
HAL Id: hal-02987609
https://hal.science/hal-02987609v2

Submitted on 18 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructing discrete harmonic functions in wedges
Viet Hung Hoang, Kilian Raschel, Pierre Tarrago

To cite this version:
Viet Hung Hoang, Kilian Raschel, Pierre Tarrago. Constructing discrete harmonic functions in wedges.
Transactions of the American Mathematical Society, 2022, 375 (7), pp.4741-4782. �10.1090/tran/8615�.
�hal-02987609v2�

https://hal.science/hal-02987609v2
https://hal.archives-ouvertes.fr


CONSTRUCTING DISCRETE HARMONIC FUNCTIONS IN WEDGES

VIET HUNG HOANG, KILIAN RASCHEL, AND PIERRE TARRAGO

Abstract. We propose a systematic construction of signed harmonic functions for
discrete Laplacian operators with Dirichlet conditions in the quarter plane. In particular,
we prove that the set of harmonic functions is an algebra generated by a single element,
which conjecturally corresponds to the unique positive harmonic function.
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1. Introduction and main results

Harmonic functions for the standard Laplacian. Let us first briefly recall some facts
around the elliptic operator in R2

(1.1) ∆ = σ1
∂2

∂x2
+ 2σ1,2

∂2

∂x∂y
+ σ2

∂2

∂y2
,

which we will call continuous or classical Laplacian operator. Given a domain D ⊂ R2

with boundary ∂D, solving the Dirichlet problem on D for the operator ∆ amounts to
find the set H(D) of functions h : D → R which are harmonic on D, continuous on the
closure D of D, and zero on ∂D. This problem admits the unique solution h = 0 when D
is bounded, but the situation is much richer when D is unbounded.

Assume first that ∆ is the standard Laplacian (i.e., σ1 = σ2 = 1 and σ1,2 = 0 in
(1.1)) and D is the upper half-plane H = {x + iy : y > 0}, and look at the associated
Dirichlet problem. Defining h(z) = −h(z) for z in the lower half-plane, the classical
Schwarz reflection principle implies that h can be extended to a harmonic function on C.
Hence h is solution to this Dirichlet problem if and only if there exists an analytic function
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f on C such that h = =f (with = denoting the imaginary part), and the Schwarz reflection
implies that f is self-conjugate, meaning that f(z) = f(z) on C. The set H(H ) therefore
admits the explicit description

H(H ) =
{
=f|H : f is analytic on C and f(z) = f(z)

}
,

=
{∑
n>1

an=(xn) : an ∈ R and |an|1/n → 0
}
.

A similar description holds for other cones (not necessarily the half-space H ) and
Laplacian operators (1.1) with general covariance matrix

(1.2) σ =

(
σ1 σ1,2

σ1,2 σ2

)
.

In particular, for a future use, when D is the positive quadrant Q, we have

(1.3) H(Q) =
{∑
n>1

anh
σ
n : an ∈ R and |an|1/n → 0

}
,

where the functions hσn will be introduced later (see (4.1)) and σ is given by (1.2).

A glimpse of our results. Our main objective in the present paper is to prove that
in the discrete setting, a surprisingly simple equality of set holds, analogue to (1.3); see
Theorem 2 for a precise statement.

A function h : Z2 → R is discrete harmonic (an equivalent terminology is preharmonic)
in a domain D ⊂ Z2 with respect to the discrete Laplacian operator

(1.4) ∆h(i, j) =
∑
k,`

pk,`h(i+ k, j + `)− h(i, j),

the set of weights {pk,`} being fixed, if ∆h(i, j) = 0 for all (i, j) ∈ D. In this article, we
start from the analytic approach of [10] and propose a systematic construction of discrete
harmonic functions in the quarter plane (i.e., D = N2 = {1, 2, 3, . . .}2) which vanish on the
boundary axes. We go beyond the existing literature, in the sense that our construction
works:

(i) for walks with arbitrary big (negative) jumps (see Figure 1),
(ii) not only for positive, but also for signed discrete harmonic functions.

The two above features illustrate the robustness of our theory. The constructive aspect will
follow from that we will obtain exact expressions for the generating functions of harmonic
functions in terms of certain conformal mappings.

Construction of preharmonic functions. First of all, we would like to review some
results in the literature dedicated to constructions of discrete harmonic functions. Let
us first mention elementary constructions of preharmonic functions on Zd. Discrete
polynomials and discrete exponential functions are constructed (mostly iteratively) in
[24, 26, 30, 14]; see also [38] for a construction of preharmonic polynomials in terms of
well-signed multinomials.

Further examples arise when preharmonic functions are defined on sets having certain
rigid structures. Picardello and Woess [41] prove that discrete harmonic functions for
Cartesian products of Markov chains have a product form. In the case of Weyl chambers
of type A, Eichelsbacher and König [16] prove that preharmonic functions can be expressed
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in terms of Vandermonde determinants. König and Schmid [32] demonstrate similar results
for Weyl chambers of other types. Still in presence of a Weyl chamber structure, Biane,
Bougerol and O’Connell [3] compute the (continuous) harmonic function (namely, the
survival probability) with the help of the reflection principle.

Using the theory of analytic combinatorics in several variables [40], Courtiel et al. [11]
study simple random walks with drift in various (two-dimensional) wedges and show that
the harmonic functions obey to a rigid construction: namely, they are all obtained from
a single function (again related to the reflection principle, see [11, Eq. (20)]), after some
elementary operations (differentiation, division, evaluation). However, this technique seems
to work only for random walks satisfying to (a certain algebraic version of) the reflection
principle.

Roughly speaking, the Martin boundary theory aims at describing the set of all positive
harmonic functions, given a Laplacian operator. See [33, 27, 29, 43, 44, 36] for examples
when the Laplacian is related to random walks killed on the boundary of a half-plane
or quadrant. This theory only rarely yields a construction of harmonic functions. In the
previously cited articles, the computation of Martin boundary relies on an asymptotic study
of quotients of Green functions. Let us underline, however, that Ignatiouk-Robert and
Loree [27, 29] find an explicit formula for the exponential growth of all positive preharmonic
functions in the Martin boundary.

In another direction, it is natural to ask whether discrete and classical harmonic functions
are related, see for instance the papers [46, 47] by Varopoulos. In [12], Denisov and
Wachtel prove that a certain natural preharmonic function (appearing as a prefactor in
the persistence probability asymptotics) can be constructed by compensating the classical
harmonic function, see [12, Eq. (5)].

Representation theory provides us with many examples of Markov processes for which
explicit expressions of harmonic functions exist. For instance, preharmonic functions are
expressed in terms of dimensions of irreducible representations in [2, 1]. Such results are
quite powerful, but intrinsically limited to a few step sets.

We mention here a very last framework, which will be at the heart of the present work,
and which relies on complex analysis techniques. As we shall see, the generating functions
of preharmonic functions satisfy certain functional equations and, after further analysis,
boundary value problems (BVPs). Solving these BVPs eventually yields exact expressions
for the generating functions in terms of conformal mappings. The link between harmonic
functions and conformal mappings is already illustrated in [44, 36], but we shall go much
further here, by considering random walks with arbitrary big negative jumps (see item (i)
above), and by constructing not only positive preharmonic functions (item (ii)); recall that
in [44, 36], the attention is restricted to positive harmonic functions for small step walks.

Obviously, the list of constructive approaches to preharmonic functions could be
continued, as the latter are all-present in probability theory and statistical physics, see
the book [17] for recent illustrations.

Various analytic approaches. As we have seen above, some results on harmonic
functions (structure of the Martin boundary, exact expressions, see [44, 36]) have already
been obtained using the analytic approach of [21]. Let us now say a few words about this
method. It was initially developed by Malyshev in [37], Fayolle and Iasnogorodski [20],
to study the stationary distribution of random walks in the quarter plane reflected at the
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Figure 1. Various step sets. From left to right: the simple random walk;
the king walk (with jumps to all eight nearest neighbours); an example with
big negative jumps; an example with big positive jumps; an arbitrary model.

boundary. The stationary distribution generating functions are shown to satisfy BVPs.
From this, explicit expressions (typically, contour integral involving special functions) are
deduced. See [21, Chap. 5] for full details.

Since then, the analytic approach of [21] has been applied to various contexts: queueing
networks [34], potential theory [43, 44, 36], enumerative combinatorics (counting walks
in the quarter plane) [7, 35, 13]. This approach is thus particularly fruitful and leads to
precise results (both exact and asymptotic results).

However, the construction in [21] is restricted to the case of random walks with jumps
to the eight nearest neighbours (see Figure 1). Its generalization to bigger jumps would
require the precise understanding of the location of the branch points on a certain Riemann
surface, see [22]. This is certainly possible on a few given examples, but the variety of
possible behaviors makes us pessimistic to pursue in this direction to develop a general
theory.

We will prefer here the alternative analytic approach [10] by Cohen and Boxma (see
also [9] by Cohen). The starting point is essentially the same (writing functional equations
and BVPs for the generating functions) but remarkably, the construction can be done for
arbitrary big (negative) jumps without increasing the level of complexity. The analytic
approaches of [21] and [10] will be compared in Section 5.

Signed harmonic functions. In most of the literature cited above, the focus is put
on positive harmonic functions, for clear probabilistic reasons: for example in relation
with the concept of Doob transform, or because many probabilistic estimates use positive
harmonic functions. In this paper, we go further and look at signed harmonic functions.
Our motivation is fourfold: first, this will allow us to study the structure of the set of
harmonic functions (for instance, we shall see that the vector space of harmonic functions
having a bounded polynomial growth is finite-dimensional and will give a basis).

Our second motivation is that signed harmonic functions appear in various complete
asymptotic expansions of relevant probabilistic or combinatorial quantities. To give a
concrete example (related to this paper), let K be a given cone of Rd and {Z(n)}n>0 be a
zero-mean random walk (with some moment assumptions). Then it is shown in [12] that,
as n→∞, the survival probability is asymptotically equivalent to

(1.5) Px(τK > n) ∼ h(x)n−α,

where x ∈ K is the starting point of the random walk, τK is the first exit time of {Z(n)}n>0

from the cone K, h(x) is a harmonic function and α > 0 is a critical exponent. Assuming
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that (1.5) may be refined as

(1.6) Px(τK > n) ∼
∑
i

hi(x)n−αi ,

it is shown in [8] that the hi(x) may be constructed from certain polyharmonic functions
as well as from signed harmonic functions.

Our third motivation comes from potential theory, where sign changing discrete
harmonic functions turn out to be more difficult to study, compared to positive harmonic
functions. Indeed, such classical tools as Harnack inequality (heavily used in [39, 45], for
instance) do not hold anymore. Any construction of such functions becomes more relevant.

Finally, there might be some interesting features regarding the nodal domains of these
sign changing harmonic functions. Indeed, within the connected components of the nodal
lines, harmonic functions take a constant sign (by definition). Take an example: the
function h(i, j) = ij(i− j)(i+ j) is discrete harmonic for the usual Laplacian in dimension
2 (probability 1

4 to the four nearest neighbours):

(1.7) ∆h(i, j) =
1

4

(
h(i+ 1, j) + h(i, j − 1) + h(i− 1, j) + h(i, j + 1)

)
− h(i, j).

Its nodal lines are given by the two axes, the diagonal {i − j = 0} and the anti-diagonal
{i + j = 0}, see Figure 2. The same function h is also a positive harmonic function with
Dirichlet boundary condition in the octant {(i, j) ∈ Z2 : 0 6 i 6 j}. What would be the
general structure of these nodal lines?

Figure 2. Nodal domains associated to the functions ij(i− j)(i+ j) and
ij(3i4 − 10i2j2 + 3j4 − 5i2 − 5j2 + 14), which are discrete harmonic for the
operator (1.7). On the right picture, the blue cone is tangent to the nodal
lines at infinity.

Preharmonic functions and their generating functions. Let {pk,`}(k,`)∈Z2 be non-
negative weights (or transition probabilities) summing to 1, such that:
(H1) The weights are symmetric, i.e., for all k and `, pk,` = p`,k;
(H2) Weights in the positive directions should be small, i.e., pk,` = 0 if k > 2 or ` > 2,

while weights in the negative directions may be arbitrary large, see Figure 1;
(H3) If

∣∣∑ pk,`x
ky`
∣∣ = 1 and |x| = |y| = 1, then x = y = 1 (equivalently, the random

walk on Z2 with increment distribution given by the pk,` is irreducible);
(H4) The pk,` admit moments of order 2, i.e.,

∑
(k2 + `2)pk,` <∞;

(H5) The drift is zero, meaning that
∑
kpk,` =

∑
`pk,` = 0.

Consider now the associated discrete Laplacian operator (1.4), acting on complex-valued
functions h = {h(i, j)}(i,j)∈Z2 . Our aim is to describe the functions h which satisfy to:
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(H6) For all (i, j) ∈ Z2 with i 6 0 and/or j 6 0, h(i, j) = 0;
(H7) For all i, j > 1, ∆h(i, j) = 0.

Such functions are harmonic for the random walk on Z2 killed when exiting the quadrant.
The generating function of the harmonic function h is

(1.8) H(x, y) =
∑
i,j>1

h(i, j)xi−1yj−1,

and its sections are

(1.9) H(x, 0) =
∑
i>1

h(i, 1)xi−1 and H(0, y) =
∑
j>1

h(1, j)yj−1.

Finally, the kernel is

(1.10) K(x, y) = xy
(

1−
∑

pk,`x
−ky−`

)
= xy −

∑
pk,`x

−k+1y−`+1.

The kernel is a bivariate power series due to our hypothesis (H2) (even a polynomial if the
jumps are bounded) and is obviously fully characterized by the jumps {pk,`}. The function
H(x, y) satisfies the functional equation (which simply reflects the harmonicity relations)

(1.11) K(x, y)H(x, y) = K(x, 0)H(x, 0) +K(0, y)H(0, y)−K(0, 0)H(0, 0).

Main results. Equation (1.11) implies that any generating series H(x, y) of a harmonic
function has the form

(1.12) H(x, y) =
F (x) +G(y)

K(x, y)
,

for some power series F,G ∈ C[[t]] (here and throughout, given a field K, K[[t]] will denote
the set of power series in t with coefficients in K). On the other hand, not any power
series F and G are such that the right-hand side of (1.12) defines a bivariate power series
(indeed, in the case p1,1 = 0, notice that K(0, 0) = 0). From that point of view, we will
answer the following questions:

• For which power series F and G is the functionH in (1.12) a power series? (Observe
that in the case p1,1 6= 0, this is always the case, as K(0, 0) 6= 0.)
• In case the function H is a bivariate power series, is it analytic in a neighbourhood
of (0, 0)? What is the associated radius of convergence?
• Which choice of F and G guarantees that the generating function H has positive
coefficients?

In order to state our main result, we need to introduce a certain curve as well as two
related conformal mappings. This step is the basis of our entire analysis and is inspired
by the books [10, 9]. To do so, we first introduce the domain

(1.13) K = {(x, y) ∈ C2 : K(x, y) = 0 and |x| = |y| 6 1}.

As it turns out (more details are to come in Section 2), its projection along the first variable
defines a curve S1 which is closed, non-intersecting, symmetric with respect to the real
axis and contains 1; see Figure 3 for a few examples. The bounded (resp. unbounded)
domain whose boundary is S1 is denoted by S +

1 (resp. S −
1 ). Let also H + (resp. H −)

denote the interior of the right (resp. left) half-plane. Let ψ1 be a conformal mapping from
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Figure 3. The curve S1 for the simple random walk (left). It is included
in the parametric curve (2.6) with self-intersection (middle). On the
right, the parametric curve for the (non-symmetric) walk with jumps
(−1, 1), (1, 0), (0,−1). The curve S1 is the intersection with the unit disk.

S +
1 to H +, with the conditions ψ1(0) = p1,1 and ψ′1(0) > 0. Finally, introduce for any

n > 0 the polynomial

(1.14) Pn =
(
X2 − p2

1,1

)bn/2c
Xn [2],

where n [2] stands for n modulo 2. Obviously, the family {Pn}n>0 is a basis of the set of
real polynomials. The first few polynomials Pn are:

P0 = 1, P1 = X, P2 = X2 − p2
1,1, P3 = X3 − p2

1,1X, etc.

Theorem 1. For any n > 1, the function Pn(ψ1(x))−Pn(−ψ1(y))
K(x,y) defines a bivariate power

series

(1.15) Hn(x, y) =
∑
i,j>1

hn(i, j)xi−1yj−1 =
Pn(ψ1(x))− Pn(−ψ1(y))

K(x, y)
,

which satisfies the following properties:
(1) Its Taylor coefficients {hn(i, j)}i,j>1 form a discrete harmonic function for the

Laplacian operator (1.4).
(2) Hn is analytic for x, y ∈ S +

1 .
(3) Denote by hσn the continuous harmonic function as in (4.1), with σ being the

covariance matrix (1.2) associated to the transition probabilities pk,`, and set

(1.16) θ = arccos
−σ12√
σ1σ2

= arccos
−
∑
k`pk,`√∑

k2pk,`
√∑

`2pk,`
.

For x, y > 0, one has 1
mnπ/θ+1hn(bmxc, bmyc)→ hσn(x, y) as m goes to infinity, in

the sense of their Laplace transforms.

Our second main result shows that the harmonic functions hn introduced in Theorem 1
actually describe the whole space of discrete harmonic functions.
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Theorem 2. The space of discrete harmonic functions is isomorphic to the vector space
of formal power series R0[[t]] with vanishing constant term, through the isomorphism

Φ :

{
R0[[t]] −→ H(N2)∑
n>1 ant

n 7−→
∑

n>1 anhn

Various examples illustrating Theorems 1 and 2 will be given in Section 5. Let us now
describe the main features of these theorems:

• In the case p1,1 = 0, Theorems 1 and 2 imply that a function {h(i, j)}i,j>1 with
generating function H(x, y) is harmonic if and only if there exists a formal power
series F = Φ−1(h) such that

(1.17) H(x, y) =
F (ψ1(x))− F (−ψ1(y))

K(x, y)
.

In the case p1,1 6= 0, the expression of H in terms of Φ−1(h) is not so direct,
and (1.17) should be replaced by (1.12) for some functions F and G depending on
Φ−1(h) in a non-trivial way.

The different behavior of the functional equation (1.11) for a vanishing p1,1 is not
only of technical nature. Indeed, as we will see in Lemmas 14 and 15, specifying
the values of a harmonic function on the horizontal axis {(i, 1) : i > 1} uniquely
determines the harmonic function in the p1,1 = 0 case, whereas in the p1,1 6= 0 case,
one also needs to give the values of the function on the vertical axis {(1, j) : j > 1}
to fully characterize it.

However, Theorem 1 looks the same in both cases, because we choose to identify
in the case p1,1 6= 0 a particular set of harmonic functions that behave like in
the vanishing case (with respect to the assertion (3) of Theorem 1, for example).
Then, the use of power series in hn in Theorem 2 allows us to reconstruct in the case
p1,1 6= 0 all the harmonic functions from this particular set of harmonic functions.

In the framework of this article, we say that a function F characterizes a
harmonic function h if its generating function can be written as (1.17).
• Part of the results of Theorem 2 is that for any formal power series F (even with
a zero radius of convergence), the formula (1.17) defines formal power series (see
our Lemmas 12 and 13) and eventually discrete harmonic functions.
• This correspondence between harmonic functions and formal power series may be
refined as follows: writing h(i, j) = h(i,j)+h(j,i)

2 + h(i,j)−h(j,i)
2 , one may decompose

a harmonic function as a sum of a symmetric harmonic function and another
anti-symmetric harmonic function. Then in Theorem 2, symmetric (resp. anti-
symmetric) harmonic functions correspond to even (resp. odd) power series F (t) =∑

n>1 ant
n, see Section 4.4.

• In Equation (1.17), the only dependence in the model {pk,`} relies in the conformal
mapping ψ1. The fact that we may take any power series F is independent of the
model and therefore appears as a universal feature.
• It is known from [5, 28, 15] that there exists a unique function which is both
positive and harmonic for the Laplacian operator (1.4), as soon as the walk admits
moments of order high enough. We conjecture (and bring some evidence) that
this unique positive harmonic function corresponds to F (t) = t in (1.17). In this
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sense, positivity of the harmonic function corresponds to minimality in terms of
polynomial degree.

Conjecture 1. The unique (up to multiplicative factors) positive harmonic
function associated to the Laplacian operator (H1)–(H5) is h1 in Theorem 1.

• The polynomial growth of the unique positive harmonic function can be read off
on the corner point of the curve S1 at 1 (see Figure 3), or equivalently on the
singularity of the conformal mapping ψ1 at 1.
• In the article [12], optimal moment conditions are given, under which one can fully
describe the asymptotic behavior of the random walk in the quarter plane. The
authors of [12] further show by a counter-example the optimality of their moment
conditions: namely, one needs moments of order at least max{2 + ε, π/θ}, where
ε > 0 and θ is as in (1.16). In our paper, such moment conditions are not required:
we only need a moment of order 1 to impose a zero drift on the random walk
and a moment of order 2 to be able to speak about the covariance and the angle θ.
Remark that the latter condition is not even required if we are not interested in the
Assertion (3) of Theorem 1 (see Section 5.4 for an example without 2 + ε-moment
and one without π/θ-moment).

However, there are two main differences between our setting and the one of [12]:
first, we only admit positive jumps of size 1. This is a strong assumption, and
counter-examples exhibited in [12] use positive jumps of unbounded size. Second,
we only construct harmonic functions and do not describe any asymptotic behavior
of the random walk. It would be very interesting to see whether this analytical
approach allows to tackle asymptotic analysis with moment assumptions smaller
than 2.
• The vector space of harmonic functions with growth bounded by some constant g
is finite-dimensional, and amounts to taking F ∈ Cn[t] for some n related to g.
• A much weaker statement of Theorem 1 (small step random walks and only
F (t) = t) is given in [44]; see Section 5.2 for a more detailed comparison between
our approach and the one in [44].
• The conformal mapping ψ1 is uniquely characterized by the Riemann mapping
theorem. We show how to obtain its explicit expression in the small step case, as
well as in a few models with larger steps. However, in general, despite the particular
structure of the set (1.13), there is little hope to derive concrete expressions for
these conformal mappings.
• We will further explain how, given a (finite or infinite) number of boundary values,
we may construct (and give a formula for) a harmonic function h having these
values.
• Interestingly, by Theorem 2 one can transfer the algebra structure of R0[[t]] into
an algebra structure on the space of harmonic functions H(N2). Formally, the
multiplication is defined on H(N2) by the formula

h · h′ = Φ
(
Φ−1(h)Φ−1(h′)

)
, ∀h, h′ ∈ H(N2).

This implies in particular that hn ·hm = hn+m, and that H(N2) is generated as an
algebra by the (conjecturally) unique positive harmonic function h1.
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2. Study of the kernel

In this section, the main objective is the description of the set K introduced in (1.13).
To that purpose, in Section 2.1, we first recall from [10] some key properties of the two-
variable function K defined in (1.10). We also give a few elementary properties of the
curve (1.13). In Section 2.2, we prove a new result on the existence of a corner point of the
curve (1.13) and compute the associated angle. This angle turns out to be very important,
as we will prove later that it is strongly related to the growth of harmonic functions, as
stated in Theorem 1 (2).

Throughout the manuscript, C will denote the unit circle and C + (resp. C−, C +) will
stand for the interior (resp. exterior, resp. closed interior) domain, i.e., the open unit disk
(resp. the complex plane deprived from the closed unit disk, resp. the closed unit disk).
We shall also denote the bidisk by U = C + × C + = {(x, y) ∈ C2 : |x| < 1, |y| < 1}.

2.1. Preliminary results on the solutions of the kernel equation. To describe the
domain K in (1.13), remark that by (1.10) we have

(2.1) K(ηs, ηs−1) = η2 −
∑

pk,`η
−k−`+2s−k+`

when s 6= 0. For (x, y) ∈ C + with |x| = |y|, we write

(2.2) x = ηs and y = ηs−1,

with η ∈ C and |s| = 1.
The lemma hereafter presents some properties of the roots of the kernel (2.1). Remark

that in Lemma 1 below, and in many other statements as well, two cases will be considered
separately, according to whether p1,1 = 0 or not.

Lemma 1. Assume (H1)–(H5). For |s| = 1, the equation K(ηs, ηs−1) = 0 admits exactly
two solutions in C +. Moreover, the following assertions hold:

(i) If p1,1 = 0, one solution is identically zero and the other one, denoted by η(s), is
real and varies in [−1, 1]. Furthermore, η(1) = 1, η(−1) = −1 and |η(s)| < 1 for
all |s| = 1 with s 6= ±1.

(ii) If p1,1 6= 0, the two solutions, denoted by η1(s) and η2(s), are real and satisfy, for
all |s| = 1, η2(s) = −η1(−s). Further, η1(1) = 1 and η1(s) ∈ (0, 1) for all |s| = 1
with s 6= 1.

Although the proof of Lemma 1 may be found in the book [10] (see in particular [10,
Lem. 2.1]), we recall here the details, for the sake of completeness.

Proof. We first present the proof of (i). When p1,1 = 0, a term η may be factorised out of
the kernel (2.1), so one of the roots is identically equal to zero. More precisely, we have
K(ηs, ηs−1) = ηK̃(η, s), where

(2.3) K̃(η, s) = η −
∑

pk,`η
−k−`+1s−k+`.
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By Assumption (H3), one knows that if (ηs, ηs−1) is a root of K with |η| = |s| = 1, then
η = s = 1 or η = s = −1. Therefore, for all |s| = 1 with s 6= ±1, one has the following
strict inequality:

(2.4)
∣∣∣∑ pk,`η

−k−`+1s−k+`
∣∣∣ < 1 = |η|.

It readily follows from Rouché’s theorem (we use its statement as in [18, Thm 6.2]) that,
as a function of η, K̃(η, s) has a unique root in C +, denoted by η(s). Since K̃(1, s) > 0

and K̃(−1, s) 6 0, then η(s) ∈ [−1, 1], hence the root is real.
The previous argument does not work for s = ±1, because (2.4) becomes an equality at

this point. We now consider s = 1. Fix r ∈ (0, 1) and consider the series

K̃r(η) = η − r
∑

pk,`η
−k−`+1.

Rouché’s theorem yields that K̃r has a unique root ηr(1) ∈ C +. Further, Assumption (H5)
ensures that K̃r is increasing on [0, 1], with K̃r(0) = −(p1,0 +p0,1) < 0 and K̃r(1) = 1−r >
0. Moreover, ηr(1) ∈ (0, 1) and converges to 1 as r → 1. By continuity arguments, one has
η(1) = 1. At the point s = −1, notice that for all η and s, one has K̃(−η,−s) = −K̃(η, s).
This implies that η(−1) = −1.

We move to the proof of (ii). Fix |s| = 1 with s 6= 1. Since for all |η| = 1, one has∣∣∣∑ pk,`η
−k−`+2s−k+`

∣∣∣ < 1 = |η2|,

then by Rouché’s theorem, K(ηs, ηs−1) admits two roots η1(s) and η2(s) in C +. These
quantities are real, as K(ηs, ηs−1) is non-negative at 1 and −1, but negative at 0. So one
of them (say η1(s)) is positive, and the other one (η2(s)) is negative.

Looking now at the point s = 1, we set for r ∈ (0, 1)

Kr(η) = η2 − r
∑

pk,`η
−k−`+2.

Rouché’s theorem implies that Kr has two roots in C +, say η1,r(1) and η2,r(1). Notice
that Kr is positive at ±1, negative at 0, so η1,r(1) ∈ (0, 1) and η2,r(1) ∈ (−1, 0).

Since K ′r is concave on [0, 1], with K ′r(0) = −r(p1,0 +p0,1) 6 0 and K ′r(1) = 2(1−r) > 0,
there exists η0 ∈ [0, 1) such that K ′r(η0) = 0. Hence, Kr is decreasing on [0, η0], increasing
on [η0, 1], and η1,r(1) ∈ (η0, 1). As r → 1, then η1,r(1) → 1, while η2,r(1) goes to a point
in (−1, 0). Hence, K1 has two solutions in C +, which are η1(1) = 1 and η2(1) ∈ (−1, 0).

To conclude, we prove that for all |s| = 1, η2(s) = −η1(−s). Equation K(ηs, ηs−1) = 0
may be rewritten as

(2.5)

1−
∑
k+`60

pk,`η
−k−`s−k+`

 η2 − (p1,0s
−1 + p0,1s)η − p1,1 = 0.

Notice that if η(s) is a solution of (2.5), then −η(−s) is the other solution. Hence, our
claim follows. �

It is worth mentioning that in the case p1,1 6= 0, the domain (1.13) does not depend on
the choice of η1(s) and η2(s). Hereafter, we shall write η(s) for η1(s) in the case p1,1 6= 0.
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Based on Lemma 1 and using the notation just introduced, we may now properly define
the domain (1.13):

K = {(η(s)s, η(s)s−1) : |s| = 1} = {(η(s)s, η(s)s) : |s| = 1},

with the bar denoting the complex conjugation. Introduce the curves

S1 = {η(s)s : |s| = 1} and S2 = {η(s)s−1 : |s| = 1},

which are obtained by taking the projection of K along the first and second coordinates,
respectively. See Figure 3 for a few examples. Obviously, an equivalent description of S1

(as a parametrized curve) is

S1 = {(η(eit) cos t, η(eit) sin t) : t ∈ [0, 2π)},

where we recall that η(eit) is real, and that the interval [0, 2π) may be replaced by [0, π)
in the case p1,1 = 0. For example, in the case of the simple random walk, one will have

(2.6) S1 = {(1− sin t, (1− sin t) tan t) : t ∈ [0, π)},

see Figures 3 and 4. We also emphasize that if the support of the pk,` is bounded, then
the function η(s) is an algebraic function of s.

Lemma 2. Assume (H1)–(H5). The following assertions hold:
(i) If p1,1 = 0, then 0 ∈ S1 and for all |s| = 1, η(−s) = −η(s). The maps s 7→ η(s)s

and s 7→ η(s)s−1 are two-to-one from C to S1 and S2, respectively.
(ii) If p1,1 6= 0, then 0 ∈ S +

1 and for all |s| = 1, η(s) > 0 and η(s) = η(s). The maps
s 7→ η(s)s and s 7→ η(s)s−1 are one-to-one from C to S1 and S2, respectively.

(iii) The curves S1 and S2 are equal, non-self-intersecting and symmetric with respect
to the real axis. If s traverses C counterclockwise, then η(s)s traverses S1

counterclockwise and η(s)s−1 traverses S2 clockwise.

Proof. Item (iii) is a direct consequence of (i) and (ii), and we start with the proof of (i).
By Assumption (H1) and our notation (2.3), we have for s = eiλ:

K̃(η, eiλ) = η −
∑

pk,`η
−k−`+1 cos((−k + `)λ).

It is seen that if η = η(eiλ) is a root of the above function, then so is −η(−e−iλ). By
uniqueness of the solution, we must have η(s) = −η(−s).

Moving to the proof of (ii), we first have

(2.7) K(ηeiλ, ηe−iλ) = η2 −
∑

pk,`η
−k−`+2 cos((−k + `)λ),

see (2.1). It is seen that if η(eiλ) is a root of (2.7), then so is η(e−iλ). Hence, η(s) = η(s),
being both positive (see Lemma 1 and its proof). �

2.2. Corner point of the curve S1 at 1. Since it will be crucial in the next sections,
we need to study the precise shape of the curve at the point 1. It should be noted that
this single point 1 contains all the information about the growth of harmonic functions.

Throughout the paper, we write V [K] for the set of zeros of K in C2. We also recall
here that a point of V [K] is singular if and only if ∂K

∂x and ∂K
∂y simultaneously vanish at

that point.
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1

1

θ

S1

1

1

θ

S1

Figure 4. The curve S1 for the simple walk (left) and for the king walk
(right), and the definition of the angle θ. For the two models above, θ = π

2 .

Lemma 3. Assume (H1)–(H5). The curve S1 admits a corner point at 1 with interior
angle θ given by (1.16), and is smooth elsewhere. Moreover, K \ {(1, 1)} consists of non-
singular points of V [K].

In other words, the value of the angle at the corner point is given by the arccosine of
the opposite of the correlation coefficient. See Figure 4 for an illustration of Lemma 3.

Proof. We start with the case p1,1 = 0 and first prove that K \ {(1, 1)} consists of smooth
points of V [K]. Suppose that K̃(η0, s0) = 0, with |η0| < 1, |s0| = 1 and s0 6= ±1.
Then, by Weierstrass preparation theorem for analytic functions in several variables (whose
statement is recalled in Appendix A, see also [25]), there exist r > 1, a neighbourhood
V around (η0, s0) (whose projection along the second coordinate is denoted by Ps(V )), r
analytic functions g0, . . . , gr−1 on Ps(V ) vanishing only at s0 and a non-vanishing analytic
function h on V such that

K̃(η, s) = h(η, s)
(
(η − η0)r + gr−1(s)(η − η0)r−1 + · · ·+ g0(s)

)
.

Hence, for all s close to but different from s0, there are r distinct solutions to the equation
K̃(η, s) = 0. Since for s ∈ C in a neighbourhood of s0, there is a unique solution to the
equation K̃(η, s) = 0, we must have r = 1. In particular,

∂K̃

∂η
(η0, s0) = h(η0, s0) 6= 0,

and for η0 6= 0,
∂K

∂η
(η0s0, η0s

−1
0 ) = η0

∂K̃

∂η
(η0, s0) 6= 0.

Since
∂K

∂η
=
∂x

∂η

∂K

∂x
+
∂y

∂η

∂K

∂y
= s

∂K

∂x
+ s−1∂K

∂y
,
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we must have either ∂K
∂x or ∂K

∂y non-zero on K \ {(1, 1)}. For η0 = 0, it is easily seen that
∂K
∂x (0, 0) 6= 0. The claim then follows.
We move to the proof of the smoothness of the curve S1 \ {1}. Differentiating the

identity K̃(η(s), s) = 0, see (2.3), we obtain

(2.8) η′(s)
∂K̃

∂η
(η(s), s)− ∂K̃

∂s
(η(s), s) = 0.

It is seen that for |s| = 1 and s 6= ±1, η′(s) exists and is finite. Now we set s = eiλ, with
λ ∈ (0, π). Since both λ and η(eiλ) are real, then so is (η(eiλ))′. Moreover, η(eiλ) and
(η(eiλ))′ are not simultaneously zero, which leads to

(η(eiλ)eiλ)′ = eiλ
(
(η(eiλ))′ + iη(eiλ)

)
6= 0.

In other words, S1 \ {1} is smooth.
We now deal with the point (1, 1). We differentiate again (2.8) and evaluate the new

equation at s = 1, which leads to

(2.9)
(∑

pk,`(k + `)2
)
η′(1)2 +

∑
pk,`(k − `)2 = 0.

Since the equation (2.9) has two distinct solutions, then η(s) is semi-differentiable at s = 1.
Further, the solutions of (2.9) represent the left and right derivatives of η at 1. Let ∂+η(1)
denote the right derivative of η at 1, i.e.,

∂+η(1) = lim
λ→0+

η(eiλ)− η(1)

eiλ − 1
.

From Lemma 2, we know that η(eiλ)→ 1− as λ→ 0+. Hence, by (2.9), one has

∂+η(1) = i

√∑
pk,`(k − `)2∑
pk,`(k + `)2

.

We then have (
∂+η(s)s

)
|s=1 = ∂+η(1) + η(1) = 1 + i

√∑
pk,`(k − `)2∑
pk,`(k + `)2

.

This allows us to derive the interior angle θ of S1 at 1:

cos θ = 2 sin2
(
(arg ∂+η(s)s)|s=1

)
− 1 =

−
∑
k`pk,`√∑

k2pk,`
√∑

`2pk,`
.

This completes the proof in the case p1,1 = 0.
In the case p1,1 6= 0, one may apply the same arguments directly onK (instead of K̃) and

derive the smoothness of the curves. Differentiating the identity K(η(s)s, η(s)s−1) = 0,
we obtain

η′(s)
(

2η(s)−
∑

pk,`(−k − `+ 2)η(s)−k−`+1s−k+`
)

−
(∑

pk,`(−k + `)η(s)−k−`+2s−k+`−1
)

= 0.

Equation (2.9) and the rest of the proof follow in a similar way. �
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2.3. Non-existence of solutions to the kernel equation in S +
1 ×S +

1 . In this part,
we show that K(x, y) does not have any zero in the domain S +

1 ×S +
1 . This will allow

us to deduce some regularity properties of H(x, y) in the same domain, which will be used
importantly in the next sections.

Lemma 4. Assume (H1)–(H5). If (x, y) ∈ V [K] are such that |y| < |x| < 1 (resp.
|x| < |y| < 1), then x /∈ S +

1 (resp. y /∈ S +
1 ). As a consequence, K(x, y) does not have

any root in S +
1 ×S +

1 .

Proof. We first consider the case p1,1 6= 0 and set

Vx = {(x, y) ∈ V [K] : |y| < |x| < 1}.
Reasoning by contradiction, let us suppose that there exists (x, y) ∈ Vx with x ∈ S +

1 . Let
γ be a path from x to 0 which avoids S1 and any point of V [K] such that ∂K

∂x vanishes
(there are only finitely many such points). Then, there exists a path γ′ : [0, 1] → V [K]
such that γ′(0) = (x, y) and Px ◦ γ′ = γ, with Px denoting the projection along the first
variable. Hence, since p1,1 6= 0, γ′(1) = (0, y′) for some y′ ∈ C \ {0}. Since Px ◦ γ′ = γ
never meets S1, γ′ never meets K and thus γ′([0, 1]) ⊂ Vx. We should thus have |y′| < 0,
which is a contradiction.

We move to the case p1,1 = 0, for which (0, 0) ∈ K . By Weierstrass preparation theorem
(recalled here in Appendix A) and coefficient identifications, we have

K(x, y) = h(x, y)
(
y + f(x)

)
,

for (x, y) in a neighbourhood V of (0, 0), with

f(x) = x+
1 + 2p2,0 − p0,1

p1,0
x2 + o(x2).

Since 1+2p2,0−p0,1
p1,0

> 0, for x small enough with x > 0, there is a unique y ∈ C such that
(x, y) ∈ V [K] ∩ V , and moreover for x small enough

|y| = |f(x)| > |x|.
Hence, suppose that (x, y) ∈ Vx with x ∈ S +

1 , and let γ be a path from x to 0 in S +
1

avoiding any singular point of V [K] and such that γ(t) is real for t close to 1. Then, there
exists a path γ′(x) such that Px ◦ γ′ = γ. By the previous reasoning, for t close to 1 we
have |Py ◦ γ′(t)| > |Px ◦ γ′(t)|. Since γ′ is continuous, and since for t close to 0 we have
|Py ◦ γ′(t)| < |Px ◦ γ′(t)|, there exists t ∈ [0, 1) such that γ′(t) ∈ K . This contradicts the
fact that Px ◦ γ′ avoids S1. �

3. Boundary value problems for the generating functions

The main objective of this section is to prove Proposition 8, which states a BVP for
the sectional generating functions H(x, 0) and H(0, y) defined in (1.9). The polynomial
solutions to this BVP will be analyzed in Corollary 10. We first need to introduce conformal
mappings for the bounded domain delimitated by S1.

We begin with introducing some notation. Let A denote a non-intersecting curve
separating the complex plane into two domains, A + and A −. Let also f be meromorphic
in C \ A . Then for t on the curve A , f+(t) will denote limx→t,x∈A + f(x), provided it
exists. The notation f−(t) is defined similarly.
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3.1. Conformal mappings.

Lemma 5. For any a ∈ S +
1 ∩ R, there exists a unique conformal mapping π1 from S +

1

onto C + such that π1(a) = 0 and π′1(a) > 0. Moreover, π+
1 (1) = 1 and

(i) In the case p1,1 = 0, π+
1 (0) = −1;

(ii) In the case p1,1 6= 0, π1(0) ∈ (−1, 1).

Proof. The existence and uniqueness of π1 is an immediate consequence of the classical
Riemann mapping theorem.

We now prove that π1(x) = π1(x). Let χ(x) denote π1(x) and a0 denote the other
intersection (not 1) of S1 and R. Since π1(x) maps one-to-one from S +

1 onto C +, which
are both symmetric w.r.t. the real axis, then so is χ(x). Moreover, since χ(a) = π1(a) and
χ′(a) = π′1(a) > 0 (since a is real and π′1(a) > 0), then χ(x) maps conformally S +

1 onto
C + and χ = π1. This implies that π(x) ∈ (−1, 1) for all x ∈ (a0, 1). Since π1 is univalent
and π′1(a) > 0, then π1 maps one-to-one from (a0, 1) onto (−1, 1) in the same direction.
Hence, π+

1 (1) = 1 and π+
1 (a0) = −1. Since a0 = 0 in the case p1,1 = 0 and 0 ∈ (a0, 1) in

the case p1,1 6= 0, then (i) and (ii) follow. �

With π1 as in Lemma 5, we introduce

(3.1) π2(z) =
1

π1(z)
,

which maps S +
1 conformally onto C−, the exterior of the unit disk. Denote by H + (resp.

H −) the interior of the right (resp. left) half-plane and define the following mapping

(3.2) φ(z) = −z + 1

z − 1
.

It is well known that φ maps conformally C + (resp. C−) onto H + (resp. H −). We finally
introduce a few further conformal mappings:

• ψ1 = φ ◦ π1 : S +
1 →H +;

• ψ2 = φ ◦ π2 : S +
1 →H −;

• π10, π20, φ0, ψ10, ψ20 denote respectively the inverses of π1, π2, φ, ψ1, ψ2.
The following lemma presents some crucial properties of ψ10 and ψ20.

Lemma 6. We have:
(i) ψ10(∞) = 1 and ψ20(∞) = 1;
(ii) ψ20(t) = ψ10(−t) for all t ∈H −;
(iii) ψ10(t) = ψ10(t) for all t ∈H +;
(iv) ψ20(t) = ψ20(t) for all t ∈H −;
(v) ψ−20(t) = ψ+

10(t) for all t ∈ iR, i.e., ψ+
10 × ψ

−
20(iR) = K .

Proof. Item (i) follows by construction: ψ10(∞) = π10 ◦φ0(∞) = π10(1) = 1, see (3.2) and
Lemma 5. Similar computations hold for ψ20(∞).

In order to prove (ii), we show equivalently that for all x ∈ S +
1 , ψ2(x) = −ψ1(x). This

comes from the construction of π2 and φ. Indeed, for all x ∈ S +
1 ,

(3.3) ψ2(x) = φ(π2(x)) = φ

(
1

π1(x)

)
= −φ(π1(x)) = −ψ1(x),
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see (3.1) and (3.2).
We conclude by proving (v). We show equivalently that for all x ∈ S1, ψ+

2 (x) = ψ+
1 (x).

Notice that for x ∈ S1, since π+
2 (x) = 1

π+
1 (x)

= π+
1 (x), then ψ+

2 (x) = ψ+
1 (x). The proof is

complete. �

Lemma 7. The following assertions hold true:

(i) The asymptotic behavior of ψ1 around 1 is

ψ1(x) ∼ c

(1− x)π/θ
,

for some non-zero constant c and θ as in (1.16).
(ii) In the case p1,1 = 0, ψ1 can be extended analytically around 0, such that ψ1(0) = 0

and ψ′1(0) 6= 0.
(iii) In the case p1,1 6= 0, ψ1(0) > 0. Without loss of generality, we will assume that

ψ1(0) = p1,1.

Proof. We first prove (i) about the asymptotic behavior of ψ1 around 1. Recall that π10

maps conformally C + onto S +
1 and the interior angle of S +

1 at 1 is θ. Then by [42,
Thm 3.11], there exists a non-zero constant c1 such that as z → 1,

π10(z) = π10(1) + (1− z)θ/π(c1 + o(1)).

Hence as x→ 1, there exists c 6= 0 such that

π1(x) = 1 + (1− x)π/θ(1/c1 + o(1)) and ψ1(x) = φ ◦ π1(x) ∼ c

(1− x)π/θ
.

We now prove (ii). At the root (0, 0) of K(x, y), since ∂yK(0, 0) = −p1,0 6= 0, then
by the implicit function theorem ([25, Sec. B.4]), there exists a unique function Y (x)
analytic in a neighbourhood V of 0 such that K(x, Y (x)) = 0, for all x ∈ V . One
can further point out that Y (x) is a conformal mapping with V small enough, since
Y ′(0) = −∂xK(0, 0)/∂yK(0, 0) = −1 6= 0. By the description of K , one knows that
Y (x) = x for all x ∈ S1 ∩ V , and thus the image of S −

1 ∩ V under Y (x) is contained in
S +

1 (by the principle of corresponding boundaries, [18, p. 109]). Since the function

(3.4)

{
ψ1(x) if x ∈ V ∩ S+

1

ψ2(Y (x)) if x ∈ V ∩ S−1

is continuous and sectionally analytic on V , then by Morera’s theorem, ψ2(Y (x)) is an
analytic continuation of ψ1(x). Moreover, by [42, Thm 3.9], ψ′1(0) 6= 0.

We finally prove (iii). Since π1(0) ∈ (−1, 1), then ψ1(0) > 0. It is seen that if in
Lemma 5 we choose two different points a1 and a2, and consider the associated mappings
ψ1 and ψ̃10, then there exists a constant c > 0 such that ψ1 = cψ̃1. Indeed, since φ is a
conformal mapping from C + onto H +, so is cφ for any c > 0. Hence, cψ̃1 is a conformal
mapping from S +

1 onto H +. One may choose c = ψ1(a2)

ψ̃1(a2)
= ψ1(a2) > 0 and the proof is

complete. �
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3.2. Boundary value problems. We now have collected enough material to construct
a BVP, whose solutions relate to the generating functions H(x, 0) and H(0, y). For the
sake of brevity, we shall denote KH(x, 0) = K(x, 0) ×H(x, 0) and similarly KH(0, y) =
K(0, y)×H(0, y). Define a function F on C \ iR by

(3.5) F (t) =

{
KH(ψ10(t), 0)− KH(0,0)

2 if t ∈H +,

−KH(0, ψ20(t)) + KH(0,0)
2 if t ∈H −,

and recall that the notation F±(t) has been introduced at the beginning of Section 3.

Proposition 8. Assume (H1)–(H7), and assume in addition that the radii of convergence
of H(x, 0) and H(0, y) are greater than or equal to one. Then F in (3.5) is sectionally
analytic on C \ iR and more specifically, F satisfies the following BVP:

(i) F is analytic on H + and continuous on H + ∪ iR.
(ii) F is analytic on H − and continuous on H − ∪ iR.
(iii) For all t ∈ iR,

(3.6) F+(t)− F−(t) = 0.

(iv) If the associated harmonic function h is non-zero, then F (∞) =∞.

Proof. We start with the proof of (i). Since H(x, 0) is assumed to be analytic in the unit
disk, which contains S +

1 , then F is analytic on H +. Moreover, with the exception of the
point 1, the curve S1 is contained in the open unit disk, so the continuity on H + ∪ iR
follows. Item (ii) would be proved along the same lines.

We now prove (iii). By Lemma 6 (v), we have K(ψ+
10(t), ψ−20(t)) = 0 for all t ∈ iR. So

the identity (3.6) is just a consequence of the functional equation (1.11).
It remains to prove (iv). If F is bounded at infinity, then by Lemma 9 below, the function

F should be constant, and actually even identically zero by the fact that if x = y = 0,
then KH(x, 0) = KH(0, y) = KH(0, 0). �

Lemma 9. Let F be sectionally analytic on C \ iR, satisfying to (i), (ii) and (iii) of
Proposition 8. If in addition F is bounded at infinity, then F is a constant function.

Proof. Since F is sectionally analytic on C\ iR and continuous on C (F+(t) = F−(t) on iR
by (3.6)), then F is an entire function. Moreover, since F is bounded, then by Liouville’s
theorem, F is a constant function. �

3.3. Polynomial solutions to the boundary value problem. As shown in Propo-
sition 8 (iv), the solutions F to the BVP cannot be bounded at infinity for non-trivial
harmonic functions. It is thus natural to look at functions F of (polynomial) order n
at infinity, i.e., such that F (t) = O(tn), for some n > 1. Such functions will be called
polynomial solutions and are studied in this section.

Corollary 10. Given that F in (3.5) has a pole of order n > 0 at infinity, then F is a
polynomial of degree n satisfying to the following conditions:

F (p1,1) = −F (−p1,1) =
KH(0, 0)

2
= −1

2
p1,1h(1, 1).(3.7)
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We then have, for x, y ∈ S +
1 ,

KH(x, 0) = F (ψ1(x)) +
KH(0, 0)

2
,(3.8)

KH(0, y) = −F (−ψ1(y)) +
KH(0, 0)

2
,(3.9)

H(x, y) =
F (ψ1(x))− F (−ψ1(y))

K(x, y)
.(3.10)

Proof. With a proof similar to that of Lemma 9, we derive that F is an entire function.
Since F has a pole of order n at infinity, then by the extended version of Liouville’s theorem,
F is a polynomial.

The identity (3.7) is derived very naturally. First, in the case p1,1 = 0, since ψ+
10(0) = 0

(see Lemma 7) and KH(0, 0) = 0, one must have F (0) = KH(ψ+
10(0), 0) = 0. In the case

p1,1 6= 0, since ψ10(p1,1) = ψ20(−p1,1) = 0 (see again Lemma 7), one has

F (p1,1) = −F (−p1,1) = KH(ψ10(p1,1), 0)− KH(0, 0)

2
=
KH(0, 0)

2
.

Applying into the solutions the inverses of ψ10 and ψ20, which are ψ1 and ψ2, we derive
(3.8). Equation (3.10) is deduced from (3.8) together with the main functional equation
(1.11). �

4. Proof of our main results (Theorems 1 and 2)

This part is structured as follows: we successively prove Theorem 1 (1), Theorem 1 (2),
Theorem 1 (3) and Theorem 2. Finally, in the independent Section 4.4, we study some
features of symmetric and anti-symmetric harmonic functions.

4.1. Proof of Theorem 1 (1) and (2).

Proof. Let Pn be the family of polynomials introduced in (1.14) and Hn the associated
bivariate function (1.15). Let us first prove that Hn defines a bivariate power series. This
is obvious in the case p1,1 6= 0, since K(0, 0) 6= 0. We therefore assume that p1,1 = 0. In
this case Pn(t) = tn, and one can rewrite (1.15) as

Hn(x, y) =
ψ1(x)n − (−ψ1(y))n

K(x, y)
=
ψ1(x) + ψ1(y)

K(x, y)

n−1∑
k=0

ψ1(x)k(−ψ1(y))n−1−k.

By Lemma 7, ψ1 is defined on a neighbourhood of 0. Since ψ1(x) = −ψ1(y) on a
neighbourhood of (0, 0) in the one-dimensional real variety K in (1.13) (see Lemma 6
(v) and its proof), by analyticity of ψ1 we have ψ1(x) = −ψ1(y) on a neighbourhood of
(0, 0) in the one-dimensional complex variety where K(x, y) = 0.

Now recall that on a neighbourhood of (0, 0),

∂

∂y

(
ψ1(x) + ψ1(y)

)
6= 0 and

∂

∂y
K(x, y) 6= 0.

Hence, by the Weierstrass preparation theorem for analytic functions in several variables
(see Appendix A), there exist two functions u(x, y) and v(x, y) analytic in a neighbourhood
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of (0, 0) and not vanishing at (0, 0), as well as a function g(x) analytic in a neighbourhood
of 0 and vanishing at 0, such that

ψ1(x) + ψ1(y)

K(x, y)
=
u(x, y)(y − g(x))

v(x, y)(y − g(x))
=
u(x, y)

v(x, y)
.

This implies that Hn(x, y) is analytic in a neighbourhood of (0, 0), i.e., Hn(x, y) is the
generating function of a function hn on the quadrant. SinceHn satisfies the main functional
equation (1.11), hn is a harmonic function.

Since ψ1 is defined on S +
1 and K(x, y) does not have any solution in S +

1 × S +
1 by

Lemma 4, then Hn(x, y) is analytic in S +
1 ×S +

1 . The proof is complete. �

4.2. Proof of Theorem 1 (3). Our main result in this part will be stated under
Proposition 11 and appears as a refinement of Theorem 1 (3). We first introduce some
necessary notation. The Laplace transform of a discrete function f on N2 is defined as

L f(x, y) =
∞∑

u,v=0

f(u, v)e−(ux+vy).

For a measurable function f on the quadrant Q, its Laplace transform is defined by

L f(x, y) =

∫∫
[0,∞)2

f(u, v)e−(ux+vy)dudv.

Observe that the above Laplace transforms are well defined (and analytic) on H + ×H +

as soon as the growth of f at infinity is at most polynomial.
Finally, we introduce

(4.1) hσn(x, y) = =
(
(x/ sin θ + y cot θ + iy)nπ/θ

)
= gn

(
x/ sin θ + y cot θ, y

)
,

with gn(x, y) = =
(
(x+ iy)nπ/θ

)
. It is easily checked that setting

(4.2) ∆ =
∂2

∂x2
− 2 cos θ

∂2

∂x∂y
+

∂2

∂y2
,

one has ∆hσn = 0. Notice that (4.2) is exactly (1.1) with σ1 = σ2 and θ = arccos −σ12√
σ1σ2

,
see (1.16).

Proposition 11. Let hn be the harmonic function with generating function Hn defined by
(1.15), and hσn be the continuous harmonic function defined in (4.1). Then there exists a
positive constant c such that for all x, y > 0,

lim
m→∞

c

mnπ/θ+1
L hn(mx,my) = L hσn(x, y).

Before embarking into the proof of Proposition 11, we provide a few remarks on the
construction of the function hσn as introduced in (4.1). We first consider a Dirichlet problem
on the cone D = {(r cos t, r sin t) : r > 0, t ∈ (0, θ)}. Recall from our introduction that the
associated set of harmonic functions may be described as

H(D) =
{∑
n>1

angn(x, y) : an ∈ R and |an|1/n → 0
}
,

with gn as above. By the linear transformation (x, y) 7→ (x/ sin θ + y cot θ, y) from the
positive quadrant Q onto the cone D, one can transform the above problem into a problem
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on Q with corresponding Laplacian (4.2). Naturally, the set of underlying continuous
harmonic functions associated is described by (1.3).

Proof of Proposition 11. By definition of Laplace transforms and generating functions, one
has

(4.3) L hn(mx,my) =
e−(x+y)/m

m
Hn(e−x/m, e−y/m)

=
e−(x+y)/m

m

P
(
ψ1(e−x/m)

)
− P

(
−ψ1(e−y/m)

)
K(e−x/m, e−y/m)

.

Using now Lemma 7 (i), one deduces that as m→∞,

ψ1(e−x/m) ∼ c0

(1− e−x/m)π/θ
∼ c0

(x/m)π/θ
,

P
(
ψ1(e−

x
m )
)
∼ c1

((m
x

) 2π
θ − p1,1

)bn2 c (m
x

)n [2]
∼ c1

(m
x

)nπ
θ
,

where c0 and c1 are non-zero constants.
On the other hand, observe that∑

k,`

pk,`e
−
(
u(−k+1)+v(−`+1)

)
is the Laplace transform L µ(u, v) of the probability measure µ =

∑
k,` pk,`δ−k+1,−`+1

supported on N×N. Since µ admits second moments, we have as u and v go to 0 (see [23,
Ch. XIII.2, (2.5)])

L µ(u, v) = 1− µ(X)u− µ(Y )v +
1

2
·
(
µ(X2)u2 + 2µ(XY )uv + µ(Y 2)v2

)
+ o(u2 + v2),

where, using that
∑
kpk,` =

∑
`pk,` = 0, µ(X) =

∑
pk,`(−k + 1) = 1 is the first moment

of the first coordinate according to µ, similarly µ(Y ) = 1, and

µ(X2) =
∑

pk,`(−k + 1)2 = 1 +
∑

pk,`k
2,

µ(Y 2) = 1 +
∑
pk,l`

2 and µ(XY ) = 1 +
∑
pk,`k`. Hence, we have as u and v go to 0

L µ(u, v)

= 1− (u+ v) +
(u+ v)2

2
+
u2
∑
pk,`k

2

2
+ uv

∑
pk,`k`+

v2
∑
pk,``

2

2
+ o(u2 + v2).

Thus, as u and v go to 0,

e−(u+v) −L µ(u, v) =−
u2
∑
pk,`k

2 + 2uv
∑
pk,`k`+ v2

∑
pk,``

2

2
+ o(u2 + v2)

=

∑
k2pk,`
2m2

(u2 − 2uv cos θ + v2) + o(u2 + v2),
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where in the last equality we used
∑
pk,`k

2 =
∑
pk,``

2 and
∑
pk,`k` = − cos θ

∑
pk,`k

2.
Hence, we have for x, y > 0 fixed and m going to infinity

K(e−x/m, e−y/m) = e−(x+y)/m −
∑

pk,`e
−(x(−k+1)+y(−`+1))/m

= e−(x+y)/m −L µ(x/m, y/m)

= −
∑
k2pk,`
2m2

(x2 − 2xy cos θ + y2) + o

(
1

m2

)
.

Going back to (4.3), we have for some non-zero constant c2 that as m→∞,

L hn(mx,my) ∼ c2m
nπ/θ+1 (x−π/θ)n − (−y−π/θ)n

x2 − 2xy cos θ + y2
.

We now move the Laplace transform of the continuous harmonic function hσn:

L hσn(x, y) =

∫ ∞
0

∫ ∞
0

hσn(u, v)e−(ux+vy)dudv

=

∫ ∞
0

∫ ∞
0

gn(u/ sin θ + v cot θ, v)e−(ux+vy)dudv

=

∫ ∞
0

∫ ∞
v′ cot θ

gn(u′, v′)e−(u′ sin θ−v′ cos θ)x−v′y sin θdu′dv′

= sin θ

∫ ∞
0

∫ θ

0
gn(r cos t, r sin t)e−r(x sin(θ−t)+y sin t)rdtdr

= sin θ

∫ θ

0
sin
(
n
π

θ
t
)∫ ∞

0
rn

π
θ

+1e−r(x sin(θ−t)+y sin t)drdt

= Γ(nπ/θ + 2) sin θ

∫ θ

0

sin(nπθ t)

(x sin(θ − t) + y sin t)n
π
θ

+2
dt

=

Γ(nπ/θ+2) sin θ
nπ/θ+1

x2 − 2xy cos θ + y2

−x sin(θ − (nπθ + 1)t)− y sin((nπθ + 1)t)

(x sin(θ − t) + y sin t)n
π
θ

+1

∣∣∣∣∣∣
θ

0

=
Γ(nπ/θ + 2)

(nπ/θ + 1)(sin θ)nπ/θ−1

(x−π/θ)n − (−y−π/θ)n

x2 − 2xy cos θ + y2
.

One can compare the above results and the proof is then complete. �

Remark that one cannot deduce from Proposition 11 the asymptotics of hn(i, j) as n is
fixed and i + j → ∞. However, classically, Proposition 11 entails that hn is converging
locally in the L1-norm towards hσn.

4.3. Proof of Theorem 2. As a first step, we need to prove that as n increases, the
harmonic function hn in (1.15) has more and more zero coefficients, in a sense which will
be made precise in Lemma 12 (case p1,1 = 0) and Lemma 13 (case p1,1 6= 0), see also
Figure 5. Let us remark here that Lemma 13 is an a posteriori justification of our choice
of the polynomials Pn in the definition (1.14).

Lemma 12. Assuming p1,1 = 0, then hn satisfies the following assertions:
• For all i, j > 1 such that i+ j 6 n, we have hn(i, j) = 0;
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Figure 5. Illustrations of Lemmas 12 and 13. The harmonic function hn
is always zero on the axes. Left: in the case p1,1 = 0, the coefficients of hn
are zero at the blue points of the triangle, and non-zero just above (the red
points). Right: in the case p1,1 6= 0, the coefficients of hn are zero at all
blue points of a square, non-zero at the extremal red points.

• For all i, j > 1 such that i+ j = n+ 1, we have hn(i, j) 6= 0.

Proof. As in (1.15), rewrite Hn as

Hn(x, y) =
ψ1(x)n − (−ψ1(y))n

K(x, y)
=
ψ1(x) + ψ1(y)

K(x, y)

n−1∑
k=0

ψ1(x)k(−ψ1(y))n−1−k

= H1(x, y)

n−1∑
k=0

ψ1(x)k(−ψ1(y))n−1−k.

Recall from Lemma 7 that ψ1 is analytic at 0, with ψ1(0) = 0 and ψ′1(0) 6= 0. Hence, we
may write

ψ1(x) =
∑
i>1

cix
i,

with c1 6= 0. We then obtain, using the bivariate expansion of H1, that

(4.4) Hn(x, y) =
∑
i,j>1

h1(i, j)xi−1yj−1
n−1∑
k=0

(∑
i>1

cix
i

)k−∑
j>1

cjy
j

n−1−k

.

By L’Hospital’s rule, ψ1(x)
K(x,0) →

c1
p1,0
6= 0. Hence, h1(1, 1) 6= 0 and we deduce from (4.4) the

proof of Lemma 12. �

Lemma 13. If p1,1 6= 0, then h1(1, 1) 6= 0 and for k > 1 and ε ∈ {0, 1}, the harmonic
function h2k+ε satisfies h2k+ε(i, j) = 0 for all 1 6 i, j 6 k. Moreover, the following matrix
is invertible:

Tk =

(
h2k(k + 1, 1) h2k+1(k + 1, 1)
h2k(1, k + 1) h2k+1(1, k + 1)

)
.

Proof. First, the proof that h1(1, 1) 6= 0 is similar to the end of the Lemma 12. Let k > 1
and ε ∈ {0, 1}. Recall from Theorem 1 (1) that h2k+ε admits the generating function

H2k+ε(x, y) =
P2k+ε

(
ψ1(x)

)
− P2k+ε

(
−ψ1(y)

)
K(x, y)

,
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with P2k+ε(t) = tε(t2 − p2
1,1)k = tε(t2 − ψ1(0)2)k, see (1.14). Hence we have

H2k+ε(x, y) =
1

K(x, y)

(
ψ1(x)ε

(
ψ1(x)− ψ1(0)

)k(
ψ1(x) + ψ1(0)

)k
−
(
−ψ1(y)

)ε(−ψ1(y)− ψ1(0)
)k(−ψ1(y) + ψ1(0)

)k)
.

Since K(0, 0) 6= 0, 1
K(x,y) is analytic at (0, 0). Moreover, since 1

K(x,y) satisfies the functional
equation (1.11), then it is also a generating function of a harmonic function h0(i, j), i.e.,

1

K(x, y)
=
∑
i,j>1

h0(i, j)xi−1yj−1.

Since ψ1 is analytic at 0, which is in the interior of S +
1 , then it has an expansion

ψ1(x) = ψ1(0) +
∑
i>1

cix
i,

where c1 6= 0 since ψ1 is a conformal map. Therefore,

H2k+ε(x, y) =

∑
i,j>1

h0(i, j)xi−1yj−1

×
×

(∑
i>1

cix
i

)k(
ψ1(0) +

∑
i>1

cix
i

)ε(
2ψ1(0) +

∑
i>1

cix
i

)k

−

−∑
j>1

cjy
j

k −ψ1(0)−
∑
j>1

cjy
j

ε−2ψ1(0)−
∑
j>1

cjy
j

k
 .

Since h0(1, 1) 6= 0 and c1 6= 0, the bivariate power series expansion of the function above
has zero coefficients for all monomials xiyj with i, j 6 k − 1, while the coefficient of the
monomial xk is

h2k+ε(k, 1) = (2c1)kh0(1, 1)ψ1(0)k+ε = (2c1)kh0(1, 1)pk+ε
1,1

and that of yk is
h2k+ε(1, k) = (−1)ε−1(2c1)kh0(1, 1)pk+ε

1,1 .

Hence, (
h2k(k + 1, 1) h2k+1(k + 1, 1)
h2k(1, k + 1) h2k+1(1, k + 1)

)
= (2c1)kh0(1, 1)pk1,1

(
1 p1,1

−1 p1,1

)
.

The determinant of the latter matrix is 2k+1ck1h0(1, 1)pk+1
1,1 6= 0, which implies the second

statement of Lemma 13. �

Remark 1. As the proof of Lemma 13 shows, choosing instead of Pn in (1.14) the family
of polynomials

Pm,n = (X − p1,1)m(X + p1,1)n

for m,n > 1, would yield harmonic functions vanishing on the rectangle {(i, j) : 1 6 i 6
m, 1 6 j 6 n}. In particular, there is no uniqueness in the choice of Pn.
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Lemma 14. Given p1,1 = 0 and a sequence {cn}n>1, there exists a unique sequence {an}n>1

such that the (harmonic) function
∑

n>1 anhn satisfies

(4.5)
∑
n>1

anhn(i, 1) = ci, ∀i > 1.

Moreover, {an}n>1 can be deduced from the (infinite) linear system of equations

M · a = c,

where a = (a1, a2, a3, . . .)
>, c = (c1, c2, c3, . . .)

> and M is an infinite non-singular lower
triangular matrix.

By construction, the generating function of the harmonic function given in Lemma 14
is the function

H(x, y) =

∑
n>1 anψ1(x)n −

∑
n>1 an(−ψ1(y))n

K(x, y)
=
F (ψ1(x))− F (−ψ1(y))

K(x, y)
,

with F (t) =
∑

n>1 ant
n, in accordance with (1.17).

Proof. By Lemma 12, hn vanishes on (i, 1) for 1 6 i 6 n− 1 and hn(n, 1) 6= 0. Hence, the
infinite matrix

L =
(
hj(i, 1)

)
16i,j6∞

is lower triangular, with non-zero diagonal coefficients. Hence, L is invertible, and for any
vector c = (c1, c2, c3, . . .)

>, there exists a unique vector a = (a1, a2, a3, . . .)
> such that

h1(1, 1) 0 0 . . . 0 . . .
h1(2, 1) h2(2, 1) 0 . . . 0 . . .

...
...

. . . . . . . . . . . .

h1(n, 1) h2(n, 1) . . . . . . hn(n, 1)
. . .

...
...

. . . . . . . . . . . .




a1

a2
...
an
...

 =


c1

c2
...
cn
...

 .

Hence, given {cn}n>1, there exists a unique sequence {an}n>1 such that (4.5) holds. �

Lemma 15. Given p1,1 6= 0 and two infinite sequences {cn}n>1 and {dn}n>2, there exists
a unique sequence {an}n>1 such that (4.5) holds, as well as

(4.6)
∑
n>1

anhn(1, i) = di, ∀i > 2.

Moreover, {an}n>1 can be deduced from the linear system

M · a = b,

where a = (a1, a2, a3, . . .)
>, b = (c1, c2, d2, c3, d3, . . .)

> and M is an infinite block lower
triangular matrix with invertible blocks of size 1 or 2 on the diagonal.

Proof. Let τ be the involution of (N × {1}) ∪ ({1} × N) switching coordinates. The only
fixed point of τ is (1, 1). By Lemma 13, for fixed values of k > 1 and ε ∈ {0, 1}, h2k+ε

vanishes at (i, 1) and (1, i) for all i 6 k − 1, and the matrix

Tk =
(
h2k+j−1(τ i−1(k + 1, 1))

)
16i,j62
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is invertible. Likewise, h1(1, 1) 6= 0. Hence,

M =
(
hj(τ

i [2](bi/2c+ 1, 1))
)

16i,j6∞ =


h1(1, 1) 0 0 0 . . .
h1(2, 1)
h1(1, 2)

T1 0 . . .

...
... T2 . . .

...
...

...
. . .

 ,

with each Ti invertible. ThusM is invertible and for any vector b = (c1, c2, d2, c3, d3, . . .)
>,

there exists a unique vector a = (a1, a2, a3, . . .)
> such that M · a = b. For such a vector a,

we thus have conditions (4.5) and (4.6) satisfied. �

Putting all the latter lemmas together yields the proof of Theorem 2, as follows:

Proof of Theorem 2. Let Φ be the function as in the statement of Theorem 2. First notice
that by Lemma 12 when p1,1 = 0 and Lemma 13 for p1,1 6= 0, the map Φ is well defined,
since for any sequence {an}n>1 and all i, j > 1,

∑
n>1 anhn(i, j) is a finite sum and the

harmonicity of
∑
anhn is directly inherited by the harmonicity of each hn.

Suppose first that p1,1 > 0. By Lemma 15, Φ is injective, and for any pair of formal
power series F,G with F (0) = G(0), there exists a sequence {an}n>1 such that

F (x) =
∑
i>1

∑
n>1

anhn(i, 1)xi−1 and G(y) =
∑
j>1

∑
n>1

anhn(1, j)yj−1.

Since any harmonic function h is uniquely determined by its sectional generating functions

(4.7) F (x) =
∑
i>1

h(i, 1)xi−1 and G(y) =
∑
j>1

h(1, j)yj−1

through (1.11), this shows the surjectivity of Φ.
The proof is more involved in the case p1,1 = 0. By Lemma 14, Φ is injective. It remains

to show that Φ is surjective. Let h be a harmonic function and set F as in (4.7). Then,
by Lemma 14, there exists {an}n>1 such that

∑
anhn(i, 1) = h(i, 1) for all i > 1. Hence,

the formal power series F (x) and

F̃ (x) = K(x, 0)
∑
i>1

(∑
n>1

anhn(i, 1)

)
xi−1

coincide. Let H be the generating series of h and H̃ the generating series of
∑
anhn. Then

we have

H(x, y) =
F (x) +G(y)

K(x, y)
and H̃(x, y) =

F̃ (x) + G̃(y)

K(x, y)
=
F (x) + G̃(y)

K(x, y)
,

with G, G̃ ∈ R[[t]]. Since K(0, 0) = 0 and ∂
∂xK(0, 0) 6= 0, by the Weierstrass preparation

theorem (see Appendix A) applied to K(x, y) with respect to x in the ring of formal power
series R[[x, y]], one can write

K(x, y) = u(x, y)(x− v(y)),

with u invertible in R[[x, y]] and v ∈ R[[y]] satisfying v(0) = 0. In particular, F (x) +G(y)

and F (x) + G̃(y) are both divisible by (x− v(y)) in R[[x, y]].
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By the Weierstrass division theorem (see Appendix A) applied to the division of F (x) by
the Weierstrass polynomial of degree one x−v(y) in R[[x, y]], there is a unique Weierstrass
polynomial G of degree zero in R[[x, y]] (namely, G ∈ R[[y]] with G(0) = 0) such that
G(y) + F (x) is divisible by x − v(y). Hence, G(y) = G̃(y) and H = H̃. This shows the
surjectivity of Φ. �

4.4. Symmetric and anti-symmetric harmonic functions.

Proposition 16. The harmonic function h(i, j) is symmetric (resp. anti-symmetric) if
and only if its characterizing series F (t) = Φ−1(h) is odd (resp. even).

Proof. It is seen that h(i, j) is symmetric (resp. anti-symmetric) if and only if H(x, 0) =
H(0, x) (resp. H(x, 0) = −H(0, x)).

First, in the case where H is of type (3.8), the identity H(x, 0) = H(0, x) is equivalent
to F (ψ1(x)) = −F (−ψ1(x)). This implies that h(i, j) is symmetric if and only if F (t) is an
odd function. The second statement in the anti-symmetric case would be proved similarly.

By (1.14), Pn is odd for n odd and even for n even, thus by the previous reasoning hn is
symmetric for n odd and anti-symmetric for n even. We deduce then from Theorem 2 that
Φ(F ) is symmetric if F is odd and anti-symmetric if F is even. Since the vector subspace
of odd power series and the one of even power series are complementary in R0[[t]], the
result is deduced. �

5. Various examples

In this part, we provide a list of models for which one may compute the conformal map ψ1

explicitly. We start with the example of simple random walks (Section 5.1). For this model,
all generating functions happen to be rational functions, and most of the computations are
rather easy to lead. We then move to arbitrary small step random walks (Section 5.2)
and obtain an expression for the conformal mapping in terms of generalized Chebychev
polynomials. Finally, we construct of family of walks with arbitrary large jumps, in relation
with plane bipolar orientations, for which one has a simple (algebraic) formula for the
conformal mapping (Section 5.3). We use this family of examples to construct harmonic
functions for certain transition probabilities without second moment (Section 5.4), going
beyond the classical literature on the topic.

5.1. The simple random walk. We present here a first example, which is the simple
random walk with transition probabilities p1,0 = p0,1 = p−1,0 = p0,−1 = 1/4, see Figure 1
and (1.7) for the associated Laplacian operator. The kernel takes the form

K(x, y) = xy

(
1− x+ y + x−1 + y−1

4

)
= −x(y − 1)2

4
− y(x− 1)2

4
.

Curve and conformal mappings. Setting (x, y) = (ηs, ηs−1) and solving (in η) the equation
K(x, y) = 0, one easily obtains

S1 =

{
is
s− i
s+ i

: s = eit, t ∈ [0, π)

}
,

which we may rewrite as

S1 = {(1− sin t, (1− sin t) tan t) : t ∈ [0, π)},
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as announced in (2.6). See Figures 3 and 4. One can choose a conformal mapping π1 as

π1(x) =
x− (x− 1)2

x+ (x− 1)2
.

Indeed, π1 is analytic in S +
1 and for all x = η(eit)eit ∈ S1,

π1(x) =
−(x+ 1

x) + 3

(x+ 1
x)− 1

=
1 + 2i sin2 t

cos t

1− 2i sin2 t
cos t

∈ C .

With the conformal mapping φ defined in (3.2), we finally obtain

(5.1) ψ1(x) = φ ◦ π1(x) =
x

(1− x)2
.

Polynomial harmonic functions. Using Equations (1.17) and (5.1), one has

H(x, y) =
F
(

x
(1−x)2

)
− F

(
− y

(1−y)2

)
K(x, y)

.

Writing X = x
(1−x)2

, Y = y
(1−y)2

and G(t) = −4F (t), one may rewrite the above equation
more symmetrically, as

(5.2) H(x, y) =
XY

xy

G(X)−G(−Y )

X + Y
.

In particular, applying (5.2) with G(t) = t, we have

H1(x, y) =
1

(1− x)2(1− y)2
=
∑
i,j>1

ijxi−1yj−1.

Recall that h(i, j) = ij is the unique positive harmonic function for this model (unique up
to multiplicative factors).

Characterization of the positive harmonic function. As explained in Section 4, the general
Martin boundary theory implies that in the framework of this paper, there is a unique
positive harmonic function, which in our construction corresponds to taking F as a one-
degree polynomial in Theorem 2. However, we don’t have any direct proof of this general
fact, except precisely for the simple random walk, for which explicit, and in our opinion
instructive computations may be done.

More specifically, the question we would like to address here is the following: prove
that for all polynomials G(t) =

∑k
m=1 amt

m with degree k > 2, there exists at least
one coefficient of H(x, y) in (5.2) above which is negative (and in fact infinitely many
coefficients are then negative).

We first look at the case when G is a monomial. If G(t) = t2k, then one has
H(x, y) = −H(y, x) (see (5.2)) and thus H must admit negative coefficients in its Taylor
expansion, as the function itself takes negative values. The more interesting case is
G(t) = t2k+1. However, for a future use, we look at general (meaning non-necessarily
odd) exponents, i.e., G(t) = tk, for some k > 1. Then with (5.2) one has

H(x, y) =
1

xy

∑
i+j=k+1
i,j>1

(−1)j−1XiY j .
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Moreover, as n→∞, one has

[xn]Xi ∼ n2i−1

(2i− 1)!
.

So for large values of p and q,

[xp+1yq+1]H(x, y) ∼
∑

i+j=k+1
i,j>1

(−1)j−1 p2i−1

(2i− 1)!

q2j−1

(2j − 1)!

= pq
∑

i+j=k−1
i,j>0

(−1)j
p2i

(2i+ 1)!

q2j

(2j + 1)!
.

Consider now the general case where G(t) is a polynomial
∑k

m=1 amt
m, with ak 6= 0,

and take (p, q) = (r1, r2)n, where r1, r2 are positive integers and n tends to infinity. Using
the above estimate, we have

[xp+1yq+1]H(x, y) ∼ n2kr2k−1
1 r2

∑
i+j=k−1
i,j>0

(−1)j
(r2/r1)2j

(2i+ 1)!(2j + 1)!
.

Replacing r2/r1 by x, our question is therefore equivalent to prove that for any fixed integer
k > 2, there exists x ∈ (0,∞) such that∑

i+j=k−1
i,j>0

(−1)j
x2j

(2i+ 1)!(2j + 1)!
< 0.

To that purpose, we first observe that∑
i+j=k−1
i,j>0

(−1)j
x2j

(2i+ 1)!(2j + 1)!
=

(1 + ix)2k − (1− ix)2k

2(2k)!ix

=
1

(2k)!x
=((ix+ 1)2k)

=
(1 + x2)k

(2k)!x
sin(2k arctanx).

Clearly, given k > 2 one may fix x ∈ (0,∞) such that the above is negative. More precisely,
this function admits k − 1 sign changes.

A related example: the king walk. We continue with the king walk, which by definition (see
the second example on Figure 1) admits the kernel

K(x, y) = xy

(
1− xy + x+ xy−1 + y−1 + x−1y−1 + x−1 + x−1y + y

8

)
.

As the simple walk, its unique positive harmonic function is given by h(i, j) = ij. However,
this example is a bit different as we now have p1,1 6= 0. A few computations starting from
the kernel yield

S1 =

{
u(t)−

√
u(t)2 − 4

2
eit : t ∈ [0, 2π)

}
,
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where u(t) = − cos t +
√

12− 3 cos2 t. This curve is drawn on Figure 4. Computations
similar to that of the simple walk lead to the following rather simple expressions for the
conformal mappings:

π1(x) =
3x

x2 + x+ 1
and ψ1(x) =

x2 + 4x+ 1

(1− x)2
.

Using Equation (1.17) with F (t) = t/16 , then one can recover the generating function of
the positive harmonic function:

H1(x, y) =
F (ψ1(x))− F (−ψ1(y))

K(x, y)
=

1

(1− x)2(1− y)2
=
∑
i,j>1

ijxi−1yj−1.

Similar computations would lead to other harmonic functions.

5.2. Symmetric small step random walks and comparison between the analytic
approaches of [10] and [21, 44]. In this part, we look at the class of symmetric, small
step random walks, meaning that pk,` = 0 as soon as |k| > 2 or |`| > 2. As illustrated by
our bibliography, this class of models has been (and is still) widely studied in the literature,
the main reason being that the zero set of the kernel is, in this case, a Riemann surface of
genus 0 or 1, opening the way to explicit parametrizations in terms of rational or elliptic
functions.

Here our main objective is twofold: first, we will derive an expression of the conformal
mapping ψ1 for small step random walks, see Proposition 17. Doing so, we will introduce
some tools from complex analysis, which are close to the analytic approach developed in
[21, 44]. As a second step, we will compare the analytic approach used in this paper
(inspired by [10]) with the one of [21, 44].

Explicit expression for the conformal mapping ψ1. We first introduce a function Ta(x) that
generalizes the classical Chebyshev polynomials of the first kind, obtained when a ∈ N.
This function is defined for x ∈ C \ (−∞,−1] by

(5.3) Ta(x) = 2F 1

(
−a, a;

1

2
;
1− x

2

)
,

where 2F 1 is the Gauss hypergeometric function. Then Ta admits the following expansion,
valid for |x− 1| < 2:

Ta(x) =
∑
n>0

a

a+ n

(
a+ n

2n

)
2n(x− 1)n.

When a ∈ N, then the above sum ranges from 0 to a, and Ta(cos t) = cos(at), by definition
of the classical Chebychev polynomial. Another useful formula, valid for x in C\(−∞,−1),
is

Ta(x) =
1

2

((
x+

√
x2 − 1

)a
+
(
x−

√
x2 − 1

)a)
.

Proposition 17. Assume (H1)–(H5) and the small step hypothesis. Let θ as in (1.16) and

µ(x) =
µ0x− µ1

2(x− 1)
,

with µ0 and µ1 defined by (5.4). Then the conformal map ψ1 may be chosen such that

ψ1(x) = 2Tπ/θ(µ(x)),
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1

1

S1

x1

∞

∞

1

ω(s)σ(x)

x(s)

∞

∞
2

Figure 6. The conformal mapping for the simple random walk: σ(x) maps
conformally S +

1 \ [x1, 1] (the light blue domain) onto the cone, and ω(s)
maps conformally the cone onto the right half-plane H +.

where Tπ/θ is the generalized Chebyshev polynomial (5.3) with a = π/θ.

We now prove Proposition 17. The main idea of the proof is borrowed from [21, Sec. 6.5],
see also [44]. For driftless, small step random walks, the zero set of the kernel

{(x, y) ∈ (C ∪ {∞})2 : K(x, y) = 0}

is a Riemann surface of genus 0, which can thus be parametrized with rational functions.
As it turns out, the curves S1 and S2 become particularly simple in the uniformizing
variable, from what we will deduce an expression for the conformal map.

Before stating the rational uniformisation of the above Riemann surface, we introduce a
few notations. First, the kernel (1.10) may be rewritten as K(x, y) = a(x)y2 +b(x)y+c(x),
where  a(x) = −(p−1,−1x

2 + p0,−1x+ p1,−1),
b(x) = −(p−1,0x

2 − x+ p1,0),
c(x) = −(p−1,1x

2 + p0,1x+ p1,1).

Let also d = b2 − 4ac denote the discriminant of K(x, y) in y. It is seen that d has degree
3 or 4, and that 1 is a double root. In the case where d has degree 3 (resp. 4), then the
remaining root is denoted by x1 (resp. the remaining roots are denoted by x1 and x4). It
has been proved in [21] that x1 ∈ [−1, 1) and x4 ∈ (1,∞) ∪ (−∞,−1]. In the case of d
having degree 3, we will denote x4 =∞. Now put s0 =

2−(x1+x4)+2
√

(1−x1)(1−x4)

x4−x1 ,

s1 =
x1+x4−2x1x4+2

√
x1x4(1−x1)(1−x4)

x4−x1 ,

as well as (with θ defined in (1.16))

(5.4) µ0 = s0 +
1

s0
, µ1 = s1 +

1

s1
, ρ = e−iθ.

We may now state the rational uniformization; for a proof, we refer to [19, Sec. 2.3].

Lemma 18. One has

{(x, y) ∈ (C ∪ {∞})2 : K(x, y) = 0} = {(x(s), y(s)) : s ∈ C ∪ {∞}},
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where

x(s) =
(s− s1)(s− 1

s1
)

(s− s0)(s− 1
s0

)
and y(s) =

(ρs− s1)(ρs− 1
s1

)

(ρs− s0)(ρs− 1
s0

)
.

Moreover, the above rational functions admit the involutions x(s) = x(1/s) and y(s) =
y(1/(ρ2s)).

Then the set of complex points where |x| = |y| (of which K in (1.13) is a subset) is very
simple, as in the s variable, it becomes simply the line ei

θ
2R. More precisely, defining the

cone

E + = {reiχ : r > 0 and χ ∈ (0,
θ

2
)},

one has the following result, which is illustrated on Figure 6:

Lemma 19. The function x(s) is one-to-one from ei
θ
2R+ onto S1. Moreover, x(s) is a

conformal mapping from E + onto S +
1 \ [x1, 1].

Proof. The crucial fact is that x(s) maps one-to-one from H + onto the whole plane C cut
along some segment. Depending on the value of x4, x(s) maps one-to-one from H + onto

• C \ [x1, x4] if x4 > 1 or x4 =∞;
• C \ ([x1,∞) ∪ (−∞, x4]) if x4 < −1.

We first prove that x(s) maps one-to-one from eiθ/2R+ onto S1. Indeed, for a point
s = rei

θ
2 with r > 0, one has

=
(
φ(x(s))

)
=

2(r + 1
r ) cos θ2 − (µ0 + µ1)

µ1 − µ0
>

4 cos θ2 − (µ0 + µ1)

µ1 − µ0
> 0,

where the last inequality follows from a direct computation. This means that |x(s)| < 1.
Combining with the facts that x(s) = y(s) and (x(s), y(s)) is a root of K(x, y), we deduce
that x(s) ∈ S1 for all s ∈ ei

θ
2R+. The one-to-one property between the two curves then

follows. To conclude, it is easy to check that x(s) also maps one-to-one [0, 1] (resp. [1,∞))
onto [x1, 1]. Hence, x(s) maps one-to-one from E + onto S1 \ [x1, 1]. �

Let σ(s) denote the inverse mapping of x(s):

(5.5) σ(x) =
µ0x− µ1

2(x− 1)
+

√(
µ0x− µ1

2(x− 1)

)2

− 1.

The branch cut of the square root in (5.5) is chosen such that σ(s) maps conformally
S +

1 \ [x1, 1] onto E +.
Now consider the following mapping

ω(s) = sπ/θ + s−π/θ,

which maps conformally E + onto H + \ [2,∞). It is seen that ω ◦ σ(s) maps conformally
S +

1 \ [x1, 1] onto H + \ [2,∞) (see Figure 6). In fact, in the following lemma, a stronger
statement can be deduced.

Lemma 20. The function ω ◦ σ maps conformally S +
1 onto H +.
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Proof. By the specific form of ω ◦ σ, we know that ω ◦ σ is analytic in S +
1 . Moreover,

since ω ◦ σ is univalent on S +
1 \ [x1, 1], then it remains to prove that ω ◦ σ is injective on

[x1, 1). This is true since σ (with suitable branch) maps one-to-one [x1, 1) onto [1,∞) and
ω maps one-to-one [1,∞) onto [2,∞). Therefore, ω ◦ σ is univalent on S +

1 . The proof is
complete. �

End of the proof of Proposition 17. We use Lemma 20 together with the expressions for
ω(s) and s(x). �

Comparison between the analytic approaches of [10] and [21, 44]. Both approaches start
with the same functional equation (1.11), and, as a second step, introduce subsets of C2

where this equation may be evaluated. The approaches differ in the choice of these subsets:
• In [10] (which we choose to follow in the present work), this subset is chosen to be

K in (1.13) (where we recall that |x| = |y| 6 1);
• On the other hand, the set in [21] is x ∈ [x1, 1] (then y = Y (x) is a solution to the
kernel equation, and x1 is the branch point introduced in the previous section).

In both cases, the method continues by stating (and solving) a BVP for the generating
functions on curves obtained from the subsets above.

This short recap shows that the unique, but major difference in the two approaches lies
in the choice of the domain of evaluation. Both choices are equally natural for small step
random walks. However, the main advantage of the choice of [10] is that the domain K
may be defined without any difficulty for models admitting arbitrary big negative jumps,
as in our paper. On the contrary, we did not find any canonical way to extend the definition
of the segment [x1, 1] for large step models1. Let us also underline the x↔ y symmetry of
the domain K , while this symmetry is broken when taking x ∈ [x1, 1] (indeed x is then
real and y becomes non-real).

Finally, as shown above, in the case of small steps, the two approaches are very similar:
our curve S1 corresponds to the line ei

θ
2R+, while the curve [x1, 1] would correspond to

R+; one passes from one curve to the other simply by multiplying by a complex number.

5.3. A family of random walks with larger steps. Consider the model whose jumps
and weights are given by

(5.6) pk,` =

{
z if (k, `) = (1, 1),
zr if k + `+ r = 0,

where the zr satisfy (so that the pk,` are transition probabilities summing to 1)

(5.7) z +
∑
r

(r + 1)zr = 1

and (so as to have a zero drift, see our hypothesis (H4) in Section 1)

(5.8) z =
∑
r

zr
r(r + 1)

2
.

1For small step models, there is only one branch point interior to the unit disk (see again the previous
section), so x1 appears as the only possible choice. However, the number of branch points being increasing
with the amplitude of the big jumps, it is not clear at all in general what segment, or what union of
segments might replace [x1, 1] in general.
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Figure 7. On the left: the model studied in Section 5.3. It is inspired by
a similar (non-symmetric) model analyzed in [31, 6], displayed on the right
picture.

See Figure 7. For example, choosing z = z1 = 1
3 and all other zr = 0 leads to Kreweras’

step set {(1, 1), (−1, 0), (0,−1)} with uniform weights.
Let us remark that the model (5.6) is not always irreducible. More precisely, it is

reducible if and only if all steps (k, `) have even size (by which we mean that all coordinate
sums k+` are even). Although our irreducibility assumption (H3) is not satisfied in general,
we will show how to apply our main results in this slightly modified framework.

Our motivation to look at this particular family of model comes from bipolar orientations
on planar maps, which, as shown in the papers [31] and [6], are in close correspondence with
the model of walks confined to the first quadrant as on the right of Figure 7. Then our model
(on the left on the same picture) is just obtained through a horizontal symmetry, so as in
particular to have a model symmetric in the first diagonal. Because of the connection with
bipolar orientations, both models represented on Figure 7 admit a very strong structure,
which the results in this section will also illustrate.

Introduce

(5.9) ρ(x) = z

√
I0(x)− I0(t)

I0(x)− I0(1)
,

where the function I0, introduced in [6], takes the value

I0(x) = x+
z

x
−
∑

zrx
r+1,

where t is the unique real point of S1 apart from 1, and where the branch cut of the square
root function in (5.9) is chosen on R−. Equivalently, t is characterized by

(5.10) I ′0(t) = 0 and t ∈ (−1, 1),

as it easily follows from (5.11) below. Our main result is the following:

Proposition 21. The map ρ in (5.9) is a conformal map from S +
1 to H +, sending 0

to z.

The remainder of this section has the following structure: we will first provide the proof
of Proposition 21, and then give a few consequences of it.
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Proof of Proposition 21. We start by noticing that for x 6= y,

K(x, y) = xy − z − xy
∑

zr
yr+1 − xr+1

y − x

=
xy

y − x

(
y − x− z

x
+
z

y
−
∑

zr(y
r+1 − xr+1)

)
=

xy

y − x
(
I0(y)− I0(x)

)
,

and for x = y

(5.11) K(x, x) = x2 − z −
∑

(r + 1)zrx
r+2 = x2I ′0(x).

Denote P1 = C ∪ {∞}.

Lemma 22. If (x, y) ∈ K , then I0(x) = I0(y) ∈ R, and the map (x, y) 7→ I0(x) is two-
to-one from K to an interval [a, b] of R, with a = I0(t) < 0 and b = I0(1) > 0. Moreover,
I0 maps the curve S +

1 onto P1 \ [a, b].

Proof. Note first that if x = y, then the condition x = y implied by the symmetry of K
yields x = ±1, which implies I0(x) ∈ R. The point (1, 1) always belongs to K , and so
does (−1,−1) if and only if the walk is reducible (which, we recall, happens when all steps
have even size).

If x 6= y, the above expression of K yields I0(x) = I0(y). Since I0 has real coefficients
and y = x, we also have I0(x) = I0(x) = I0(x), and I0(x) ∈ R.

By the equality K(x, x) = x2I ′0(x), see (5.11), we get that I ′0(x) = 0 if and only if
K(x, x) = 0. By Rouché’s theorem, for h ∈ (0, 1), the map

Kh(x) = x2 − h
(
z +

∑
(r + 1)zrx

r+2
)

has exactly two zeros in the unit disk, which are real. Hence, letting h go to one yields that
x 7→ K(x, x) has at most two real zeros in the unit disk, plus eventual additional zeros
on the unit circle. Moreover, K(x, x) cannot vanish on the unit circle except at −1, 1;
this follows from (H3) in the irreducible case, and would follow from a similar argument
in the reducible case. By the study of x 7→ K(x, x) on [−1, 1] done in Section 2, there are
only two zeros at the two real points of S1, one being 1 and the other one being strictly
negative (since p1,1 > 0). Hence, I ′0(x) vanishes only at the two real points of S1. Since
I0(x) = I0(x), we deduce that I0 is two-to-one from S1 to an interval [a, b] of R. Since
z >

∑
zr, we deduce that I0(1) > 0 and I0(t) < 0, where t is the unique real point of S1

apart from 1 (recall that t is negative by Lemma 2).
Since I0 is analytic on S +

1 and continuous on the closure S +
1 ,

∂
(
I0(S +

1 )
)
⊂ I0(∂S +

1 ) = I0(S1) = [I0(t), I0(1)] = [a, b].

Hence, P1\[a, b] ⊂ I0(S +
1 ). Let x ∈ S +

1 \R. Then, I0(x) 6∈ [a, b], for otherwiseK(x, x) = 0
which would contradict the fact that x 6∈ S1. On R∩S +

1 , x2I ′0(x) = K(x, x) < 0, thus I0

is increasing. Since I0(0) =∞, we deduce that I0(R ∩S +
1 ) = (R \ [a, b]) ∪ {∞}, and thus

I0(S +
1 ) = P1 \ [a, b]. �



36 VIET HUNG HOANG, KILIAN RASCHEL, AND PIERRE TARRAGO

End of the proof of Proposition 21. First, we directly check that ρ(0) = z
√

1 = z. Further,
since

z 7→
√
z − a
z − b

maps conformally P1 \ [a, b] to the right half-plane H +, we deduce from Lemma 22 that ρ
in (5.9) is analytic from S +

1 to H +. As a second step, we will prove that ρ is continuous
and one-to-one from S1 to [a, b]. As a direct consequence, ρ will be conformal from S +

1
to H +, thereby concluding the proof of Proposition 21.

We thus show that ρ extends by continuity to an injective map from S1 to [a, b] ⊂ R.
Suppose that {xn}n>1 converges to ξ ∈ S1 with =ξ > 0. Then, by continuity of the
function I0, I0(xn) → I0(ξ). Since I ′0(x) < 0 for x ∈ [t, 1] and I0([t, 1]) ⊂ R, we deduce
that =I0(x) < 0 for x in a neighbourhood of [1, t] in iH +. Taking into account that
I0(S +

1 ∩iH +) ⊂ C\R (for otherwise it would meet S1), we have I0(S +
1 ∩iH +) ⊂ −iH +.

Hence, I0(xn)→ I0(ξ) ∈ [a, b] while staying in −iH +. This implies that
I0(xn)− a
I0(xn)− b

= 1 +
b− a

I0(xn)− b
→ I0(ξ)− a

I0(ξ)− b
,

while being after some rank in iH +. Thus, ρ(xn) goes towards iz
√

I0(ξ)−a
b−I0(ξ) , where

√
I0(ξ)−a
b−I0(ξ)

is the unique positive root of X2 = I0(ξ)−a
b−I0(ξ) .

Similarly, if {xn}n>1 converges to ξ ∈ S1 with =ξ < 0, then ρ(xn) goes to −iz
√

I0(ξ)−a
b−I0(ξ) .

Hence, we can extend ρ by continuity to S1 with the value

ρ(ξ) = ±iz

√
I0(ξ)− a
b− I0(ξ)

if ξ ∈ ±iH +.

Notice that the above formula still holds when ξ ∈ R, with ρ(1) =∞ and ρ(t) = 0. Since
I0 is two-to-one from S1 to [a, b] except at t and 1, we deduce that ρ is injective on S1. �

Applications of Proposition 21. Theorem 1 directly yields the following explicit expression
for the harmonic functions hn as introduced in (1.15).

Proposition 23. Let t as in (5.10). Then, for each n > 1, the power series expansion at
(0, 0) of the bivariate series

Hn(x, y) =

(y − x)zn
((

I0(x)−I0(t)
I0(x)−I0(1)

)n/2
+ (−1)n−1

(
I0(y)−I0(t)
I0(y)−I0(1)

)n/2)
xy
(
I0(y)− I0(x)

)
defines a harmonic function hn for the Laplacian operator associated to the model (5.6).

Observe that for all even values of n > 1, Hn is a rational function (when the jumps are
bounded).

For Kreweras’ model, I0(x) = x+ 1
3x −

x2

3 . Hence, I ′0(x) = 1− 1
3x2
− 2x

3 , which admits
the unique root t = −1

2 in (−1, 1). Hence, after some computations, ρ in (5.9) simplifies
into

(5.12) ρ(x) =
1 + 2x

3

√
1− x/4
(1− x)3

,



CONSTRUCTING DISCRETE HARMONIC FUNCTIONS IN WEDGES 37

and we have for example

H1(x, y) =
(1 + 2x)

√
1−x/4
(1−x)3

+ (1 + 2y)
√

1−y/4
(1−y)3

3xy
(
1− 1

3( 1
xy + x+ y)

)
= − 1

18

(
1 +

27

16
x+

27

16
y +

567

256
x2 + 3xy +

567

256
y2 + · · ·

)
.

We also have

H2(x, y) = −9

4

x− y
(1− x)3(1− y)3

= −9

4

(
x− y + 3x2 − 3y2 + · · ·

)
.

As a second example, consider z = 1
2 , z2 = 1

6 and all other zr = 0. Then the curve
admits the parametrization

(5.13) S1 =

 1√
1 + 2√

3
sin t

eit : t ∈ [0, 2π)

 ,

see Figure 8. In this case, the conformal mapping takes the form

(5.14) ρ(x) =
1

2

√
(3− x)(1 + x)3

(3 + x)(1− x)3
.

Some universality results. The following result shows that the family studied in this section
has a universal behavior:

Lemma 24. For any choice of parameters z and zr in (5.6) satisfying to (5.7), (5.8) and∑
r r

4zr <∞, we have θ = 2π
3 .

Observe that the hypothesis
∑

r r
4zr < ∞ is equivalent to our moment assumption

(H4). Moreover, Lemma 24 is equivalent to the following statement: under the exact same
assumptions (as in Lemma 24), the conformal mapping ρ introduced in (5.9) admits for
|x| < 1 close to 1 the expansion

(5.15) ρ(x) = (1− x)−3/2 ·
(
c+ o(1)

)
,

where c 6= 0. See (5.12) and (5.14) for two examples. The above expansion comes from
(5.6) together with the fact that in the neighbourhood of 1,

(5.16) I0(x) = I0(1) + (x− 1)3 ·
(
c′ + o(1)

)
,

where c′ is a non-zero constant.
Using classical singularity analysis starting from Proposition 23 and Equation (5.15), a

consequence on the (conjecturally) positive harmonic function h1(i, j) is that as i goes to
infinity,

(5.17) h1(i, 1) ∼ c · i1/2,
where c is some positive constant. This holds under the assumptions of Lemma 24.

Using [12] and assuming that
∑

r r
4+εzr < ∞ for some ε > 0, we know that as both i

and j go to ∞ in some angular direction j/i→ tan γ with γ ∈ (0, π/2), we have

(5.18) h1(i, j) ∼ cγ ·
(√

i2 + j2
)3/2

,
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with cγ > 0, but we are not able to deduce this joint asymptotics from Proposition 23 and
bivariate singularity analysis.

Proof of Lemma 24. First, one easily computes∑
k,`

k2pk,` = z +
∑
r>1

zr

r∑
k=1

k2 = z +
∑
r>1

r(r + 1)(2r + 1)

6
zr.

Similarly, one has ∑
k,`

k`pk,` = z +
∑
r>1

r(r − 1)(r + 1)

6
zr.

Using (5.8), one deduces that
∑

k,` k
2pk,` = 2

∑
k,` k`pk,`, so that θ = arccos(−1

2) = 2π
3 by

(1.16). Similar computations are performed in [6, Lem. 8.1]. �

5.4. An example with less moments. We first recall the general condition under which
the positive harmonic function is constructed in [12]: in dimension 2, it is assumed that
the transition probabilities admit moments of order 2 + δ (with δ > 0) if p = π

θ 6 2 and
of order p if p > 2. In this part, we would like to explore random walks with jumps as in
(5.6), but without second moment, meaning that

∑
r r

4zr =∞.
We first introduce our parameters z and zr. Given ε > 0, we define

(5.19) C(ε) =
2

ζ(1 + ε) + 3ζ(2 + ε) + 2ζ(3 + ε)
,

where ζ denotes the classical Zeta Riemann function. We further define

(5.20) z =
C(ε)

2

(
ζ(1 + ε) + ζ(2 + ε)

)
and zr =

C(ε)

r3+ε
.

It is easy to verify that for this choice of weights, (5.7) and (5.8) are satisfied. Moreover,
we check that for any a < 1 + ε, the random walk has moments of order a. In particular,
if ε > 1 then we have moments of order 2, which is the classical framework of the paper
(notice that in this case, p = 3

2 = π
θ ).

The new, interesting case corresponds to ε ∈ (0, 1], for which the second moment is
infinite. Our first remark is that it is still possible to construct the harmonic functions,
following the exact same steps leading to Proposition 23. To our knowledge, this is the
first time that harmonic functions are constructed beyond the classical hypothesis of [12].
We thank the referee for suggesting us this possibility.

We can actually go further, and give some properties related to the growth at infinity
of these harmonic functions. Indeed, in the classical case, the polynomial growth 3

2 of the
harmonic function (see (5.18)) is directly related to the power 3 in the expansion (5.16).
It is thus natural to see what now replaces (5.16) when the second moment does not exist.
We will prove the following:

(5.21) I0(x) = I0(1) +

{
(x− 1)3 log(1− x) ·

(
c1 + o(1)

)
if ε = 1,

(1− x)2+ε ·
(
cε + o(1)

)
if ε ∈ (0, 1),

where cε, ε ∈ (0, 1], is a non-zero constant. The above equation exhibits a phase transition
when the moment assumption varies. We are not able to deduce from (5.21) a joint
bivariate asymptotics for the associated harmonic function h(i, j) as both i and j tend to



CONSTRUCTING DISCRETE HARMONIC FUNCTIONS IN WEDGES 39

1

1

θ = 2π
3

S1

Figure 8. The curve S1 in (5.13), for the model (5.6) with jumps z = 1
2 ,

z2 = 1
6 and all other zr = 0. As proved in Lemma 24, the value 2π

3 of the
angle at 1 is a general fact for the family studied in this section, under some
moment assumptions.

infinity, but a classical univariate singularity analysis gives the following estimate, which
generalizes (5.17):

(5.22) h1(i, 1) ∼ cε

{
i1/2 · log1/2 i if ε = 1,

iε/2 if ε ∈ (0, 1),

where again cε denotes some positive constant.

Proof of Equation (5.21). The function I0 may be expressed in terms of the classical
polylogarithm function

Lis(x) =
∑
k>1

xk

ks
,

the behavior of which near 1 being well known. Precisely, using our notation (5.19), one
may write

I0(x) = x+
z

x
− C(ε)xLi3+ε(x),

from which (5.21) follows. �
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Appendix A. Weierstrass’ preparation and division theorems

We recall here two important results in the study of analytic functions or formal power
series in several variables. We will only state these results in the case where two variables
are involved, even if they hold for an arbitrary (finite) number of variables. Let K[[x, y]]
denote the formal ring of power series in two variables, with coefficients in the field K.
Recall that f ∈ K[[x, y]] is invertible in K[[x, y]] if and only if the constant term of f is
non-zero. We will denote by K[[x]][y] the set of polynomials in y with coefficients being
power series in x.

Definition 1. A Weierstrass polynomial with respect to y of degree n is a polynomial
P ∈ K[[x]][y] of degree n with leading coefficient equal to 1 and with non-invertible lower
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coefficients. In other words, P can be written as

P (x, y) = yn + Fn−1(x)yn−1 + · · ·+ F0(x),

with F0, . . . , Fn−1 ∈ K[[x]] such that Fi(0) = 0 for all 0 6 i 6 n− 1.

Then, we have the following main results, respectively called Weierstrass preparation
theorem and Weierstrass division theorem.

Theorem 3 (Weierstrass preparation theorem). Suppose that f ∈ K[[x, y]] is non-
invertible and that for some k > 1, the coefficient in yk of f is non-zero. Then there
exist a unique Weierstrass polynomial P with respect to y and an invertible element of
K[[x, y]] such that

f = hP.

If f is the germ of an analytic function at (0, 0), then h and P are also germs of analytic
functions at (0, 0).

Theorem 4 (Weierstrass division theorem). Suppose that f ∈ K[[x, y]] and P is a
Weierstrass polynomial of degree n with respect to y. Then there exist a unique pair (q,R)
with q ∈ K[[x, y]] and R a Weierstrass polynomial with respect to y of degree less than n
such that

f = qP +R.

If f and P are germs of analytic functions at (0, 0), then q and R are also germs of analytic
functions at (0, 0).
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