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Introduction.-In recent years there has been considerable interest in the quantum simulation of more and more complex problems of solid state physics [1][2][3]. In this context, lattice-based quantum simulation has become a key technique to mimic the periodicity of a crystal structure. In such systems, dynamics is governed by two different types of processes: hopping between sites mediated by tunneling effect and interaction between particles. While there exists several ways to implement long-range interactions [4][5][6][7], long-range hoppings have been up to now very challenging to simulate. These long-range hoppings however, have aroused great theoretical interest in condensed matter, as they are associated with important problems such as glassy physics [8], many-body localization [9] or quantum multifractality [10]. In this study we show that such long-range hoppings can be engineered in driven lattices in a moderate regime of modulation.

Temporal driving techniques are widely used in quantum simulation [11], as systems with fast driving can exhibit new topological effects [12][13][14][15][16] and systems with strong driving can mimic disorder [START_REF] Casati | Stochastic Behavior in Classical and Quantum Hamiltonian Systems[END_REF][18][19][20][21][22]. In the intermediate regime of modulation we focus on, driven lattices have a classical dynamics which is neither fully chaotic (corresponding to the strong driving case) nor regular (corresponding to the fast driving case), but, as most real-life dynamical systems, show coexistence of chaotic and regular zones in phase space. Our main result is based on the richness of the quantum tunneling effect in such systems: it is known to be chaos-assisted [23][24][25][26][27][28][29][30][31][32][33][34][START_REF] Keshavamurthy | Dynamical Tunneling -Theory and experiment[END_REF]. This phenomenon is well understood between two regular islands, where it translates into large resonances of the tunneling rate between the two islands when varying a parameter of the system. It has been observed in different experimental contexts, with electromagnetic waves [27,[START_REF] Dembowski | [END_REF][37][38][39][40][41], and with cold atoms [42][43][44][45].

In this paper, we address the generalization of this chaos-assisted tunneling mechanism to the case of a mixed lattice composed of regular islands embedded in a chaotic sea, obtained in a moderate regime of tem- poral driving. We demonstrate that remarkably such a dynamical quantum system can be mapped onto an effective tight-binding Hamiltonian with long-range hoppings ∝ 1/n, with n the distance between sites. Beyond the intrinsic interest of a new observable quantum chaos effect, our results open new engineering possibilities for latticebased quantum simulations as they are highly generic, accessible for state-of-the-art experiments and species independent (in the context of cold atoms).

V (x, t) (a) N λ (c) t n ∝ 1/n |0 |1 |n |N -2 |N -1 (b)
Model.-We consider an experimental situation similar to [45], that is to say a dilute condensate of cold atoms subjected to an optical lattice whose intensity is modulated periodically in time. Using dimensionless variables [START_REF]x = 2πX/d where P and X are the momentum and position along the optical lattice, M is the atomic mass, d is the lattice spacing, and the time t is measured in unit of the modulation angular frequency ω[END_REF], the dynamics is governed by the Hamiltonian

H(x, t) = p 2 2 -γ(1 + ε cos t) cos x. ( 1 
)
Here γ is the dimensionless depth of the optical lattice and ε the amplitude of modulation. Importantly, the effective Planck constant heff = -i[x, p] = 2ω L /ω can be tuned experimentally (ω being the modulation angular frequency and ω L is related to the lattice characteristic energy E L = hω L ). This Hamiltonian has a dimensionless time period T = 2π and spatial period λ = 2π. Besides the choice of this model, our conclusions are valid for almost any modulation waveform (including phase modulation and kicked potentials).

Semiclassical picture.-The classical dynamics of this time-periodic system is best understood through a stroboscopic phase space, using the values of (x, p) at each period of the modulation t = jT , j integer. For ε = 0, the system is integrable. When ε increases, chaos develops close to the separatrix, forming a chaotic sea which surrounds regular islands of oscillating orbits centered around the stable points (x = 2nπ, p = 0, n an integer) of the potential wells, see Fig. 1. At ε = 0, with no chaotic sea, tunneling essentially occurs between adjacent wells, and the system can be described for deep optical lattices by an effective tight-binding Hamiltonian with nearest-neighbor hopping. Our main objective is to describe in a similar way the modulated system, a dynamical, spatially periodic lattice of N regular islands indexed by n ∈ [[0, N -1]], surrounded by a chaotic sea.

Adopting a stroboscopic point of view, the quantum dynamics is described by the evolution operator U F over one period of modulation. Each eigenstate |φ l of U F can be associated with a quasi-energy ε l , so that U F |φ l = exp(-iε l T /h eff ) |φ l . Equivalently the Hamiltonian H strob ≡ i(h eff /T ) log U F gives the exact same stroboscopic dynamics as U F and is associated with the same eigenstates |φ l with energies ε l .

In the semiclassical regime where heff < A, with A the area of a regular island, the quantum dynamics is strongly influenced by the structures of the classical phase space. Quantum eigenstates can be separated in two types [24,[START_REF] Berry | [END_REF]: regular (localized on top of regular orbits) or chaotic (spread over the chaotic sea), see Fig. 2 for a Husimi [48][49][50] phase-space representation.

The tunnel coupling between regular states is well understood in the case of N = 2 regular islands surrounded by a chaotic sea and is called chaos-assisted tunneling [23,24]. In the absence of a chaotic sea, tunneling involves only a doublet of symmetric and anti-symmetric states localized on the two symmetric islands. In the presence of a chaotic sea, the key property of chaosassisted tunneling is a 3-level mechanism with one of the regular states interacting resonantly with a chaotic state. This coupling translates in an energy shift of the involved regular state and thus of a strong variation of the original doublet energy splitting (which is nothing but the tunneling frequency). As a signature of the chaotic dynamics, it was shown [23,25] that these chaos-assisted resonances, observed for the first time in a quantum system only recently [45], occur quite erratically when varying a parameter of the system. Chaos-assisted tunneling involves a purely quantum transport (tunneling to the chaotic sea) and a classically allowed transport (diffusion in the chaotic sea). Thus in mixed lattices, long-range hopping can be expected because the chaotic sea connects all the regular islands across the lattice (see Fig. 1).

Effective Hamiltonian.-The existence of regular islands in the center of each cell (see Fig. 1) motivates the introduction of a set of regular states {|n reg } forming a lattice with one site per cell, whose exact construction is not crucial for our discussion (see [27] for a detailed discussion). For simplicity, we work in the regime heff < ∼ A such that there is only one regular state by island.

In clear contrast with regular lattices, where only neighboring sites are directly coupled by standard tunneling effect, there exists an indirect transfer of probability between distant sites of the modulated lattice due to the mutual coupling with additionnal chaotic states, strongly delocalized along the system. In the original scenario [23], the chaos-assisted tunneling mechanism between regular islands is associated with fast, but weak, probability oscillations between regular islands and the chaotic sea. This picture motivates to capture the physics of tunneling in our system through an effective Hamiltonian H eff , acting only in the regular subspace but generating the same dynamics as H strob in this subspace [51][52][53]. This effective Hamiltonian can be defined from (E -H eff ) -1 ≡ P reg (E -H strob ) -1 P reg , with P reg the projector onto the regular subspace spanned by the |n reg .

β0 Quasi-momentum β Quasi-energy ε(β) α |W | ∆β = 4|W | α 0 1 β±|βreg 2 -π/λ π/λ β ε(β) ≈ |βreg 1 √ 2 (|β ch + |βreg ) ≈ |β ch
In the effective picture, coupling with chaotic states translates in a shift of the energy of each regular Bloch state |β reg = 1 √ N n exp(iβλn) |n reg (with β an integer multiple of 2π/λN ). The resulting dressed regular band ε eff reg (β) then gives access to the effective tunneling coupling t eff n ≡ (m + n) reg |H eff |m reg through the Fourier transform in quasi-momentum

t eff n = 1 N β ε eff reg (β) exp(iβλn). ( 2 
)
The simplest way to determine the effective spectrum is to start from the full exact spectrum (obtained numer-ically for instance) and to choose the N most relevant energies. The natural choice is to select energies associated with eigenstates with the largest projection on the regular subspace. In mixed lattices, this procedure gives systematic discontinuities in the effective band, coming from accidental degeneracies between a regular |β reg and a chaotic state |β ch . Close to such avoided crossings, the branch giving the effective regular energy suddenly changes, resulting in a sharp discontinuity of ε eff reg (β) (see Fig. 2). These sharp discontinuities cause, from property of the Fourier transform in Eq. ( 2), a long-range decay of the effective coupling term t eff n ∼ 1/n (see Fig. 4). The two main features of these resonances come from the mixed nature of the system. First, they are sharp because the local slope α = dε ch /dβ of the crossing state is large since ergodic chaotic states are sensitive to boundary conditions. Second, their heights 2|W | = 2| β ch |H|β reg | is larger than the regular band width 2| n reg |H|n + 1 reg | (nearest-neighbor hopping amplitudes for ε = 0, with direct tunneling between islands without chaotic sea). Numerical simulations.-To test the accuracy of this effective tight-binding picture, we compare the exact stroboscopic dynamics with the one given by the effective Hamiltonian, considering a wave packet initially localized on a single regular island of the modulated lattice. (see the Supplemental Material [54] for computational details). As concerns the exact dynamics, the initial condition was chosen to be a localised (Wannier) state of the undriven lattice (ε = 0), in the cell n 0 = (N -1)/2, N being odd. We also used the localized states |n reg to estimate the projection of the wavefunction on the chaotic layer through P ch ≡ 1 -P reg . The effective dynamics was studied by propagation of a state initially localized in the cell n 0 of a discrete lattice ruled by the effective Hamiltonian. The effective Hamiltonian was extracted from diagonalization of the Floquet operator on a single cell, for different values of β. In both types of simulations, we defined two observables: a local one pn which enables to probe the probability at each site, defined as pn ≡ |n n| in the effective system and pn ≡ (n+1)λ nλ |x x| dx in the exact system, (this choice was motivated to get n n = 1 in both systems) and a global one ∆n 2 = n (nn 0 ) 2 pn to estimate the spreading of the wave function.

We have simulated different system sizes up to N = 1079 with periodic boundary conditions and found a very good agreement between the two approaches (see Fig. 3). In the modulated case, we observe a fast and long-range spreading of the wavefunction (Fig. 3a), that is responsible for the tremendous growth of the standard deviation (Fig. 3e). As an additionnal signature of the long-range hopping, the standard deviation appears to saturate with a clear finite size effect, that we attribute to the fact that the boundaries are reached very fast. We have also simulated the exact dynamics of the corresponding undriven lattice with no chaos that highlights the clear contrast between the two systems. Indeed, the unmodulated case gives a slow and short-range ballistic spreading of the wavefunction with no finite-size effect (Fig. 3b ande).

Analytical derivation of the hopping law.-In addition to the expected long-range decay ∝ 1/n of the effective coupling term, numerical simulations show apparent erratic fluctuations around this algebraic law (Fig. 4). We discuss here a simple model to explain their origin. For each of the N res resonances in the effective band, we apply a two-level model that involves only three parameters: the slope α = dε ch /dβ of the energy of a chaotic state with β, the coupling intensity W between the chaotic and the regular states and the position β 0 of the crossing in the spectrum (see Fig. 2). Using the linearity of Eq. ( 2) and assuming sharp resonances (∆β 2π/λ), the asymptotic behavior of t eff n is (see Supplemental Material [54])

t eff n ≈ i πn resonances sgn(α)|W |e inβ0λ . ( 3 
)
This simple model is in very good agreement with numerical data (see Fig. 4) and shows that the relevant time scale of the tunneling dynamics is heff /|W |. The phase term e inβ0λ , which depends on the position of the resonances in the effective band, gives the observed fluctuations of hopping amplitudes around the algebraic law.

Since the W 's of the N res resonances are associated with tunnel coupling to chaotic states, Random Matrix Theory suggests that they can be described as independent Gaussian variables with a fixed variance w 2 . In the same spirit, as soon as n is large enough the phases nβ 0 λ mod [2π] can be considered random. Using the known results about sums of complex numbers with Gaussian amplitudes and random phases [55], Eq. ( 3) leads to a simple statistical model for the couplings, with |t eff n | ≡ W/n with W a Gaussian random variable of variance N res w 2 . We stress that this implies the distribution of n|t eff n | is universal. Fig. 4b shows the validity of this approach. (∆ being the energy difference with the chaotic state involved). The effective picture is thus legitimated by both (1) the sharpness of the resonances that guarantees that the total part of the system that is delocalized in the chaotic sea is small at any time (the amplitude of oscillations being large only close to the resonances), and (2) on the observation that the slowest Rabi oscillation is from Eq. (3) always faster than the induced tunneling process (h eff /|t eff n | ≥ πh eff /W ). These arguments are corroborated by Fig. 3d: the projection of the system on the chaotic sea displays fast and weak oscillations around a very low value.

The arguments we present emphasize that the longrange property is a direct consequence of the existence of sharp and strong tunneling resonances in the band structure, properties which are fairly generic when the classical dynamics of the driven lattice is mixed.

Conclusion.-In this letter we generalized the original chaos-assisted tunneling mechanism between two wells to spatially periodic lattice systems. We demonstrated that in an intermediate regime of temporal driving, the system dynamics could be mapped to a tight-binding Hamilto-nian with long-range hopping. Strikingly, this new manifestation of chaos at a quantum scale is fairly generic and could be observed in many different experimental situations. In the context of quantum simulation, this result opens the possibility to observe the dynamics of longrange models, and thus to investigate many important phenomena of condensed matter such as glassy physics, many-body localization or quantum multifractality.
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 1 FIG. 1. Equivalent representations of chaos-assisted tunneling in a driven lattice. (a) In situ representation: a wavefunction tunnels through different potential wells. (b) Phase space representation: the wavefunction escapes from an island of stable orbits (blue) by regular tunneling, spreads in the chaotic sea (red) and tunnels in another island. (c) Tightbinding representation: the system is composed of N sites, the coupling between i-th and j-th site is proportional to 1/|i-j|.

FIG. 2 .

 2 FIG. 2. Sketch of an avoided crossing between regular |βreg and chaotic |β ch Bloch waves, showing the different quantities that appear in the two-level model: |W | the strength of the coupling between |βreg and |β ch , α the slope of the energy of |β ch and β0 the point of equal mixing. The width of the crossing ∆β is defined as the intersection of the slope of the energies of mixed states at β = β0 with the x-axis. Near β = β0, the eigenstates |β± become a mixture of |βreg and |β ch and form two non-crossing branches. As |β± transforms from one original state to the other, the color code gives the intensity of the mixing through the projection of the eigenstate on the regular state |βreg . Solid black line is the effective regular energy (see text). Husimi representations of selected states are given on top of the stroboscopic phase portrait. Inset: Quasi-energy dispersion relation of the Hamiltonian Eq. (1) (h eff = 0.4, γ = 0.20, = 0.15), black solid line corresponds to the effective regular band and red dashed line to a nearest-neighbor approximation with parameters extracted from the value of the effective regular band at β = 0 and β = π/λ.
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 3 FIG. 3. Dynamics of a wavepacket, initially located on a single regular site n0. Parameters are γ = 0.2, heff = 0.4 and ε = 0.15 (modulated lattice) or ε = 0 (unmodulated lattice). (a-b) Probability at each site vs time, normalized for visibility at each time by its maximum value over the lattice. Exact dynamics in the modulated (a) and unmodulated (b) lattices and its corresponding effective dynamics (note that the system is symmetric through n -n0 → n0n). (c) Probability at each site for t = 1500T and N = 1079, solid line for exact dynamics and symbols for effective dynamics, red for ε = 0.15 and black for ε = 0. (d) Overlap of the wavefunction with the chaotic sea in the modulated lattice. Same color code as (c), additional blue (N = 539) and green (N = 269) data for modulated lattices of smaller sizes. (e) Standard deviation of the wavefunction (see text), same color code as (d).
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 4 FIG. 4. (a) Effective hopping intensity |t eff n | vs distance between sites n for γ = 0.2, ε = 0.15 and heff = 0.4. Blue solid line corresponds to the data extracted from numerical Fourier series of the effective band structure. Red solid line corresponds to Eq. (3) with parameters extracted from the band structure. Black solid line is the typical value of Eq. (3). Inset: same data rescaled to show the small-distance behavior, additional black solid line is the unmodulated case ε = 0. (b) Distribution of fluctuations around the 1/n law for 5 parameter sets: histogram corresponds to cumulative values for 1500 < n < 10000, dots are partial datasets of 500 consecutive values of n, black curve is analytical prediction (see text).

  Discussion.-The theoretical results presented above rely on the effective Hamiltonian picture. It is thus important to assess its validity in our context. The exact tunneling dynamics between two sites can be written(n + m) reg |U F |m reg = 1 N β e iβλn βreg |U F |β reg . In the effective approach β reg |U F |β reg writes exp -iε eff reg (β)t/h eff , thus it does not take into account the Rabi oscillations of each regular Bloch wave |β reg with the chaotic sea |β ch , whose amplitude is given in a two-level approximation by W/ √ W 2 + ∆ 2 and whose period is πh eff / √ W 2 + ∆
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