
HAL Id: hal-02987509
https://hal.science/hal-02987509

Submitted on 3 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A distributed GPU-based Correlation Clustering
algorithm for large-scale signed social networks

Mario Levorato, Lúcia Drummond, Rosa Figueiredo, Yuri Y. Frota

To cite this version:
Mario Levorato, Lúcia Drummond, Rosa Figueiredo, Yuri Y. Frota. A distributed GPU-based Cor-
relation Clustering algorithm for large-scale signed social networks. Brazilian Symposium on High
Performance Computing Systems, Oct 2017, Campinas, Brazil. �hal-02987509�

https://hal.science/hal-02987509
https://hal.archives-ouvertes.fr

A distributed GPU-based Correlation Clustering algorithm
for large-scale signed social networks

Mario Levorato1, Lúcia Drummond1, Rosa Figueiredo2, Yuri Frota1

1Instituto de Computação
Universidade Federal Fluminense (UFF) – Niterói, RJ – Brasil

2Laboratoire d’Informatique d’Avignon
Université d’Avignon – Avignon, France

{mlevorato,lucia,yuri}@ic.uff.br, rosa.figueiredo@univ-avignon.fr

Abstract. When applied to signed networks, the Correlation Clustering (CC)
problem consists of an important tool to study how balanced a social group
behaves and if this group might evolve to a possible balanced state. Solving
such combinatorial optimization problem is a challenging task, which heavily
relies on heuristic procedures, one of the few solution methods capable of an-
alyzing large network instances. In this work, we present a scalable method to
solve Correlation Clustering (CC) problems on large-scale signed networks. A
distributed GPU-powered version of the ILS metaheuristic, which benefits from
data parallelism, has been developed. This approach is horizontally scalable
and efficient, as it provides good quality clustering results when compared to
non-distributed methods. Experiments were conducted on both synthetic and
real datasets. The proposed algorithm achieved improved solution values when
compared to the existing parallel solution method. In particular, one of the
largest graphs we have considered in our experiments contains 1 million nodes
and 8 million edges – such graph can be clustered in two hours using our algo-
rithm. The proposed method can process networks for which there is no efficient
solution using the existing algorithms found in the literature.

1. Introduction
A group of individuals can often be viewed as social networks, where vertices represent
individuals and edges their relations. Relationships in social networks can have more than
two status like presence or absence of a trust/friendship between two individuals. There
may be negative links like distrust or dislike. Signed networks are used for this purpose
and, within these relationships, communities are formed.

Community detection and clustering on signed networks can provide significant
insights into understanding group interactions in social systems and further deducing how
a social system evolves and if (or when) the system will reach balanced or relative stable
status. Knowledge about communities also allows us to better understand and analyze
behaviors of users inside communities, as well as their formation and disintegration.

All these aspects are part of an important theory called social balance or
structural balance, originated from early studies of [Heider 1946] and later expanded
by [Cartwright and Harary 1956] and [Davis 1967]. The basic ideas underlying struc-
tural balance are commonly represented with the aphorisms: “my friend’s friend is
my friend, my friend’s enemy is my enemy, my enemy’s friend is my enemy, my en-
emy’s enemy is my friend [Aronson and Cope 1968, Schwartz 2010]. Structural bal-
ance theory affirms that human societies tend to avoid tension and conflictual rela-
tions [Facchetti et al. 2011, Srinivasan 2011]. In a signed graph which represents a social
network, this translates into a level of balance greater than expected, if compared to a ran-
dom signed graph of equivalent size [Facchetti et al. 2011], and such measure can help
us understand interesting social phenomena, like alliances and disputes among parties
or nations [Macon et al. 2012, Doreian and Mrvar 2015] and the social situation where
polarization is frequent, like national elections [Srinivasan 2011].

We study the Correlation Clustering (CC) problem applied to measuring struc-
tural balance in signed social networks. The CC problem can be stated as: given n
objects where certain pairs of objects are labeled as similar and other pairs as dis-
similar, find a clustering which maximizes the number of similar pairs within clus-
ters, plus the number of dissimilar pairs between clusters. In fact, the CC prob-
lem is not only useful in social network analysis, but also in other research ar-
eas: efficient document classification [Bansal et al. 2002], detection of embedded ma-
trix structures [Gülpinar et al. 2004], biological systems [DasGupta et al. 2007], group-
ing of genes [Bhattacharya and De 2008], community structure [Macon et al. 2012],
portfolio analysis in risk management [Huffner et al. 2009] and image segmenta-
tion [Kim et al. 2014].

Even though large-scale unsigned social networks (like the ones built from Face-
book and Twitter) have been extensively studied [Duch and Arenas 2005, Newman 2006,
Brandes et al. 2008], only a few datasets of relatively large signed social networks have
been released [Kunegis 2013, Leskovec and Krevl 2014]. While these graphs tend to fol-
low a power-law distribution, denser graphs can be obtained by generating edges with
similarity measures between all pairs of elements, based on datasets that contain rat-
ings or voting information, such as Movielens [GroupLens 2017] and the European Par-
liament [Mendonça et al. 2015]. Though these networks may contain less vertices than
typical world-scale social networks, they can be harder to analyze, for their high edge
density.

Measuring structural balance in large signed networks is complex and
time consuming. As other real-world optimization problems, the CC prob-
lem is NP-hard [Bansal et al. 2002] and the number of possible clustering con-
figurations is exponential. To tackle this challenge, we first designed parallel
GRASP [Feo and Resende 1995] and ILS [Lourenço et al. 2003] metaheuristics for the
CC problem [Drummond et al. 2013, Levorato et al. 2015b], which outperformed the
previous solution methods with similar or improved solution quality. We then developed
a parallel local search procedure for the CC problem, accelerated by General Purpose
Graphics Processing Units (GPGPUs) [Levorato et al. 2015a]. When dense graphs need
to be processed, this procedure reduces the complexity of the local search step of both
GRASP and ILS, by analyzing several neighborhood movements in parallel. Recently, in
[Levorato et al. 2017], the parallel ILS algorithm for the CC problem was used to cluster
the large real-world social networks provided by [Leskovec and Krevl 2014], with up to
105 vertices and 106 edges.

The need to efficiently process larger and denser networks has motivated us to
develop a new algorithm, based on heterogeneous computing, using multiple processor
types (CPUs and GPUs), task parallelism and distributed data parallelism at the same
time. However, clustering signed graphs which are distributed over several compute nodes
consists of a challenging subject, since the local search procedures and heuristics in the
literature are inherently sequential, as they need to be aware of the whole graph at each
step. Also, communication between machines can quickly become a performance bottle-
neck in many graph applications.

We applied dynamic vertex repartitioning during the execution of the distributed
algorithm, which demands extra communication required for reassigning data between
compute nodes. Besides the local search in the optimization algorithm, dynamic reparti-
tioning is also used as an adaptive load balancing technique, so as to avoid overload of a
specific processing node.

In this paper, we propose a distributed optimization algorithm for solving the CC
problem on large-scale signed graphs, whose processing would be impossible on a single
machine. To the best of our knowledge, this is the first work on distributed metaheuristics
applied to a clustering problem. Thus, in this paper, we do not compare to other distributed

techniques as there is no existing comparable technique. As seen in the next section, the
nearest works are based on a variation of the CC problem on complete graphs, whose input
data and results are not directly comparable. We conduct evaluations on synthetic datasets
and real networks. The accuracy and efficiency of the distributed CC algorithm were then
compared with the same base metaheuristic (ILS-CC) described in [Levorato et al. 2017],
running as a parallel program. Results demonstrate the effectiveness of the proposed
method.

2. Related work
Correlation clustering was formalized for the first time by [Bansal et al. 2002]. In
the general case, the problem of maximizing agreements (minimizing disagreements)
is NP-hard and APX-hard (hard to approximate within an arbitrarily small con-
stant) [Bansal et al. 2002, Charikar et al. 2003]. Two variations of the CC problem are
known. It can be computed on complete graphs (i.e. all edges are present and all weights
are±1), or on general graphs (arbitrary edge weights) – the problem studied in this work.
Since these variations of the problem require distinct types of input graphs, their solutions
cannot be directly compared.

When applied to complete unweighted graphs, the CC problem can be solved via
approximation algorithms. [Chierichetti et al. 2014] proposed a parallel 3-approximation
algorithm to the optimal CC on complete graphs, which can be implemented in a dis-
tributed framework such as MapReduce and scales to huge datasets like Twitter (41M
nodes, 2.5B positive edges and 2.9M maximum degree). [Pan et al. 2015] developed
parallel CC algorithms with 3-approximation factor, that, although not distributed, can
scale to billion-edge graphs, returning a valid solution in less than five seconds.

In this work, we consider the CC problem on general signed graphs. In this
case, Integer Linear Programming (ILP) can be used to solve the CC problem opti-
mally, but only when the number of data points is small. For its complexity, the
only available solutions for large instances are either heuristic or approximate. The
best known approximation ratio for the CC problem is O(logn). [Bansal et al. 2002]
proposed two approximation algorithms: one to maximize “agreements” (the num-
ber of positive within clusters and negative edges between clusters) and another to
minimize disagreements. An approximation algorithm based on rounding a linear
program is provided by [Demaine et al. 2006]. [Ailon et al. 2008] proposed a con-
stant factor 2.5 approximation for disagreement minimization (the best known fac-
tor so far). Greedy neighborhood-based heuristics for the problem were proposed by
[Elsner and Schudy 2009] and [Wang and Li 2013], while in [Yang et al. 2007], the CC
problem is known as community mining and an agent-based heuristic called FEC is pro-
posed to its solution. A genetic algorithm applied to document clustering has also used
the CC problem as objective function [Zhang et al. 2008].

After developing parallel GRASP [Drummond et al. 2013] and
ILS [Levorato et al. 2015b] metaheuristics for the CC problem, in [Levorato et al. 2017],
we presented a thorough analysis of the sequential and parallel ILS algorithms, in
comparison with the aforementioned CC solution approaches proposed in the literature.
When a direct comparison was possible, the results evidentiated the superiority of the
ILS-CC algorithm, which presented similar or improved solution quality.

3. A Distributed algorithm for solving the Correlation Clustering problem
When it comes to signed social networks, the instances generated from Wikipedia, Slash-
dot and Epinions websites, available in [Leskovec and Krevl 2014], have thousands of
nodes and in some cases almost a million relationships1. In order to scale the ILS proce-

1Epinions signed social network has 131828 vertices and 711210 edges.

dure to solve larger network instances, we extended the existing ILS procedure for the CC
problem [Levorato et al. 2015b] to explore the natural data parallelism present in cluster-
ing problems: the graph can be split into smaller (non-overlapping) subgraphs and ILS
can be used to obtain a clustering solution for each subgraph. The basic idea is to use
distributed computing so that each node runs the optimization algorithm over a subset
of vertices and then combine all partial solutions (and their respective clustering) into a
global solution for the whole network.

3.1. Preliminaries
Let G = (V,E) be an undirected signed graph where V is the set of n vertices and

E is the set of edges, where each edge has weight we ≥ 0. Let s(e) denote the label (〈−〉,
〈+〉) of the edge e. Let E− and E+ denote, respectively, the set of negative and positive
edges in G. Note that the terminology “positive” and “negative” refers to the edge label
and not the weight; edge weights are always nonnegative regardless of the label.

For a vertex set S ⊆ V , let E[S] = {(i, j) ∈ E | i, j ∈ S} denote the subset of
edges induced by S. For two vertex sets S,W ⊆ V , let E[S : W] = {(i, j) ∈ E | (i ∈
S, j ∈ W) ∨ (i ∈ W, j ∈ S)} denote the subset of edges that connect vertices from the
clusters S and W . Given a clustering C = {S1, S2, . . . , Sk}, for 1 ≤ i, j ≤ k, let

Ω+(Si, Sj) =
∑

e∈E+∩E[Si:Sj]

we and Ω−(Si, Sj) =
∑

e∈E−∩E[Si:Sj]

we.

We call an edge e = (u, v) a positive mistake if s(e) = 〈+〉 and e ∈ E[Si : Sj] :
Si, Sj ∈ C, i 6= j. We call an edge e = (u, v) a negative mistake if s(e) = 〈−〉 and
e ∈ E[Si : Si] for some Si ∈ C. The number of mistakes or imbalance of a clustering
[I(C)], is given by the sum of positive and negative mistakes or, in other words, the
weighted sum of unrelated pairs that are clustered together, in addition to the weighted
sum of related pairs that are separate.

I(C) =
∑
1≤i≤l

Ω−(Si, Si) +
∑

1≤i<j≤l

Ω+(Si, Sj). (1)

That being said, a formal definition to the CC problem can be provided.

Problem 3.1 (CC problem) Let G = (V,E) be a signed graph and we be a nonnegative
edge weight associated with each edge e ∈ E. The correlation clustering problem is the
problem of finding a clustering C of V such that the imbalance I(C) is minimized.

A partition of V is a division of V into non-overlapping and non-empty subsets
and a graph G′ = (V ′, E ′) is called a subgraph of a graph G = (V,E) if V ′ ⊆ V and
E ′ ⊆ E. G′ is called an induced subgraph, or the subgraph induced by V ′, if E ′ consists
of all edges of G spanned by V ′.

Now suppose the set V of vertices of G is partitioned into q subsets, one for each
process running in parallel, such that Φ = {V1, V2, . . . , Vq} denotes a vertex-process par-
tition of V . This way, ∀i ∈ {1, . . . , q}, each process qi will be in charge of manipulating
a subgraph G′i, induced by Vi.

3.2. Distributed GPU-powered Iterated Local Search (ILS) algorithm for the CC
Problem

The Iterated Local Search [Lourenço et al. 2003] (ILS) is a metaheuristic that
explores a sequence of solutions created by perturbations of the current best solu-
tion and then refines these solutions to their local optima using an embedded heuris-
tic. According to our tests, within a 2-hour time limit, the multistart ILS procedure

(ILSMultiStartCC) from [Levorato et al. 2015b], embedded in our distributed algo-
rithm, is capable of efficiently solving the CC problem on real-world networks of size
up to n = 80, 000 and edge density d ≤ 0.02%. To process larger graphs, we opted to
develop a distributed algorithm that splits large-scale network instances into smaller sub-
graphs, delegating the solution of the CC problem on each subgraph to a specific process.
Therefore, all processes execute the same code (the ILSMultiStartCC procedure) over
a different subgraph.

Message passing was used for communication among processes. When q proces-
sors are used, a master process reads the problem data, divides the graph into smaller
parts and passes them to the remaining q − 1 processes. Each process executes a copy of
ILS over a specific subgraph it was assigned to, according to the vertex partitioning (each
vertex subset goes to a process running on a separate CPU). Finally, the master process
is in charge of gathering each search result produced in parallel and merging them to a
global solution for the whole graph.

A second parallelization strategy used in this algorithm was applied in the lo-
cal search phase (inside the ILSMultiStartCC procedure), using parallelism to eval-
uate hundreds of vertex movements at once with the help of General Purpose Graphics
Processing Units (GPGPUs). It consists of a parallel local search procedure, known as
CUDA-VND [Levorato et al. 2015a], which outperforms the previous local search proce-
dure (which used sequential code) in execution time, presenting similar solution quality.

We also applied distributed data parallelism to our algorithm by the use of spe-
cial data structures from the Boost Parallel Graph Library [Gregor and Lumsdaine 2005].
Distributing graph vertices and edges between several compute nodes allowed the pro-
cessing of extremely large graphs which would not fit into a single machine. This allows
the algorithm to efficiently scale to graphs in the order of 106 nodes and number of edges
above 109, without the limitations of a single shared memory address space.

The distributed algorithm includes an initial distribution of vertices among pro-
cesses (Algorithm 1) and an optimization algorithm executed in a distributed fashion
with a load balance mechanism, which also includes termination detection (Algorithms 2
and 3).
3.2.1. Initial distribution

The signed graph is split according to the number of vertices n = |V | and the
number of processes running in parallel (q parameter). Each process will be initially in
charge of finding a solution for the subgraph induced by the set Vi, where |Vi| = |V | /q.

The SplitGraphBetweenProcesses procedure (Algorithm 1) generates an ini-
tial vertex-process partition Φ, comprised of q subsets, from V1 to Vq, and delegates to
each process qj the task of finding the solution of the CC problem on the corresponding
subgraph induced by Vj . Let R be the set of vertices not yet associated to any process.
For each process qj , the procedure initially adds to the subset Vj the vertex v ∈ R with the
smallest negative-edge sum considering the residual subgraph induced by set R (line 4).
Then, at each step, the vertex vmax is added to the referred partition. This vertex, which
has not been previously inserted in Vj , is chosen so that it presents the maximum cardinal-
ity of positive edges between itself and Vj (line 6). In other words, this criterion tends to
minimize the number of mistakes of the initial partition, since vertices with higher affinity
(i.e. more positive edges) will be included in the same subgraph (same process). At the
end, each subset Vj in the initial partition Φ is forwarded to the corresponding process
(line 10).

In a second version of the initial distribution, Algorithm 1 was replaced by a uni-
formly random distribution of the vertices between the processes, which scales to huge
graph instances. We applied such distribution approach only when the graph was too big
for a single machine’s memory. As seen in the next section, the experiments performed
with the most dense graph instances have confirmed the scalability and efficiency of our

Algorithm 1: SplitGraphBetweenProcesses (master procedure)
Variables: G = (V,E) and number of processes q

1 R← V ;
2 C ← ∅, Φ← ∅;
3 for each process qj such that 1 ≤ j ≤ q do
4 Vj ← {arg min{Ω−(R, {v}) | v ∈ R}};

5 while
(
|Vj | <

|V |
q

)
do

6 vmax← arg max{Ω+(Vj , {v}) | v ∈ (R \ Vj)};
7 Vj ← Vj ∪ {vmax};
8 R← R \ Vj ;
9 Φ← Φ ∪ Vj ;

10 send message (〈InitialDistribution〉, Vj) to process qj ;

solution method.

3.2.2. Distributed optimization and load balance

After the initial distribution of vertices, the master executes DistributedILS
(Algorithm 2), which is based on the Variable Neighborhood Descent
(VND) [Mladenović and Hansen 1997] procedure. It is in charge of exploring four
different distributed neighborhood structures (vertex/cluster movements between process
partitions), listed in Figure 1. The master generates new vertex partitionings Φ, dis-
tributed among the processes, allowing that a better global solution be reached if and only
if an improvement of imbalance for the whole graph is obtained. The master procedure
sends, to each worker process qj , the requested neighborhood movement type and the
new vertex-process partition Φ. After receiving the processing results, the individual
CC solution of each modified subgraph (Cj) is then merged into a global solution C
for the whole graph (lines 9-10) and the corresponding global imbalance I(C) is tested
for improvement (line 11). If this is the case, the new incumbent is updated and r is
returned to its initial value (line 12). Otherwise, the next neighborhood is considered
(line 14). The algorithm halts when no better clustering solution is found in the most
distant neighborhood of the current best solution (C) or if the time limit is exceeded.

Algorithm 2: DistributedILS (master procedure)
Variables: G = (V,E), vertex-process partition Φ, clustering C, number of processes q

1 r← 1 , C ← ∅ , I(C)←∞;
2 while r ≤ 4 and time limit not exceeded do
3 Φ← Φ;
4 UpdatePartition (Φ, MovementType(r));
5 for each process qj where 1 ≤ j ≤ q do
6 send message (〈MovementType(r)〉, Φ) to process qj ;
7 C ← ∅;
8 for each process qj where 1 ≤ j ≤ q do
9 receive message (〈ILSResult〉, Cj) from process qj ;

10 C ← C ∪ Cj ;
11 if I(C) < I(C) then
12 C ← C , Φ← Φ, r← 1;
13 else
14 r← r + 1 ; // Go to the next VND neighborhood
15 return Φ, C;

Algorithm 3 summarizes the tasks performed by each worker process. The initial
distribution of vertices is received in the beginning of the program. The main loop is

then responsible for processing the messages received from the master process, which
contain the neighborhood movement requested. A load balancing procedure (line 4) tries
to rebalance the number of vertices in each subgraph, to prevent a process from being
overloaded. This first step is fast and computationally inexpensive, since moving clusters
of the current solution between processes causes no change in the CC solution value.
Afterwards, the neighborhood movement (requested by the master process) is performed
(line 5), as depicted in Figure 1. Then, each worker process runs the ILSMultiStartCC
procedure on its modified subgraph G′(Vj) (line 7). Finally, on the next line, the local ILS
clustering result Cj is sent back to the master process qm.

Algorithm 3: DistributedILS (worker procedure)
Variables: G = (V,E), clustering Cj , number of processes q

1 receive message (〈InitialDistribution〉, Vj) from process qm;
2 while not terminate do
3 receive message (〈MovementType〉, Φ) from process qm;
4 Φ← LoadBalance (Φ,q);
5 Vj ← Repartition (〈MovementType〉, Φ);
6 G′ ← subgraph induced by Vj ∈ Φ;
7 Cj ← ILSMultiStartCC (G′);
8 send message (〈ILSResult〉, Cj) to process qm;
9 if termination detected then

10 terminate← true;

V2

V4

V1

V3

moveV

V2

V4

V1

V3

moveV

move

MovementType(1): 1-move-cluster MovementType(2): 2-move-cluster

V2

V4

V1

V3

V

swap

V2

V4

V1

V3

V
move
quasi-
clique

MovementType(3): 1-swap-cluster MovementType(4): move-quasi-clique
Figure 1. Distributed ILS neighborhood structures. A cluster movement between processes involves at
most three modified subgraphs, thus requiring three processes to execute the local ILS procedure (e.g.
2-move-cluster moves two clusters – and corresponding vertices – from one process subgraph to two
different processes). The remaining (idle) processes can be then used to compute other neighborhood
movements in parallel.

Remark that the objective function calculation also benefits from parallelism. For
every change in the clustering, a reduction operation is in charge of receiving the local
solution value of each subgraph (lines 9-10 in Algorithm 2), from every participating
process. Based on these values, the change in global solution is then computed according
to the new CC clustering C, as well as the vertex-process partition Φ and the edges that
connect vertices from different processes.

The most complex neighborhood structure is MoveQuasiClique (Movement-

Type(4) in Figure 1). The algorithm identifies vertex-overloaded processes, i.e. processes
with more than (n/q) vertices. Then, for each process that falls into this category, the pro-
cedure tries to identify and move a subset of vertices K (here defined as a quasi-clique)
from an existing cluster to a new cluster in another process. A quasi-clique2 K exhibits
high affinity, that is, a high density of internal positive edges and, at the same time, a low
density of internal negative edges, and therefore constitutes a good subset of vertices to
be moved.
3.2.3. Termination detection

The master process finishes its work and terminates when no additional improve-
ment can be found based on the current best solution or if the time limit is exceeded.
In other words, the procedure in Algorithm 2 returns when no better clustering solution
is found in the most distant neighborhood of the current solution C. This propagates a
termination message to all worker processes as well.

4. Experiments
The goal of these experiments is to assess the performance of the DistributedILS
algorithm using different sets of signed graph instances, when compared to our
previous best solution technique, the Independent Parallel ILS − CC algorithm
(ParILS) [Levorato et al. 2017], which from now on will be called baseline. The lo-
cal search procedure used by both algorithms (baseline and DistributedILS) runs on the
GPU [Levorato et al. 2015a].

4.1. Computational environment
The algorithms described in the previous section were implemented in ANSI

C++, MPI (OpenMPI) for message passing and Boost Parallel BGL for graph data
parallelism. All experiments were performed (with exclusive access) on the SDumont
cluster[LNCC 2017] with 198 nodes, each one with two Intel Xeon E5-2695v2 Ivy Bridge
@2.4GHz processors (12 cores each) and 64GB of RAM under Linux (Red Hat 6.4). Each
node is also equipped with two NVIDIA Tesla K40 GPUs containing 12GB of RAM and
2880 CUDA cores. CUDA code was written in the ”C for CUDA V6.5” [NVIDIA 2014]
environment. The presented results were obtained from 50 independent runs.

4.2. Test problems
Computational experiments were undertaken on (i) a set of 2 social networks from

the literature, (ii) a set of 3 network instances generated from MovieLens movie ratings
website, and (iii) a set of 6 random signed networks with a predefined community struc-
ture. We will briefly describe these instances3.

(i) This set of instances is composed by two signed networks: the first represent-
ing the large scale social network of technology-related news website Slash-
dot [Leskovec et al. 2010, Facchetti et al. 2011], and the second one contains the
Epinions [Epinions 1999] signed network, an on-line review website which al-
lows users to either like or dislike other people’s reviews. Since both networks are
originally signed digraphs, they were converted to undirected graphs.

(ii) We generated three signed social networks based on movie ratings given by each
user from the MovieLens Website. The dataset used was MovieLens 20M (20
million ratings and 465,000 tag applications applied to 27,000 movies by 138,000
users; Released on 4/2015). 4 The signed graphs were generated according to the
following algorithm. Let the movie rating be an integer between 1 and 5. For
each pair of users, we identify the list of movies both users have rated. Based

2A quasi-clique is an almost complete subgraph [Brunato et al. 2007].
3All instances are available in http://www.ic.uff.br/˜yuri/CCinst-large.html.
4Available at http://grouplens.org/datasets/movielens/

on this list, we totalize the number of similar ratings each user gave to the same
movie. A movie rating from users a and b is similar if both users gave a rating
of 1 or 2 (bad movie), or if both users rated the movie with 3 (regular movie), or
if both users rated the movie with 4 or 5 (good movie). We then normalize the
ratings by subtracting from each user rating the its own average rating, in order
to prevent problems with the difference of scaling between users. Based on this
data, a user-user matrix D = {duv : u, v ∈ V } of cosine distance similarities is
then calculated. Each value is in the range of [-1,1], where -1 represents perfect
disagreement and 1 means perfect agreement between users. If the absolute value
of duv is greater than a given threshold mw, we add a positive or negative edge
between users u and v, according to the sign of duv.

(iii) We generated six large random signed networks with a predefined community
structure, according to [Yang et al. 2007]. The random signed network is defined
as SG(c, n, k, pin, p−, p+), where c is the number of communities in the network,
n is the number of nodes in each community, k is the degree of each node, pin
is the probability of each node connecting other nodes in the same community,
p− denotes the probability of negative links appearing within communities, and
p+ denotes that of positive links appearing between communities. Each generated
instance has a different value for the parameter c. The other parameters were fixed
to n = 4096, k = 16, pin = 0.8, p− = 0.8 and p+ = 0.6.

Instance |V | |E| Instance |V | |E|
Slashdot 82144 500481 Random c = 8 32768 262144
Epinions 131828 711210 c = 16 65536 524284
MovieLens mw = 0.90 138494 371118 c = 32 131072 1048576

mw = 0.85 138494 3451683 c = 64 262144 2097152
mw = 0.80 138494 10211818 c = 128 524288 4194304

c = 256 1048576 8388608
Table 1. Dimensions of each signed graph instance |V |: number of vertices, |E|: number of edges.

4.3. Obtained results

Baseline was configured to use 10 processes running in parallel, equally divid-
ing the number of multistart iterations of the original ILSMultiStartCC procedure. In
DistributedILS, the runtime configuration used 8 processes for instances with the num-
ber of vertices |V | ≤ 5 × 105, and 16 processes for larger graphs. After running both
algorithms for 2 hours, DistributedILS has enhanced the solution quality on Epinions
instance (Figure 2-b) with an average improvement of 9.9%. On the other hand, when
solving the Slashdot instance (Figure 2-a), the baseline achieved the best solution value,
but with a slight average gap (smaller than 0.8%) when compared to DistributedILS.

Regarding the solution of the MovieLens instances in (ii), as shown on Figure 2,
an analysis of the gap in solution values between DistributedILS and baseline also in-
dicates the superiority of the proposed method. For the mw = 0.90 instance, the solution
values were 19.23% smaller than those obtained by baseline. When solving larger in-
stances with mw = 0.85 and mw = 0.80, DistributedILS presented solutions with
average improvements of 1.83% and 1.38%. Finally, when solving the random instances
with predefined community structure in (iii), the proposed algorithm returned an improved
solution on test instances c = 8, c = 16 and c = 32 (Figure 2-(iii)). The average gaps in
solution values were −14.96%, −5.47% and −4.87%, respectively. The baseline method
was not able to process the remaining instances (c ≥ 64), either for not providing an ini-
tial solution within the 2h time limit or due to lack of memory. Therefore, in these cases,
we only display the solution values obtained by DistributedILS.

(i)-a Slashdot
146000 147000 148000 149000 150000

Solution value

(2)

(1)

Instance

146000 147000 148000 149000 150000

(2)

(1)

slashdot

(1) ParILS (2) DistILS

(i)-b Epinions
110000 112000 114000 116000 118000 120000 122000 124000

Solution value

(2)

(1)

Instance

110000 112000 114000 116000 118000 120000 122000 124000

(2)

(1)

epinions

(1) ParILS (2) DistILS

(ii) MovieLens

5000000 5500000 6000000 6500000 7000000

Solution value

(2)
(1)

Instance

2200000 2300000 2400000 2500000 2600000 2700000 2800000 2900000

(2)
(1)

ml-20m
mw = 0.70

157000 158000 159000 160000 161000 162000 163000 164000

(2)
(1)

ml-20m
mw = 0.75

6000 6500 7000 7500 8000

(2)
(1)

ml-20m
mw = 0.85

6000 6500 7000 7500 8000

(2)
(1)

ml-20m
mw = 0.90

(1) ParILS (2) DistILS

5000000 5500000 6000000 6500000 7000000

Solution value

(2)
(1)

Instance

2200000 2300000 2400000 2500000 2600000 2700000 2800000 2900000

(2)
(1)

ml-20m
mw = 0.70

157000 158000 159000 160000 161000 162000 163000 164000

(2)
(1)

ml-20m
mw = 0.75

6000 6500 7000 7500 8000

(2)
(1)

ml-20m
mw = 0.85

6000 6500 7000 7500 8000

(2)
(1)

ml-20m
mw = 0.90

(1) ParILS (2) DistILS

700000 705000 710000 715000 720000 725000

Solution value

(2)
(1)

Instance

700000 705000 710000 715000 720000 725000

(2)
(1)

ml-20m
mw = 0.80

(1) ParILS (2) DistILS

(iii) Random

182000 184000 186000 188000 190000 192000 194000

Solution value

(2)

(1)

Instance

365000 370000 375000 380000 385000 390000

(2)

(1)

c = 16

46000 48000 50000 52000 54000

(2)

(1)

c = 32

95000 100000 105000

(2)

(1)

c = 8

95000 100000 105000

(2)

(1)

c = 8

(1) ParILS (2) DistILS

182000 184000 186000 188000 190000 192000 194000

Solution value

(2)

(1)

Instance

365000 370000 375000 380000 385000 390000

(2)

(1)

c = 16

46000 48000 50000 52000 54000

(2)

(1)

c = 32

95000 100000 105000

(2)

(1)

c = 8

95000 100000 105000

(2)

(1)

c = 8

(1) ParILS (2) DistILS

344000 346000 348000 350000 352000 354000 356000

Solution value

(2)

c = 64, n = 4096
k = 16, pin = 0.8
p- = 0.8, p+ = 0.6

0.0 0.2 0.4 0.6 0.8 1.0
0.940.960.981.001.021.041.06

(1) DistILS (2) DistILS

Instance

c = 64

684000 686000 688000 690000 692000 694000 696000 698000

Solution value

(2)

c = 128, n = 4096
k = 16, pin = 0.8
p- = 0.8, p+ = 0.6

0.0 0.2 0.4 0.6 0.8 1.0
0.940.960.981.001.021.041.06

(1) DistILS (2) DistILS

c = 128

1450000 1460000 1470000 1480000

Solution value

(2)

c = 256, n = 4096
k = 16, pin = 0.8
p- = 0.8, p+ = 0.6

0.0 0.2 0.4 0.6 0.8 1.0
0.940.960.981.001.021.041.06

(1) DistILS (2) DistILS

c = 256

146000 147000 148000 149000 150000

Solution value

(2)

(1)

Instance

146000 147000 148000 149000 150000

(2)

(1)

slashdot

(1) ParILS (2) DistILS

Figure 2. Baseline (ParILS) and DistributedILS (DistILS) CC results for literature instances (i), for Movie-
lens network instances (ii), and for random networks with predefined community structure (iii). The box-
plot shows the distribution of the solution values obtained by each algorithm after running for 2 hours,
considering 50 independent executions.

5. Concluding remarks
We developed a distributed algorithm for efficiently solving the CC problem, based on
a heterogeneous computing platform. It iteratively repartitions the graph between pro-
cesses, invoking the ILS metaheuristic locally on each node and merging individual results
into a global solution. Experiments were conducted on both synthetic and real datasets.
On the synthetic dataset our approach is able to scale to 1,048,576 nodes and 8,388,608
edges. The proposed algorithm can provide efficient solutions to the CC problem when
traditional metaheuristics fail due to the need to be aware of the entire graph, relying on a
single memory space.

Many future research topics could be built upon this framework, including a fully
distributed heuristic for building an initial global solution. Larger signed graph instances
(both in the number of vertices and edges) may be generated as well.
Acknowledgement
The authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for
providing HPC resources of the SDumont supercomputer, which have contributed to the research results
reported within this paper. URL: http://sdumont.lncc.br We also thank the National Council for
Scientific and Technological Development (CNPq) Cnpq-Universal project number 443883/2014-9.
References
Ailon, N., Charikar, M., and Newman, A. (2008). Aggregating inconsistent information: ranking and

clustering. Journal of the ACM (JACM), 55(5):23.
Aronson, E. and Cope, V. (1968). My enemy’s enemy is my friend. Journal of personality and social

psychology, 8(1p1):8.
Bansal, N., Blum, A., and Chawla, S. (2002). Correlation clustering. In The 43rd Annual IEEE Symposium

on Foundations of Computer Science, 2002. Proceedings., pages 238–250, Vancouver, Canada. Institute
of Electrical and Electronics Engineers (IEEE).

Bhattacharya, A. and De, R. K. (2008). Divisive correlation clustering algorithm (dcca) for grouping of
genes: detecting varying patterns in expression profiles. bioinformatics, 24(11):1359–1366.

Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., and Wagner, D. (2008). On
modularity clustering. Knowledge and Data Engineering, IEEE Transactions on, 20(2):172–188.

Brunato, M., Hoos, H. H., and Battiti, R. (2007). On effectively finding maximal quasi-cliques in graphs.
In International conference on learning and intelligent optimization, pages 41–55. Springer.

Cartwright, D. and Harary, F. (1956). Structural balance: A generalization of heider’s theory. Psychological
Review, 63(5):277–293.

Charikar, M., Guruswami, V., and Wirth, A. (2003). Clustering with qualitative information. In Foundations
of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages 524–533. IEEE.

Chierichetti, F., Dalvi, N., and Kumar, R. (2014). Correlation clustering in mapreduce. In Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM.

DasGupta, B., Encisob, G. A., Sontag, E., and Zhanga, Y. (2007). Algorithmic and complexity results for
decompositions of biological networks into monotone subsystems. BioSystems, 90(1):161–178.

Davis, J. (1967). Clustering and structural balance in graphs. Human Relations, 20(2):181–187.
Demaine, E. D., Emanuel, D., Fiat, A., and Immorlica, N. (2006). Correlation clustering in general weighted

graphs. Theoretical Computer Science, 361(2):172–187.
Doreian, P. and Mrvar, A. (2015). Structural balance and signed international relations. Journal of Social

Structure, 16:1.
Drummond, L., Figueiredo, R., Frota, Y., and Levorato, M. (2013). Efficient solution of the correlation

clustering problem: An application to structural balance. In Lecture Notes in Computer Science, pages
674–683. Springer Nature.

Duch, J. and Arenas, A. (2005). Community detection in complex networks using extremal optimization.
Physical review E, 72(2):027104.

Elsner, M. and Schudy, W. (2009). Bounding and comparing methods for correlation clustering beyond ilp.
In Proceedings of the Workshop on Integer Linear Programming for Natural Langauge Processing, ILP
’09, pages 19–27, Stroudsburg, PA, USA.

Epinions (1999). Website. URL http://www.epinions.com. Accessed on March 2015.
Facchetti, G., Iacono, G., and Altafini, C. (2011). Computing global structural balance in large-scale signed

social networks. In Proceedings of the National Academy of Sciences of the United States of America,
volume 108, pages 20953–20958.

Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures. Journal of Global
Optimization, 6(2):109–133.

Gregor, D. and Lumsdaine, A. (2005). The parallel bgl: A generic library for distributed graph computa-
tions. Parallel Object-Oriented Scientific Computing (POOSC), 2:1–18.

GroupLens (2017). Movielens dataset collection. https://grouplens.org/datasets/
movielens.

Gülpinar, N., Gutin, G., Mitra, G., and Zverovitch, A. (2004). Extracting pure network submatrices in linear
programs using signed graphs. Discrete Applied Mathematics, 137:359–372.

Heider, F. (1946). Attitudes and cognitive organization. Journal of Psychology, 21(1):107–112.
Huffner, F., Betzler, N., and Niedermeier, R. (2009). Separator-based data reduction for signed graph

balancing. Journal of Combinatorial Optimization, 20(4):335–360.
Kim, S., Yoo, C. D., Nowozin, S., and Kohli, P. (2014). Image segmentation UsingHigher-order correlation

clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(9):1761–1774.
Kunegis, J. (2013). Konect: the koblenz network collection. In Proceedings of the 22nd International

Conference on World Wide Web, pages 1343–1350. ACM.
Leskovec, J., Huttenlocher, D., and Kleinberg, J. (2010). Signed networks in social media. In Proceedings of

the 28th international conference on Human factors in computing systems - CHI '10, pages 1361–1370.
Association for Computing Machinery (ACM).

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data.

Levorato, M., Drummond, L., Frota, Y., and Figueiredo, R. (2015a). A GPU-accelerated local search
algorithm for the Correlation Clustering problem. In Proceedings of the XLVII Brazilian Symposium on
Operations Research, Porto de Galinhas, PE, Brazil.

Levorato, M., Drummond, L., Frota, Y., and Figueiredo, R. (2015b). An ils algorithm to evaluate structural
balance in signed social networks. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, pages 1117–1122.

Levorato, M., Figueiredo, R., Frota, Y., and Drummond, L. (2017). Evaluating balancing on social networks
through the efficient solution of correlation clustering problems. EURO Journal on Computational
Optimization, pages 1–32.

LNCC (2017). Santos dumont supercomputer. http://sdumont.lncc.br.
Lourenço, H. R., Martin, O. C., and Sttzle, T. (2003). Iterated local search. In Handbook of Metaheuristics,

pages 320–353. Springer Nature.
Macon, K., Mucha, P., and Porter, M. (2012). Community structure in the united nations general assembly.

Physica A: Statistical Mechanics and its Applications, 391(1-2):343–361.
Mendonça, I., Figueiredo, R., Labatut, V., and Michelon, P. (2015). Relevance of negative links in graph

partitioning: A case study using votes from the european parliament. In 2015 Second European Network
Intelligence Conference, pages 122–129. IEEE.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research,
24(11):1097–1100.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582.

NVIDIA, C. (2014). Toolkit documentation v6. 5. URL http://docs.nvidia.com/cuda/cuda-c-programming-
guide.

Pan, X., Papailiopoulos, D., Oymak, S., Recht, B., Ramchandran, K., and Jordan, M. I. (2015). Parallel
correlation clustering on big graphs. In Advances in Neural Information Processing Systems, pages
82–90.

Schwartz, T. (2010). The friend of my enemy is my enemy, the enemy of my enemy is my friend: Axioms
for structural balance and bi-polarity. Mathematical Social Sciences, 60(1):39–45.

Srinivasan, A. (2011). Local balancing influences global structure in social networks. In Proceedings of the
National Academy of Sciences of the United States of America, volume 108, pages 1751–1752.

Wang, N. and Li, J. (2013). Restoring: A greedy heuristic approach based on neighborhood for correlation
clustering. In Advanced Data Mining and Applications, pages 348–359. Springer.

Yang, B., Cheung, W., and Liu, J. (2007). Community mining from signed social networks. IEEE Transac-
tions on Knowledge and Data Engineering, 19(10):1333–1348.

Zhang, Z., Cheng, H., Chen, W., Zhang, S., and Fang, Q. (2008). Correlation clustering based on genetic
algorithm for documents clustering. In 2008 IEEE Congress on Evolutionary Computation, pages 3193–
3198.

