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Monotonic sampling of a continuous closed curve with respect to its Gauss digitization. Application to length estimation

In many applications of geometric processing, the border of a continuous shape and of its digitization (i.e. its pixelated representation) should be matched. Assuming that the continuous-shape boundary is locally turn bounded, we prove that there exists a mapping between the boundary of the digitization and the one of the continuous shape such that these boundaries are traveled together in a cyclic order manner. Then, we use this mapping to prove the multigrid convergence of perimeter estimators that are based on polygons inscribed in the digitization. Furthermore, convergence speed is given for this class of estimators. If, moreover, the continuous curves also have a Lipschitz turn, an explicit error bound is calculated.

Introduction

The estimation of a geometric feature of an object from its picture is required in several fields. One of the issues in this process is the discretization due to the image acquisition that reduces the information necessary to the estimation. Therefore, dedicated estimators are mandatory and their properties should be proved or evaluated. That is the problematic of geometric estimation in discrete geometry. Characteristics whose dimension is that of the ambient-space like area in the plane, have estimators which have been proved to be accurate (see for instance Theorem 2.2, section 2.4.2 [START_REF] Klette | Geometric Methods for Digital Picture Analysis[END_REF] or Theorem 8 [START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF]). For characteristics with dimensions lower than that of the ambient space, like perimeter or curvature in the plane, the accuracy of the proposed estimators is proved on specific curves [START_REF] Mazo | Non-local length estimators and concave functions[END_REF], [START_REF] De Vieilleville | Maximal digital straight segments and convergence of discrete geometric estimators[END_REF], [START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF], [START_REF] Daurat | Les estimateurs semi-locaux de périmètre[END_REF], [START_REF] Coeurjolly | Integral based curvature estimators in digital geometry[END_REF], or illustrated on examples [START_REF] De Vieilleville | Experimental comparison of continuous and discrete tangent estimators along digital curves[END_REF], [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF], [START_REF] Coeurjolly | Multigrid convergence of discrete geometric estimators[END_REF], [START_REF] Klette | Measurements of arc length's by shortest polygonal jordan curves[END_REF] [START_REF] Coeurjolly | A comparative evaluation of length estimators of digital curves[END_REF][START_REF] De Vieilleville | Maximal digital straight segments and convergence of discrete geometric estimators[END_REF]. The aim of this paper is to prove the accuracy of perimeter estimation (in a sense to be defined) for a wide class of estimators under some hypotheses on the shapes.

In the sequel of the article, we focus on the estimation of perimeter for shapes homeomorphic to a disk or equivalently to length estimation of Jordan curves. We provide here a brief overview of the perimeter estimation in discrete geometry. Length estimation methods can be based on a tangent estimation [START_REF] Coeurjolly | A comparative evaluation of length estimators of digital curves[END_REF][START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF], or consist in splitting the digital boundary into patterns (small sequences of boundary pixels) and summing the lengths associated to each pattern. In the latter class, the choice of the pattern size determines a classification on perimeter estimation methods. One can distinguish three classes: the local estimators for which the pattern size is constant, that is, it does not depend on the curve nor on the grid step; the Semi-Local and Non-Local estimators for which the pattern size depends only on the grid step, but not on the curve; and the adaptative ones for which the number of pixels in each pattern is determined by the estimation algorithm from the discrete curve. There are two types of adaptive length estimators, the Maximal Digital Straight Segments (MDSS) and the Minimal Length Polygons (MLP).

The evaluation of the accuracy of the perimeter estimators is made through their application on curve examples [START_REF] Klette | Evaluation of curve length measurements[END_REF][START_REF] Coeurjolly | A comparative evaluation of length estimators of digital curves[END_REF], on curve classes [START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF] or by verifying an asymptotical property so-called the multigrid convergence: the estimation error has to tend towards 0 when the grid step tends to 0. Let's take a look to this property on the three estimator classes described above. Even if the local estimators are the easiest to use, they do not verify the multigrid convergence property for an important amount of curves [START_REF] Tajine | Patterns for multigrid equidistributed functions: Application to general parabolas and length estimation[END_REF]. On one hand, adaptative estimators have been proved to be multigrid convergent on convex curves [START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF]. On the other hand the proofs are difficult to generalize because of the adaptivity of the algorithms to each curve. Nevertheless, for adaptative estimators on curves of class C 3 with positive curvature, it has been proved in [START_REF] De Vieilleville | Maximal digital straight segments and convergence of discrete geometric estimators[END_REF] that the asymptotical pattern pixel number tends to infinity and its real size tends to 0. Keeping this behaviour in their definition (without being adaptative), the Semi-Local estimators, respectively the Non-Local estimators have been proved to be multigrid convergent for functions of class C 2 [START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF], respectively Lipschitz functions [START_REF] Mazo | Non-local length estimators and concave functions[END_REF]. But these results have been obtained on graphs of functions, not on curves. As the Non-Local estimators is an attempt to be a unified framework for adaptive and semi-local estimators [START_REF] Mazo | Non-local length estimators and concave functions[END_REF], it seems relevant to extend it to planar curves. Nevertheless, the results depends on the estimators but also on the classes of the estimated curves. These classes are detailed in the next paragraph.

The length estimation error is always given for an estimator class on a class of curves (Table 1). In order to perform a geometric estimation on a curve, and taking into account the small quantity of information contained in its digitization, the complexity of the curve should be upper bounded. Geometric hypotheses on the continuous curve are needed to control this quantity of information. These geometric hypotheses should be invariant by rigid transformation and determine the grid step for which the digitization will encompass enough information to perform geometric estimation. One of the most used hypothesis in discrete geometry is the par(r)-regularity (Definition 9). It was introduced by Pavlidis in [START_REF] Pavlidis | Algorithms for graphics and image processing[END_REF], its definition was rephrased by Serra in [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF], and by Latecki et al. in [START_REF] Latecki | Preserving topology by a digitization process[END_REF]. Par(r)-regular curves verify some regularity hypotheses. In particular, polygons are not par-regular. There exist several attempts to generalize Estimator Class of curves Proof of multigrid convergence Rate of convergence MDSS convex C 3 with positive curvature Thm 5.36 [START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF] O(h1/3 ) convex polygons Thm 12 [START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF] O(h)

GC-MLP convex curves

for Jordan digitization scheme Thm 4.15 [START_REF] Sloboda | On approximation of planar onedimensional continua[END_REF] O(h) AS-MLP convex polygon Thm 2 [START_REF] Asano | Minimum-length polygons in approximation sausages[END_REF] O(h)
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Cor 1 [START_REF] Mazo | Non-local length estimators and concave functions[END_REF] -

graph of C 1,1 function Cor 2 [20] O(M h 1 + h M h 1 )
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Thm 8 [START_REF] Mazo | Non-local length estimators and concave functions[END_REF] -Table 1: The table gives the proved worst-case rate of convergence of several estimators on a specific class of curves. When not specified the convergence is studied for the Gauss digitization scheme. The class of C 1,1 is the class of function whose derivative are Lipschitz. par(r)-regurality in order to include shapes with spikes: half-regularity [START_REF] Stelldinger | Digitization of non-regular shapes in arbitrary dimensions[END_REF], r-stability [START_REF] Meine | A topological sampling theorem for robust boundary reconstruction and image segmentation[END_REF], quasi(r)-regularity [START_REF] Ngo | Geometric preservation of 2D digital objects under rigid motions[END_REF], the µ-reach [START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF]. But none of them excludes artifacts of the continuous curve that prevent accurate length estimation.

In addition to these original papers, the reader can find a little more detailed presentation of the above notions in our previous paper about locally turn bounded curves [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]. 1 . In this article, we aim at providing a proof of multigrid convergence for some perimeter estimators and to bound their worst-case error on a wide class of Jordan curves including both regular curves and polygons. In order to define such a class of curves, we choose to use a criterion based on the turn of the curve, which is a generalization of the integral of the curvature along the curve 2.1. Indeed the turn is the amount by which a curve deviates from being a straight line. In this article, we consider two families of curves: the curves having a turn being a Lipschitz function of their length (Definition 10) and the curves whose small arcs have a bounded turn (locally turn-bounded curves, see Definition 1). The notion of local turn-bounded curve (LTB-curve) was introduced in a previous work [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF].

Let us introduce the digitization process used in this article. Given a shape S and a grid step h, the Gauss digitization of S denoted by Dig h (S), is the discrete subset of S ∩ hZ 2 . The reconstruction of S is the Minkowski sum Dig h (S) ⊕ P

• • • • • • • • • border of S points of Dig h (C)
points not in Dig h (C) reconstruction of S bels points associated to bels Figure 1: Each bel is associated to an intersection point of itself and the border of the shape S. In the general case, there is no guarantee that the cyclic order on bels implies a cyclic order on the border of the shape. In Section 3, we will prove that locally turn bounded curves makes it possible to define such a monotonic association.

where P = [-h/2, h/2] 2 . A boundary element of a digitized shape S, usually called a bel is composed of a pair of 4-adjacent grid points, one lying outside the shape and the other lying inside the shape, or on its boundary see Figure 1.

Since bounding the error of a non-local estimator consists in comparing the length of the curve and the length of a polygon whose vertices are derived from the digitization, an important step is to associate the edges of the polygon to arcs partitioning the continuous curve. In other words, we want to define a mapping from the ordered set of the digitization bels to an ordered sequence of points on the continuous curve C. Furthermore, in order to guarantee the multigrid convergence, each bel has to be close to its image. In [START_REF] Lachaud | Properties of gauss digitized shapes and digital surface integration[END_REF], the whole continuous curve is associated point by point to the boundary of its reconstruction using the projection to nearest point defined in [START_REF] Federer | Curvature measures[END_REF]. This projection is well-defined only for sets having a positive reach, that is, for par-regular curves. Moreover, this projection is onto but not order-preserving (see Figure 2) even if the length of the "non-injective" part of the projection on C can be upper bounded [START_REF] Lachaud | Properties of gauss digitized shapes and digital surface integration[END_REF]. Notice that this step is not always necessary: for small classes of curves as the convex polygons, the bounding of estimation error is based on other arguments (see [START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF]).

Our contributions are twofold. The first and main contribution of the article is to define a mapping (Definition 6) from bels to points on the curve and to prove that this mapping is order-preserving. Besides, we show that the mapping partitions the curve in arcs of limited turns. The whole section 3 is dedicated to this proof. The second contribution is the length estimation for locally turn-bounded curves. We prove the multigrid convergence of some Non-Local estimators (Theorem 3 and Theorem 4). We also provide rates of convergence depending on the mean and maximal size of patterns. Moreover we give an explicit upper bound of the error of estimation for LTB curves with Lipschitz turn in order to enable a practical use at a fixed resolution. In addition, we take the opportunity to complete a previous result by showing that the set of LTB curves with Lipschitz turn not only includes but in fact coincides with the set of par-regular curves (Theorem 1).

2 Background: Hypotheses on the continuous shape and some consequences

In this section, we recall the definition and the main properties of locally turnbounded curves. All this material comes from our previous article [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]. Section 2 also contains a new result, Theorem 1, that links locally turn-bounded curves having Lipschitz turn with par-regular curves [START_REF] Pavlidis | Algorithms for graphics and image processing[END_REF] and curves having positive reach [START_REF] Federer | Curvature measures[END_REF].

Turn

In this section, we recall the definition of the turn and some of its properties. The main reference is the book of Alexandrov and Reshetnyak [START_REF] Alexandrov | General Theory of Irregular Curves[END_REF]. Nevertheless, the reader will find in our previous article [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF] two pages presenting these properties with some comments and precise references inside the book.

Generally, the convergence of geometrical estimators is given under analytical hypothesis on the continuous curve. In most of the cases, the continuous curve is supposed to be twice differentiable. But as noticed in [START_REF] Alexandrov | General Theory of Irregular Curves[END_REF]:

"It should be remarked that differential geometry commonly studies only the curves obeying certain conditions of regularity. These conditions are imposed by the requirement that the apparatus of differential calculus be applied, but they are hardly justified in a geometrical sense." In this article, we choose to study geometrical features of the continuous curve based on the turn. In order to be able to consider both polygons and regular curves, we use the definition of the turn given in [START_REF] Alexandrov | General Theory of Irregular Curves[END_REF], [START_REF] Milnor | On the total curvature of knots[END_REF]. But beforehand, let us clarify some notations.

For practical reasons, a sequence of points (a i ) of a closed curve is indexed by the quotient group Z/N Z. This allows for instance to use the equality a N = a 0 . In particular, this notation will be used for the vertices of a polygon. The subset {i, i + 1, ..., j} of Z/N Z is denoted by

[[i, j]] and #[[i, j]] stands for the cardinal of [[i, j]].
The angle between two vectors u and v is denoted by ( u, v) (( u, v) ∈ R/2πZ). The geometric angle between two vectors u and v, or between two directed straight lines oriented by u and v is denoted by ∠( u, v). It is the absolute value of the reference angle taken in (-π, π] between the two vectors. Thus, ∠( u, v) ∈ [0, π]. Given three points x, y, z, we also write xyz for the geometric angle between the vectors x -y and z -y.

We now give the definition of the turn.

The turn κ(L) of a polygonal line L = [x i ] N -1 i=0 is defined by:

κ(L) := N -2 i=1 ∠(x i -x i-1 , x i+1 -x i ) .
The turn κ(P ) of a polygon P = [x i ] i∈Z/N Z is defined by (see Figure 3:

κ(P ) := i∈Z/N Z ∠(x i -x i-1 , x i+1 -x i ) .
In the rest of the paper, we write C a,b for an arc of curve between the points a and b; moreover, the topology on the curve and its arcs is the topology induced on the curve, therefore, an open arc C is the arc C minus its endpoints.

A sequence (a j ) of points of a simple closed curve C forms a chain if for each pair (i, j), the intersections of the two open arcs of C from a i to a j with the set {a k } are exactly the subsets

{a k } k∈[[i+1,j-1]] and {a k } k∈[[j+1,i-1]] .
A polygonal line (or a polygon) is said to be inscribed in C if its ordered sequence of vertices forms a chain of C. The turn κ(C) of a simple curve C (respectively of a Jordan curve) is the supremum of the turn of its inscribed polygonal lines (respectively of its inscribed polygons).

The turn has the following properties2 

Property 1 ([1]).

The turn coincides with the integral of the usual curvature on C 2 curves.

(Fenchel's Theorem) The turn of a Jordan curve is greater than or equal to 2π. The equality case occurs if and only if the interior of C is convex.

Every curve of finite turn has left-hand and right-hand tangent vectors e l (c) and e r (c) at each of its points.

For any arc C a,b of finite turn containing a point c,

κ(C a,b ) = κ(C a,c ) + κ(C c,b ) + ∠(e l (c), e r (c)).
For any Jordan curve C of finite turn containing a point c,

κ(C) = κ(C \ {c}) + ∠(e l (c
), e r (c)).

Local turn-boundedness

We introduced in [START_REF] Quentrec | Local turnboundedness: A curvature control for a good digitization[END_REF] a new local geometric feature based on the turn. It consists in locally bounding the turn of the curve in order to forbid the artifacts depicted in Figure 4. This new feature allows us to consider a wider class than the par-regular curves usually used for estimation in discrete geometry. In particular it forbids the angular points in C of turn greater than θ, i.e. points c for which ∠(e l (c), e r (c)) > θ (see [START_REF] Quentrec | Local turnboundedness: A curvature control for a good digitization[END_REF]Proposition 3]).

Hereafter, we recall the properties of the LTB-curves that will be used in this paper.

The first property links the parameter δ of a LTB curve with the diameter of the curve. Property 2 ([18], Lemma 1). The diameter of a closed (2π/3, δ)-LTB curve is at least δ.

Notice that two distinct points of a Jordan curve delimit two arcs of the curve. To distinguish these two arcs, we introduced in [START_REF] Quentrec | Local turnboundedness: A curvature control for a good digitization[END_REF] the notion of straightest arc. Since the notion of straightest arc is a key tool in this article, we set θ = π/2 for the rest of the paper and we write δ-LTB instead of (π/2, δ)-LTB. From Property 5, we derive that LTB curves have no local U-turns.

Property 6 ([18, Proposition 12]). Let C be a δ-LTB curve. Let γ : [0, t M ) → C be an injective parametrization of the curve C and t m ∈ (0, t M ) be such that the arc γ([0, t m ]) is included in B(γ(0), δ 2 ). Then, the restriction of the function t → γ(t) -γ(0) to [0, t m ] is increasing.

The preservation by the digitization process of topological properties as connectedness, or manifoldness, requires to discretize continuous objects with sufficiently tight grids. In the framework of LTB curves, this is expressed by the notion of grid compatible with a (LTB) curve presented here (Definition 3). Definition 3 ([18], Definition 9 ). Let C be a δ-LTB curve. A grid with step h, or a square of side length h, is said to be compatible (with the curve C) if h is strictly smaller than min( The constraint on the curvature of a LTB curve makes it possible to describe with accuracy the behavior of such a curve with respect to compatible grid pixels. This was expressed in [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF] through the notion of "arc passing through" a pixel. Definition 4 ( [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF], Definition 8 and Proposition 7). Given a LTB curve C and a compatible square T , there exists a maximal (for the inclusion) straightest arc of C with endpoints in T . It is called the T -straightest arc of C and it its denoted by C T (see Figure 6) .

Be aware that we have changed the designation of the arc passing through T from [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF] into T -straightest arc .

The T -straightest arc has the following localization property.

Property 8 ([18], Proposition 6). Let C be a δ-LTB curve and T be a compatible square. Then, the T -straightest arc of C is included in the swelling of T which is the union of the four disks whose diameters are the sides of T (see Figure 7). Furthermore, the complement of C T in C, the open arc C \ C T , does not intersect T .

θ 0 > π 2 × × × × h h × × × × h h δ < √ 2h
Figure 5: [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]Figure 14,[START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF] Two examples of curve not compatible with the grid and having a not well-composed Gauss digitization, that is a Gauss digitization with a "cross configuration". A cross configuration is a square of side-length h having two diagonally opposed vertex in the Gauss digitization and the two other not belonging to the Gauss digitization. Thanks to the notion of T -straightest arc, we are able to locally distinguish exterior points from interior points. The notion of swelling of T corresponds to the swollen set of T defined in [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF],we change the designation in this article. The following property considers the case when the T -straightest arc contains a vertex of the square T . Property 10 ( [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF], Lemma 4). Let C be a δ-LTB Jordan curve and T be a compatible square. Suppose that the square T has a vertex v lying on C. Then, either this vertex v is an endpoint of the T -straightest arc of C, or the T -straightest arc is wholly included in the two sides of T having v for endpoint.

We end this section about local turn boundedness by two new results. The first one is just a set of technical improvements of some of the properties mentioned above. These new statements are used in Section 3. The second one is a complement about regularity that gives meaning to turn usage in discrete geometry. The classical notions of (having) positive reach [START_REF] Federer | Curvature measures[END_REF], par-regularity [START_REF] Pavlidis | Algorithms for graphics and image processing[END_REF], which are equivalent to C 1,1 regularity (C 1 -curve with Lipschitz derivative), can be expressed very easily in the framework of LTB curves as stated by the following theorem.

C a ,a ∪ C a,b ∪ C b,b ⊂ D + , D ⊂ D + but the whole curve C is not included in D + (by Property 2). It comes that C \ C a ,a ∪ C a,b ∪ C b,b is not included in D
Theorem 1. A δ-LTB curve is of class C 1,1 if and only if it has a Lipschitz turn: κ(A) ≤ kL(A) for some k ≥ 0 and for any subarc A of C.

The only if part of Theorem 1 was proved in [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]. We give in A the proof of the converse part.

Digitization based partition of a LTB curve

One main objective of this article is to map the boundary of a discretized object onto the continuous original object thanks to small displacements of the discrete boundary while keeping the order on the boundary of the discrete object. This is the purpose of this section.

Note that the proofs given in Section 3 rely on the properties of LTB curves recalled in Section 2.2.

Back-digitization

We begin by some vocabulary and notations that will be used throughout Section 3. Let p ∈ R 2 and h ∈ (0, +∞). We denote by P p the square p ⊕ P where

P = [-h/2, h/2].
When p ∈ hZ 2 , we say that P p is a pixel and when p ∈ (h/2, h/2) + hZ 2 , we say that P p is a dual pixel. Observe that the vertices of a dual pixel all have integer coordinates. Given a Jordan curve C surrounding a shape S and a grid step h, we recall that a bel (for "boundary element") is an ordered pair of 4-adjacent grid points, the first point lying inside the shape, or on its boundary and the second point lying outside the shape. By abuse of language, a bel is identified with the segment linking its two points. The set of all the bels obtained from Dig h (S) is denoted Bel h (C).

A dual pixel containing a bel is called a boundary dual pixel, or bdp for short. Obviously, a bel always belongs to two bdps. Conversely, it is plain that in a well-composed digitization, a bdp contains exactly two bels (see Figure 9). That way, the graph whose vertex set is Bel h (C) and whose edges are the pairs of bels belonging to a same dual pixel is regular with degree 2. If Bel h (C) is 4-connected, Bel h (C) may be equipped with a cyclic order and when we need to consider this cyclic order, we put Bel h (C) = (b i ) i∈Z/N Z . We derive from Property 7 that if the grid is compatible with C, Bel h (C) is equipped with a cyclic order. From Jordan's Curve Theorem, we derive that each segment in Bel h (C) intersects the curve C. The notion of back-digitization defined hereafter corresponds to a mapping from bels to such intersection points. Since we want our mapping to preserve the bel order but we cannot impose injectivity (see Figure 10), we have to relax the notion of chain (see Section 2.1) to sequences of curve points An example of a semi-chain not being a sampling semi-chain is given in Figure 11 b. Observe that any Jordan-curve point sequence whose cardinal is less than 4 is a semi-chain.

b i b i+1 b i+2 • • • Configuration A b i b i+1 b i+2 • • • Configuration B • curve C points of Dig h (C) points not in Dig h (C) bels back-digitizations
The two following lemmas give some properties of (sampling) semi-chains.

Lemma 2. Let C be δ-LTB curve and (ξ k ) k∈Z/N Z be a semi-chain of C. If ξ i = ξ j for some i, j ∈ Z/N Z then {ξ k } k∈[[i,j]] or {ξ k } k∈[[j,i]] is a singleton.
Proof. This is a direct consequence of the definition of a semi-chain applied to the arcs between ξ i and ξ j .

In the following lemma, the standard notation A B denotes the disjoint union.

Lemma 3. Let C be δ-LTB curve and (ξ k ) k∈Z/N Z be a sampling semi-chain of C such that the cardinal of the set {ξ k } is greater than 2. Then,

C = {ξ k } k∈Z/N Z k∈Z/N Z Cξ k ,ξ k+1 . • ξ 0 • ξ 1 • ξ 2 • ξ 3 • ξ 4 • ξ 5 • ξ 6 • ξ 7 = ξ 8 • ξ 9 • ξ 10 (a) • ξ 2 • ξ 1 • ξ 3 < δ < δ < δ (b)
Figure 11: a) The sequence (ξ k ) 10 k=0 is a semi-chain of the blue Jordan curve. For instance, the intersections of the set {ξ k } k∈Z/11Z with the two arcs of the blue curve between ξ 3 and ξ 8 are the subsets {ξ 8 , ξ 9 , ξ 10 , ξ 0 , ξ 1 , ξ 2 , ξ 3 } and {ξ 3 , ξ 4 , ξ 5 , ξ 6 , ξ 7 , ξ 8 } (since ξ 7 = ξ 8 ). b) Example of a semi-chain not being a sampling semi-chain.Two points in {ξ 1 , ξ 2 , ξ 3 } are always at distance strictly less than δ, but the open straightest arc between ξ 1 and ξ 3 contains ξ 2 .

In particular, for any (i, j) ∈ Z/N Z, the arcs of C from ξ i to ξ j are

{ξ k } k∈[[i,j]] k∈[[i,j]] Cξ k ,ξ k+1 and {ξ k } k∈[[j,i]] k∈[[j,i]] Cξ k ,ξ k+1 .
Proof. Firstly, observe that, thanks to the assumption d(ξ k , ξ k+1 ) < δ, the arc Cξ k ,ξ k+1 is well-defined.

First, let us prove that the sets Cξi,ξi+1 , Cξ i ,ξ i +1 and {x k } k∈Z/N Z are disjoint whenever i = i . Let i and i be two different classes in Z/N Z.

Since the sequence (ξ

k ) k∈Z/N Z is a sampling semi-chain of C, the open arc Cξi,ξi+1 does not contain any ξ k , k ∈ Z/N Z. Therefore, Cξi,ξi+1 ∩ {ξ k } k∈Z/N Z = ∅ and Cξi,ξi+1 ∩ Cξ i ,ξ i +1 = ∅ if {ξ i , ξ i+1 } = {ξ i , ξ i +1 }. Assume that {ξ i , ξ i+1 } = {ξ i , ξ i +1 }. If ξ i = ξ i+1 , then we immediately have Cξi,ξi+1 ∩ Cξ i ,ξ i +1 = ∅. Now, by contradiction, assume that ξ i = ξ i+1
(and thus, ξ i = ξ i +1 ). Two cases are possible : either ξ i = ξ i and

ξ i+1 = ξ i +1 , or ξ i = ξ i +1 and ξ i+1 = ξ i .
-In the first case, C is the union of the two closed arcs between ξ i and ξ i . As ξ i = ξ i , the two arcs are {ξ i } and C.

Since i + 1 ∈ [[i, i ]] and i + 1 ∈ [[i , i]]
, by definition of a semi-chain, one of the two points ξ i+1 and ξ i +1 belongs to the arc between ξ i and ξ i reduced to {ξ i }.

Since ξ i+1 = ξ i +1 , {ξ i , ξ i+1 } is a singleton. Contradiction ! -In the second case (ξ i = ξ i +1 and ξ i+1 = ξ i ), by Lemma 2, we derive that either {ξ k } k∈[[i,i +1]] or {ξ k } k∈[[i +1,i]] is a singleton and either {ξ k } k∈[[i ,i+1]] or {ξ k } k∈[[i+1,i ]
] is a singleton. There are four possibilities which can be reduced to two thanks to the symmetry swapping i and i . If

{ξ k } k∈[[i,i +1]] and {ξ k } k∈[[i ,i+1]]
are singletons, we derive that i = i + 1 and i + 1 = i (for we assumed ξ i+1 = ξ i and

ξ i +1 = ξ i ). It comes that i = i + 2 in Z/N Z. That is, N = 2: a contradiction. If {ξ k } k∈[[i,i +1]] and {ξ k } k∈[[i+1,i ]]
are singletons, we

derive that i = i + 1 and the set {ξ k } k∈[[i+1,i +1]] = {ξ k } k∈[[i+1,i]] is a pair. Since, {ξ k } k∈[[i,i+1]
] is also a pair, we get again N = 2.

The arc k∈Z/N Z Cξ k ,ξ k+1 {ξ k } k∈Z/N Z , which can be written as

{ξ 0 } Cξ0,ξ1 {ξ 1 } • • • Cξ-1,ξ0
, is a simple closed arc of C that is not reduced to a singleton for the cardinal of the semi-chain (ξ k ) is greater than 1.

Then, k∈Z/N Z Cξ k ,ξ k+1 {ξ k } k∈Z/N Z is equal to C. Alike, the arcs k∈[[i,j]] Cξ k ,ξ k+1 {ξ k } k∈[[i,j]] and k∈[[j,i]] Cξ k ,ξ k+1 {ξ k } k∈[[j,i]]
are simple arcs of C between ξ i and ξ j and they are not equal if

{ξ k } k∈[[i,j]] = {ξ k } k∈[[j,i]] . So, by contradiction, assume that {ξ k } k∈[[i,j]] = {ξ k } k∈[[j,i]] . Since #{ξ k } > 2, there exist ∈ [[i, j]] and ∈ [[j, i]] such that ξ = ξ and ξ / ∈ {ξ i , ξ j }.
Finally, applying Lemma 2 to ξ and ξ , we get ξ i = ξ or ξ j = ξ : a contradiction. Lemma 3 explains the designation "sampling" semi-chain. Indeed, given a sampling semi-chain (ξ i ) i∈Z/N Z , each point p of the curve C is on a straightest arc between two consecutive points of this semi-chain (Lemma 3). Thereby, and because the straightest arc between two points a and b is included in the disk whose diameter is [a, b] (Property 4), each point p of the curve C is at distance less than δ of a point of (ξ i ) i∈Z/N Z .

We can now define the main notion provided by this article.

Definition 6 (Back-digitization). Let C be a Jordan curve and h > 0.

A map ξ : Bel h (C) → C is called a back-digitization if for every segment p ∈ Bel h (C), ξ(p) ∈ p A back-digitization ξ : (b i ) i∈Z/N Z → C is monotonic if (ξ(b i )) i∈Z/N Z is a semi-chain of C. If C is a LTB curve, a back-digitization ξ : (b i ) i∈Z/N Z → C is a monotoni- cally sampling back-digitization if (ξ(b i )) i∈Z/N Z is a sampling semi-chain of C.
As shown in Figure 12, there are curves with non-monotonic back-digitization or even, with no monotonic back-digitization. Nevertheless, in the sequel of Section 3, we prove the following proposition about the monotonicity of the sampling under LTB hypothesis. Black points: digitization of S. White points: grid points outside S. Green segments represent bels. Thick red line : boundary of the reconstructed shape (dilation by a square of side length h of the digitization). Green points: intersection points. Example (a): a simple case: there is a unique mapping linking bels to their green points and it is injective and well-ordered. Example (b): There are several mappings and some of them are not well-ordered. Example (c): There is a unique mapping and it is not well-ordered (for instance for order of the two pointed bels does not correspond to their associated green point on the curve).

• • • • • • • • • • (a) • • • • • • • • • (b) • • • • • • • • • • • • • • (c) consecutive bels!
Proposition 2. Let C a δ-LTB curve. Any back-digitization defined on a compatible grid is a monotonically sampling back-digitization.

The proof of is split into four steps. In the first step, we prove that some configurations cannot appear in the digitization of a LTB curve (Subsection 3.2). In the second step, we define a specific back-digitization called the canonical back-digitization and prove it to be a monotonically sampling back-digitization (Subsection 3.3 ). In the third step, we prove that any back-digitization of a LTB curve is a monotonically sampling back-digitization (Subsection 3.4 ). In the forth step, given a back-digitization ξ, we prove that tight enough subsequences of (ξ(b i )) i∈Z/N Z are also sampling semi-chains (Subsection 3.5).

Impossible configurations

The first step of the proof of the back-digitization monoticity consists in excluding local configurations in the digitization of a LTB curve on a compatible grid (Lemma 5). In order to exclude these configurations, we use geometrical arguments based on the turn and, in particular, results about the T -straightest arc (Properties 8, 9, 10) and introduce Lemma 4 that precises Property 10 in the case where the square T is a bdp. Figure 13 illustrates the proof. Proof. By contradiction, assume that v is not an end of C T . Then, by Property 10, the arc C T is included in [a, v, b] and its turn is equal to π/2 (see Figure 13). Let p, q be the ends of C T , p ∈ (a, v) and q ∈ (v, b]. Since, by the compatibility hypothesis, the diameter of T is smaller than δ, there exist points close to p in C \ T at distance from q less than δ. Let p be such a point (see Figure 13). On the one hand, the turn of the arc between p and q including the arc C T is greater than π/2. Thus, it is distinct from the straightest arc between p and q. On the other hand, the straightest arc between p and q is included in the disk whose diameter is [p , q] (Property 4). Then, the diameter of the curve C is less than δ which contradicts Property 2.

The purpose of the next lemma is to show that configurations depicted in Figure 14 cannot appear in the digitization of a LTB curve on a compatible grid. Notice that other configurations are already excluded by the well-composedness (Property 7).

Lemma 5 (Impossible configurations). Let C be a δ-LTB curve. Given a grid compatible with C, the configurations depicted in Figure 14 cannot appear in the digitization of C.

Proof. For the first three configurations, let V be the square which is the union of the four bdp of the configuration. We define an orthonormal coordinate system by letting the center of V be the point (0, 0) and the two exterior points be

T • p • q • p v a b < δ
Figure 13: Grid square with an exterior vertex (square) and a border vertex (circle). The configuration is described up to a rigid transformation preserving hZ 2 . Any arc containing the arc C T passing through T without having p for end has its turn greater than π 2 .

1 0 the points (1, 0) and (-1, 0). Notice that the border point (0, 0) is an endpoint of each T -straightest arc of a dual pixel included in V (Lemma 4). Then, the union of the arcs passing through the four bdp is path connected.

-1 -1 0 1 Configuration A 1 0 -1 -1 0 1 Configuration B 1 0 -1 -1 0 1 Configuration C 1 0 0 1 Configuration D 1 0 -1 0 
Configuration A. Let P be one of the four bdp included in V and p be the endpoint of C P distinct from (0, 0). The point p lies in the boundary of V for the segment [(0, 0), p] separates the exterior vertex of P from the interior vertex of P (Property 9). Notice that the point p does not belong to the swelling of another bdp of V , since the arc passing through a bdp is included in the swelling of the bdp. Thereby, C P is not included in another arc passing through a bdp of V . Then, four distinct arcs of C meet in (0, 0) which contradicts the simplicity of the curve C. Thus, on a LTB curve, Configuration A is impossible.

Configuration B. Assume that the interior point has (0, -1) for coordinates. On the one hand, the same arguments as in the first Configuration hold for the dual pixels P (-0.5,-0.5) and P (0.5,-0.5) . On the other hand, the T -straightest arc of the dual pixel P (-0.5,0.5) is included in the swollen set of P (-0.5,0.5) and contains the vertex (0, 1). Hence, it is distinct from the arcs passing through P (-0.5,-0.5) and P (0.5,-0.5) . Thus, three distinct Configuration E. We define an orthonormal coordinate system by letting the border point having the coordinates (0, 0), the border or interior points having the coordinates (0, 1) and (1, 0) and the two exterior points having coordinates (-1, 0) and (1, 1). Since Configuration D cannot occur, (0, 1) or (1, 0) is a border point. Let us show by contradiction that actually both points are border points. Assume for instance that (1, 0) is an interior point (exactly the same arguments hold for (0, 1)). Then the curve C intersects the open bel ((1, 0), (1, 1)) at a point f . By Lemma 4 (0, 1) is an end of the P (0.5,0.5) -straightest arc. Then either [(0, 1), f, (0, 0)] or [(0, 1), (0, 0), f ] is a chain of C included in the P (0.5,0.5) -straightest arc.

We derive that the P (0.5,0.5) -straightest arc has its turn greater than π shows that no end-point of C T lies on the two edges of T that are not bels.

The canonical back-digitization

From the first assertion of this lemma, there is an end-point e 1 of the arc C T1 lying on b and there is an end-point e 2 of the arc C T2 lying on b.

Since the grid step is compatible with C, the distance between e 1 and e 2 is less than δ. Then, the straightest arc between e 1 and e 2 is well-defined and is included in both C T1 and C T2 by Definition 4.

Let us now define a particular back-digitization that will be proved to be a monotonically sampling back-digitization. Notice a point that is used in the forthcoming definition: if the T i -straightest arc has two endpoints on the bel b i , then, by Lemma 6, one of them is shared with b i+1 and therefore is a grid point.

Definition 7 (canonical back-digitization). Let C be a LTB curve and (b i ) i∈Z/N Z be a cyclically ordered set of its bels on a compatible grid. Denoting by T i the bdp containing both b i and b i+1 , the canonical back-digitization ξ c associates to each b i either the unique T i -straightest arc endpoint lying on b i or the one which is not a grid point.

Observe that, since the digitization is well-composed, the mapping b i → T i is a one-to-one correspondence between the bels and the bdps. Nevertheless, the canonical back-digitization may not be one-to-one since consecutive images of ξ c can be equal. For instance, a point of the curve lying on a grid point may yield three consecutive identical images (see Figure 10). Proposition 1. Let C be a LTB curve and (b i ) i∈Z/N Z be a cyclically ordered set of its bels on a compatible grid. Then, if for some i and j in Z/N Z, ξ c (b j ) lies on the straightest arc linking ξ c (b i ) and

ξ c (b i+1 ), then either j ∈ [[i -2, i]] and ξ c (b j ) = ξ c (b i ) or j ∈ [[i + 1, i + 3]] and ξ c (b j ) = ξ c (b i+1 ).
Proof. Let (b i ) i∈Z/N Z be the cyclically ordered set of bels. Assume that ξ c (b j ) lies on the straightest arc linking ξ c (b i ) and ξ c (b i+1 ) for some j / ∈ {i, i + 1}. Then, ξ c (b j ) belongs to the T i -straightest arc where T i is the bdp containing b i and b i+1 . Hence, it belongs to the swelling of T i . Since ξ c (b j ) lies on a bel, that is on an edge of the grid, actually, ξ c (b j ) ∈ T i . Since T i is a bdp, T i has an exterior point and the border point ξ c (b j ) for vertices (the intersection of a bel b j / ∈ {b i , b i+1 } with the bdp T i is necessarily a vertex of the grid). One of the bels b i or b i+1 has ξ c (b j ) for end. Indeed if it was not the case (see Figure 15), ξ c (b j ) would be adjacent to two interior vertex in T i and the exterior point would be diagonally opposed and since b j is a bel, one of its end is an exterior point, then Configuration E would occur, which is impossible by Lemma 5. Then the border point ξ c (b j ) is a vertex of an edge of T i having an exterior point for the other end, that is a vertex of b i or b i+1 . We assume that ξ c (b j ) ∈ b i (the case ξ c (b j ) ∈ b i+1 is similar). We derive from Lemma 4, that ξ c (b j ) is an endpoint of C Ti . Then, either ξ c (b i ) = ξ c (b j ) or ξ c (b j ) is the second endpoint of the T i -straightest arc (by definition of ξ c ). In the latter case, both endpoints of the T i -straightest arc belong to b i and C Ti is included in the disk with diameter b i (Property 4). Therefore, ξ c (b i+1 ), which lies in both b i+1 and the T i -straightest arc is the intersection of b i+1 and the disk with diameter b i which is the grid point ξ c (b j ) since the other endpoint of b i is an exterior point. At this stage, we have proved that In the first case, b k and b j are two orthogonal bels sharing a vertex, thus they share a bdp. Since there are exactly two bels per bdp, |k -i| = 1, moreover j / ∈ {i, i + 1}, then either k = i and j = i -1 or k = i + 1 and j = i + 2.

1. either ξ c (b j ) = ξ c (b i ) or ξ c (b j ) = ξ c (b i+1 ). 2. ξ c (b j ) is a grid point. T i ξ c (b j ) b j b i b i+1
In the second case b k and b j are aligned. We derive from Lemma 5 (Configurations A, B, C) that there is a third bel b k having ξ c (b j ) as extremity. Then

|k -j| = 2. Thus j ∈ [[i -2, i + 3]]. If (k, j) = (i, i -2) or (k, j) = (i + 1, i + 3), there is nothing left to prove since ξ c (b k ) = ξ c (b j ). Otherwise, (k, j) = (i, i + 2) or (k, j) = (i + 1, i -1). It remains to prove that ξ c (b i+2 ) = ξ c (b i+1 ) or ξ c (b i-1 ) = ξ c (b i ). Assume that (k, j) = (i, i + 2) (the case (k, j) = (i + 1, i -1)
is similar) and, by contradiction, that ξ c (b i+1 ) = ξ c (b j ). By Lemma 4, ξ c (b j ) is an endpoint of the T i+1 -straightest arc. Therefore, from the assumptions and the definition of ξ c , all the endpoints of the T i -straightest arc and the T i+1straightest arc are in b i+1 . Then, by Property 4, C Ti ∪ C Ti+1 is included in the disk D with diameter [ξ c (b j ), q] where q is the exterior point of the bel b i+1 (see Figure 16-c). We have a contradiction with the simplicity of C and the fact that the arc C \ (C Ti ∪ C Ti+1 ) does not intersect T i ∪ T i+1 (Property 8).

Proposition 1 is the heart of the proof of the monotonicity of the canonical back-digitization. Corollary 1 is only a formal verification that the result of Proposition 1 coincides with the definition of the monotonicity.

Corollary 1. Let C be a LTB curve and (b i ) i∈Z/N Z be a cyclically ordered set of its bels on a compatible grid. The canonical back-digitization is a monotonically sampling back-digitization.

Proof. In this proof, the cardinal of a subsequence (ξ

c (b k )) k∈[[i,j]] of (ξ c (b i )) i∈Z/N Z (i, j ∈ Z/N Z,), is the cardinal of the set {ξ c (b k )} k∈[[i,j]]
and we set M = #ξ c (Bel h (C)). We assume M ≥ 3 (otherwise, the result is obvious).

Let us firstly prove that (ξ c (b i )) i∈Z/N Z is a semi-chain. For any n ∈ [2, M/2+ 1] ∩ N, let H n be the induction hypothesis: "for any i, j ∈ Z/N Z and any 

subsequence (ξ c (b k )) k∈[[i,j]] of (ξ c (b i )) i∈Z/N Z
c (Bel h (C)). Then, C i, +1 := C i, Cξc(b ),ξc(b +1 ) {ξ c (b +1 )} is an arc from ξ c (b i ) to ξ c (b +1 ) whose intersection with ξ c (Bel h (C)) is {ξ c (b k )} k∈[[i, +1]] . Alike, the arc C ,i \ ({ξ c (b )} Cξc(b ),ξc(b +1 ) ) is an arc from ξ c (b i ) to ξ c (b +1 ) whose intersection with ξ c (Bel h (C)) is {ξ c (b k )} k∈[[ +1,i]] . It re- mains to show that the points ξ c (b k ), k ∈ [[l + 1, j]], are all equal to ξ c (b l+1 ) (indeed ξ c (b k ), with k ∈ [[l + 1, j]], could be equal to a ξ c (b m ) for some m ∈ [[i, l]]). For any k ∈ [[l + 1, j]], let P k be the induction hypothesis :" ξ(b k ) = ξ(b l+1 )". -P l+1 is obvious. -Let k ∈ [[l + 2, j]], assume P l+1 , ..., P k-1 , i.e. ξ c (b +1 ) = ξ c (b +2 ) = • • • = ξ c (b k-1 ). * By definition of , ξ c (b k ) ∈ C i, +1 and ξ c (b k ) ∈ C ,i . Then, ξ c (b k ) ∈ C i, +1 ∩ C ,i ∩ ξ c (Bel h (C)), = (C i, Cξc(b ),ξc(b +1 ) {ξ c (b +1 )}) ∩ C ,i ∩ ξ c (Bel h (C)), = (C i,l ∩ C l,i ∩ ξ c (Bel h (C))) {ξ c (b l+1 )}, = {ξ(b i ), ξ(b l ), ξ(b l+1 )}.
* 

Monotony of any back-digitization

We now show that any back-digitization defined on the bels of a LTB curve is a monotonically sampling back-digitization. The heart of this result is brought by the following lemma. Establishing the monotony of a back-digitization needs further tedious calculations that will be carried out in Proposition 2. But before that, we still have to give a technical lemma about subsequences of semi-chains. This lemma is also of primary importance for the next subsection dealing with sparse samplings of a curve. (b) Let (a k ) k∈Z/N Z , N ≥ 3, be a semi-chain of C such that, for any i, j ∈ Z/N Z, d(a i , a j ) < δ and, for any k ∈ Z/N Z \ {0}, the arc from a k-1 to a k whose intersection with the semi-chain is {a k-1 , a k } is a straightest arc. Then, the arc from a 0 to a N -1 passing through a 1 , . . . , a N -2 is a straightest arc.

Proof. So, the result holds.

(b) The proof is done by finite induction on N .

If N = 3, we derive from the first part of this lemma that the arc of C between a 0 and a 2 and not containing a 1 has a turn greater than π/2.

Then, the straightest arc between a 0 and a 2 , which exists for d(a 0 , a 2 ) < δ, is the arc between a 0 and a 2 and containing a 1 .

Assume that the result holds for the semi-chain (a k ) k∈[[0,n]] where 3 ≤ n ≤ N -1. On the one hand, from the induction hypothesis, the arc C n between a 0 and a n not containing a N is a straightest arc. On the other hand, from the general hypothesis, the arc from a n to a n+1 not containing a 0 is a straightest arc. Then, from the first part of this lemma, the arc from a n+1 to a 0 not containing the points a i , 1 ≤ i ≤ n, has a turn greater than π/2. Thus, this arc cannot be a straightest arc though such a straightest arc between a 0 and a n+1 exists (for d(a 0 , a n+1 ) < δ).

We conclude that the arc from a 0 to a n+1 passing through a i , . . . , a n is a straightest arc. This achieves the induction Eventually, thanks to Lemmas 3,7 and 8, we can now state the result announced at the beginning of this section and recalled here : Proposition 2 Let C a δ-LTB curve. Any back-digitization defined on a compatible grid is a monotonically sampling back-digitization. Proof. Let (b i ) i∈Z/N Z be a cyclically ordered set of the bels associated to C on a compatible grid and ξ be a back-digitization. Let i, j ∈ Z/N Z. We consider the following sets:

C 1 = {ξ c (b k )} k∈[[i,j+1]] k∈[[i,j]] Cξc(b k ),ξc(b k+1 ) ,
and

C 2 = {ξ c (b k )} k∈[[j,i+1]] k∈[[j,i]]
Cξc(b k ),ξc(b k+1 ) .

From Lemma 3, C 1 is an arc between ξ c (b i ) and ξ c (b j+1 ) and C 2 is an arc between ξ c (b j ) and ξ c (b i+1 ). From Lemma 7, we derive that

C 1 = k∈[[i,j]] Cξc(b k ),ξ(b k ) Cξ(b k ),ξc(b k+1 ) {ξ(b k )} k∈[[i,j]] {ξ c (b k )} k∈[[i,j+1]] \ {ξ(b k )} k∈[[i,j]] , (1) 
and

C 2 = k∈[[j,i]] Cξc(b k ),ξ(b k ) Cξ(b k ),ξc(b k+1 ) {ξ(b k )} k∈[[j,i]] {ξ c (b k )} k∈[[j,i+1]] \ {ξ(b k )} k∈[[j,i]] . (2) Lemma 8-b, applied to the semi-chains (ξ(b k ), ξ c (b k+1 ), ξ(b k+1 )), shows that the arcs Cξ(b k ),ξc(b k+1 ) {ξ c (b k+1 )} Cξc(b k+1 ),ξ(b k+1 ) are straightest arcs of C, that is, Cξ(b k ),ξ(b k+1 ) = Cξ(b k ),ξc(b k+1 ) {ξ c (b k+1 )} Cξc(b k+1 ),ξ(b k+1 ) . Observe that, if for some k ∈ [[i, j]] , ξ c (b k+1 ) / ∈ {ξ c (b m )} m∈[[i,j+1]] \ {ξ(b m )} m∈[[i,j]] , then ξ c (b k+1 ) ∈ {ξ(b m )} m∈[[i,j]] and since ξ c (b k+1 ) ∈ Cξ(b k ),ξ(b k+1 ) , ξ c (b k+1 ) = ξ(b k ) or ξ c (b k+1 ) = ξ(b k+1 ) and Cξ(b k ),ξ(b k+1 ) = Cξc(b k+1 ),ξ(b k+1 ) or Cξ(b k ),ξ(b k+1 ) = Cξc(b k ),ξ(b k+1 ) .The same reasoning holds if ξ c (b k+1 ) / ∈ {ξ c (b m )} m∈[[j,i+1]] \{ξ(b m )} m∈[[j,i]]
. Then, Equations ( 1), ( 2) can be rewritten as

C 1 = {ξ c (b i )} Cξc(bi),ξ(bi)   {ξ(b k )} k∈[[i,j]] k∈[[i,j-1]] Cξ(b k ),ξ(b k+1 )   Cξ(bj),ξc(bj+1) {ξ c (b j+1 )}
and

C 2 = {ξ c (b j )} Cξc(bj),ξ(bj)   {ξ(b k )} k∈[[j,i]] k∈[[j,i-1]] Cξ(b k ),ξ(b k+1 )   Cξ(bi),ξc(bi+1) {ξ c (b i+1 )}.
Eventually, the latter equalities show that the arcs of

C from ξ(b i ) to ξ(b j ) are 710 C 1 = k∈[[i,j-1]] Cξ(b k ),ξ(b k+1 ) {ξ(b k )} k∈[[i,j]] (3) 
and

C 2 = k∈[[j,i-1]] Cξ(b k ),ξ(b k+1 ) {ξ(b k )} k∈[[j,i]] . (4) 
Since C 1 and C 2 are complementary arcs, it can be seen that these two arcs intersect ξ(Bel

h (C)) respectively in {ξ(b k )} k∈[[i,j]] and {ξ(b k )} k∈[[j,i]]
. In particular, taking j = i + 1, we see that the straightest arc between ξ(b i ) and ξ(b i+1 ) does not contain any point of ξ(Bel h (C)) in its interior. Besides, by definition of a back-digitization, and since the grid is compatible with the curve C, we have d(ξ(b k ), ξ(b k+1 ) < δ for any k ∈ Z/N Z.

Monotonically sampling subsequences of Bel h (C)

In this subsection, we extend Proposition 2 to subsequences of Bel h (C). This is of interest for the length estimation where estimators should only use sparse subsequences of Bel h (C) to be convergent (see Section Introduction).

Theorem 2. Let C be a δ-LTB curve on a compatible grid hZ 2 . Let ξ : Bel h (C) → C be a back-digitization. Denoting by (a k ) k∈Z/N Z the cyclically ordered set Bel h (C) and assuming N ≥ 3, let (a σ(i) ) i∈Z/NσZ be a subsequence of

(a k ) such that h#[[σ(i), σ(i + 1)]] < δ. Then, C = i∈Z/NσZ C i ,
where C i is the straightest arc between ξ(a σ(i) ) and ξ(a σ(i+1) ), and the intersection between C i and C j with i = j is either empty or reduced to a point.

Proof. In this proof, we write m i for the middle of the bel a i . For any i ∈ Z/N Z, let C i be the straightest arc between ξ(a i ) and ξ(a i+1 ). From Proposition 2 ,

we have C = i∈Z/N Z C i with C i ∩ C j = ∅ if j -i / ∈ {-1, 0, 1} and C i ∩ C j is a singleton if j -i ∈ {-1, 1}.
Thus, C = i∈Z/NσZ C i where C i is defined by

C i = σ(i+1)-1 j=σ(i)
C j . Therefore, it is sufficient to prove that, for any i ∈ Z/N σ Z, C i is a straightest arc. So, let i ∈ Z/N σ Z. As #[[σ(i), σ(i + 1)]] < δ/h and the d 1 distance (Manhattan distance) between two consecutive middles m i and m i+1 is equal to h, the d 1 distance between any points m j and m k where σ(i) ≤ j < k ≤ σ(i + 1) is bounded from above by δ -h. Moreover, by definition of a back-digitization, |ξ(a j ) -

m j | ≤ h/2 for any j ∈ [[σ(i), σ(i + 1)]]. Hence, d 1 ξ(a j ), ξ(a k ) < δ if σ(i) ≤ j < k ≤ σ(i + 1)
. Then, the Euclidean distance between ξ(a j ) and ξ(a k ) is also bounded from above by δ. All the assumptions of Lemma 8-(b) are then satisfied. Thereby, thanks to this lemma, we conclude that C i is a straightest arc and we are done.

In Theorem 2, the expression h#[[σ(i), σ(i + 1)]] can be viewed as the d 1 length of the boundary polyline associated to the dual representation of the bels a k , k ∈ [[σ(i), σ(i + 1)]] (see Figure 17).

In the sequel, given a LTB curve C and a grid step h compatible with C, any subsequence (a σ(i) ) i∈Z/NσZ of the cyclically ordered sequence (a k ) k∈Z/N Z of the bels of the digitization of C is called a normal subsequence of Bel h (C) if, for any

i ∈ Z/N σ Z, (#[[σ(i + 1), σ(i)]])h < δ.

Application to length estimation

It is well-known that the length of a rectifiable curve can be approximated with any arbitrary precision by the length of an inscribed polygonal line provided the polygonal edge lengths are small enough. This is no more true when the vertices of the polygonal line are rounded as explained in the introduction of this article.

Thanks to the notion of monotonically sampling back-digitization introduced in Section 3, we can now study the conditions under which the lengths of a grid polygon sequence converge towards the length of a LTB curve and with what speed.

In this section, given a positive integer n and a polygon P , we denote by M n (P ) the mean, relying on the L n norm, of the edge lengths of P :

M n (P ) = 1 N N -1 k=0 x k n 1 n if n < ∞ and M ∞ (P ) = sup k (|x k |),
where the real x k are the edge lengths of P .

LTB curve length estimation using inscribed polygon

According to Jordan's definition of curve length, we compare the length of a LTB curve with the length of an inscribed polygon (without any rounding). More specifically, we focus on the convergence of the length of polygons inscribed in a LTB curve.

Given a LTB curve C, we say that a polygon inscribed in C splits C into straightest arcs if the sequence of the vertices of the polygon is a sampling semi-chain of C.

Turn and length

Intuitively, the more a curve of fixed length turns, the less it moves away from its origin. This is quantified in the following property.

Property 11 ([1], Theorem 5.8.1 p. 151). Let C be a curve such that κ(C) < π and let d be the distance between the ends of C. Then,

cos κ(C) 2 × L(C) ≤ d.
Notice that this bound is sharp and the equality case only holds for a polygonal line of two sides of same length [START_REF] Alexandrov | General Theory of Irregular Curves[END_REF].

General case

Here, we study the general case of a LTB-curve without smoothness assumption. Proposition 2. Let C be a δ-LTB curve with δ > 0. Let (L k ) be a sequence of polygons splitting the curve into straightest arcs. Assume lim k→+∞ M 1 (L k ) = 0 and that there exists µ ∈ (0, 1)

such that M ∞ (L k ) 4µ = o (M 1 (L k )) as k → +∞. Then lim k→+∞ L(L k ) = L(C).
More precisely,

|L(C) -L(L k )| = O M ∞ (L k ) 2µ M 1 (L k ) 1/2 + O M ∞ (L k ) 1-µ .
Proof. From the hypothesis, we derive that lim k→+∞ M ∞ (L k ) 2µ = 0. Then, there exists k 0 such that for any k > k 0 , M ∞ (L k ) < 1. We consider such a k > k 0 and we denote by

ξ k i i∈Z/N k Z , N k ∈ N, an ordered sequence of the vertices of the polygon L k . Since M ∞ (L k ) < δ, for any i ∈ Z/N k Z the straightest arc C k i between ξ k i-1 and ξ k i is well defined and κ(C k i ) ≤ π/2.
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Let I 0 and I 1 be two subsets of integers defined by:

I k 0 := i|κ(C k i ) ≤ π 2 M ∞ (L k ) µ , I k 1 := Z/N k Z \ I k 0 .

By definition of length and Property 11,

N k -1 i=0 ξ k i+1 -ξ k i ≤ L(C) ≤ N k -1 i=0 ξ k i+1 -ξ k i cos κ(C k i ) 2 .
Hence,

L(C) - N k -1 i=0 ξ k i+1 -ξ k i ≤ N k -1 i=0 ξ k i+1 -ξ k i cos κ(C k i ) 2 - N k -1 i=0 ξ k i+1 -ξ k i ≤ N k -1 i=0   1 cos κ(C k i ) 2 -1   ξ k i+1 -ξ k i , ≤ i∈I k 0   1 cos κ(C k i ) 2 -1   ξ k i+1 -ξ k i + i∈I k 1   1 cos κ(C k i ) 2 -1   ξ k i+1 -ξ k i .
On the one hand, since there is at most mM

∞ (L k ) -µ arcs C k i of turn greater than M ∞ (L k ) µ π/2 in C where m := κ(C)
π/2 (otherwise, the turn of C would be greater than κ(C)), the cardinal of I 1 is such that

#I k 1 ≤ mM ∞ (L k ) -µ . Then, i∈I1   1 cos κ(C k i ) 2 -1   ξ k i+1 -ξ k i ≤   1 cos π/2 2 -1   mM ∞ (L k ) 1-µ = O M ∞ (L k ) 1-µ . (5) 
On the other hand, by Titu's Lemma,

i∈I0   1 cos κ(C k i ) 2 -1   ξ k i+1 -ξ k i ≤ N k   1 cos M∞(L k ) µ π/2 2 -1   i∈I0 ξ k i+1 -ξ k i 2 .
Thus, since

M ∞ (L k ) ≤ 1, for any i ∈ Z/N k Z, ξ i+1 -ξ i 2 ≤ ξ i+1 -ξ i , i∈I0   1 cos κ(C k i ) 2 -1   ξ k i+1 -ξ k i ≤ N k   1 cos M∞(L k ) µ π/2 2 -1   i∈I k 0 ξ k i+1 -ξ k i , ≤ N k   1 cos M∞(L k ) µ π/2 2 -1   L(L k ). ≤ N k   1 cos M∞(L k ) µ π/2 2 -1   L(C).
Moreover, 1 cos(y/2)

-1 = O(y 2 ). Hence i∈I0   1 cos κ(C k i ) 2 -1   ξ k i+1 -ξ k i = O( N k M ∞ (L k ) 2µ ). (6) 
Finally, by the equations ( 5) and [START_REF] Coeurjolly | Integral based curvature estimators in digital geometry[END_REF],

L(C) - N k i=0 ξ k i+1 -ξ k i = O( N k M ∞ (L k ) 2µ ) + O(M ∞ (L k ) 1-µ ) = O M ∞ (L k ) 2µ M 1 (L k ) 1/2 + O M ∞ (L k ) 1-µ .
In order to use Proposition 2, the parameter µ has to be chosen. Since the speed of convergence is the slowest of M∞(L k ) 2µ M1(L k ) 1/2 and M ∞ (L k ) 1-µ , the best choice of the parameter is such that

M 1 (L k ) ∼ M ∞ (L k ) 6µ-2 .
That is, µ = 1/2 for a uniform partition giving an error in O M ∞ (L k ) 1/2 (in comparison, a polygonal LTB curve randomly sampled provides a linear error).

Nevertheless, before going further in the determination of the convergence speed, it is necessary to study the weight of the error due to the use of discrete chords instead of Euclidean chords.

Regular case

In this section, we deal with the case of a LTB-curve whose turn is Lipschitz, that is the curve is of class C 1,1 . Proposition 3. Let C be a δ-LTB curve having a 1 r -Lipschitz turn. Let (L k ) be a sequence of inscribed polygons splitting the curve C into straightest arcs such that lim k→+∞ M ∞ (L k ) = 0. Then

lim k→+∞ L(L k ) = L(C).
Let r 1 = min(r, δ/2) and (ξ k i ) i∈Z/N k Z be a cyclically ordered sequence of all the vertices of L k in C. For any k such that M ∞ (L k ) < 2r 1 ,

|L(C) -L(L k )| ≤ N k -1 i=0 2r 1 arcsin ξ k i -ξ k i-1 2r 1 -ξ k i -ξ k i-1 . Moreover N k -1 i=0 2r arcsin ξ k i -ξ k i-1 2r -ξ k i -ξ k i-1 = O M k 3 (L k ) 3 M k 1 (L k ) .
Proof. For any k, let (ξ k i ) i∈Z/N k Z be a cyclically ordered sequence of the vertices of L k in C. There exists k 0 , such that for any k > k 0 , M ∞ (L k ) < 2r 1 . By Lemma 9 (Appendix A), for any i ∈ Z/N k Z, the straightest arc

C ξ k i-1 ,ξ k i between ξ k i-1 and ξ k i is such that L(C ξ k i-1 ,ξ k i ) ≤ 2r 1 arcsin ξ k i -ξ k i-1 2r 1 .
Since the function x → 2r 1 arcsin( x 2r1 ) -x is increasing on [0, 2r 1 ), for any

k such that M ∞ (L k ) < 2r 1 , |L(C) -L(L k )| ≤ N k -1 i=0 2r 1 arcsin ξ k i -ξ k i-1 2r 1 -ξ k i -ξ k i-1 , ≤ N k 2r 1 arcsin M ∞ (L k ) 2r 1 -M ∞ (L k ) .
Moreover, arcsin(x) = x + O(x 3 ) as x → 0.

Then,

|L(C) -L(L k )| ≤ N k -1 i=0 2r 1 arcsin ξ k i -ξ k i-1 2r 1 -ξ k i -ξ k i-1 , ≤ N k O (M k 3 ) 3 ≤ L(C) M k 1 O (M k 3 ) 3 , ≤ O (M k 3 ) 3 M k 1 .
The bound of Proposition 3 is sharp. Indeed, for a circle of radius r and a uniform and tight enough partition of the circle, one has:

|L(C) -L(L k )| = N k -1 i=0 2r arcsin ξ k i -ξ k i-1 2r -ξ k i -ξ k i-1 , = N k 2r arcsin M ∞ (L k ) 2r -M ∞ (L k ) = O (M k 3 ) 3 M k 1 .
Proposition 3 can be compared to [START_REF] Mazo | Non-local length estimators and concave functions[END_REF]Proposition 3]. We get the same rate of convergence replacing the convexity hypothesis by the local turn boundedness hypothesis.

LTB curve length estimation by means of polygons inscribed in the curve digitization

Given a LTB curve C and the family of its Gauss digitizations {Dig h (C)} h>0 , the results obtained in Sections 3 and 4.1 make it possible to build a convergent estimator of the curve length L(C) using polygons A h inscribed in the reconstructions ∂ h (C) under some assumptions on their edge lengths. At a fixed resolution, the estimated length is the length L(A h ). The two following theorems specify these assumptions, and give the convergence rate, in the general case then in the regular case.

• • • • • • • • • • • •

General case

The length estimator studied in Theorem 3 is based on a partition of the border of the digitization ∂ h (C) into arcs. To each arc corresponds an edge of the inscribed polygon A h (see Figure 17 ). Theorem 3 states that the length estimator L(A h ) is convergent provided that it ensures that each edge D of A h verifies the 4 following conditions.

1. For a sufficiently small grid step h, the true length of D (that is, the Euclidean distance between its endpoints) is bounded from above by δ.

2. The relative size of D (that is the number of bels it is built from) tends towards infinity as h → 0.

3. The mean true size of the edges of A h at step h tends towards 0 as h → 0.

4. The range of the edge length family (for a given grid step h) is bounded from above by some power of the mean length as h → 0.

Theorem 3. Let C be a δ-LTB curve with δ > 0. Let µ ∈ ( 1 4 , 1) and {A h } h>0 be a family of polygons such that for any h compatible with C, the vertices of A h are the bel middles of a normal subsequence of the cyclically ordered bels

(b h i ) i∈Z/N Z , h = o(M 1 (A h )) as h → 0, M ∞ (A h ) 4µ = o (M 1 (A h )) = o(1) as h → 0. Then, lim h→0 L(A h ) = L(C).
More precisely,

L(C) -L(A h ) = O h→0 M ∞ (A h ) 2µ M 1 (A h ) -1/2 + M ∞ (A h ) 1-µ + hM 1 (A h ) -1 .
Proof. Let ξ : Bel h (C) → C be a back-digitization and (a h i ) i∈Z/N h Z be a normal subsequence of the bel sequence (b h i ) i∈Z/N Z , defining the polygon A h . Write m h i for the middle of a h i and let L h be the polygon whose ordered set of vertices is ξ((a h i ) i∈Z/N h Z ). Then,

|L(C) -L(A h )| ≤ |L(C) -L(L h )| + |L(L h ) -L(A h )|.
By definition of a back-digitization, d(m σ(i) , ξ(a σ(i) )) < h/2 for any i, so |L(L h )-

L(A h )| is bounded from above by N h × h, that is by h/M 1 (A h ) × L(A h ). Since L(L h ) < L(C)
and we assume lim h→0 h/M 1 (A h ) = 0, using the triangle inequality, we can bound from above L(A h ) by some constant (for instance 2L(C) for h/M 1 (A h ) ≤ 1/2). We derive that

|L(L h ) -L(A h )| = O h→0 h M 1 (A h )
.

By Theorem 2, (a h i ) delimits straightest arcs of C. Hence, thanks to Proposition 2, we get

|L(C) -L(A h )| = O h→0 M ∞ (L h ) 2µ M 1 (L h ) 1/2 + M ∞ (L h ) 1-µ + h M 1 (A h ) . Moreover, M ∞ (L h ) ≤ M ∞ (A h ) + h. Then, |L(C) -L(A h )| = O h→0 (M ∞ (A h ) + h) 2µ M 1 (A h ) 1/2 + (M ∞ (A h ) + h) 1-µ + h M 1 (A h ) .
Finally, since h is dominated asymptotically by M 1 (A h ) which is less than

M ∞ (A h ), |L(C) -L(A h )| = O h→0 M ∞ (A h ) 2µ M 1 (A h ) 1/2 + M ∞ (A h ) 1-µ + h M 1 (A h )
.

Theorem 3 gives indication in order to choose the best sampling of the curve.

For a fixed M ∞ (A h ), the best rate of convergence for an unknown curve C is reached when M 1 (A h ) is maximum, that is when M 1 (A h ) = M ∞ (A h ): the inscribed polygons associated with the family {A h } have equal edges. In this latter case the rate of convergence is

O M ∞ (A h ) 1/2 + hM ∞ (A h ) -1 ) (by choosing µ = 1 2 = max µ∈(0,1) min(2µ -1/2, 1 -µ)). Since h 2/3 = argmin x>0 max( √ x, h/x), the best rate of convergence, h 1/3 , is achieved for M ∞ (A h ) ∼ h 2/3 .

Regular case

Theorem 4. Let C be a δ-LTB curve having a 1 r -Lipschitz turn (r > 0). Let {A h } h>0 be a family of polygons such that for any h compatible with C,the vertices of A h are the bel middles of a normal subsequence of the cyclically ordered bels

(ξ i ) i∈Z/N Z , h = o h→0 (M 1 (A h )), lim h→0 M ∞ (A h ) = 0. Then, lim h→0 L(A h ) = L(C)
and,

|L(C) -L(A

h )| = O h→0 M 3 (A h ) 3 M 1 (A h ) .
Moreover, for any h compatible with C such that h + M ∞ (A h ) < 2r 1 with r 1 = min(r, δ/2), we have

|L(C) -L(A h )| ≤ N h 2r 1 arcsin M ∞ (A h ) + h 2r 1 -M ∞ (A h ) ,
Proof. Let h be compatible with C and ξ : Bel h (C) → C be a back-digitization. As in the proof of Theorem 3, we have

|L(C) -L(A h )| ≤ |L(C) -L(L h )| + hN h ,
where L h is the polygon whose vertices are the images by ξ of the bels defining A h . By Theorem 2, the vertices of L h delimit straightest arcs of C. Let

(ξ h i ) i∈Z/N k Z be a cyclically ordered sequence of vertices of L h in C. Assuming h + M ∞ (A h ) < 2r 1 , we derive from Proposition 3 that, |L(C) -L(L k )| ≤ N h -1 i=0 2r 1 arcsin ξ h i -ξ h i-1 2r 1 -ξ h i -ξ h i-1 (7) 
Since the function x → 2r 1 arcsin x 2r1 -x is non-negative and increasing on [0, 2r 1 ),

|L(C) -L(A h )| ≤ N h -1 i=0 2r 1 arcsin ξ h i -ξ h i-1 + h 2r 1 -ξ h i -ξ h i-1 -h + hN h ≤ N h -1 i=0 2r 1 arcsin ξ h i -ξ h i-1 + h 2r 1 -ξ h i -ξ h i-1 ≤ N h 2r 1 arcsin M ∞ (A h ) + h 2r 1 -M ∞ (A h ) .
Moreover, arcsin(x) = x + O(x 3 ) as x → 0.

Then, from Equation 7, we derive

|L(C) -L(A h )| ≤ N h -1 i=0 2r 1 arcsin ξ h i -ξ h i-1 2r 1 -ξ h i -ξ h i-1 + hN h , ≤ N h O M 3 (A h ) 3 + h ≤ L(C) M h 1 (A h ) O M 3 (A h ) 3 + h , ≤ O M 3 (A h ) 3 + h M h 1 . Since h = o(M 1 (A h )) and M 1 (A h ) ≤ M 3 (A h )
, we obtain the result:

|L(C) -L(A h )| = O M 3 3 (A h ) M h 1 .
Observe that, by [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]Theorem 2], any par(r)-regular curve C is √ 2r-LTB and by [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]Lemma 6], its turn is 1 r Lipschitz. Thus, Theorem 4 applies to par(r)-regular curves taking r 1 = min(r, δ/2) = min(r, r/ √ 2) = r/ √ 2. Application of theorems 3 and 4 on classical estimators requires some more work and will be detailed in future works.

Conclusion

The starting point of the study presented in this paper is the couple of arti-850 cles [START_REF] Mazo | Non-local length estimators and concave functions[END_REF][START_REF] Mazo | Non-local estimators: a new class of multigrid convergent length estimators[END_REF] about convergence of length estimators. The main idea in these articles, originally stated in [START_REF] Tajine | Patterns for multigrid equidistributed functions: Application to general parabolas and length estimation[END_REF], is that -a contrary to length estimation in a pure Euclidean context-estimating a length from a digital sample cannot be performed by just picking more and more points on the boundary of the digitization. The picking has to be sparse relative to the grid step. In the cited articles, the result was established for graphs of functions and we thought at the time that it could be straightforwardly adapted on Jordan curves. The content of this paper shows that it is far to be the case. It is easy to project the OBQ digitization of a graph of function on this graph even for non-regular curves. Getting a well-ordered sample on a Jordan curve from its digitization is another challenge as shown in Figure 12. A first step in this direction was done in [START_REF] Lachaud | Properties of gauss digitized shapes and digital surface integration[END_REF]. Nevertheless, it assumes C 1,1 regularity and, though the size of the defective regions is quantified, the well-ordering is not guaranted. This has led us to introduce the notion of LTB curve in [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]. The LTB class encompasses the C 1,1 curves since we show that C 1,1 regularity is equivalent to be LTB with a Lipschitz turn. Then we formally establish in this paper that the LTB class of curves is sufficiently constrained to permit ordered projections (though the class contains non-regular curves). Once a reliable kind of projection -the monotonically sampling back-digitization-is found, proving the multigrid convergence of non-local perimeter estimators does not give rise to great difficulties. Furthermore, our results about length estimation may also be applied to arcs of a LTB curve. Indeed, on the one hand, same calculations as those on the whole Jordan curve (Theorem 3 or Theorem 4) can be carried out for curve arcs. On the other hand, the back-digitization defined on the Jordan curve (Theorem 2) should permit to put in correspondence a sparse (but tight enough) partition of a digital arc to a partition in straightest arcs of the underlying continuous curve. Nevertheless, it supposes to rewrite all the propositions.

Nevertheless, it remains to study in a future work whether the error bounds exhibited in this article are tight or not. Indeed, for a particular Jordan curve, the worst case considered in the upper bound calculus is only reached at a given resolution. Then, it may be possible to improve the error upper bound.

In the perimeter estimation, the convexity hypothesis is often used to obtain upper bounds, e.g. for Non-Local estimation, the convexity hypothesis makes it possible to approach experimental convergence speed. As the turn can be seen as a measure of the convexity loss, it can be interesting to see if the results obtained in the convex case in the literature can be generalized to LTB curves.

Another direction to continue the work done in this paper is to use the backdigitization to prove the multigrid convergence of the MDSS based perimeter estimators on LTB curves.

The back-digitization could also be used for the estimation of other geometric features. In particular, since the definition of the back-digitization rely on the notion of turn, it should be well-suited for curvature estimation. A last perspective concerns the generalization of the LTB notion to 3D curves and surfaces.

× × × × × × • r r δ r r
reach Figure 19: The blue curve -made of half-circles of radius r and straight segments-is δ-LTB and has 1 r -Lipschitz turn. Its reach is got at the point represented by a bullet and is equal to δ 2 (then its radius of par-regularity is smaller than δ 2 ). By choosing small valued of δ and huge values of r, we get a family of curves not par(r)-regular but whose turn is 1 r -Lipschitz with arbitrarly big value of r.

Theorem 1. Let C be a δ-LTB curve with θ ∈ (0, π 2 ] Then, the curve C has a positive reach if and only if its has a Lipschitz turn.

The example depicted in Figure 19 prove that having a small Lipschitz turn is not sufficient in order to have a controlled (i.e. large enough) radius of parregularity. The LTB hypothesis is then necessary to have the equivalence between the two notions.

The proof of Theorem 1 needs 3 lemmae. The first lemma bounds the length of a straightest arc of a LTB curve having a 1 k Lipschitz turn. The proof of the lemma is similar to the one of Proposition 11 in [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]. Its main argument is a theorem due to Schur [START_REF] Bobenko | Discrete Differential Geometry[END_REF] that we recall beforehand. In other words, for any subinterval I of [0, s 0 ],

κ(γ(I)) ≤ κ(γ(I)) .

Hence, Schur's Comparison Theorem [START_REF] Bobenko | Discrete Differential Geometry[END_REF] applies:

c -a ≥ γ (s 0 ) -γ(0)
≥ b -a by definition of s 0 and γ.

The last inequality contradicts the quasi-convexity of s → γ(s) -γ(0) (Property 6).

Observe that the bound of the inequality in Lemma 9 is sharp: the equality case holds for a circle arc.

The second lemma is a technical lemma about turns which is a slight improvement of [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]Lemma 2]. This version is nevertheless necessary to get the result. The proof remains essentially the same. let q i be the first intersection between the half-line -→ cp i and C. Let Q be the polygonal line [a, q 1 , . . . , q m , b]. Let us show that Q is inscribed in C, i.e. by definition that the sequence of its vertices is a chain. Assume by contradiction that (a, q 1 , . . . , q m , b) is not a chain of C. Then there exists (i, j, k) such that i < j < k and (q i , q j , q k ) is not a chain of C or equivalently (q i , q k , q j ) is a chain of C(up to consider q 0 := a and q m+1 := b). Observe that this assumption in particular implies that C has more than two vertices: C = [a, b]. Therefore, the interior of C ∪ [a, b] is not empty. Let C qi,q k be the closed arc of C delimited by q i and q k . Let T be the closed angular sector delimited by the half-lines Notice that ∂S ⊂ [c, q i ] ∪ C qi,q k ∪ [q k , c] since C does not intersect [c, q i ) nor [c, q k ). Let us show that p j ∈ S. Since (c, p i , p j , p k ) is a chain of the convex curve C ∪ [a, b], it defines a convex polygon. Then the point p j belongs to the angular sector T . Therefore, p j belongs to S. Let q be a point in the intersection between the half-line -→ cp j and the curve arc C qi,q k . By its definition, the point q j belongs to [c, q ] and since [c, q j ) does not intersect C, q j belongs to S. Let C qj ,b be the arc of C between q j and b. Since the curve C is simple, the arc C qj ,b does not intersect C qi,q k . Moreover, the arc C qj ,b does not intersect the half-open segments [c, q i ) and [c, q k ) by definition of q i and q k . Then, the arc C qj ,b has its end q j in S, its other end b outside S but does not intersect ∂S. Contradiction! Then (a, q 1 , . . . , q m , b) is a chain of C.

Then From Lemmae 9 and 10, we derive in Lemma 11 the "if" part of Theorem 1.

Lemma 11. Let C be a δ-LTB curve having a 1 r -Lipschitz turn with δ > 0. Then the reach of C is greater than or equal to min( δ 2 , r). The bound of Lemma 11 is sharp. Indeed, if C is a circle of radius r then the reach is exactly r and the reach of the δ-LTB curve depicted in Figure 19 is 995 exactly δ/2.

Proof of Theorem 1. The 'if' part of the proof is given by Lemma 11 while the 'only if' part comes from [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF]Theorem 2 and Lemma 6] where we stated that a par(r)-regular curve is (θ, 2r sin(θ/2))-locally turn-bounded for θ ≤ π 2 . Notice that we have proved a "qualitative equivalence" between the notions of positive reach and LTB curve with Lipschitz turn but we failed to obtain a "quantitative equivalence". Indeed, starting from a par(r)-regular curve C and applying [18, Theorem 2 and Lemma 6], we derive that, for any 0 ≤ θ ≤ π/2, C is a (θ, 2r sin( θ 2 ))-LTB curve having a (1/r)-Lipschitz turn. Then, from Lemma 11, we get that C is a par(r sin( θ 2 ))-regular curve with θ ≤ π 2 . Hence, at best C is par(( √ 2/2r))-regular. We do not retrieve the starting parameter.

Figure 2 :

 2 Figure 2: ([15, Figure B.2]) In blue and orange a Jordan curve C, in red the boundary ∂ h (C) of the reconstruction of its interior. The projection on the curve C restricted to ∂ h (C) is represented by the green arrows. The points y 1 and y 2 have the same image p by the projection on the curve. The set of points of ∂ h (C) having at least two preimages by the projection is represented in orange. When a point y in ∂ h (C) moves from left to right, this orange part is traveled three times.

Figure 3 :

 3 Figure 3: The turn of the inscribed polygon is the sum of green angles. The turn of the blue Jordan curve it the supremum of turn of inscribed polygons

Property 3 ( 2 . 2 (

 322 [18, Lemma 2]). Let C be a (π/2, δ)-LTB curve. Let a, b points of C such that d(a, b) < δ. Then there exists a unique arc of C delimited by the points a and b and whose turn is less than or equal to π Definition Straightest arc, [18, Definition 6]). Let C be a (π/2, δ)-LTB curve. Let a, b points of C such that d(a, b) < δ. The unique arc of C delimited by the points a and b and whose turn is less than or equal to π 2 is called the straightest arc between a and b and noted C a,b .

Property 4 (

 4 [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF] Proposition 4]). Let C be a δ-LTB curve. Let a, b points of C such that d(a, b) < δ. The straightest arc C a,b between a and b is included in the disk of diameter [a, b]. Local turn-boundedness can be understood as a constraint on the thickness of the interior of the curve C. Indeed, the intersection of C with any open disk centered in a point of C and of radius less than or equal to δ is path-connected. Property 5 ([18], Proposition 5). Let C be a δ-LTB Jordan curve and a ∈ C. Then, for any ≤ δ, the intersection of C with the open disk B(a, ) is pathconnected and is therefore an arc of C.

√ 2 2 δ, 1 2

 22 diam(C)). Any δ-LTB curve yields 4-connected and well-composed discretizations on compatible grids. Property 7 ([18], Proposition 9). Let C be δ-LTB curve. Then, the Gauss digitization of C on any compatible grid is 4-connected and well-composed. The value of θ ≤ π 2 and √ 2h < δ are tight. Two counterexamples are shown in Figure 5.

Figure 6 :Figure 7 :

 67 Figure6: Each of the three blue dashed curves, the square-straightest arc is depicted in continuous line. On the left and on the middle the square-straightest arc is delimited by the points a and b, on the right, the square-straightest arc is reduced to the point a.

Property 9 (

 9 [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF],Proposition 8). Let C be δ-LTB Jordan curve and T be a compatible square. Let a, b be the endpoints of the T -straightest arc of C. Two vertices of T are in the same connected component of R 2 \ C if and only if they are in the same connected component of T \ [a, b] and they do not lie on C.

Lemma 1 .

 1 Let C a,b be a subarc of a δ-LTB Jordan curve such that d(a, b) < δ.

Figure 8 :

 8 Figure 8: The proof of Lemma 1 b) consist on extending the straightest arc between a and b into an arc C a ,b between a and b and then in showing that C \ C a ,b is not included in the disk of diameter [a , b ].

  and for this reason cannot be the straightest arc from a to b . Hence C a ,a ∪ C a,b ∪ C b,b is the straightest arc between a and b .

Figure 9 :

 9 Figure 9: Let S be a shape homeomorphic to a closed disk. Its boundary is a Jordan curve, we call it C. (a) Each edge of the boundary of the reconstruction of the shape S separates a grid point outside S and one adjacent grid point in S. Then the bels of Dig h (S) and the edges of the reconstruction are in one-to-one correspondence. (b) and (c): When the digitization of S is well-composed, no bdp contains the cross configuration (c). Then each bdp contains exactly two bels (b).

Figure 10 :

 10 Figure 10: Consecutive bels (left: 2 bels, right: 3 bels) have to be back-digitized on the same point of the curve.

Figure 12 :

 12 Figure12: Light blue: a shape bounded by a Jordan curve (thick blue line). Black points: digitization of S. White points: grid points outside S. Green segments represent bels. Thick red line : boundary of the reconstructed shape (dilation by a square of side length h of the digitization). Green points: intersection points. Example (a): a simple case: there is a unique mapping linking bels to their green points and it is injective and well-ordered. Example (b): There are several mappings and some of them are not well-ordered. Example (c): There is a unique mapping and it is not well-ordered (for instance for order of the two pointed bels does not correspond to their associated green point on the curve).

Lemma 4 .

 4 Let C be a δ-LTB Jordan curve. Let T be a bdp compatible with C and having a vertex v lying on C. If v belongs to a bel of T , then the vertex v is an endpoint of the T -straightest arc of C.

Figure 14 :

 14 Figure 14: The configurations are defined up to a rigid transformation preserving hZ 2 .

  arcs of C meet in (0, 0): on a LTB curve, Configuration B is impossible.Configuration C. From Properties 4, 10 and Lemma 4, the union C P (-0.5,0.5) ∪ C P (0.5,0.5) of the arcs passing through P (-0.5,0.5) and P (0.5,0.5) is an arc of C containing the points (0, 1) and (0, 0), and included in the union of the disk of diameter [(0, 1), (0, 0)] with the segment [(-1, 1),[START_REF] Alexandrov | General Theory of Irregular Curves[END_REF][START_REF] Alexandrov | General Theory of Irregular Curves[END_REF]]. Moreover, by Property 8, the intersection of C with P (-0.5,0.5) ∪ P (0.5,0.5) is included in C P (-0.5,0.5) ∪ C P (0.5,0.5) . Alike, C ∩ (P (-0.5,-0.5) ∪ P (0.5,-0.5) ) ⊆ C P (-0.5,-0.5) ∪ C P (0.5,-0.5) is an arc of C passing through the points (0, -1) and (0, 0), and included in the union of the disk of diameter [(0, -1), (0, 0)] with the segment [(-1, -1), (1, -1)]. Then, C ∩ V is an arc of C that separates two exterior points in two distinct connected components of R 2 \ C: on a LTB curve, the configuration C is impossible.Configuration D. We define an orthonormal coordinate system by letting the border point having the coordinates (0, 0) and letting the exterior point having the coordinates[START_REF] Alexandrov | General Theory of Irregular Curves[END_REF][START_REF] Alexandrov | General Theory of Irregular Curves[END_REF]. By Property 9, one end of the P (0.5,0.5)straightest arc is on the open bel ((0, 1), (1, 1)) and the other on the open bel ((1, 0),[START_REF] Alexandrov | General Theory of Irregular Curves[END_REF][START_REF] Alexandrov | General Theory of Irregular Curves[END_REF]). This contradicts Property 10. Thus, Configuration D never occurs on a LTB curve.

2

  which is absurd. Hence, (0, 1) and (1, 0) are both border points and, by Lemma 4 and Property 10, C P (0.5,0.5) = [(0, 1), (0, 0), (1, 0)]. Moreover, from Property 5, the intersection of the Jordan curve C with the closed set B((0, 0), h) equals the polygonal line [(0, 1), (0, 0), (1, 0)]. Then the intersection of the Jordan curve C with the closed set P (0.5,0.5) ∪ B((0, 0), h) also equals the polygonal line [(0, 1), (0, 0), (1, 0)]. We derive that the two exterior points shown in Configuration E lie in two different connected components of P (0.5,0.5) ∪ B((0, 0), h) \ [(0, 1), (0, 0), (1, 0)]. Thereby, the two exterior points shown in Configuration E lie in two distinct components of R 2 \ C which contradicts the Jordan curve theorem. Hence, Configuration E cannot occur on a LTB curve.

Firstly, let usLemma 6 . 2 .

 62 show two technical results linking the notions of T -straightest arc and bdp. Let C be δ-LTB curve. We assume a grid compatible with C. 1. Let T be a bdp. The endpoints of the T -straightest arc C T lie on the bels of T and conversely each bel of T contains an endpoint of C T . Let b be a bel and T 1 , T 2 be the two bdps containing b. The straightest arcs of C between any endpoint of C T1 and any endpoint of C T2 lying on b are included in C T1 ∩ C T2 . Proof. Let b be a bel of T and p in be its inner-or-border point. If p in is interior, then, from Property 9, b contains an end-point of C T . If p in lies on C, from Lemma 4, p in is an end-point of C T . In the case where the two bels share their inner-or-border point which is an end-point of C T , Property 9

Figure 15 :Figure 16 :

 1516 Figure 15: If neither of the bels b i and b i+1 have ξ c (b j ) for end, then we recover Configuration E. The white squares correspond to exterior points, the gray disk to a point on C, the white diamonds correspond to interior points or points on C.

  whose cardinal is less than n, the two sets resulting from the intersection of the closed arcs fromξ c (b i ) to ξ c (b j ) with ξ c (Bel h (C)) are equal to {ξ c (b k )} k∈[[i,j]] and {ξ c (b k )} k∈[[j,i]]" . Notice that between any two terms of the sequence (ξ c (b i )) i∈Z/N Z there is an arc containing at most M/2 + 1 terms of the sequence. Hence H M/2+1 states that(ξ c (b i )) i∈Z/N Z is a semi-chain. (Case n=2) From Proposition 1, we get that, for any i ∈ Z/N Z, the intersections of the closed arcs from ξ c (b i ) to ξ c (b i+1 ) with ξ c (Bel h (C)) are equal to {ξ c (b k )} k∈[[i,i+1]] (for the straightest arc) and {ξ c (b k )} k∈[[i+1,i]](for the complementary arc). It is plain that we can extend this propertyto closed arcs from ξ c (b i ) to ξ c (b j ) provided that either #{ξ k } k∈[[i,j]] ≤ 2 or #{ξ k } k∈[[j,i]] ≤ 2. Then H 2 .Let n ≥ 3. Assume H n-1 . We consider two integers i andj in Z/N Z such that #{ξ c (b k )} k∈[[i,j]] = n. There exists ∈ [[i, j]] such that #{ξ c (b k )} k∈[[i, ]] = n -1 and #{ξ c (b k )} k∈[[i, +1]] = n. We write C i, , resp. C ,i ,for the arc between ξ c (b i ) and ξ c (b ) whose intersection with Bel h (C) is equal to {ξ c (b k )} k∈[[i, ]] , resp. {ξ c (b k )} k∈[[ ,i]] (we use the induction hypothesis H n-1 ). Since ξ c (b +1 ) / ∈ {ξ c (b k )} k∈[[i, ]] (by definition of ), ξ c (b +1 ) lies in the interior of C ,i . Furthermore, by Proposition 1, the open straightest arc Cξc(b ),ξc(b +1 ) from ξ c (b ) to ξ c (b +1 ) does not contain any point of ξ

*

  By contradiction assume that ξ c (b k ) = ξ c (b ). Then, on the one hand, one of the arc between ξ c (b ) and ξ c (b k ) is a singleton while the other arc is C. On the other hand, by the induction hypothesis H n-1 , one of the arcs between ξ c (b ) and ξ c (b k ) contains exactly two points of ξ c (Bel h (C)), ξ c (b ) and ξ c (b +1 ). It follows that the cardinal of ξ c (Bel h (C)) is 2 which contradicts the assumption M ≥ 3. Thus, ξ c (b k ) = ξ c (b ). By contradiction assume that ξ c (b k ) = ξ c (b i ). Then, on the one hand, one of the arcs between ξ c (b +1 ) and ξ c (b k ) is C i, +1 . By definition of l, this arc contains exactly n points of ξ c (Bel h (C)) where n ≥ 3. On the other hand, by the induction hypothesis P k-1 , one of the arcs between ξ c (b +1 ) and ξ c (b k ) contains at most two points of ξ c (Bel h (C)) while the other arc contains all the points of ξ c (Bel h (C)). It follows that the cardinal of ξ c (Bel h (C)) is n which contradicts the assumptions n ≤ M/2 + 1 and M ≥ 3. Then, ξ c (bk ) = ξ c (b i ). Since ξ c (b k ) ∈ {ξ c (b i ), ξ c (b l ), ξ c (b l+1 )}, P k . Finally, we derive that ξ c (b +1 ) = ξ c (b +2 ) = . . . = ξ c (b j ). Then, C i, +1 is an arc from ξ c (b i ) to ξ c (b j ) whose intersection with ξ c (Bel h (C)) is {ξ c (b k )} k∈[[i,j]] . Alike, the arc C ,i \ ({ξ c (b )} Cξc(b ),ξc(b +1 ) ) is an arc from ξ c (b i ) to ξ c (b j ) whose intersection with ξ c (Bel h (C)) is {ξ c (b k )} k∈[[j,i]] . Then H n .Eventually, observe that the sequence (ξ c (b k )) k∈Z/N Z is a sampling semichain. Indeed, d(b k , b k+1 ) < δ for any k because the grid is compatible with C and the straightest arc between ξ c (b k ) and ξ c (b k+1 ) does not contain any point of ξ c (Bel h (C)) by Proposition 1.

Lemma 7 .

 7 Let C be a LTB curve and (b i ) i∈Z/N Z be a cyclically ordered set of its bels on a compatible grid. Let ξ be a back-digitization. Then, for any i ∈ Z/N Z, ξ(b i ) lies on the straightest arc between ξ c (b i ) and ξ c (b i+1 ). Proof. Let T i , resp. T i+1 , be the bdp containing both b i and b i+1 , resp. b i+1 and b i+2 . By definition of a back-digitization, ξ(b i ) ∈ b i and ξ c (b i+1 ) ∈ b i+1 . Then, ξ(b i ) and ξ c (b i+1 ) lie on C Ti , the T i -straightest arc. Recall that, by definition of ξ c , ξ c (b i ) is an endpoint of C Ti . Let e i be the other end-point of C Ti . By contradiction assume that ξ(b i ) does not belong to the straightest arc between ξ c (b i ) and ξ c (b i+1 ). Then ξ(b i ) belongs to the straightest arc between ξ c (b i+1 ) and e i , then ξ(b i ) ∈ C Ti ∩ C Ti+1 (Lemma 6). Since C Ti ∩ C Ti+1 is included in the disk with diameter b i+1 which intersects b i in a grid point p, ξ(b i ) is a grid point and, by Lemma 4, it is an end-point of C Ti . Since ξ(b i ) = ξ c (b i ), C Ti is included in the disk with diameter b i and ξ c (b i+1 ) = ξ(b i ). Contradiction ! Then ξ(b i ) is in the straightest arc between ξ c (b i ) and ξ c (b i+1 ).

Lemma 8 .

 8 Let C be a δ-LTB curve. (a) Let a, b, c be three points of C such that d(a, b) < δ and d(b, c) < δ. Let consider the three arcs such that C \ {a, b, c} is a disjoint union of these three arcs. Then one of them has its turn greater than π 2 .

2 .

 2 (a) Let A be the arc of C between the points a and b and not containing the point c. If A is not a straightest arc, then by applying Fenchel's Theorem (the turn of closed curve is bounded from below by 2π) and the additivity of turns, both stated in Property 1, one has κ(A)+ < e l (a), e r (a) > +κ(A )+ < e l (b), e r (b) > ≥ 2π, where A is the straighest arc between a and b (A exists for d(a, b) < δ). Moreover, from Lemma 1-b, we have < e l (a), e r (a) > +κ(A )+ < e l (b), e r (b) > ≤ π Then κ(A) ≥ 2π -π/2 > π/2 and we are done. The same arguments hold for the arc B between the points b and c and not containing the point a. Finally, if A and B are straightest arcs, we denote by C the arc of C between the points a and c and not containing the point b. Using as above Fenchel's Theorem, the additivity of turns and Lemma 1-b, we get κ(C) ≥ 2π -< e l (a), e r (a) > +κ(A)+ < e l (b), e r (b) > +κ(B) + < e l (c), e r (c) > ≥ 2π -< e l (a), e r (a) > +κ(A)+ < e l (b), e r (b) > -< e l (b), e r (b) > +κ(B)+ < e l (c), e r (c) > ≥ 2π -π/2 -π/2 ≥ π.

Figure 17 :

 17 Figure 17: In blue, a LTB curve C. The reconstruction of C (red border) is partitionned into subarcs (as the one emphasized in the figure). To each subarc corresponds an edge whose ends are on the ending bels of the subarc. The union of all these edges forms a polygon A h (green) inscribed in ∂ h (C). The length of the curve C is estimated by the length of A h .

Property 12 (Lemma 9 .

 129 Schur's Comparison Theorem:[START_REF] Bobenko | Discrete Differential Geometry[END_REF], p. 150). Let γ and γ be two simple curves parametrized by arc length on [0, L] such that:[γ(0), γ(L)] ∪ γ([0, L]) is a convex Jordan curve, for each subinterval I ⊂ [0, L], κ(γ(I)) ≤ κ(γ(I)). Then, γ(L) -γ(0) ≤ γ(L) -γ(0) . Let C be a δ-LTB curvehaving a 1 r -Lipschitz turn with δ ≥ 2r. Given two points a, b in C such that b -a < 2r, the straightest arc C a,b from a to b has its length smaller than 2r arcsin ||b-a|| 2r . Proof. By Property 5, the intersection of the open disk B(a, 2r) and C is path connected. Let γ be the parametrization by arc length of the arc of C from a to b in B(a, 2r). Then, γ(0) = a and γ(s 1 ) = b for some s 1 > 0. By contradiction, assume that s 1 > s 0 where s 0 = 2r arcsin ||b-a|| 2r and put c = γ (s 0 ). Let γ be the parametrization by arc length of some circle of radius r. By hypothesis, for any subinterval I of [0, s 0 ], κ(γ(I)) ≤ 1 r |I| .

Lemma 10 .

 10 Let C be a curve with endpoints a, b such that the straight segment (a, b) does not intersect the curve C. Let C be a simple curve from a to b such that C lies in the closure of the interior of the Jordan curve C∪[a, b] and C ∪[a, b] is convex. Then κ(C) ≥ κ(C ). Since the set C ∪ [a, b] is convex, Fenchel's theorem gives κ(C ∪ [a, b]) ≥ κ(C ∪ [a, b]). The interest of the lemma comes from the fact that C and C are open curves. In the proof, the turn control at the extremities a and b is the key point. Proof. Throughout the proof, the half-line with initial point a and passing through b will be noted -→ ab. Firstly, assume that C is a polygonal line. We set C = [a, p 1 , . . . , p m , b]. Let c be any point in (a, b). For any i ∈ [[1, m]],

  -→ cp i and -→ cp k and containing the segment [p i , p k ]. Since T contains points inside and other points outside the Jordan curve C ∪ [a, b], the set T \ C has at least two connected components. Let S be the topological closure of the connected component of T \ C containing c.

  , κ(C) ≥ κ(Q) by definition of κ(C), κ(Q ∪ [b, a]) ≥ κ(C ∪ [b, a]) by Fenchel's Theorem (Property 1) and∠(a -b, p 1 -a) ≥ ∠(a -b, q 1 -a) ∠(b -a, p m -b) ≥ ∠(b -a, q m -b) for C is inside Q ∪ [a, b]. Since κ(C ∪ [b, a]) = κ(C ) + ∠(a -b, p 1 -a) + ∠(a -b, b -p m ) and κ(Q ∪ [b, a]) = κ(Q) + ∠(a -b, q 1 -a) + ∠(a -b, b -q m )by definition of the turn of a polygon, the result holds if C is a polygonal line. If C is not a polygonal line, then, from the first part of the proof, κ(P ) ≤ κ(C) for any P inscribed in C . By definition of the turn and since the supremum is the smallest upper bound, κ(C ) ≤ κ(C) .

Proof. 2 Figure 20 : 1 . ( 8 )

 22018 Figure 20: Blue: the curve C and the line segment [a, b]. Black: the polygonal line C = [a, p 1 , p 2 , b]. Black, dashed: the projection of p 1 and p 2 on C yields the points q 1 and q 2 . Red: the polygonal line Q = [a, q 1 , q 2 , b].

Other hypotheses can be chosen for curves that are graphs of a function: the function or its derivatives can be required to be Lipschitz (see[START_REF] Mazo | Non-local length estimators and concave functions[END_REF])

About these properties, the reader can find in[START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF] some comments and more precise references.

Appendix

A Lipschitz turn

In this section, we show how the notion of LTB curve is linked to the well-known concepts of curve with positive reach [START_REF] Federer | Curvature measures[END_REF] and par-regular curve [START_REF] Pavlidis | Algorithms for graphics and image processing[END_REF], that is to the C 1,1 regularity class (curves with Lipschitz unit tangents). The relationship between the four notions of C 1,1 curves, curves having a positive reach, parregular curves and LTB curves with Lipschitz turn are described in the graph of Figure 18. The aim of this subsection is to prove (Theorem 1) that any LTB curve with Lipschitz turn has a positive reach (blue arrow Figure 18). Let us first recall the definition of the reach, of par-regularity, and curves with Lipschitz turn.

Definition 8 (reach). The medial axis of a compact set K is the set of points having at least two nearest neighbour in K. The reach is the minimal distance between K and its medial axis.

Having positive reach is equivalent to be of class C 1,1 (the class of curves parameterized by a C 1 function whose derivative is Lipschitz) [START_REF] Federer | Curvature measures[END_REF].

Regarding par-regularity, we choose the same definition as in [START_REF] Latecki | Preserving topology by a digitization process[END_REF] and [START_REF] Lachaud | Properties of gauss digitized shapes and digital surface integration[END_REF]. A curve C is par(r)-regular if there exist inside and outside osculating balls of radius r at each a ∈ C.

Par-regularity is equivalent to having a positive reach [START_REF] Lachaud | Properties of gauss digitized shapes and digital surface integration[END_REF]. In the framework of LTB curves, smoothness can be expressed by a Lipschitz behavior of the turn.

Observe that a curve C has a k-Lipschitz turn if and only if the turn of any subarc of C is upper bounded by the turn of an arc of circle of radius 1 k and same length. That is why the constant k will often be noted by 1 r . In particular, there is no spike in a curve with a k-Lipschitz turn.

The following theorem links LTB curves with Lipschitz turn and curves with positive reach (and so, with par-regular curves).

Par(r)-regularity [START_REF] Pavlidis | Algorithms for graphics and image processing[END_REF] Reach > 0

+ LTB [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF] Lipschitz turn

Theorem 2 [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF] Lemma 6 [START_REF] Quentrec | Local turnboundedness, a curvature control for continuous curves with application to digitization[END_REF] p. 450 [START_REF] Federer | Curvature measures[END_REF] Theorem 1

Lemma 1 [START_REF] Lachaud | Properties of gauss digitized shapes and digital surface integration[END_REF] Figure 18: Each rectangle corresponds to a notion. An arrow from a notion to another one means that if a curve has the first property then it has the second one. Notice that we lost quantitative information when using the implication from curve with positive reach to C 1,1 curve.