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ABSTRACT
The success of H I intensity mapping is largely dependent on how well 21-cm foreground contamination can be controlled. In
order to progress our understanding further, we present a range of simulated foreground data from two different ∼3000 deg2

sky regions, with varying effects from polarization leakage. Combining these with cosmological H I simulations creates a range
of intensity mapping test cases that require different foreground treatments. This allows us to conduct the most generalized
study to date into 21-cm foregrounds and their cleaning techniques for the post-reionization era. We first provide a pedagogical
review of the most commonly used blind foreground removal techniques [principal component analysis (PCA)/singular value
decomposition (SVD), fast independent component analysis (FASTICA), and generalized morphological component analysis
(GMCA)]. We also trial a non-blind parametric fitting technique and discuss potential hybridization of methods. We highlight
the similarities and differences in these techniques finding that the blind methods produce near equivalent results, and we explain
the fundamental reasons for this. Our results demonstrate that polarized foreground residuals should be generally subdominant
to H I on small scales (k � 0.1 h Mpc−1). However, on larger scales, results are more case dependent. In some cases, aggressive
cleans severely damp H I power but still leave dominant foreground residuals. We find a changing polarization fraction has
little impact on results within a realistic range (0.5–2 per cent); however, a higher level of Faraday rotation does require more
aggressive cleaning. We also demonstrate the gain from cross-correlations with optical galaxy surveys, where extreme levels of
residual foregrounds can be circumvented. However, these residuals still contribute to errors and we discuss the optimal balance
between overcleaning and undercleaning.

Key words: methods: data analysis – methods: statistical – cosmology: observations – large-scale structure of Universe – radio
lines: general.

1 IN T RO D U C T I O N

Mapping the cosmic neutral hydrogen (H I) from the post-
reionization era is as an excellent way to probe the large-scale
structure of the Universe. By mapping the redshifted 21-cm signal
from H I residing within galaxies, the underlying 3D matter density
can be inferred and cosmological information can be extracted,
in a similar fashion to optical galaxy surveys. A novel technique
allowing to do this is intensity mapping (Bharadwaj et al. 2001;
Battye, Davies & Weller 2004; Chang et al. 2008).

In this work, we focus on so-called single-dish intensity mapping
(Battye et al. 2013), which uses the autocorrelation data of a telescope
array [e.g. the Square Kilometer Array (SKA) – SKA Cosmology
(SWG et al. 2020)], as opposed to the more traditional interferometric
mode of operation. Unlike a conventional spectroscopic galaxy
survey that has to resolve galaxies and conduct spectroscopy to
infer a redshift with sufficient precision, intensity mapping does

� E-mail: s.cunnington@qmul.ac.uk

not resolve galaxies but records the diffuse, unresolved H I. This has
the advantages of being able to rapidly observe very large volumes
of the Universe, and is not as susceptible to high levels of shot-
noise. The resulting maps have a relatively low-angular resolution
due to the radio telescope beam, which is related to the dish diameter
for single-dish observations. This damps the H I power spectrum
for modes perpendicular to the line of sight but despite this, many
large cosmological scales can still be resolved. Furthermore, the
spectroscopic resolution in these radio observations is excellent and
thus modes can in principle be resolved to very small scales along
the line of sight (Villaescusa-Navarro, Alonso & Viel 2017).

There are unique challenges to H I intensity mapping which
conventional galaxy surveys largely avoid. Whilst intensity mapping
is unlikely to be limited by shot noise, there is instrumental (thermal)
noise. Assuming enough observation time, and a well controlled
system temperature, this noise should be sub-dominant relative to
the H I signal and well approximated as Gaussian white noise. As
noted in Harper et al. (2018), complications from other systematics
such as 1/f noise pose a more complex challenge. However, analysis
of recent H I intensity mapping data from MeerKAT suggest this
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should be a controllable systematic (Li et al. 2020a). A further issue
is contamination from human-made Radio Frequency Interference
(RFI) such as global navigation satellites (Harper & Dickinson 2018).

Another major challenge, and the focus of this paper, is foreground
contamination from astrophysical sources and how they interact with
the telescope. The main source of 21-cm foreground signals comes
from Galactic synchrotron (sourced by cosmic ray electrons accel-
erated by the Galactic magnetic field), free–free emission (sourced
by free electrons scattering off ions largely within our Galaxy but
weaker emission can also come from extragalactic sources), and
point sources [extragalactic objects emitting strong radio signals e.g.
active galactic nuclei (AGNs)].

Some of these foregrounds can be orders of magnitude more
dominant than the H I signal, but their spectrum evolves slowly
through frequency. This is in contrast to cosmic H I, which varies with
redshift and thus oscillates to a near-Gaussian approximation with
frequency. The fact that the raw foregrounds are smooth continuums
through frequency means they can in principle be removed with
modelling or source separation (Liu & Tegmark 2011; Wolz et al.
2014; Alonso et al. 2015; Shaw et al. 2015). However, large-
scale foreground signals typically have some degeneracy with the
cosmological H I, and require some form of treatment in order not
to bias power spectra measurements and cosmological parameter
estimation (Wolz et al. 2014; Cunnington, Camera & Pourtsidou
2020b; Soares et al. 2021).

In reality, the challenge of separating the H I signal from the
foregrounds becomes even more complicated by the foreground’s
response to the instrument. Unless instrumental effects from spectral
response and chromaticity from the beam are controlled, the spectral
smoothness of the foregrounds can be degraded. The most potentially
concerning instrumental effect is from polarization leakage (Jelic
et al. 2008, 2010; Moore et al. 2013). Cosmological H I is unpolarized
and thus attempts are made to sufficiently calibrate telescopes to
avoid polarized signals (Liao et al. 2016). However, a sufficient level
of calibration is not guaranteed and even a small amount of polarized
synchrotron leaking into the observational data can dominate the
H I signal. Furthermore, the Faraday rotation (FR) that interferes
with the polarization state is expected to be frequency dependent,
which means these leaked signals will not have such a smooth
spectrum and will be harder to single out (Carucci, Irfan & Bobin
2020a).

Previous investigations into foreground cleaning generally involve
introducing a single set of foreground simulations which cleaning
techniques can then be tuned to. However, these rarely include
instrumental response effects such as polarization leakage (although
there are some exceptions e.g. Shaw et al. 2015; Carucci et al.
2020a). These idealized simulated foregrounds require much less
aggressive cleans than what is usually needed in real data analyses
from pathfinder intensity mapping experiments (Masui et al. 2013;
Switzer et al. 2013; Wolz et al. 2017, 2021; Anderson et al. 2018).

In this work, we add an extra layer of complication. Whilst
we cannot yet provide full end-to-end simulations that directly
mimic a realistic experiment, we are able to present results where
it is necessary to use aggressive foreground cleans akin to those
employed in real data. By using two different sky regions, with
varying polarization leakage effects, we create a variety of cases
in which different levels of foreground cleaning are required and
different problems arise. We introduce and apply a range of different
foreground cleaning methods and compare the results. Since we are
dealing with simulations, we have full control over the data and
provide analysis into problems concerning damping of H I power as
well as the biases and errors introduced from foreground residuals.

This paper is structured as follows. In Section 2, we present our
foreground simulations, the sky regions we consider, and the different
cases of polarization leakage. In Section 3, we present our method for
producing the underlying cosmological H I intensity maps (and the
accompanying optical galaxy data for cross-correlations) that we aim
to recover. We provide a generalized review of foreground cleaning
methods in Section 4 and identify the exact methods we apply to our
simulated data. We then present our results in Section 5 and conclude
in Section 6.

2 FO R E G RO U N D SI M U L AT I O N S

We begin by identifying two different regions on the sky. We desire
each of our regions to have the same size which is dictated by the
size of our 1 h−3 Gpc3 H I simulation box (to be described in detail in
Section 3). At the central redshift of this simulation (z = 0.39) these
dimensions are equivalent to a sky size of 54.1 × 54.1 ∼ 2972 deg2.
This is similar to the sky area proposed in MeerKLASS (Santos et al.
2017), a wide area survey using the MeerKAT telescope, which is the
pathfinder for the Square Kilometre Array (SKA)1 (SKA Cosmology
SWG et al. 2020). We choose a frequency range of 899−1184 MHz
(0.2 < z < 0.58), again consistent with a MeerKAT-like observation
performed in the L band. The sky regions we investigate are:

(i) [1] Stripe 82: A small, 300 deg2 field imaged numerous times
by galaxy surveys. To ensure consistency in sky sizes, this region is
a 2927 deg2 patch centred on the Stripe 82 field.

(ii) [2] South Celestial Pole (SCP): Low declination region away
from Galactic Plane where combined emission from all foregrounds
is expected to be low.

These regions are outlined in Fig. 1 on the full sky (top-map)
and individually shown in the flattened maps below. We assume the
maps are sufficiently small in size that they can be projected on to a
Cartesian grid with minimal distortion. For each of these regions, we
simulate effects from polarization leakage, which we discuss further
in Section 2.4.

The total observed temperature data are a combination of the
cosmological H I signal, the foregrounds, and instrumental noise, all
binned into pixels whose position is defined by θ at each frequency
channel ν

δTobs(ν, θ ) = δTHI(ν, θ ) + δTFG(ν, θ ) + δTnoise(ν, θ ). (1)

In this work, we will vary δTFG between each region whilst keeping
the other components fixed. The foreground signal can be further
decomposed into the contributions from the different sources of
foregrounds i.e. Galactic synchrotron emission, Galactic free–free
emission, extragalactic point sources, and polarization leakage:

δTFG = δTsyn + δTfree + δTpoint + δTpol. (2)

We introduce our simulation approach for each of these components
in this section (except the H I contribution that is discussed in
Section 3). A full-sky realization of δTFG is openly available in
Carucci, Irfan & Bobin (2020b).

We chose the frequency range 899−1184 MHz and separate this
range into 285 measurement bands. The effective resolution is
determined by the beam size of the instrument which is dependent on
the frequency ν and therefore each channel is smoothed by a different
amount. However, foreground removal algorithms (discussed in
Section 4) perform better on data with a common resolution. We

1skatelescope.org
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210 S. Cunnington et al.

Figure 1. (Top map): Full sky simulated synchrotron, free–free emission,
and point sources with an 80 arcmin resolution. The labelled black boarders
indicate the position of both sky regions we investigate. (Middle two maps):
Both regions interpolated over a 2562 pixel grid. For comparison, the bottom-
left map shows the Galactic plane (position marked by the dashed outline in
the top map) which is orders of magnitude higher in emission. Bottom-right
is the cosmological H I (introduced in Section 3.1) which we overlay on to
both regions [1] and [2] and attempt to recover. All maps are at 1050 MHz
and include the effects from a 1.67 deg telescope beam.

therefore smooth the intensity maps to a constant beam size given
by the minimum frequency νmin = 899 MHz. The full width half-
maximum (FWHM) of the beam is given by

θFWHM = 1.18c

νDdish
. (3)

where c is the speed of light and we assume a dish size of
Ddish = 13.5 m, which is the size of MeerKAT’s dishes and is
approximately equivalent to the SKA-MID’s dishes too. The factor
of 1.18 can vary depending on the beam pattern but we chose this
value to be consistent with the recent MeerKAT investigations in
Matshawule et al. (2020). From equation (3), we therefore get an

effective resolution for our maps of θFWHM = 1.67 deg. We chose to
create our simulations at Nside = 2048 and then to interpolate our
54.1 × 54.1 patches on to 256 × 256 pixel arrays.

We make use of the Planck Legacy Archive2 FFP10 simulations
within our simulations and, as they are given in TCMB, the following
conversion to the Rayleigh–Jeans regime is used:

TRJ = x2ex

(ex − 1)2
TCMB, (4)

where x = h ν/kB TCMB, with h the Planck constant and kB the
Boltzmann constant.

2.1 Simulated synchrotron emission

We use the FFP10 simulations of synchrotron emission at 217 and
353 GHz for our purposes as these maps are provided at Nside = 2048.
These maps are formed from the source-subtracted and destriped
0.408 GHz map (Remazeilles et al. 2015). Despite the 0.408 GHz
survey data having a resolution of 56 arcmin, Remazeilles et al.
(2015) provide an Nside = 2048 version of the data by filling in the
higher resolution detail with a Gaussian random field.

These 217 and 353 GHz synchrotron maps can be used to deter-
mine the synchrotron spectral index map at Nside = 2048. The spectral
index map used by FFP10 is the ‘Model 4’ synchrotron spectral index
map of Miville-Deschênes et al. (2008), which has a resolution of
∼5 degrees. This map was formed from 0.408 GHz intensity data
and 23 GHz polarization data. However, as we are simply trying to
determine the accuracy of our foreground mitigation strategies, the
accuracy of the synchrotron spectral index map does not come into
consideration.

We will however, need a higher resolution view of the synchrotron
spectral index than 5 deg and so we also choose to fill in the
higher resolution detail with a Gaussian random field. Taking the
synchrotron multipole scaling relation from Santos, Cooray &
Knox (2005), our Nside = 2048 synchrotron spectral index map is
constructed as

βsy = βmodel4 + βss, (5)

where

C
βss
� = 7 × 10−6

(
1000

�

)2.4 (
ν2

r

ν1ν2

)2.8

exp

(−log(ν1/ν2)2

2 × 42

)
, (6)

where νr is 130 MHz, ν1 is 580 MHz, and ν2 is 1000 MHz. Our
Gaussian random field is identical to that found in Santos et al.
(2005) with the exception of the amplitude, which we alter to suit
the magnitude of the synchrotron spectral index as opposed to the
emission amplitude. We then smooth βsy to 1.67 deg in order to
match the desired resolution of our total simulation maps.

2.2 Simulated free-free emission

We take our simulated free–free amplitude (aff) from the FFP10
217 GHz free–free simulation at Nside = 2048. This map is a com-
posite of the Dickinson, Davies & Davis (2003) free–free template
and the WMAP MEM free–free templates; the details of which can
be found in (Miville-Deschênes et al. 2008). Our free–free emission
is modelled by a power law

Tff(ν, θ ) = aff(θ )

(
ν

ν0

)βff

, (7)

2pla.esac.esa.int/pla
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where the free–free spectral index is β ff = −2.13 and constant across
all map pixels.

2.3 Simulated point sources

We use the empirical model of Battye et al. (2013), which fits a
polynomial to a selection of radio source counts at 1.4 GHz. The
specific details of assembling this model of the Poisson and clustering
contributions at 1.4 GHz can be found in Olivari (2018). Following
the method of Olivari et al. (2018), we then scale the 1.4 GHz point
source map to our frequencies using a power law where the spectral
index varies following a Gaussian distribution centred at −2.7, with
a standard deviation of 0.2.

Battye et al. (2013) expect point sources over 10 mJy to be
bright enough to be identified within the National Radio Astronomy
Observatory Very Large Array Sky Survey (Lacy et al. 2020) and
so, removed. In this work, we consider a 100 mJy upper bound on
source extraction.

2.4 Simulated polarization leakage

The magnetic fields within our Galaxy’s interstellar medium can
cause FR effects which change the polarization angles of light. If
this were a consistent effect, it would not be hugely problematic
for foreground classification. However, FR is a frequency-dependent
effect as demonstrated by Jelic et al. (2010) and Moore et al. (2013).
If any spectrally fluctuating polarization intensity is leaked into the
total intensity it would be difficult to subtract without large loss
to the unpolarized H I cosmological modes. Depending on both the
instrument and the data reduction scheme implemented, there will be
some percentage of leakage of Stokes Q and U synchrotron emission
into Stokes I. FR alters the true polarization angle of the Stokes Q/U
signal such that this leakage will not remain constant across all the
observational channels.

We simulate this instrumental effect with the use of the CRIME3

software, which provides maps of Stokes Q emission at each fre-
quency with a choice for the polarization leakage fraction, typically
between 0.5 and 1 per cent (Liao et al. 2016). Further observational
data analysis would be needed to constrain a reasonable choice for
this fraction so we therefore explore a range of polarization leakage
fractions. Details for the rotation calculation of the Stokes Q syn-
chrotron emission from Faraday depth measurements (Oppermann
et al. 2012) are given in Alonso, Ferreira & Santos (2014).

We highlight that the polarization leakage model, we use has
many limitations. For example, it assumes that all the leakage
comes from just the Q Stokes component and not U, reducing
possible mixtures; it uses rotation measures of extragalactic sources
(Oppermann et al. 2012), corresponding to the maximum rotation
from a single source; it does not account for multiple Faraday rotating
components along a single line of sight. These issues could give
rise to a more complex structure for this systematic. However, at
present, the community lacks a better model than what has been
proposed by Alonso et al. (2014). Shaw et al. (2015) also assembled
a polarization leakage model using the rotation measure map of
Oppermann et al. (2012), however, showing a qualitatively different
structure in pixel space. The two polarization leakage models differ
in their choices of polarization fraction magnitude and correlation
length in frequency space. Both models are valid within the current
knowledge of intensity mapping polarization leakage. The lack

3intensitymapping.physics.ox.ac.uk/CRIME.html

Figure 2. Polarization leakage maps from CRIME for the both regions
averaged along the line of sight. The yellow-black markers indicate the
positions of the random pixels used for each of the δTpol line-of-sight spectra
in the below Fig. 3.

of smoothness in frequency is what makes polarization leakage a
challenging component to separate. Therefore, to be conservative,
we decide to make use of our simulated polarization leakage both in
its milder regions and the most troublesome one, where a higher FR
causes increased decorrelation (or a lack of smoothness). For each of
the two sky regions we look at, we therefore provide two polarization
leakage cases; one predicted by the CRIME model for that region,
and a second from the CRIME output for the Galactic plane (see
dashed boarder in Fig. 1). The latter stronger model of polarization
leakage, we refer to as our high-FR case.

Fig. 2 shows the output maps for the polarization leakage compo-
nent from CRIME for our two regions. The SCP regions contain
slightly higher amplitudes than Stripe82, however, as discussed
above, the main problem that polarization leakage introduces is
frequency decoherence. In Fig. 3, we show the spectra for some
random lines of sight in the polarized maps (coloured-solid lines).
We find the Stripe82 region contains more oscillating spectra in
this polarization model and we therefore expect this to be the more
troublesome regions in our foreground tests. We also include in Fig. 3
the spectra from random lines of sight in the high FR case we use
(data from the Galactic plane), shown as coloured-dashed lines. We
can see for this case, the oscillations are more extreme and when
these are incorporated into the total observed signal they will cause
more frequency decoherence and represent the most challenging case
for foreground cleaning.

2.5 Simulated noise

In this work, only Gaussian noise is considered, with a zero mean
and standard deviation of

σ (ν) = Tsys(ν)

(
δν ttot

	p

	a
Ndish

)−1/2

, (8)

where δν is the width of each frequency band (Hz), ttot is the total
survey time (s), Ndish is the number of dishes, and 	p/a are the pixel
and survey solid angle, respectively (Alonso et al. 2014). For the pixel
solid angle only the beam FWHM expressed in radians is required

	p = 1.13 θ2
FWHM, (9)

while for the survey solid angle the fraction of the sky covered is
needed. If the angular area of the observed sky (Asky) is given in
square degrees, we have

	a = 4π
Asky

41253
. (10)
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212 S. Cunnington et al.

Figure 3. Spectra for the different components of the the observed signal.
Grey-solid line shows the total foreground component (equation 2) for one
random line-of-sight and black-dashed line shows H I-only. Smoothness of
the foregrounds and their large amplitude relative to the H I is clear and are
the distinguishing features utilized in a foreground clean. The solid-coloured-
thin lines show six random lines of sight for the polarized contribution. The
positions of these lines of sight in angular space are marked in Fig. 2. The
polarized components cause a decoherence to the spectra creating difficulties
in a foreground clean. We also show the polarized data taken from the Galactic
plane (dashed-coloured-thin lines) which we refer to as a high FR case.

Table 1. The assumed receiver and survey properties for observation with
bandwidth 899 < ν < 1184 MHz (0.2 < z < 0.58).

Quantity: δν ttot Ndish Trec Asky

Value: 1 MHz 1000 h 64 25 K 2927 deg2

The system temperature in each band (Tsys(ν)) is a combination of
the receiver noise temperature (Trec) and the sky temperature (Santos
et al. 2015):

Tsys(ν) = 1.1 × 60

(
300

ν[MHz]

)2.55

+ Trec. (11)

The specific receiver and survey properties used here are based on a
MeerKLASS-like survey and are summarized in Table 1.

3 C O S M O L O G I C A L S I M U L AT I O N S

We use the same simulated cosmological H I signal data for each
sky region. Specifically, we make use of the MULTIDARK-PLANCK

cosmological N-body simulation (Klypin et al. 2016), which evolved
38403 dark-matter particles in a 10003 h−3 Mpc3 volume with the
adopted cosmology complying with PLANCK15 (Planck Collabora-
tion XIII 2016). The cosmological parameters used are therefore
	M = 0.307, 	b = 0.048, 	� = 0.693, σ 8 = 0.823, ns = 0.96,
and Hubble parameter h = 0.678. This data have been processed

into the MULTIDARK-GALAXIES data (Knebe et al. 2018), which are
galaxy catalogues publicly available from the Skies and Universes
web page.4 It is from these catalogues that we build the simulated H I

intensity maps and an overlapping map of resolved optical galaxies.
Each snapshot from the MULTIDARK-GALAXIES simulation rep-

resents a different redshift and evolved state of the cosmological
density field and the galaxies therein. We opt to use the catalogues
at z = 0.39 and take this as the effective redshift (zeff) for our
data. This is analogous to real surveys assuming a central effective
redshift provided that the width of the bin is small enough so that
cosmological quantities can be assumed constant within it.

We still need to assume some redshift range, however, since we
require a frequency range from which to produce the foregrounds. We
therefore assume our data has redshift range of 0.2 < z < 0.58, which
for the H I intensity maps with ν = 1420 MHz/(1 + z), will convert
to a frequency range of 899 < ν < 1184 MHz. This frequency range
is probed with the L band from the MeerKAT telescope and is thus
representative of a near-term intensity mapping survey (Santos et al.
2017).

The MULTIDARK data we use are for a Cartesian box with galaxy
coordinates in physical distances. We thus work in this Cartesian
regime throughout this investigation. This is common practice in
large-scale structure surveys, where either a small enough sky is
surveyed that a flat-sky approximation is valid, or where curved sky
effects are accounted for (Blake, Carter & Koda 2018; Castorina &
White 2018). At the effective redshift zeff = 0.39, the redshift range
of 0.2 < z < 0.58 we assume for our data converts to a physical
distance of 925 h−1 Mpc. We therefore trim the MULTIDARK data
cube to this distance along one dimension, keeping the others the
same. This results in a data cube with physical size Lx, Ly, Lz =
1000, 1000, 925 h−1 Mpc where we use the convention that x and y
are the angular dimensions perpendicular to the line of sight and z is
parallel to the line of sight. We use the plane-parallel approximation
throughout. The data cube is gridded into volume-pixels (voxels),
with nx = ny = 256 along the angular dimensions and nz = 285
along the radial dimension. The choice of radial binning allows
the 899 < ν < 1184 MHz frequency range, we assume to have a
frequency resolution of δν = 1 MHz. As we have already mentioned,
the approximate sky coverage of our data is just under 3000 deg2,
which is fairly representative of proposed intensity mapping surveys
like MeerKLASS (Santos et al. 2017).

3.1 H I intensity maps

To produce the intensity maps from the MULTIDARK data we utilize
the catalogue produced from applying the SAGE (Croton et al. 2016)
semi-analytical model to the data. We summarize our method below
for how we produce the intensity maps from the MULTIDARK-SAGE

catalogue. For a more complete description of this process, we
refer the reader to Cunnington et al. (2020a), where an identical
methodology was employed. The MULTIDARK-SAGE catalogue is
fully outlined in (Knebe et al. 2018).

First, the cold gass mass for each galaxy is converted into an H I

mass, which is then binned into the relevant voxel according to the
galaxy’s coordinates. This gridded H I mass is then converted to an
H I brightness temperature TH I(x). Since intensity mapping surveys
will detect signal down to the very faintest of emitters, it is common
in simulations to rescale the TH I temperature of the field up to a
realistic (expected) value. This is required because simulations have

4www.skiesanduniverses.org
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21-cm foregrounds: cleaning and mitigation 213

finite capabilities and often do not resolve haloes down to masses of ∼
108 h−1M� where H I is still predicted to reside (Villaescusa-Navarro
et al. 2018; Spinelli et al. 2020). To determine this value, we utilize
the results of the GBT-WiggleZ cross-correlation analysis (Masui
et al. 2013), where it was found that the H I abundance is 	H IbH Ir =
[4.3 ± 1.1] × 10−4, and assume it is constant with redshift. We also
take the cross-correlation coefficient to be r = 1 and use an H I bias
fit from Villaescusa-Navarro et al. (2018). For our effective redshift
this equates to bH I(zeff) = 1.105.

Lastly, in order to emulate the effects from the radio telescope
beam, we smooth each channel using θFWHM = 1.67 deg (as dis-
cussed in Section 2). The observable field for intensity mapping is
the overtemperature field defined as

δTH I(z) = TH I(z) − 〈TH I〉 = 〈TH I〉 bH I(z) δM(z), (12)

where δM(z) is the underlying matter density. We have shown an
example H I intensity map in the bottom-right panel of Fig. 1 for one
frequency channel at 1050 MHz.

3.2 Overlapping optical galaxy data

We also utilize the MULTIDARK-GALAXIES for creating an overlapping
optical spectroscopic catalogue, which we will use for investigating
cross-correlating techniques between H I intensity maps and optical
galaxy data. For this purpose, we use the SAG (Cora 2006) semi-
analytical model; that is because this catalogue has magnitude
outputs for each of the SDSS ugriz broad-bands, which can be utilized
to construct a realistic optical galaxy data set.

Whilst the MULTIDARK-SAG catalogue does also possess the cold
gas mass outputs, and therefore could have also been used to produce
the intensity maps, it has fewer galaxies (∼3.8 × 107) compared
with the MULTIDARK-SAGE catalogue (∼7 × 107) at the snapshot
redshift of z = 0.39. We prefer using MULTIDARK-SAGE for the
intensity maps because it has a higher number of galaxies. Since
both SAGE and SAG catalogues are generated from the same
underlying MULTIDARK simulated density field, they should still
produce sufficient cross-correlation signals. The MULTIDARK-SAG
catalogue is fully outlined in (Knebe et al. 2018).

Optical galaxy surveys generically operate by constructing a
catalogue of resolved galaxies whose luminosity is above some
threshold determined by the telescope’s sensitivity. As a rather crude
emulation of this method, which is sufficient for this investigation,
we use the sum of the magnitudes from the five SDSS ugriz bands
and select the highest total magnitudes from the simulation until a
target N(z) redshift distribution is achieved. Following Mandelbaum
et al. (2011), we construct a realistic target distribution by assuming
a double Gaussian where 77.6 per cent of the galaxies are in the
first Gaussian and the remaining 22.4 per cent are in the second
Gaussian. The Gaussian’s are centred at 〈z〉 = 0.595 and 〈z〉 =
0.558 with standard deviations of σ z = 0.236 and σ z = 0.112,
respectively. Since we are simulating a spectroscopic redshift galaxy
sample, we assume all redshifts have been measured correctly to
the precision required for correct binning into our Cartesian grid.
Imposing the redshift bin limits for our simulated survey of zmin =
0.2 and zmax = 0.58 provides the redshift distribution. We then finally
stipulate that 2 × 106 galaxies will be detected in the optical survey.
The overdensity field for the optical galaxies is given as

δg(z) = ng(z) − 〈ng〉
〈ng〉 = bg(z) δM(z), (13)

where bg is the linear bias for the optical galaxy field. For these simu-
lated galaxy maps and the simulated H I intensity maps (presented in

Section 3.1) we checked that both measured power spectra, and their
cross-correlation, are modelled well by commonly used anisotropic
redshift space clustering models (see e.g. Soares et al. 2021), thus
validating their use as our underlying cosmological data.

4 M E T H O D S FO R F O R E G RO U N D C L E A N I N G

Here, we discuss some of the most popular and well-studied ap-
proaches to 21-cm foreground cleaning. Our focus in this work is
on single-dish observations, in the context of cosmological analysis
and we are therefore ultimately trying to optimize a power spectrum
measurement. All foreground removal methods aim to utilize the fact
that the foreground contributions are slowly varying with frequency
(unlike cosmological H I) and are orders of magnitude more dominant
than the H I. Thus, the general approach is identifying a set of smooth
functions that represent the dominant foreground contributions and
subtracting these from the data to leave the cosmic H I signal. The
method for estimating this set of smooth functions is largely where
the techniques diverge into the wide library of foreground removal
options available today [see e.g. Liu & Shaw (2020) for a more
detailed summary].

Blind component separation methods dominate the literature
concerning foreground removal techniques, and we also use them
in our analysis. Blind separation means little input information is
needed and the process exploits the fact that relatively few dominant
uncorrelated (or statistically independent) (or sparse) sources should
contain the majority of the foreground emission in the observed
signal. The advantage of such an approach is that it does not require
a detailed understanding of the foreground signals, e.g. their precise
amplitude through frequency, and how they respond to instrumental
systematics. Given that we are a long way from fully understanding
sky emission at the ∼21-cm wavelengths and that the intensity
mapping technique is still in its infancy (meaning instrumental
response and systematics are poorly understood), it is sensible for
blind methods to be the preferred choice (Masui et al. 2013; Wolz
et al. 2017; Anderson et al. 2018).

The raw observed sky signal in intensity mapping5 can be decom-
posed into contributions from the cosmological H I, the foregrounds,
and the thermal noise from the instrument (as in equation 1). These
observed data can be represented by a matrix Xobs with dimensions
Nν × Nθ where Nν is the number of frequency channels along the
line of sight and Nθ the number of pixels. In this approach the 2D
(NRA

θ , NDec.
θ ) angular pixel space is turned into a Nθ = NRA

θ × NDec.
θ

long 1D vector to make the foreground cleaning formalism more
concise.

We make the assumption that the data matrix Xobs can be
represented as a linear system

Xobs = ÂS + R, (14)

where Â represents the estimated set of NFG smooth functions (often
referred to as the mixing matrix) with shape [Nν , NFG] that evolve
the NFG separable source maps S through frequency. Generally, the
sources can be identified by projecting the mixing matrix along the
observed data6

S = (ÂTÂ)−1ÂTXobs. (15)

5Neglecting contributions from more complex systematics.
6For PCA and SVD, by construction, the set of functions identified for the
mixing matrix are orthogonal and hence (ÂTÂ)−1 = I; thus, this factor is
often neglected in equation (15) i.e. S = ÂTXobs.
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214 S. Cunnington et al.

NFG is the pre-selected number of separable sources which we expect
our foreground emission to be contained within. The remaining signal
from subtracting the smooth functions and sources from the data is
in the residual term R and this is used for the cleaned intensity map
data:

Xclean ≡ R = Xobs − ÂS. (16)

This will contain cosmological H I, noise, and typically some residual
foreground emission. The resulting cleaned intensity maps can be
summarized as

δTclean = δTobs − δ̂T FG(ν, θ ) = δTobs −
NFG∑
n=1

Ân(ν) Sn(θ ). (17)

As we will see in this investigation, the optimal choice of NFG can vary
considerably. Generally speaking, an NFG that is too low will result
in too much foreground signal remaining in the residual component,
and an NFG that is too high will result in too much cosmological H I

leakage into the subtracted component causing a loss of true signal.
Finding an optimal balance is the aim of a successful foreground
clean, and a key focus in our investigation.

There are many existing methods for estimating Â for a given
choice of NFG, and we explore some in the remainder of this section.
In this section, we aim to introduce some of the most popular blind
source separation techniques, and highlight their similarities. We will
use an SVD-based technique [or equivalently principal component
analysis (PCA) – an equivalence we will explain] as our default
foreground cleaning method that we introduce next. We then explore
some related techniques with extended sophistication and test them
on our simulated data.

We emphasize that the methods we outline are in no way an
exhaustive list, and many more methods exist for foreground removal
that could be applicable to 21-cm intensity mapping e.g. GNILC
(Olivari, Remazeilles & Dickinson 2016), SMICA (Delabrouille,
Cardoso & Patanchon 2003), RPCA (Zuo et al. 2018) etc. [see the
list in the appendix of Leach et al. (2008) for more information].
One further notable approach is Gaussian process regression (GPR;
Mertens, Ghosh & Koopmans 2018), which has been recently used
on real data but for a higher redshift, epoch or reionization survey
(Mertens et al. 2020). Investigating this method with low-redshift 21-
cm intensity mapping data is very interesting and will be the focus
of future work.

4.1 PCA (and SVD)

PCA is a widely used technique in statistics, closely related to
singular value decomposition (SVD). It provides a hierarchical
coordinate system to represent high-dimensional correlated data by
transforming it to a dimensional basis that maximizes the variance.
These new basis vectors are the principal components. In the context
of correlated foreground emission in 21-cm data, due to their large
amplitude and highly correlated frequency structure, it is likely
that the foreground signals can be reconstructed from just a few
of these principal components. Hence, the first few NFG dominant
basis vectors found in this process represent the estimate for the set
of smooth functions in equation (14), which can then be removed
from the observational data.

The steps for performing PCA to construct an estimate of the
foreground contamination X̂FG, which is then removed from the data,
can be concisely outlined as follows:

(i) The data are mean-centred, i.e. the mean at each frequency is
subtracted from the data for each frequency channel.

(ii) The covariance matrix of the mean-centred data is calculated:
C = XT

obsXobs/(Nθ − 1).
(iii) The eigen-decompositon of the covariance matrix is com-

puted: CV = V�, where � is the diagonal matrix of eigenvalues
ordered by descending magnitude.

(iv) The first NFG columns from the eigenvector matrix V represent
the set of smooth functions to construct the mixing matrix, i.e. Â =
VB where B is a [Nν , NFG] selection matrix with 1 along the i = j
elements and 0 elsewhere.

(v) The projection of the selected eigenvectors along the mean-
centred data provides the eigen-sources, S = ATXobs, which are
combined with the mixing matrix to provide the reconstructed
foreground estimation X̂FG = AS.

4.1.1 Singular value decomposition

The SVD is a unique matrix decomposition of the data (note that
PCA and SVD are inherently related). The SVD of the observed data
X is given by7

X = U�VT, (18)

where U and V are unitary matrices with orthonormal columns and
� is a diagonal matrix whose entries represent the singular values. It
can be demonstrated how closely related the SVD is to an eigenvalue
decomposition. By considering equation (18), and given that XT =
V�UT, the covariance can be written as

C ≡ XTX
Nθ − 1

= V�UTU�VT

Nθ − 1
. (19)

A fundamental property of SVD stipulates that UTU is a unitary
matrix (UTU = I). With a little rearranging we get

CV = V�2

Nθ − 1
, (20)

which we can recognize as an eigenvalue decomposition of the
correlation matrix C (as shown in step 3 in Section 4.1) where the
columns of V are the eigenvectors and the singular values � are
proportional to the positive square roots of the eigenvalues.

In real intensity mapping data, in order to mitigate the high levels
of thermal noise bias present in pathfinder experiments and decrease
systematics, it is necessary to cross-correlate data from different
observation runs e.g. XA × XB. Whilst separating the data in this way
decreases sensitivity and boosts thermal noise for each individual run,
the noise should be uncorrelated for each run and thus thermal noise
bias is mitigated in the cross-power. In this situation, the covariance
matrix XT

AXB is no longer symmetric and an SVD is required where
the left and right singular vectors in U and V are used to reconstruct
foreground estimates in each run (Switzer et al. 2013). In this work,
we do not explore such a situation and therefore the SVD and PCA
can be seen as equivalent treatments.

A related, and essentially equivalent, method to PCA is polynomial
fitting (Ansari et al. 2012). Although similarities exist, this is not to be
confused with parametric fitting (see Section 4.4) and conventionally
refers to a blind approach to foreground cleaning. The approach
works by identifying a set of smooth fitted functions fk where
polynomials are used as basis functions e.g.

fk(log(ν)) = [log(ν)]k−1. (21)

7The more general form for SVD is X = U�V*, however, in the context of
21-cm data we are always dealing with real-valued matrices where V* ≡ VT.
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Then, by least-squares fitting these functions to each line of sight,
the foreground contribution can approximated. Since previous work
has already demonstrated the theoretical equivalence this has with
PCA [e.g. Alonso et al. (2015) that also provides simulation tests]
we do not include this in our investigation.

4.1.2 Truncation choice

Deciding where to truncate to, i.e. the number of NFG principal
components to include in the foreground estimate (and hence remove)
is key to an optimized blind foreground clean. By analysing the
eigenvalues in � (or, equivalently, the singular values from the
SVD), that estimate the amount of variance in the data captured
in the corresponding principal components, an informed choice can
be made. As discussed above, due to the nature of the foreground
emission, most of the information is contained in a small sub-set
of principal components where often NFG ∼ 3 → 20 (depending
on the foreground emission and instrument response) can produce a
reasonable reconstruction. We can quantitatively analyse this choice
with

R =
∑NFG

i=1 λi∑Nν

i=1 λi

, (22)

where λi are the eigenvalues in �, descending in magnitude and Nν

is the number of frequency channels along the line of sight. Since a
higher number for NFG will remove more H I information, the aim
for an optimal choice is to maximize R → 1 for a minimal value for
NFG.

We show some values for R in Fig. 4 for the different sky regions
in our simulated data, with differing polarization leakage cases; we
plot 1 − R to demonstrate the convergence. This means the closer
to zero the particular combination of eigenvalues is, the better a
representation of the full data that reconstruction will be since it is
capturing more of the full data’s variance, and its reconstruction will
capture more of the foreground contamination which can be removed.
Fig. 4 immediately shows how highly correlated the observed data
are given that just one eigenvalue in all cases has R ∼ 1 meaning
nearly 100 per cent of the signal can be represented with just 1
principal component (NFG = 1). However, just a small amount of
residual foreground, even at the sub-per cent level, is enough to
entirely dominate the H I signal. Therefore, in all cases NFG = 1
is not sufficient for a foreground clean. This plot gives an indication
of how far one needs to go in the reconstruction. All cases eventually
reach a plateau where including more eigenvalues barely contributes
to the reconstructed signal and it is here where PCA has likely
reached its efficiency limit and will not be able to remove much
more foreground. The high FR cases will demand the most modes
for a successful reconstruction, requiring NFG ∼ 15 to converge to
the small eigenvalue plateau. We note that since this effect is being
simulated from the Galactic plane for both Stripe82 and SCP regions,
we will expect our results to converge to a plateau at a similar number
of eigenvalues for both regions in this high-FR case. We see this in the
middle panel and also see this in later results. This limits comparisons
between the two regions for this extreme case but, as discussed, this
approach is necessary to provide simulated data which require an
aggressive foreground clean with a high NFG.

In contrast, the H I information cannot be compressed into a
small number of principal components due to its Gaussian-like
nature. This is the main principle behind the blind source separation
approach. The highly correlated information containing the majority
of foregrounds can be removed using a few NFG modes, leaving the

Figure 4. Weighted contributions from increasing numbers of principal
components for the frequency–frequency covariance matrix for different
polarization cases in both sky regions. R (outlined by equation 22) is the sum of
the first NFG eigenvalues divided by the sum of all eigenvalues. Therefore, the
closer to zero 1 − R is, the more eigen information (or variance) is represented
in those principal components. (Top-panel) the difference from an increasing
polarized fraction percentage. (Middle-panel) the impact from higher FR.
(Bottom-panel) an estimation for the amount of H I information along the
line of sight that remains after NFG principal components are removed. Thin
lines are for each of the different cases in the above panels, and the thick-
dashed line is their average.

bulk of the H I information that is mostly evenly distributed among
the remaining components. However, it does mean a fine balance
needs to be attained in a successful foreground clean. Being too
aggressive and choosing too high values for NFG will begin to remove
H I information, typically large-scale line-of-sight modes.

In a simulation-based procedure, we can effectively analyse this
problem since we have access to the separated pure-H I 8 and
pure-foreground simulated data. We can therefore calculate the
contributions from these components remaining in the residuals after
a foreground clean. The separated residuals are calculated using the
estimated mixing matrix Â, and projecting the pure-H I (or pure-
foreground) simulated data along this:

XresidH I = XH I − Â(ÂTÂ)−1ÂTXH I, (23)

XresidFG = XFG − Â(ÂTÂ)−1ÂTXFG. (24)

Note the (ÂTÂ)−1 factor is not needed for the PCA method since,
by construction, the mixing matrix is orthogonal and this quantity
will equal the identity matrix. However, the vectors in the mixing
matrix for the fast independent component analysis (FASTICA) and

8We also include the contribution from thermal noise in this calculation.
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216 S. Cunnington et al.

generalized morphological component analysis (GMCA) approach
we use are not orthogonal, thus this quantity is needed to obtain the
correct projection.

We utilize these separated residual calculations extensively in our
results to analyse the performance from various cleaning methods
under different situations. We also use this concept for the bottom
panel of Fig. 4 where we demonstrate an estimation for the amount of
eigen information lost along the line of sight for each choice of NFG.
This calculated by computing the eigendecomposition of the residual
H I (equation 23) and summing the eigenvalues. Dividing this by the
sum of all the eigenvalues in the original H I data gives a proxy for
the amount of eigen information remaining after subtracting NFG

principal components, i.e. the portion of variance that is removed.
This should further illustrate the challenge of foreground cleaning, a
balance between removing foreground while trying to leave the H I

signal intact – however, we always expect some signal loss. Since
foreground dominated data are typically decomposed into dominant
eigenmodes containing highly correlated information along the line-
of-sight subtracting NFG principal components generally removes
large-scale modes along the line of sight in the H I power spectrum,
i.e. small k� modes. Modelling this is non-trivial and a major
challenge for precision radio cosmology.

4.2 FASTICA

FASTICA is another widely used method for foreground cleaning
and has been tested on simulated data (Chapman et al. 2012; Wolz
et al. 2014; Cunnington et al. 2019) and also on real data (Wolz
et al. 2017). When we discuss FASTICA, we are referring to the
method developed in Hyvärinen (1999) and we use the package in
Scikit-learn9 (Pedregosa et al. 2011).

While PCA is generalized for reducing dimensionality in data,
FASTICA (and more generally independent component analysis) is
more specifically used to separate mixed signals, and is therefore
naturally suited to a blind source separation problem. FASTICA
forms an estimate for the mixing matrix Â by assuming the sources
are statistically independent of each other. The method therefore
aims to maximize statistical independence that can be assessed
using the central limit theorem, which states that the greater the
number of independent variables in a distribution, the more Gaussian
that distribution will be (that is, the probability density function of
several independent variables is always more Gaussian than that of a
single variable). Hence, by maximizing any statistical quantity that
measures non-Gaussianity, we can identify statistical independence.

Before assessing non-Gaussianity, FASTICA begins by mean-
centering the data then carries out a whitening step that aims to
achieve a covariance matrix equal to the identity matrix for this
whitened data (i.e. the components will be uncorrelated and their
variances normalized to unity). Since this whitening step can be
achieved with a PCA analysis, FASTICA is essentially an extension
of PCA, and hence in most cases in the context of foreground
cleaning, will provide very similar results.

For maximizing non-Gaussianity, an approximation of the negen-
tropy can be used.10 We refer the reader to Hyvärinen & Oja (2000)
for further detail on this aspect of the algorithm. In the context of
21-cm foreground cleaning, the approximation of negentropy uses a
set of optimally chosen non-quadratic functions which are applied to
the data and averaged over for all available pixels. The maximization

9https://scikit-learn.org/
10Kurtosis can also be used as a measure of non-Gaussianity.

of negentropy by averaging over angular pixels means that for purely
Gaussian sources, FASTICA will be unable to improve upon the
initial PCA step carried out in the whitening step. This is because
the Gaussian sources will have an equivalent zero negentropy. This
explains the similarity in results often found between PCA and
FASTICA when most of the simulated components are Gaussian
fields (Alonso et al. 2015). It is in situations over very large skies,
where the negentropy approximation will be more optimal and
sufficient non-Gaussian structure exists in the foreground maps,
where FASTICA will perhaps make discernible differences to the
PCA-only performance.

To summarize, the components found using PCA are uncorrelated
linear combinations of the data, which are identified by maximizing
the variance. FASTICA extends on this by finding components that
are also uncorrelated linear combinations of the data but identified
by maximizing statistical independence, through estimates of non-
Gaussianity in angular pixels.

4.3 GMCA

GMCA (Bobin et al. 2007), it is a blind source separation algorithm
exploiting the idea that the different components contributing to the
signal are morphologically different. To enhance the morphological
differences, the signal is projected into an adapted domain where
we expect the components to have a sparse representation, i.e. to be
described by few non-zero coefficients. When we find such a domain,
the contrast between components increases, easing the separation
process. Here, we make use of wavelets, which has recently been
shown to be optimal for this context (Carucci et al. 2020a). GMCA
has already been optimized and used with astrophysical data sets
[e.g. cosmic microwave background data (Bobin et al. 2013, 2014),
high-redshift 21-cm interferometric data (Patil et al. 2017), X-ray
images of supernova remnants (Picquenot et al. 2019)].

In practice, once the data Xobs have been wavelet transformed to
Xwt, GMCA promotes sparsity in the requested NFG sources Swt by
solving iteratively the minimization problem given by

{Â, Ŝ} = min
A,Swt

NFG∑
i=1

λi

∣∣∣∣Swt
i

∣∣∣∣
1
+ ∣∣∣∣Xwt − ASwt

∣∣∣∣2

F
, (25)

where the first term is the �1 norm, i.e.
∑

j,k

∣∣Swt
j,k

∣∣: this constitutes
a constraint for sparsity, mediated by the regularization coefficients
λi. The latter act as sparsity thresholds that in our case should be
tuned by the difference in intensity between the foregrounds and the
cosmological signal; we first estimate them with the median absolute
deviation (MAD) method and progressively decrease towards a final
noise-related level. The second term in equation (25) is the standard
Frobenius norm that assures data-fidelity step by step.

Once the mixing matrix Â has been estimated, we project the
initial data Xobs in pixel space (following equations 15 and 16) to
retrieve the GMCA-reconstructed data cubes. We refer the reader to
Carucci et al. (2020a) for more details.

4.4 Non-blind parametric fitting

In non-blind methods an estimator Â for the mixing matrix is
constructed using astrophysical, as opposed to statistical, knowledge
about the foreground sources and has been previously explored
(Ansari et al. 2012; Bigot-Sazy et al. 2015). A single-frequency chan-
nel of a 21-cm intensity mapping experiment will consist of diffuse
synchrotron emission, diffuse free–free emission, extragalactic point
sources, the H I signal, instrumental noise, and any other instrumental
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contributions (e.g. polarization leakage). Synchrotron and free–free
emission are believed to be spectrally smooth with well-understood
spectral forms that can both be expressed as power laws. While the
synchrotron spectral index is known to change across pixels, diffuse
synchrotron emission is the signal identified with the largest signal-
to-noise ratio within 21-cm intensity mapping experiments giving it
the largest probability of an accurate characterization. It should be
noted, however, that as synchrotron emission is around four orders
of magnitude larger than the 21-cm signal of interest it would need to
be characterized to an accuracy of 0.01 per cent in order to no longer
obscure the H I signal.

As such we propose a parametric fit which aims to parametrize
the free–free and synchrotron foreground contributions explicitly.
Diffuse synchrotron, diffuse free-emission and extragalactic point
sources are strongly degenerate; free–free and synchrotron emission
maps contain identical spatial features and all three spectra can be
represented as power laws with similar spectral indices. Whilst we
do not aim to explicitly fit for the extragalactic point sources we
expect their contributions to be subsumed within the synchrotron
and free–free emissions fits. We are essentially making the opposite
assumption to ICA by relying upon the parameter degeneracy, if
this assumption is correct then the residuals between our parametric
fit and the total data should contain the H I plus any instrumental
contributions.

Asorey et al. (2020) attempt a linear least-squares fitting to
their data, modelling their combined foregrounds as a nth order
polynomial. We also use the least-squares optimizer (equation 15)
for the emission sources. However, in an attempt to capitalize on
existing foreground information, we aim to provide the optimization
with a realistic mixing matrix. We set up a mixing matrix with two
components (to represent the combination of free–free, synchrotron
emission, and point sources). For the first component, we use the
assumption that the free–free spectral index is well-known and
constant across pixels and so set the spectral form to the true value
(ν/ν0)−2.13. For high Galactic latitudes such as the SCP and Stripe
82, the free–free emission is weak enough to be assumed negligible
and thus we employ a least-squares fit assuming pure synchrotron
emission. Close to the Galactic Plane, we find that actual component
separation between free–free and synchrotron emission is required.
As intensity mapping experiments will not typically target such
regions we shall not discuss parametric component separation any
further. However, the interested reader can refer to Bobin, Acero &
Picquenot (2019) for a description of a novel semisupervised sparse
component separation method, which has been used (by these authors
and on the same total intensity simulations used in this work) to
determine accurate synchrotron spectral indices in the presence of
non-negligible free–free emission.

Before describing our least-squares fit, we point out that the data
monopoles must be removed from each map; for our particular
simulations that means the unresolved extragalactic point-source
levels at each frequency. The spectral index for a particular emission
is strongly tied to the monopole level of the maps and so the
parametric fit we perform is tied to the zero-level of the observational
data.

For our least-squares fit, which assumes that synchrotron emission
dominates the total intensity maps, we limit the parameter space for
βsy to within ±10 per cent of the total data spectral index and the
parameter space for the synchrotron emission amplitude to within
±50 per cent of the total temperature.

We also investigated the possibility of performing an MCMC fit
[using EMCEE (Foreman-Mackey et al. 2013)], to see if this offered
significant benefits over least-squares fitting. We imposed flat priors

on the synchrotron and free–free emission amplitudes and, following
the methodology of Eriksen et al. (2008), the Jeffreys prior on the
synchrotron spectral index. For the SCP region without polarization
leakage, a marginal (on average around a tenth of a per cent)
improvement was seen for the estimation of the synchrotron spectral
index. However, when polarization leakage is added the MCMC fit
no longer outperforms the least-squares fit. This is unsurprising as
the strength of an MCMC Bayesian fitting process is the ability to
provide end-to-end error propagation. In our case, we are simply
using the theoretical Gaussian noise level per frequency to form our
noise estimates; we have no model for polarization leakage as part
of the noise estimates. As we aim to test how well a parametric fit
of intensity mapping data can perform using existing astrophysical
information we stick to least-squares fitting. Over time, however,
it should be possible to perform an instrument specific, iterative
Bayesian fit to intensity mapping data such as the CMB data analysis
performed in BeyondPlanck Collaboration I (2020).

Having used the least-squares fit to acquire the per-pixel syn-
chrotron spectral index values we now have a complete mixing matrix
which we use to calculate the diffuse Galactic emission amplitudes
from the total temperature maps using equation (15). We can subtract
our free–free emission and synchrotron emission estimates from
the total temperature data to leave maps of H I plus instrumental
contributions.

4.5 Quantifying foreground removal effects

Despite the range of different foreground cleaning methods available,
none are perfect and will inevitably remove some cosmological
H I signal or leave behind foreground residuals. We discuss some
methods for investigating this both with simulations and real data.

4.5.1 Damping Cosmological H I

This usually occurs on large scales where the H I is most degen-
erate with the foregrounds. For idealized future surveys assuming
excellent instrumental calibration, residual foregrounds should be
well controlled and not exacerbated from effects such as polarization
leakage. In these cases, the effects from a low-NFG foreground clean
are relatively straightforward and can be potentially modelled as
some damping to the power spectrum (see e.g. Cunnington et al.
2020a, b; Soares et al. 2021).

However, applying this to real data requires a high level of
confidence in the modelling that builds upon a detailed understanding
of the nature of foregrounds as well as systematic/instrumental
effects, something we do not currently have. An alternative approach
is to add the observed data itself to simulations (mocks), then apply
a foreground clean and access the response the mock data had to this
process. Signal loss can be quantified this way with a foreground
transfer function, which is applied to the real data to compensate for
these effects, although does not avoid the reduced sensitivity caused
by the contamination. This has been the approach of several of the
H I intensity mapping detections so far (Masui et al. 2013; Switzer
et al. 2013; Anderson et al. 2018; Wolz et al. 2021).

Following Switzer et al. (2015), the transfer function can be
constructed by adding mock data M to the true observed data Xobs,
which includes foregrounds. This can then be cleaned to provide
Mcleaned, an estimate for the effects of removing the foregrounds on
the mock map:

Mcleaned = [M + Xobs]PCA − [Xobs]PCA, (26)
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218 S. Cunnington et al.

Figure 5. Foreground transfer functions for the different foreground cases
in each sky region. These are produced using equation (27) and treating
our MULTIDARK simulated intensity maps as ‘observed’ data and then using
100 lognormal sims as the input mocks. For the three foreground cases (no
polarization leakage, 0.5 per cent polarization leakage, and high FR) we use
a PCA clean with NFG = {3, 9, 15} for Stripe82 and NFG = {3, 4, 15} for
SCP.

where the [ ]PCA notation represents performing a PCA clean, but in
principle this could be done with any foreground cleaning method.
Note that in equation (26), the cleaned data [Xobs]PCA has been
subtracted. This is necessary to reduce the variance in this estimation
since the unwanted data-H I component will serve as additional,
unwanted noise. The transfer function is then given by

T (k) =
〈P(Mcleaned , M)

P(M , M)

〉2

, (27)

where P() denotes an operator which measures the power spectrum
in (k⊥, k�) space. The angled brackets denote an averaging over
a large number of mocks. The power spectrum is then corrected
for by dividing through by this transfer function. This can also be
utilized in a cross-correlation measurement with the only difference
being that the power of 2 is dropped from equation (27) because the
effects of cleaning are only applied to the H I data. We employ the
transfer function later in our analysis (Section 5.5) by constructing
100 lognormal mocks and using our MULTIDARK simulations as the
‘observed’ data. We show the transfer functions for the different data
sets in Fig. 5. This shows the range in foreground contamination
from the different foreground cases, largely driven by the choice of
NFG components to remove, which we discuss in detail in our results
(Section 5).

The foreground transfer function is thus used as a data-driven
way of compensating for signal loss in the foreground removal.
Since the real data are used in its construction, it should incorporate
the interplay between foreground and systematics (even unknown
systematics). Some assumptions are inherently made regarding the
degeneracy of the transfer function with cosmological parameters,
but this will only be a problem for precision cosmology which will
need more detailed investigation when H I intensity mapping reaches
this level. This subtlety regarding degeneracies is discussed further
in Cunnington et al. (2020a). Since T(k) ≤ 1, the transfer function is
not capable of addressing the issue caused by additive biases from
foreground residuals, discussed in the following section.

4.5.2 Foreground residuals

Whilst signal loss from overcleaning can be modelled or compen-
sated for with a foreground transfer function, foreground residuals
produced from undercleaning, which cause additive biases and boost
errors, are more challenging to address. For near-future, pathfinder

surveys (e.g. MeerKAT; Santos et al. 2017) it is possible that
the instrument response will not be sufficiently understood and
polarization leakage effects could manifest, causing contamination
from foreground residuals. Developing robust statistics that estimate
the effects caused by these residuals will therefore be essential for
future surveys (Switzer et al. 2015). There is not a large amount of
research on this issue, since current data analysis usually has large
thermal noise and unknown systematic effects (Switzer et al. 2013).
Alternatively, detections have been made using cross-correlations
with optical galaxy data (e.g. Masui et al. 2013; Anderson et al. 2018;
Wolz et al. 2021). In cross-correlation, the residual foregrounds and
survey-specific systematics do not correlate with the optical galaxy
data and instead, simply boost errors (we will study this in detail
in Section 5.5). As the intensity mapping technique matures and
calibration and signal-to-noise capabilities of surveys improve, we
will aim to conduct precision cosmology using autocorrelation mea-
surements. Therefore, we need to develop a pipeline for quantifying
the foreground residual contamination.

As discussed in Section 4.1.2, the residuals can be exactly
calculated (see equation 23 and equation 24) because we are using
simulations where the original decomposed H I and foreground
contributions are known. A direct comparison between XresidH I and
XresidFG is then extremely useful (and a topic we investigate) where
one ideally desires a situation where XresidH I dominates XresidFG.
A more dominant XresidFG would increase additive biases due to
the residuals correlating with each other. However, in real data,
distinguishing the contribution between foreground residual and
H I signal will be challenging. If one can develop a robust way of
estimating the contribution from foreground residuals, then this can
be effectively modelled in a similar way to the instrumental noise
which causes additive power in autocorrelations along with boosting
errors. So the H I autopower spectrum could be expressed as

PH I(k) = 〈TH I〉2b2
H IPm(k) + PN(k) + PresidFG(k), (28)

where Pm is the matter power spectrum and PN and PresidFG are
the contributions from thermal noise and residual foregrounds. An
estimation for the errors can then be analytically made with

σP (k) ∼ PH I(k) + PN(k) + PresidFG(k)√
Nmodes(k)

, (29)

where Nmodes is the number of unique modes in each k-bin, included
to account for cosmic variance.

5 R ESULTS

Here, we present our results from tests carried out on the simulated
data sets and foreground removal methods outlined in the previous
sections. To diagnose the performance of our foreground cleans we
look at measurements of power spectra, both 1D P(k) and 2D P(k⊥,
k�), and compare these to equivalent foreground-free results where
only the cosmological H I is being measured. The offset between
the two then serves as a good indicator for how well the chosen
method is performing. Following previous studies (e.g. Alonso et al.
2015; Carucci et al. 2020a), we define below the weighted difference
between subtracted foreground and no foreground cases as a metric
to help assess the success of the foreground removal under all the
different scenarios:

ε(k) = PSubFG(k) − PNoFG(k)

PNoFG(k)
. (30)

Here, PSubFG(k) is the measured power spectrum for the simulated
intensity maps with foregrounds included and then cleaned, while
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21-cm foregrounds: cleaning and mitigation 219

Figure 6. Measured power spectra for both regions. We show the foreground
free case (black-dashed), cleaned foregrounds without polarization leakage
(blue-circle markers) and cleaned foregrounds with 0.5 per cent polarization
leakage (red-square markers). For both regions where there is no polarization
leakage, we use NFG = 3 as the number of removed principal components, but
for the polarization leakage cases, a differing selection is needed (displayed
in top-right of both panels). In all foreground cleaned cases, PCA is used.

PNoFG(k) is the measured power spectrum of the H I-only (foreground-
free) intensity maps. We also analyse the 2D power spectrum and
use an identical analysis in this basis where

ε2D(k⊥, k‖) = PSubFG(k⊥, k‖) − PNoFG(k⊥, k‖)

PNoFG(k⊥, k‖)
. (31)

We begin by plotting the autopower spectra for both our chosen
regions and perform a comparison between the foreground-free H I

power spectrum (black dashed line) and the foreground-cleaned
results using the PCA method. This demonstrates some differences
between the regions and also some clear differences for the cases
with polarization leakage (red squares) and without (blue circles). As
expected most of the damping to the power comes from large scales
(small-k). Because we use NFG = 3 in both regions where there is no
polarization leakage, the damping across all regions is approximately
equal. However, the foreground residuals could still differ in each
region, with the most likely case being that residuals will be highest

in Stripe82 where foregrounds are slightly more dominant. Fig. 6
lastly shows that results can be extensively worse when including
polarization leakage effects, except perhaps the SCP, the region least
affected by polarization in the CRIME model. Results are much
worse for Stripe82, where we opted to use NFG = 9 to remove more
oscillating foreground contamination from polarization leakage. For
example the largest mode (smallest-k) for Stripe82 is effectively
damped to zero. We discuss in more detail the choice of NFG later in
Section 5.4.

We show similar results in Fig. 7 but here more information can
be extracted on the nature of this contamination. This shows the
weighted difference ε2D between the H I-only 2D power spectrum and
the foreground cleaned one. Again we plot both regions on different
rows but now with a wider range of polarization leakage cases. This
gives an illustration into the effects of foreground undercleaning
and overcleaning and the delicate balance between the two. From
equation (31) we can see that the blue regions are indicating modes
that have higher power in the foreground-cleaned maps compared
to the foreground-free ones. Thus, blue areas indicate undercleaned
k-space. Conversely, red areas have lower power in the foreground-
cleaned maps, indicating overcleaning.

Fig. 7 therefore shows the effects of over-cleaning tend to manifest
in low-k modes, as expected. This is particularly evident when
going to high NFG as is required in the high FR polarization
leakage cases (far-right column), where we see significant damping
to low k� modes, again as expected. This is because, in order to
control contamination from polarization leakage, we are removing
more principal components, each with different oscillating modes
due to the instrumental response, but all will still have largely
frequency correlated spectra. This inevitably removes the modes
in H I which are also highly correlated in frequency i.e. low-
k� modes. This conclusion is quite general and not just specific
to a PCA-based method. Generally, any method that utilizes the
highly correlated nature of foreground signals will struggle to
disentangle foregrounds and large H I modes parallel to the line of
sight.

Figure 7. The impact of a PCA foreground clean on the 2D power spectra. Plotted is the weighted difference ε2D(k⊥, k�) between the foreground free and cleaned
2D power spectra (outlined in equation 31). Each panel represents a different polarization leakage case for both Stripe82 (top-row) and SCP (bottom-row) sky
regions. We show 0, 0.5, and 2 per cent leakage along with the special high-FR case. The results can be loosely interpreted as blue positive-pixels representing
undercleaned modes (modes with dominant foreground residual), and red negative-pixels representing overcleaned modes. The values for NFG are displayed in
grey above each panel.
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220 S. Cunnington et al.

For the unpolarized cases, where a lower NFG is used, it it
interesting to see that small-k⊥ modes are damped to a similar level as
the small-k� modes. This will be because the foregrounds generally
have quite large angular structures (see maps in Fig. 1), therefore
when removing the dominant principal components representing the
foregrounds, any small-k⊥ modes will be degenerate with these and
are therefore damped. This agrees with results from Soares et al.
(2021) where a damping to k⊥ modes was required to model the
foreground contamination.

Comparing the middle-left and middle-right panels in Fig. 7, the
increased polarization fraction does not appear to have a drastic
effect. This is also consistent with the results from the top-panel
of Fig. 4 which showed that an increase in polarization fraction,
seems to just increase the amplitude of the eigenvalues one would
remove anyway in a foreground clean. A polarization fraction above
2 per cent is unlikely to occur in surveys, even in the most pessimistic
of forecasts and we therefore stick to using a polarized fraction
of 0.5 per cent for the remainder of the paper. However, as we
demonstrate in the far-right panels, one way to complicate foreground
cleaning is if FR is higher than is being realized in the CRIMEmodel.
As explained in Section 2.4, the way we investigate the possibility
of a more complex frequency decoherence situation is by taking the
CRIME polarization output map from the Galactic plane, and using
this as a high FR case. Doing this creates much more oscillating
behaviour in the foreground spectra and as Fig. 7 shows, requires a
more aggressive clean, with NFG = 15.

5.1 Comparing blind foreground cleaning methods

We now compare the cleaning methods we have introduced: PCA,
FASTICA, and GMCA. All methods rely on the assumption that we
can decompose the signal linearly as in equation (14) and estimate
the mixing matrix Â, identifying the subspace of the data set where
we expect foregrounds to live, which are then removed as per
equation (16).

In the top-panels of Fig. 8, we show the mixing matrices derived
by the different methods applied to the same data cube. Each method
provides a different estimation for Â, yet, the final cleaned maps
are remarkably similar in all cases. We found that there were no
discernible differences in the maps and in the bottom panel we
demonstrate this. We plot the PCA-cleaned H I intensity map for one
channel (bottom-left panel of Fig. 8) and then show the difference
between this PCA map and the corresponding FASTICA and GMCA
counterparts (middle and right bottom panels). Their differences are
orders of magnitude below the amplitudes of the cleaned map and
this is true for all channels of all the sky regions explored, with and
without the inclusion of polarization leakage. Given the similarity
in the cleaned maps, it is unsurprising that at the 2-point statistics
level, in all the scenarios considered, the three blind methods output
essentially identical power spectra (as shown by the examples in
Fig. 9).

The difference in the top-panel between PCA and the other
methods is an interesting demonstration of the subtle distinction
in techniques. PCA is maximizing the variance into as few modes as
possible. The highest ranked mode represents the one that best fits the
variance of the data. The second highest rank mode, will be the next
best fit but is required to be orthogonal to the first, hence why PCA
identifies two dominant smooth modes in Fig. 8, which likely contain
the synchrotron and free–free emission. The remaining modes are
then more oscillatory and likely identify polarized residuals in a
descending order of contribution to the total variance. Applying
FASTICA and GMCA algorithms, we are instead identifying a

Figure 8. Top-panels: Normalized column vectors of the mixing matrix
estimated by PCA, FASTICA, and GMCA for the Stripe82 region with
0.5 per cent polarization leakage. Note that we only show the first 6 modes for
clarity despite using NFG = 9. Bottom-left: resulting H I intensity map from
PCA clean for a random frequency channel. Also shown are the difference
maps between this PCA cleaned map and those cleaned using FASTICA
(bottom-centre) and GMCA (bottom-right). The three methods estimate
different mixing matrices, yet they lead to analogous foreground-dominated
data cubes and produce extremely similar H I residuals as shown by the bottom
maps (noting the small colour-bar scale).

Figure 9. Impact from different foreground cleaning methods on the 3D
power spectra for both regions. We show the weighted difference ε in
foreground free and cleaned power spectra (equation 30) where positive
(negative) values represent undercleaining (over)cleaning. Results are without
polarization leakage (top row) and with 0.5 per cent polarization leakage
(bottom row).

pre-determined NFG number of modes within which to maximize
statistical independence or sparsity. They achieve this by identifying
functions that can share out the contributions to the variance amongst
these NFG modes, with no requirement of orthogonality, providing
they are maximizing independence and sparsity. This is allows the
modes in FASTICA and GMCA to approximately follow the slope
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21-cm foregrounds: cleaning and mitigation 221

Figure 10. True synchrotron spectral indices (left-hand panel) from our simulations and the absolute percentage difference between the truth and those estimated
by parametric fitting for no polarization leakage (centre panel) and 0.5 per cent polarization leakage (right-hand panel). The Stripe82 region is on the top row
with SCP on the bottom row.

defined by the dominant spectral indices from synchrotron and
free–free emission. These functions will still contain the polarized
information demonstrated in the PCA functions, but be contained as
sub-dominant oscillations within these modes.

Despite the differences in the identified mixing matrices, the
similarity in final results from all three blind methods can be
understood by considering the difference in the assumptions they
make when linearly decomposing the signal. PCA merely identify
the eigenvectors corresponding to the largest eigenvalues in the
frequency–frequency covariance of the data. FASTICA adds on
this by promoting non-Gaussianity in the estimated sources, as a
proxy for their statistical independence. GMCA promotes sparsity
in the spatial domain, after having wavelet-transformed the patches,
relying on highlighting the specific morphologies of the components
to facilitate the source separation process. Since all three approaches
result in essentially identically cleaned maps and power spectra, this
leads to the conclusion that the FASTICA and GMCA assumptions
do not hold for these data sets: we are dealing with fairly Gaussian
(non-sparse) components in the spatial dimensions, thus FASTICA
and GMCA are not optimized to improve upon their pre-processing
PCA step. However, this statement cannot be generalized and is
specific to our tested simulated data i.e. the size and resolution of
the patches we work with. For instance, Carucci et al. (2020a) show
how FASTICA and GMCA behave differently in presence of non-
continuous, RFI-flagged data on the full sky. Also work is still needed
to understand a realistic beam effect on the intensity maps, which
could add complexity to the foreground removal process.

5.2 Non-blind foreground cleaning

The appeal of a parametric method is its ability to yield estimates
for both the cosmological signal and each individual foreground.
In our parametric approach, we have assumed knowledge of the
free–free spectral index, enlisted a least-squares fit assuming pure
synchrotron emission to determine the synchrotron spectral index,
and finally solved a least-squares optimization to the data based on
the synchrotron and free–free spectral forms. As our approach only
considers synchrotron and free–free emission explicitly, all other data
contributions get absorbed into either our cosmological, synchrotron
or free–free estimates. Specifically, the instrumental noise is included

in our H I estimate, point sources are contained in our synchrotron
estimate due to their similar spectral forms and polarization leakage
is seen to degrade the quality of the H I, free–free, and synchrotron
estimates.

With the free–free spectral form held at the true value, the key to
our approach is accurate determination of the synchrotron spectral
indices. Fig. 10 shows the absolute percentage difference maps
between the true synchrotron spectral indices and those estimated
by our non-blind fit. The right-hand column shows a slight increase
in percentage error when polarization leakage is present. However,
it appears it is only a mild prohibitive factor for accurate recovery of
the synchrotron spectral index in the high Galactic latitude regions
we have studied and for the polarization leakage model we have used.

We find parametric fitting is competitive with the blind methods in
the absence of polarization leakage. However, as polarization leakage
is not explicitly accounted for within our parametric fit, nor does it
display any degenerate behaviour with the foregrounds we do account
for, we find that parametric fitting is not capable of being used ‘as is’
to get to the H I signal level. This is explicitly shown in Fig. 9; in the
case of the polarized Stripe82, the non-blind residuals are too large
to occupy the same axis ranges as the blind residuals. In conclusion:
our parametric fit cannot compete with the blind methods in the face
of polarization leakage.

5.3 Hybrid foreground cleaning

With several available methods for performing 21-cm foreground
cleaning, an obvious question to ask is whether any of them can be
combined into a hybrid method to produce better results. Hybridized
techniques have been explored in Planck Collaboration IV (2020),
where SMICA was used in a semiblind way and in Bobin et al.
(2019), where GMCA was used in a semiblind way.

The approach we adopt here differs slightly since we investigate
combinations of foreground cleaning methods by cross-correlating
two maps cleaned using different approaches. The main potential
benefits from this approach come from the possibility of the cross-
correlation reducing the residual foregrounds.

Due to the inherently similar resulting maps in our three blind
methods, it is not surprising that we found no benefit in combining
these techniques. However, for cases where the non-blind approach
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222 S. Cunnington et al.

Figure 11. Pure foreground residuals remaining after PCA (left-hand panel)
and parametric (right-hand panel) cleans on Stripe82 region without polar-
ization leakage. We have averaged along the lines of sight.

Figure 12. Power spectra for foreground residuals remaining after cleaning
relative to the foreground-free original H I signal (black-dashed line). Hybrid
result refers to the cross-power spectrum between a PCA clean map and one
cleaned using our non-blind approach.

was providing a good fit to the foregrounds and thus producing a
reliable foreground clean, we found that a cross-correlation between
a map cleaned with this approach and one using PCA, does produce
a reduction in residual foreground correlation. We plot the pure fore-
ground residuals (equation 24) from PCA and the non-blind method
for the Stripe82 region with no polarization leakage in Fig. 11. It is
clear by eye that there are some significant differences in these maps
and thus cross-correlating these methods should result in a reduction
from residual foreground contributions. We demonstrate this in
Fig. 12 (left-hand panel) showing the contribution to the power from
the pure-foreground residuals left after a clean using PCA (thick blue
line) and parametric fit (thin red line). The aim is for the foreground
residuals to be as low as possible, ideally far below the original
H I signal (black dashed line), which we include for reference. As
shown, by using a hybrid approach (dashed purple line) that cross-
correlates the two differently cleaned maps, foreground residuals
are reduced, although we find no such reduction in the polarized
case (right-hand panel). We found no discernible improvement in the
final power spectrum measurement of all the components, i.e. this
current approach would make no change to the measured ε. However,
this reduction in residuals is important, especially for future surveys
where maximizing precision and reducing errorbars is paramount
(see discussion in Section 4.5.2). This technique could also yield
benefits in more realistic situations containing more systematics.
If the different methods respond differently to these systematics,
then reductions in residual contamination could be significant. For
now, we highlight these results as an area for potential further
investigation.

5.4 Balancing foreground residuals and H I damping

As intensity mapping surveys continue to produce data, the focus will
be on how to optimize these surveys for constraining cosmological
and astrophysical parameters. Until now we have used a consistent
defined choice of NFG for each region and polarization case. Here,
we begin to examine the consequences of varying this parameter and
explore whether an optimal choice can be made. We seek a balance
between overcleaning foregrounds by using a high-NFG that causes
damping to H I power on large scales, and undercleaning using a low-
NFG leaving higher residual foregrounds that potentially bias results
or boost errors.

In the case of cross-correlations (which we focus on in Section 5.5)
this is more straightforward to analyse since residual foregrounds,
provided they are not too large, will just boost the errors in the
power spectrum measurement. Thus identifying an optimal number
of NFG modes to remove is primarily based on minimizing errors. In
autocorrelation, the process for optimizing the choice of NFG is more
difficult (see discussion in Section 4.5.2).

Fig. 13 shows how the 2D power spectrum evolves with an
increasing NFG by analysing ε2D, the weighted difference be-
tween foreground-cleaned and foreground-free power spectra (equa-
tion 31). The results are only for the Stripe82 region in the case
of high FR polarization leakage, cleaned using a PCA method.
This demonstrates how increasing the aggressiveness of the clean
mitigates foreground residuals (blue regions) but at the expense of
severely damping small-k� modes (shown by red regions).

In Fig. 14, the levels of foreground residuals for both regions with
0.5 per cent polarization leakage (and also the Stripe82 high-FR case)
are shown after PCA cleans with varying NFG. These are calculated
using the methods outlined in Section 4.5.2, which reconstruct the
exact maps of the foreground-only signal remaining in the cleaned
data (shown by solid lines in Fig. 14). For comparison, we also plot
the H I-only power spectra (dashed lines) calculated in a similar way
by projecting the H I-only simulated data along the NFG subtracted
eigenvectors to precisely reconstruct the residual H I in the maps after
the PCA clean.

Fig. 14 shows that the residuals decrease with increasing NFG as
expected, but the H I signal is also damped. The aim is to reach a
level where the H I signal dominates over the residual foregrounds,
so they no longer bias results. It is encouraging to see that in general
H I dominates by an order of magnitude across small scales (k �
0.1 Mpc h−1). In the Stripe82 high-FR case, a high NFG is required
to bring the foreground residuals below the H I-only power and even
using NFG = 14, foreground residuals remain at a similar level to the
H I for modes with k � 0.04 Mpc h−1. We can see how results differ
between the SCP and Stripe82 regions, for example in the SCP, a very
mild clean (NFG = 4) is sufficient to achieve a residual foreground
level an order of magnitude lower than the H I across all scales, even
in this 0.5 per cent polarization leakage case.

It is interesting to note how much the residual-H I (dashed lines)
differ in the high-FR case relative to the standard polarization cases
(e.g. comparing the H I residual for NFG = 16) despite it being the
same underlying simulated H I data. The reason for this is down to
how the eigenvectors are constructed in each case and we show the
first six in Fig. 15. For each of the cases, we see little distinction
between the first two eigenmodes, which are likely picking out the
synchrotron slope and the free–free emission. But in the SCP, the
modes start to oscillate after this, which suggests that smaller scale
cosmological H I or noise is leaking into these modes. Whereas in
the Stripe82 high-FR case, the eigenmodes are relatively smooth
(except for the long wavelength oscillations caused by polarization
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21-cm foregrounds: cleaning and mitigation 223

Figure 13. Impact of a varying NFG on the efficacy of the foreground clean. We show the weighted difference ε2D in foreground free and cleaned 2D power
spectra, defined by equation (31), where positive (negative) values represent undercleaning (over)cleaning. This is shown for a range of NFG values in a PCA
clean on the Stripe82 region for the high-FR polarization leakage case. We see too low NFG leaves large foreground residuals and increasing NFG removes these
residuals at the cost of damping small k� modes.

Figure 14. Power spectra for the foreground residuals (solid lines) from a PCA clean with varying NFG modes removed from each region. Left-hand and centre
panels are for both regions with 0.5 per cent polarization leakage and the right-hand panel is the Stripe82 region for the high FR case. For comparison, we
also plot the foreground-free original H I-only signal (black-dashed line) along with the residual H I-only power spectra (coloured-dashed lines) after each PCA
clean. Ideally one would require a scenario where the residual H I dominates over the residual foregrounds. Calculations outlined in equations (24) and (23).

leakage – which can be compared to the polarized spectra in Fig. 3)
indicating that more large-scale information will be removed. This
is what we see in Fig. 14 too, if we compare e.g. the NFG = 16
case for the two regions. In the Stripe82 high-FR case, the small-k is
severely damped relative to the SCP, but comparing the scales around
k = 0.08–0.1 h Mpc−1 we see that the Stripe82 high-FR NFG = 16
case actually has slightly larger power in the residual H I, owing to
the fact that the eigenmodes being removed are smoother and contain
less small-scale H I power.

Fig. 14 demonstrates the potential problem from additive biases
caused by residual foregrounds, which will correlate in the autopower
spectrum. We also see in Figs 7 and 13 how these relatively small
foreground residual levels can cause non-negligible additive biases
in the total measured power spectrum. Of course, in our simulated
scenario we are able to decompose the contribution from residual
foregrounds and H I to the total power spectrum and make a well-

informed choice on the optimal choice of NFG. However, if dealing
with real data, residual foregrounds and H I would not be easily
separable at the required precision. This highlights a central challenge
to using H I intensity mapping in autocorrelation for data that include
foregrounds that cannot be efficiently removed (see discussion in
Section 4.5.2).

5.5 Cross-correlation with optical galaxy surveys

Previous H I intensity mapping surveys with the GBT (Masui et al.
2013; Wolz et al. 2017, 2021) and Parkes telescopes (Anderson
et al. 2018; Li, Staveley-Smith & Rhee 2020b) have relied on
cross-correlations with optical surveys for successful detections
of cosmological H I. This is both due to noise and systematic
effects in these pathfinder intensity mapping experiments, but
also due to foreground residuals. As we have already stated,
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Figure 15. First six eigenvectors from the frequency–frequency covariance matrix for both regions with 0.5 per cent polarization leakage. Right-hand panel is
for the Stripe82 region for the high-FR case.

intensity mapping simulations are typically idealized and fore-
grounds can be removed relatively straightforwardly. However, the
real data in these early experiments have shown that to achieve
low enough foreground residuals for successful detections, more
aggressive foreground cleans are required compared to simula-
tions. This is likely due to calibration issues and effects from
polarization leakage or chromatic beams, which can cause some
frequency decoherence in the otherwise continuous foreground
signals.

Cross-correlations with optical galaxy surveys are important
because they allow for systematics to be mitigated (they drop out
in cross-correlation), and a detection can be more easily achieved.
We demonstrate this process with our simulated data sets and in
doing so we can investigate the optimal level of foreground cleaning
required.

To do this we exclusively use our most dominant foreground
region (the Galactic Plane), including polarization leakage. This
is an attempt to mimic real-data experiments, which as discussed
often need high levels of foreground cleaning (∼ 10–20 NFG modes
removed from the data). As we have demonstrated in Fig. 6 (third
panel) and Fig. 13, the H I autocorrelation is highly affected by the
presence of such dominant foregrounds. Either dominant foreground
residuals remain in the data from choosing NFG which is too low, or
the largest scales are completely destroyed from choosing a higher
NFG.

Fig. 16 shows the improvements that can be made with cross-
correlations. Here, we cross-correlate the simulated optical data
(outlined in Section 3.2) with the H I intensity map data contaminated
with a polarized Galactic Plane foreground and PCA cleaned.
The top-panel immediately shows that a foreground clean with
much fewer modes removed is sufficient for a cross-correlation
measurement that has reasonable agreement with the no-foreground
case. This is in spite of the large levels of residual foregrounds
that will inevitably be remaining from such a mild clean. This is
also shown in the middle panel where the weighted difference ε

(equation 30) is plotted for each variant of NFG. This shows that
NFG = 4 and NFG = 6 deliver a reasonably consistent agreement
across all scales with the foreground-free power spectrum. This also
shows how more aggressive cleans still damp the power spectrum
even in this case of cross-correlation. This is especially noticeable at
large scales (small-k) but even at mid-range scales in the zoomed-in
section at 0.17 < k < 0.3 h Mpc−1, we can see power being damped
as NFG is increased.

Figure 16. Results from the cross-correlation of optical galaxy data with
H I intensity maps cleaned using PCA with a range of NFG. (Middle panel)
shows ε(k), the weighted difference defined by equation (30), where positive
(negative) values represent undercleaning (over)cleaning. We show the most
foreground affected case, the Stripe82 region with high-FR polarization
leakage. Comparison with previous results for this region, where an aggressive
clean is needed and severely damps power in H I autocorrelation, demonstrates
how much cross-correlation improves results. Bottom-panel shows that a less
aggressive clean (lower NFG) generally results in higher fractional errors
σP/P(k).
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It is perhaps tempting to conclude that an optimal choice of NFG

in cross-correlations can be entirely based on what delivers the best
agreement with the foreground-free data, i.e. the ε which is closest
to zero. However, as is already slightly discernible from the middle-
panel, a low choice of NFG does provide a higher variance in the
results, as shown from the NFG = 4 case whose value for ε fluctuates
more than all other cases. This can be understood, by considering
that in this situation a large amount of foreground residuals will be
in the cleaned intensity map which cause more random and spurious
correlations between the optical data and the foreground residuals.
In other words, the higher levels of foreground residuals resulting
from a lower NFG clean, will inevitably boost uncertainties in cross-
correlations.

We investigated this further in the bottom panel of Fig. 16 which
show the estimated fractional errors σ P/|P(k)| for each data point. We
calculated these using the same approaches used in real-data studies
(e.g. Masui et al. 2013; Anderson et al. 2018; Wolz et al. 2021) by
treating our MULTIDARK simulated data sets as real data. Alongside
this we produced 100 lognormal mocks for both the H I intensity maps
and optical galaxy maps. From this we can calculate a foreground
transfer function (see Section 4.5.1). Applying this transfer function
to each of the mocks and then measuring the variance in their results
provides an estimate for the power spectrum errors σ P.

The bottom panel of Fig. 16 shows that errors are generally largest
for the NFG = 4 case, highlighting the important point that foreground
residuals will boost errors. At low-k, we also see the fractional errors
are extremely high for the NFG = 20 case. This is because the power
at these scales is damped so severely that the transfer function is
essentially trying to recover a power spectrum from a position of P(k)
∼ 0, which inevitably causes noisy results and boosts the variance.
This demonstrates the balance required for an optimal choice of
NFG. An NFG which is too low causes too much foreground residual
leading to large errors. An NFG which is too high, damps the power
spectrum drastically causing too much scatter in the power recovered
through the transfer function. There is also a requirement for an
NFG balance at higher k-ranges. Looking at the zoomed-in section
at 0.22 < k < 0.35 h Mpc−1 we clearly see errors are highest for
NFG = 4. They begin to decrease with an increasing NFG but we
eventually find this saturates and there is little or no improvement in
error even with a big jump from NFG = 10 to NFG = 20. This means
going arbitrarily high in NFG will slowly stop improving errors but
continue to bias results (increase |ε|).

The results from Fig. 16 are therefore strong evidence that a fine
balance must be reached for an optimal choice of NFG in cross-
correlations. This choice will also depend on the cosmological pa-
rameters being probed. For example, an investigation into primordial
non-Gaussianity involves attempts to constrain the parameter fNL,
which requires large scales (small-k) measurements. Going to NFG

∼ 10 in an attempt to minimize errors may not be plausible in
this situation if the bias induced on these large scales is too strong.
Conversely, probing something like the H I abundance (	H I), which
generally just affects the amplitude scaling of the power spectrum and
can thus be probed at most scales, could potentially allow for a more
aggressive clean that controls errors but still does not heavily bias
the higher-k scales where this parameter can still be constrained.
Therefore, it is unlikely that a universally optimal foreground
treatment can ever be selected. This also supports conclusions from
previous work that attempted to model the effects of foreground
cleaning e.g. Cunnington et al. (2020b) and Soares et al. (2021).
These works employed subtly different foreground modelling, which
is likely due to the different range of scales they targeted given their
science goals.

6 D ISCUSSION

Evidence from pathfinder 21-cm intensity mapping data (Masui et al.
2013; Wolz et al. 2017, 2021; Anderson et al. 2018) suggests that
we will, at least initially, be requiring fairly aggressive foreground
cleans in H I intensity mapping surveys. This is potentially due
to instrumental responses to foregrounds causing effects such as
polarization leakage. Understanding the impact this has on probes
of large-scale cosmic structure using H I intensity maps is therefore
paramount. In this paper, we have provided a study into these issues
by presenting a set of test data with a differing range of foreground
contamination, both with and without effects from polarization
leakage. We stress that the polarization leakage model we use is far
from being a precise emulation of these complex effects, nevertheless
it captures the main issue with this systematic: its non-smooth and
spatial-dependent behaviour in frequency, and a more advanced
model is currently lacking.

Given our limited understanding of polarization effects on inten-
sity mapping, we have aimed to test extreme cases where a high-NFG

clean is required, which in this sense, is similar to early pathfinder
experiments. This provides a means to begin investigating some of
these issues in a simulated setting where we have full control and
can separate contributions to the final observed signal. We found that
a varying polarization leakage fraction does not create problems for
a foreground clean (see Fig. 7) and an increasing fraction mainly
just increases the amplitude of the eigenvalues one would remove
anyway in a foreground clean (Fig. 4). The main issue comes from
the frequency decoherence to the foreground spectra which could
plausibly be higher than predicted by the CRIME model we use.
To investigate this further, we created a high FR test using the
polarization leakage output from the Galactic plane region ofCRIME.
Whilst this mixing of regions does not represent a physically realistic
scenario, it provides the necessary test case to investigate these
problems with the models currently available.

The contamination to the data from a foreground clean can
manifest in two distinct ways: damping of cosmological H I modes,
and foreground residuals.

6.1 Damping cosmological H I

Inevitably, some cosmological H I modes will be degenerate with
the 21-cm foregrounds and their information will be contained in
the same modes that are being removed. This has the effect of
damping the H I power spectrum mostly on large scales (small-
k). For our mild cases without polarization leakage (and even the
SCP with polarization leakage), this effect is minimal (see Figs 6
and 7). However, where higher NFG cleans are needed, as was
required for our high FR cases, this damping becomes severe and
generally isolated to small-k� modes (see Fig. 13). In all cases
though, a foreground transfer function (Section 4.5.1) should be
able to compensate for this damping or alternatively, a foreground
model with free nuisance parameters that can be marginalized over
(Soares et al. 2021), although neither approaches avoid the inevitable
reduced sensitivity caused by the foreground clean.

6.2 Foreground residuals

Another challenging effect from foreground contamination comes
from residuals left in the data after a clean. In mild cases where
foregrounds are removed relatively easily, foreground residuals are
small but we have shown evidence that there can still be an additive
bias (see high-k values in Fig. 9 with positive ε values). However,
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previous work (e.g. Cunnington et al. 2020a; Soares et al. 2021)
has shown that unbiased cosmological parameter estimates can be
obtained even when contribution from residuals is not included, thus
showing that for mild cases with low enough residuals, their effect
is minimal. However, our results indicate that foreground residuals
can be exacerbated by polarization leakage. For example, Fig. 14
demonstrated how even with large NFG, the foreground residuals can
still have a similar amplitude to the remaining H I signal in some
cases. This would cause additive biases and boost errors and needs
to be modelled, as we outlined in equation (28) and equation (29).
Quantifying the contribution from foreground residuals is not trivial
with real data and this will be a key challenge for autocorrelation
measurements. However, for cross-correlations with an overlapping
optical galaxy survey, the situation is somewhat simplified. Here,
the foreground residuals do not correlate with the foreground-free
galaxy data, allowing less extreme cleans at the expense of a boost
to errors (as demonstrated by Fig. 16).

Our investigation suggests that drawing general conclusions or
recommendations for an optimal foreground treatment is not possi-
ble. An optimal method depends on the region being targeted, the
instrumental calibration (e.g. susceptibility to polarization leakage),
and also on the scales being targeted depending on the survey’s
key science goals. But if one can achieve near-perfect instrument
calibration, the results do appear fairly general. The first column of
Fig. 7 shows all regions can be cleaned by blindly removing three
principal components and this delivers similar damping to H I power
and a similar level of residual bias. However, residuals may differ
between regions for smaller-k but without affecting the accuracy
(measured by ε) and instead just affect the precision (boosting errors).

We introduced and tested three commonly employed blind fore-
ground cleaning techniques; FASTICA, GMCA, and PCA, the
latter being mathematically equivalent to SVD (Section 4.1.1),
and a polynomial fit. We found all three blind methods deliver
essentially equivalent results in all cases. We discussed this in detail
in Section 5.1 – in summary, this is due to FASTICA and GMCA
performing an initial PCA which they then try to improve upon by
imposing spatial statistical independence and sparsity, respectively.
However, perhaps due to the sky size we use and the resolution, the
foregrounds not included in the initial PCA reconstruction are not
sufficiently sparse or non-Gaussian to be identified by GMCA or
FASTICA and no discernible improvement is made.

We also trialed a non-blind approach to foreground removal
(Section 4.4). Our tests revealed that this method can potentially
be competitive with a blind approach in the absence of polarization
leakage (see Fig. 9). However, the method in its current form is
not robust to polarization leakage effects and performs poorly when
this is included. Thus, this approach would be reliant on a near-
perfect calibration of the intensity mapping instrument. For these
reasons, this approach would only likely be viable for future surveys
where calibration strategies are highly optimized and astrophysical
parameters can be tightly constrained, allowing more precise fits to
the foregrounds. A potential benefit from this is the possibility of
further combinations with a full-blind approach in a hybridization.
Section 5.3 examined the cross-correlation between a non-blind
cleaned map and a PCA cleaned one. This revealed that while
little improvement can be gained in the accuracy of the final power
spectrum, the foreground residuals in the two are subtly different and
result in a lower contribution in the cross-measurement (Fig. 12).

We hope our findings can be useful for analysing H I intensity
mapping data from the MeerKAT intensity mapping survey (Santos
et al. 2017; Li et al. 2020a; Wang et al. 2020), and for preparing
cross-correlation strategies for MeerKAT and the SKA (Carucci,

Villaescusa-Navarro & Viel 2017; Pourtsidou, Bacon & Crittenden
2017; SKA Cosmology SWG et al. 2020).
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Lawrence C. R., 2008, ApJ, 676, 10

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,
306

Harper S., Dickinson C., 2018, MNRAS, 479, 2024
Harper S., Dickinson C., Battye R., Roychowdhury S., Browne I., Ma Y.-Z.,

Olivari L., Chen T., 2018, MNRAS, 478, 2416
Harris C. R. et al., 2020, Nature, 585, 357–362
Hunter J. D., 2007, Comput. Sci. Eng., 9, 90
Hyvärinen A., 1999, IEEE Transact. Neural Netw., 10 3, 626
Hyvärinen A., Oja E., 2000, Neural Netw., 13, 411
Jelic V. et al., 2008, MNRAS, 389, 1319
Jelic V., Zaroubi S., Labropoulos P., Bernardi G., de Bruyn A. G., Koopmans

L. V. E., 2010, MNRAS, 409, 1647
Jones E., Oliphant T., Peterson P. et al., 2001, SciPy: Open Source Scientific

Tools for Python. http://www.scipy.org/
Klypin A., Yepes G., Gottlober S., Prada F., Hess S., 2016, MNRAS, 457,

4340
Knebe A. et al., 2018, MNRAS, 474, 5206
Lacy M. et al., 2020, Publ. Astron. Soc. Pac., 132, 035001
Leach S. et al., 2008, A&A, 491, 597
Li Y., Santos M. G., Grainge K., Harper S., Wang J., 2021up, MNRAS, 501,

4344
Li L., Staveley-Smith L., Rhee J., 2020b, Res. Astron. Astrophys., 21, 030
Liao Y.-W., Chang T.-C., Kuo C.-Y., Masui K. W., Oppermann N., Pen U.-L.,

Peterson J. B., 2016, Astrophys. J., 833, 289
Liu A., Shaw J. R., 2020, Publ. Astron. Soc. Pac., 132, 062001
Liu A., Tegmark M., 2011, Phys. Rev. D, 83, 103006
Mandelbaum R. et al., 2011, MNRAS, 410, 844
Masui K. W. et al., 2013, ApJ, 763, L20
Matshawule S. D., Spinelli M., Santos M. G., Ngobese S., 2020, preprint

(arXiv:2011.10815)
McKinney W., 2010, in van der Walt S., Millman J., eds, Proceedings of the

9th Python in Science Conference. p. 51
Mertens F., Ghosh A., Koopmans L., 2018, MNRAS, 478, 3640
Mertens F. et al., 2020, MNRAS, 493, 1662
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