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In this Supplementary material, we describe the methods used to numerically simulate the dy-
namic evolutions of the temporally modulated system and of the effective Hamiltonian, whose con-
struction we explain in more details. The code we used is written in Python 3 and uses the Numpy
library. It is available at https://framagit.org/mmartinez/dynamics1d. We then describe in
detail the derivation of the hopping law.

Numerical methods

Exact dynamics of the periodically modulated lattice

The system, composed of Nc cells of spatial size λ = 2π is discretized with Np points per cell; the total basis size
is thus Nt = NcNp. We have used both a spatial |x〉 and momentum |p〉 representation. The corresponding grids are
centered around x = 0 and p = 0 with respective size-step:

δx = λ

Np
and δp = 2π

λ

h̄eff
Nc

. (1)

For the whole of the study, we took Np = 32 after checking that this discretatization was fine enough to faithfully
represent the dynamics of the system: in particular, the total size in the p direction Nph̄eff should be larger than the
extension of the chaotic sea in momentum space.

The time propagation of a given state |ψ〉 is achieved with a symmetrized split-step method:

|ψ(t+ δt)〉 = UPFUXF
−1UP |ψ(t)〉 , (2)

with

UX =
∑
x

exp
(
−iV (x, t)δt

h̄

)
|x〉〈x| , UP =

∑
p

exp
(
−ip

2δt

4h̄

)
|p〉〈p| (3)

F = 1√
N

∑
x,p

exp
(
−ixp

h̄

)
|p〉〈x| (using FFT). (4)

The time step δt = 4π/1000 was chosen after consistency tests.

Construction of the effective Hamiltonian

The determination of the Floquet-Bloch band is equivalent to the determination of the quasi-energy spectrum of
the following Hamiltonian

Hβ(x, t) = (p− h̄effβ)2

2 − γ(1 + ε cos t) cosx, (5)

on a single cell Nc = 1 (with Np = 32, see above), with the quasi-momentum β taking the discrete values
βm = 2πm/(Ncλ), m = 0, . . . , Nc − 1. Thus, for a system size Nc, we repeat Nc times the following procedure
(for each value of βm):

https://framagit.org/mmartinez/dynamics1d
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• First, we build the matrix (in x reprentation) of the Floquet operator from the propagation of Np δ-function
states |x〉. To do so, we use the previous split-step method over two periods of modulation T = 4π (this choice
was made to be consistent with [1], but is of no importance here).

• Second, we diagonalize the Floquet operator and look for the eigenstate having the largest overlap with a
Gaussian state centered on the regular island. This eigenstate is associated with a complex eigenvalue αβ that
gives the effective energy:

εregeff (β) = − ih̄eff
T

logαβ . (6)

• Once we have obtained the Nc values of εregeff (βm), we build explicitly the effective tight-binding Hamiltonian
Heff, whose coupling elements teffn ≡ 〈(m+ n)reg|Heff|mreg〉 are computed from the discrete Fourier Transform:

teffn = 1
N

∑
βm

εregeff (βm) exp(iβmλn). (7)

Dynamic evolution under the effective Hamiltonian

The effective Hamiltonian is a tight-binding model of Nc sites |n〉, with n = 0, . . . Nc − 1. The wavefunction |ψ〉 is
propagated over two periods with effective evolution propagator:

|ψ(t+ T )〉 = Ueff |ψ(t)〉 with Ueff = exp
(
−iHeffT

h̄eff

)
, (8)

obtained using a Padé approximation.

Construction of the regular Wannier-states

The Wannier states of the unperturbed lattice (with ε = 0) provide an approximation of the regular modes |nreg〉
of the modulated lattice discussed in the letter. To construct them, we thus use a procedure similar to that used for
the determination of the effective energy band, but using the unmodulated lattice (with ε = 0): For each value of
βm = 2πm/(Ncλ), m = 0, . . . Nc − 1, we diagonalize the evolution operator over two periods T = 4π and look for the
eigenstate having the largest overlap with a Gaussian state centered on the regular island. The p representation of
this eigenstate gives the coefficient of the Wannier state on the partial (uncomplete) grid p = h̄effβ + nδp of size Np.
After repeating Nc times this procedure, we obtain the full p representation of the Wannier state (on the complete
momentum basis of size NpNc).

Miscellaneous

The classical dynamics is simulated using a RK4 Runge-Kutta algorithm. Husimi phase-space representations are
computed using the procedure described e.g. in [2].

Derivation of the hopping law for large system sizes

To derive the hopping law Eq. (3), we first decompose the effective Bloch band as a regular part ε0 and a sum over
all resonance terms:

εeffreg(β) = ε0(β) +
∑

resonances
ε�(β − β0,W, α) , (9)

where each resonance is characterized by three parameters: β0 the position of the resonance, W the coupling intensity
between the chaotic and the regular state and α the slope of the energy of the involved chaotic state with β. Each
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resonance can be described by a two-level Hamiltonian of an avoided crossing at β = 0:(
εreg(β) W
W εch(β)

)
(10)

with εreg(β) = 0 (since it is taken into account by ε0 in Eq. (9)) and εch(β) = αβ. The corresponding eigenstates
|β±〉 and eigenenergies ε±(β) follow:

ε±(β) = εreg + εch
2 ±

√
∆2 +W 2 and |β±〉 =

{
cos θ |βreg〉+ sin θ |βch〉
− sin θ |βreg〉+ cos θ |βch〉

, (11)

with ∆ = (εreg − εch)/2 and θ ∈ [0, π/2] verifying tan 2θ = |W |/∆. The prescription for the effective spectrum
construction is to select the energy associated with the eigenstate having the largest projection on the regular subspace.
We thus get:

ε�(β,W,α) = α

2

β − sgn(β)

√
β2 +

(
2|W |
α

)2
. (12)

Taking the Fourier transform, we then have

tn = t0n +
∑

resonances
t�n (β0,W, α) with t�n (β0,W, α) = λ

2π

∫ π/λ

−π/λ
ε�(β − β0,W, α)e−inβλ dβ . (13)

We now assume that ε�(β − β0,W, α) is peaked around β0 and that β0 is sufficiently far from the edge of the
boundary of the Brillouin zone, so that

t�n (β0,W, α) ≈ einβ0λ
λ

2π

∫ π/λ

−π/λ
ε�(β,W,α)e−inβλ dβ . (14)

The latter expression can be evaluated for large n values. We introduce x = βλ and η = 2λ|W |/α = λ∆β/2, it
reads

t�n =einβ0λα

4πλ ×
∫ π

−π

(
x− sgn(x)

√
x2 + η2

)
e−inx dx︸ ︷︷ ︸

I∗

, (15)

we split the integral I (taking complex conjugation) in two parts, the first one gives∫ π

−π
xeinx dx = 2iπ

n
(−1)n+1. (16)

The second part can be rewritten ∫ π

0
sgn(x)

√
x2 + η2einx dx− c.c., (17)

we then deform the contour of integration 0→ π to a complex circuit 0→ iT → iT + π → π with T some large real
number. Using Watson’s formula, the first part gives (setting x = iy)

i

∫ T

0

√
η2 − y2e−ny dy ∼ i|η|

n
. (18)

The second part is negligible for T large enough (setting x = y + iT ):

e−nT
∫ π

0

√
(y + iT )2 + η2e−iny dy → 0. (19)
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Using Watson’s formula and assuming ∆β � 2π
λ so that (η/λ)2 � 1, the third part (setting x = π + iy) gives:

i(−1)n+1
∫ T

0

√
(π + iy)2 + η2e−ny dy ∼ iπ

n
(−1)n+1. (20)

Putting all terms together (taking care of complex conjugation) we end up with

t�n ≈
einβ0λα

4πλ

(
2iπ
n

(−1)n+1 − 2iη
n
− 2iπ

n
(−1)n+1

)∗

= einβ0λα

4πλ × i4λ|W |
|α|

= i

πn
sgn(α)|W |einβ0λ. (21)

We finally assume that t0n is negligible for large n values (because it decays exponentially), so that

tn ≈
i

πn

∑
resonances

sgn(α)|W |einβ0λ. (22)
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