[−0.05, 0.05] and we chose the probability limit ν = 0.005. The learning rate
for the critic is η = 5 · 10−8 and we used mini-batches of size 70. The learning
rate for the actor is η̃ = 0.01 and we used mini-batches of size 50.
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Figure 44: Average reward per RFQ � Learning process for the 2-bond case (single-network
actor).
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The learning curve of the algorithm is plotted in Figure 44.

The average reward per RFQ obtained with this approach is above 198.0,
in line with the value obtained with the multi-network actor and the �nite dif-
ference method.

In Figure 45, we plotted the optimal (bid) quotes computed with our RL
single-network actor algorithm � the di�erence between these quotes and the
those obtained with the �nite di�erence method of the appendix, in terms of
probability to trade, is plotted in Figure 46.
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Figure 45: Optimal bid quotes obtained with our RL algorithm (single-network actor).
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Figure 46: Comparison of the probabilities to trade obtained with the two methods.

We see that the di�erence in terms of probability is less than 8% for BOND.1
and less than 4% for BOND.6 (and the large di�erences concern inventories close
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to risk limits only).

The value function approximated with our RL method and its comparison
with the one obtained with the �nite di�erence method are depicted in Fig-
ure 47.

Inventories in bond BOND.1

−30000
−20000

−10000
0

10000
20000

30000 Inv
ent

orie
s in

 bo
nd 

BO
ND

.6

−30000
−20000

−10000
0
10000

20000
30000

Va
lu
e 
fu
nc

tio
n

−6000

−5000

−4000

−3000

−2000

−1000

0

Value function

Inventories in bond BOND.1

−30000
−20000

−10000
0

10000
20000

30000 Inv
ent

orie
  in

 bo
nd 

BO
ND

.6

−30000
−20000

−10000
0
10000

20000
30000

Va
lu
e 
fu
nc

tio
n 
RL

 - 
va

lu
e 
fu
nc

tio
n 
PD

E

0

200

400

600

Value function comparison

Figure 47: Left: Optimal value function obtained with our RL algorithm. Right: Compar-
ison of the optimal value function obtained with our RL algorithm to the optimal value
function obtained with the �nite di�erence method.

4.4.2 8-bond case

Let us now come to the same 8-bond case as in the previous sections.

We considered γ = 5 · 10−2 and r = 10−4 as above. Risk limits were chosen
equal to 5 times the RFQ size at the beginning of the learning process and were
increased every 500 steps by the RFQ size for each bond until the maximum
risk limits equal to 10 times the RFQ size were reached (this is the reverse
Matryoshka dolls principle), except for BOND.5 � due to its low liquidity and
high volatility � for which we chose a risk limit of 5 times the associated RFQ
size. For the critic and the actor, we considered neural networks with 2 hidden
layers and 28 nodes in each of these layers with ReLU activation functions. As
above, the �nal layer of each neural network contains one node and the acti-
vation function is a�ne in the case of the critic and sigmoid in the case of the
actor. For the pre-training we used the quotes obtained by our RL algorithm
in the single-bond case for each bond. For the learning phase we considered
3000 steps, i.e. 3000 steps of TD learning and 3000 steps of policy improve-
ment for each of the 8 bonds. At each step we carried out 1 rollout of length
10000 starting from a zero inventory and 100 additional rollouts of length 100
starting from a random inventory. The noise ε in each rollout is distributed
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uniformly in [−0.05, 0.05] and we chose the probability limit ν = 0.005. The
learning rate for the critic is η = 5 · 10−9 and we used mini-batches of size 100.
The learning rate for the actor is η̃ = 0.001 and we used mini-batches of size 100.

The learning curve in terms of average reward per RFQ is plotted in Fig-
ure 48.

0 500 1000 1500 2000 2500 3000

520

540

560

580

600

620

640

Actor Critic for 8 bonds
 Average reward per RFQ

Figure 48: Average reward per RFQ � Learning process for the 8-bond case.

We see that the average reward per RFQ reached by the single-network
method is around 630, in line with the results obtained before with the multi-
network variant. Interestingly, the initial average reward per RFQ (after pre-
training) is lower in the single-network case than in the multi-network case, in
spite of an extended pre-training period. This is a sign that training is more
complex in the single-network case because of the very structure of the neural
network.

4.4.3 20-bond case

Now, let us move to the 20-bond case.

We considered γ = 5 · 10−2 and r = 10−4 as above. Risk limits were chosen
equal to 5 times the RFQ size at the beginning of the learning process and were
increased every 200 steps by the RFQ size for each bond until the maximum
risk limits equal to 10 times the RFQ size were reached (this is the reverse
Matryoshka dolls principle), except for BOND.5 � due to its low liquidity and
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high volatility � for which we chose a risk limit of 5 times the associated RFQ
size. For the critic and the actor, we considered neural networks with 2 hidden
layers and 30 nodes in each of these layers for the critic and 300 for the actor,
with ReLU activation functions. As above, the �nal layer of each neural net-
work contains one node and the activation function is a�ne in the case of the
critic and sigmoid in the case of the actor. For the pre-training we used the
quotes obtained by our RL algorithm in the single-bond case for each bond. For
the learning phase we considered 20000 steps, i.e. 20000 steps of TD learning
and 20000 steps of policy improvement for each of the 20 bonds. At each step
we carried out 1 rollout of length 5000 starting from a zero inventory and 100
additional rollouts of length 50 starting from a random inventory. The noise ε
in each rollout is distributed uniformly in [−0.05, 0.05] and we chose the prob-
ability limit ν = 0.005. The learning rate for the critic is η = 5 · 10−8 and we
used mini-batches of size 50. The learning rate for the actor is η̃ = 5 · 10−4 and
we used mini-batches of size 50.

The learning curve in terms of average reward per RFQ is plotted in Fig-
ure 49.
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Figure 49: Average reward per RFQ � Learning process for the 20-bond case.

As in the 8-bond case, we see that the initial point (after pre-training) is
lower than in the multi-network case, con�rming the di�culty to train the
neural network, even for supervised learning. Nevertheless, we see that the
correlation structure is taken into account, but we reach a value slightly lower
than in the multi-network case.
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Conclusion

The problem of solving numerically the equations characterizing the optimal bid
and ask quotes of a market maker in charge of a large number of assets cannot be
solved with classical methods based on grids (e.g. �nite di�erence methods). In
this paper we proposed a model-based actor-critic-like algorithm involving deep
neural networks to address this issue. We showed that our method is consistent
with existing ones in the case of low-dimensional problems, and, unlike classical
methods, scalable to portfolios of a few dozens of bonds, hence beating the curse
of dimensionality. Our method can be adapted to cover multiple extensions,
such as the presence of variable RFQ sizes or the choice of a reduced-size state
space consisting of risk factors.

Appendix: Numerical scheme for the Hamilton-

Jacobi-Bellman equation

The numerical approximation of the solution θ̃∗r of Eq. (3) with �nite di�erence
schemes is a classical problem in numerical analysis.

A natural idea consists in considering an implicit scheme with operator
splitting for the equation

0 = ∂tθ̃r(t, q)− rθ̃r(t, q)− ψ(q)

+
d∑
i=1

1qi<QiH i,b

(
θ̃r(t, q)− θ̃r(t, q + ∆iei)

∆i

)

+
d∑
i=1

1qi>−QiH i,a

(
θ̃r(t, q)− θ̃r(t, q −∆iei)

∆i

)
de�ned over (t, q) ∈ [0, T ]×Q with an arbitrary terminal condition, and then
to consider the value of the function θ̃r at time t = 0 as an approximation θ̃∗r .

More precisely, we consider a time discretization t0 = 0, . . . , tK = T of [0, T ],
and start from a space discretization of the terminal condition at time tK = T .
Then, for going from an approximation θ̂k+1 of θ̃r(tk+1, ·) to an approximation
θ̂k of θ̃r(tk, ·), where τ = tk+1 − tk, we consider the following scheme (solved
iteratively for y0, . . . , yd with Newton's methods when necessary):

θ̂k+1 − y0(q)

τ
− ry0(q)− ψ(q) = 0,
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and, ∀i ∈ {1, . . . , d},

yi−1(q)− yi(q)
τ

+ 1qi<QiH i,b

(
yi(q)− yi(q + ∆iei)

∆i

)
+1qi>−QiH i,a

(
yi(q)− yi(q −∆iei)

∆i

)
= 0,

and eventually θ̂k = yd.

This scheme is a convergent monotone scheme but it requires a grid in space
and is therefore not scalable to large values d of the number of bonds.
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