Mario Levorato

Lúcia Drummond

Rosa Figueiredo
email: rosa.figueiredo@univ-avignon.fr

Yuri Y Frota

Úcia Drummond

A distributed GPU-based Correlation Clustering algorithm

come L'archive ouverte pluridisciplinaire

Introduction

A group of individuals can often be viewed as social networks, where vertices represent individuals and edges their relations. Relationships in social networks can have more than two status like presence or absence of a trust/friendship between two individuals. There may be negative links like distrust or dislike. Signed networks are used for this purpose and, within these relationships, communities are formed.

Community detection and clustering on signed networks can provide significant insights into understanding group interactions in social systems and further deducing how a social system evolves and if (or when) the system will reach balanced or relative stable status. Knowledge about communities also allows us to better understand and analyze behaviors of users inside communities, as well as their formation and disintegration.

All these aspects are part of an important theory called social balance or structural balance, originated from early studies of [START_REF] Heider | Attitudes and cognitive organization[END_REF]] and later expanded by [START_REF] Cartwright | Structural balance: A generalization of heider's theory[END_REF] and [START_REF] Davis | Clustering and structural balance in graphs[END_REF]]. The basic ideas underlying structural balance are commonly represented with the aphorisms: "my friend's friend is my friend, my friend's enemy is my enemy, my enemy's friend is my enemy, my enemy's enemy is my friend [START_REF] Aronson | My enemy's enemy is my friend[END_REF]Cope 1968, Schwartz 2010]. Structural balance theory affirms that human societies tend to avoid tension and conflictual relations [START_REF] Facchetti | Computing global structural balance in large-scale signed social networks[END_REF][START_REF] Srinivasan | Local balancing influences global structure in social networks[END_REF]]. In a signed graph which represents a social network, this translates into a level of balance greater than expected, if compared to a random signed graph of equivalent size [START_REF] Facchetti | Computing global structural balance in large-scale signed social networks[END_REF]], and such measure can help us understand interesting social phenomena, like alliances and disputes among parties or nations [Macon et al. 2012, Doreian and[START_REF] Doreian | Structural balance and signed international relations[END_REF] and the social situation where polarization is frequent, like national elections [START_REF] Srinivasan | Local balancing influences global structure in social networks[END_REF]].

We study the Correlation Clustering (CC) problem applied to measuring structural balance in signed social networks. The CC problem can be stated as: given n objects where certain pairs of objects are labeled as similar and other pairs as dissimilar, find a clustering which maximizes the number of similar pairs within clusters, plus the number of dissimilar pairs between clusters. In fact, the CC problem is not only useful in social network analysis, but also in other research areas: efficient document classification [START_REF] Bansal | Correlation clustering[END_REF], detection of embedded matrix structures [START_REF] Gülpinar | Extracting pure network submatrices in linear programs using signed graphs[END_REF]], biological systems [START_REF] Dasgupta | Algorithmic and complexity results for decompositions of biological networks into monotone subsystems[END_REF]], grouping of genes [START_REF] Bhattacharya | Divisive correlation clustering algorithm (dcca) for grouping of genes: detecting varying patterns in expression profiles[END_REF], community structure [START_REF] Macon | Community structure in the united nations general assembly[END_REF], portfolio analysis in risk management [START_REF] Huffner | Separator-based data reduction for signed graph balancing[END_REF]] and image segmentation [START_REF] Kim | Image segmentation UsingHigher-order correlation clustering[END_REF].

Even though large-scale unsigned social networks (like the ones built from Facebook and Twitter) have been extensively studied [START_REF] Duch | Community detection in complex networks using extremal optimization[END_REF][START_REF] Newman | Modularity and community structure in networks[END_REF][START_REF] Brandes | On modularity clustering[END_REF], only a few datasets of relatively large signed social networks have been released [Kunegis 2013, Leskovec and[START_REF] Leskovec | SNAP Datasets: Stanford large network dataset collection[END_REF]. While these graphs tend to follow a power-law distribution, denser graphs can be obtained by generating edges with similarity measures between all pairs of elements, based on datasets that contain ratings or voting information, such as Movielens [GroupLens 2017] and the European Parliament [START_REF] Mendonc ¸a | Relevance of negative links in graph partitioning: A case study using votes from the european parliament[END_REF]. Though these networks may contain less vertices than typical world-scale social networks, they can be harder to analyze, for their high edge density.

Measuring structural balance in large signed networks is complex and time consuming.

As other real-world optimization problems, the CC problem is NP-hard [START_REF] Bansal | Correlation clustering[END_REF] and the number of possible clustering configurations is exponential.

To tackle this challenge, we first designed parallel GRASP [START_REF] Feo | Greedy randomized adaptive search procedures[END_REF] and ILS [START_REF] Lourenc ¸o | Iterated local search[END_REF]] metaheuristics for the CC problem [START_REF] Drummond | Efficient solution of the correlation clustering problem: An application to structural balance[END_REF][START_REF] Levorato | An ils algorithm to evaluate structural balance in signed social networks[END_REF], which outperformed the previous solution methods with similar or improved solution quality. We then developed a parallel local search procedure for the CC problem, accelerated by General Purpose Graphics Processing Units (GPGPUs) [Levorato et al. 2015a]. When dense graphs need to be processed, this procedure reduces the complexity of the local search step of both GRASP and ILS, by analyzing several neighborhood movements in parallel. Recently, in [START_REF] Levorato | Evaluating balancing on social networks through the efficient solution of correlation clustering problems[END_REF], the parallel ILS algorithm for the CC problem was used to cluster the large real-world social networks provided by [START_REF] Leskovec | SNAP Datasets: Stanford large network dataset collection[END_REF], with up to 10 5 vertices and 10 6 edges.

The need to efficiently process larger and denser networks has motivated us to develop a new algorithm, based on heterogeneous computing, using multiple processor types (CPUs and GPUs), task parallelism and distributed data parallelism at the same time. However, clustering signed graphs which are distributed over several compute nodes consists of a challenging subject, since the local search procedures and heuristics in the literature are inherently sequential, as they need to be aware of the whole graph at each step. Also, communication between machines can quickly become a performance bottleneck in many graph applications.

We applied dynamic vertex repartitioning during the execution of the distributed algorithm, which demands extra communication required for reassigning data between compute nodes. Besides the local search in the optimization algorithm, dynamic repartitioning is also used as an adaptive load balancing technique, so as to avoid overload of a specific processing node.

In this paper, we propose a distributed optimization algorithm for solving the CC problem on large-scale signed graphs, whose processing would be impossible on a single machine. To the best of our knowledge, this is the first work on distributed metaheuristics applied to a clustering problem. Thus, in this paper, we do not compare to other distributed techniques as there is no existing comparable technique. As seen in the next section, the nearest works are based on a variation of the CC problem on complete graphs, whose input data and results are not directly comparable. We conduct evaluations on synthetic datasets and real networks. The accuracy and efficiency of the distributed CC algorithm were then compared with the same base metaheuristic (ILS-CC) described in [START_REF] Levorato | Evaluating balancing on social networks through the efficient solution of correlation clustering problems[END_REF], running as a parallel program. Results demonstrate the effectiveness of the proposed method.

Related work

Correlation clustering was formalized for the first time by [START_REF] Bansal | Correlation clustering[END_REF]]. In the general case, the problem of maximizing agreements (minimizing disagreements) is NP-hard and APX-hard (hard to approximate within an arbitrarily small constant) [START_REF] Bansal | Correlation clustering[END_REF][START_REF] Charikar | Clustering with qualitative information[END_REF]. Two variations of the CC problem are known. It can be computed on complete graphs (i.e. all edges are present and all weights are ±1), or on general graphs (arbitrary edge weights) -the problem studied in this work. Since these variations of the problem require distinct types of input graphs, their solutions cannot be directly compared.

When applied to complete unweighted graphs, the CC problem can be solved via approximation algorithms. [START_REF] Chierichetti | Correlation clustering in mapreduce[END_REF]] proposed a parallel 3-approximation algorithm to the optimal CC on complete graphs, which can be implemented in a distributed framework such as MapReduce and scales to huge datasets like Twitter (41M nodes, 2.5B positive edges and 2.9M maximum degree). [START_REF] Pan | Parallel correlation clustering on big graphs[END_REF]] developed parallel CC algorithms with 3-approximation factor, that, although not distributed, can scale to billion-edge graphs, returning a valid solution in less than five seconds.

In this work, we consider the CC problem on general signed graphs. In this case, Integer Linear Programming (ILP) can be used to solve the CC problem optimally, but only when the number of data points is small. For its complexity, the only available solutions for large instances are either heuristic or approximate. The best known approximation ratio for the CC problem is O(logn). [START_REF] Bansal | Correlation clustering[END_REF] proposed two approximation algorithms: one to maximize "agreements" (the number of positive within clusters and negative edges between clusters) and another to minimize disagreements. An approximation algorithm based on rounding a linear program is provided by [START_REF] Demaine | Correlation clustering in general weighted graphs[END_REF]]. [START_REF] Ailon | Aggregating inconsistent information: ranking and clustering[END_REF]] proposed a constant factor 2.5 approximation for disagreement minimization (the best known factor so far). Greedy neighborhood-based heuristics for the problem were proposed by [START_REF] Elsner | Bounding and comparing methods for correlation clustering beyond ilp[END_REF] and [START_REF] Wang | Restoring: A greedy heuristic approach based on neighborhood for correlation clustering[END_REF], while in [START_REF] Yang | Community mining from signed social networks[END_REF], the CC problem is known as community mining and an agent-based heuristic called FEC is proposed to its solution. A genetic algorithm applied to document clustering has also used the CC problem as objective function [START_REF] Zhang | Correlation clustering based on genetic algorithm for documents clustering[END_REF].

After developing parallel GRASP [START_REF] Drummond | Efficient solution of the correlation clustering problem: An application to structural balance[END_REF]] and ILS [START_REF] Levorato | An ils algorithm to evaluate structural balance in signed social networks[END_REF]] metaheuristics for the CC problem, in [START_REF] Levorato | Evaluating balancing on social networks through the efficient solution of correlation clustering problems[END_REF], we presented a thorough analysis of the sequential and parallel ILS algorithms, in comparison with the aforementioned CC solution approaches proposed in the literature. When a direct comparison was possible, the results evidentiated the superiority of the ILS-CC algorithm, which presented similar or improved solution quality.

A Distributed algorithm for solving the Correlation Clustering problem

When it comes to signed social networks, the instances generated from Wikipedia, Slashdot and Epinions websites, available in [START_REF] Leskovec | SNAP Datasets: Stanford large network dataset collection[END_REF], have thousands of nodes and in some cases almost a million relationships 1 . In order to scale the ILS proce-dure to solve larger network instances, we extended the existing ILS procedure for the CC problem [START_REF] Levorato | An ils algorithm to evaluate structural balance in signed social networks[END_REF] to explore the natural data parallelism present in clustering problems: the graph can be split into smaller (non-overlapping) subgraphs and ILS can be used to obtain a clustering solution for each subgraph. The basic idea is to use distributed computing so that each node runs the optimization algorithm over a subset of vertices and then combine all partial solutions (and their respective clustering) into a global solution for the whole network.

Preliminaries

Let G = (V, E) be an undirected signed graph where V is the set of n vertices and E is the set of edges, where each edge has weight w e ≥ 0. Let s(e) denote the label (-, +) of the edge e. Let E -and E + denote, respectively, the set of negative and positive edges in G. Note that the terminology "positive" and "negative" refers to the edge label and not the weight; edge weights are always nonnegative regardless of the label.

For a vertex set

S ⊆ V , let E[S] = {(i, j) ∈ E | i, j ∈ S} denote the subset of edges induced by S. For two vertex sets S, W ⊆ V , let E[S : W] = {(i, j) ∈ E | (i ∈ S, j ∈ W) ∨ (i ∈ W, j ∈ S)} denote the subset of edges that connect vertices from the clusters S and W . Given a clustering C = {S 1 , S 2 , . . . , S k }, for 1 ≤ i, j ≤ k, let Ω + (S i , S j) = e∈E + ∩E[S i :S j] w e and Ω -(S i , S j) = e∈E -∩E[S i :S j] w e .
We call an edge e = (u, v) a positive mistake if s(e) = + and e ∈ E[S i : S j] : S i , S j ∈ C, i = j. We call an edge e = (u, v) a negative mistake if s(e) =and e ∈ E[S i : S i] for some S i ∈ C. The number of mistakes or imbalance of a clustering [I(C)], is given by the sum of positive and negative mistakes or, in other words, the weighted sum of unrelated pairs that are clustered together, in addition to the weighted sum of related pairs that are separate.

I(C) = 1≤i≤l Ω -(S i , S i) + 1≤i<j≤l Ω + (S i , S j).
(1)

That being said, a formal definition to the CC problem can be provided.

Problem 3.1 (CC problem) Let G = (V, E) be a signed graph and w e be a nonnegative edge weight associated with each edge e ∈ E. The correlation clustering problem is the problem of finding a clustering C of V such that the imbalance I(C) is minimized.

A partition of V is a division of V into non-overlapping and non-empty subsets and a graph

G = (V , E) is called a subgraph of a graph G = (V, E) if V ⊆ V and E ⊆ E. G is called an induced subgraph, or the subgraph induced by V , if E consists of all edges of G spanned by V .
Now suppose the set V of vertices of G is partitioned into q subsets, one for each process running in parallel, such that Φ = {V 1 , V 2 , . . . , V q } denotes a vertex-process partition of V . This way, ∀i ∈ {1, . . . , q}, each process q i will be in charge of manipulating a subgraph G i , induced by V i .

Distributed GPU-powered Iterated Local Search (ILS) algorithm for the CC Problem

The Iterated Local Search [START_REF] Lourenc ¸o | Iterated local search[END_REF]] (ILS) is a metaheuristic that explores a sequence of solutions created by perturbations of the current best solution and then refines these solutions to their local optima using an embedded heuristic. According to our tests, within a 2-hour time limit, the multistart ILS procedure (ILSM ultiStartCC) from [START_REF] Levorato | An ils algorithm to evaluate structural balance in signed social networks[END_REF], embedded in our distributed algorithm, is capable of efficiently solving the CC problem on real-world networks of size up to n = 80, 000 and edge density d ≤ 0.02%. To process larger graphs, we opted to develop a distributed algorithm that splits large-scale network instances into smaller subgraphs, delegating the solution of the CC problem on each subgraph to a specific process. Therefore, all processes execute the same code (the ILSM ultiStartCC procedure) over a different subgraph.

Message passing was used for communication among processes. When q processors are used, a master process reads the problem data, divides the graph into smaller parts and passes them to the remaining q -1 processes. Each process executes a copy of ILS over a specific subgraph it was assigned to, according to the vertex partitioning (each vertex subset goes to a process running on a separate CPU). Finally, the master process is in charge of gathering each search result produced in parallel and merging them to a global solution for the whole graph.

A second parallelization strategy used in this algorithm was applied in the local search phase (inside the ILSM ultiStartCC procedure), using parallelism to evaluate hundreds of vertex movements at once with the help of General Purpose Graphics Processing Units (GPGPUs). It consists of a parallel local search procedure, known as CUDA-VND [Levorato et al. 2015a], which outperforms the previous local search procedure (which used sequential code) in execution time, presenting similar solution quality.

We also applied distributed data parallelism to our algorithm by the use of special data structures from the Boost Parallel Graph Library [START_REF] Gregor | The parallel bgl: A generic library for distributed graph computations[END_REF]. Distributing graph vertices and edges between several compute nodes allowed the processing of extremely large graphs which would not fit into a single machine. This allows the algorithm to efficiently scale to graphs in the order of 10 6 nodes and number of edges above 10 9 , without the limitations of a single shared memory address space.

The distributed algorithm includes an initial distribution of vertices among processes (Algorithm 1) and an optimization algorithm executed in a distributed fashion with a load balance mechanism, which also includes termination detection (Algorithms 2 and 3).

Initial distribution

The signed graph is split according to the number of vertices n = |V | and the number of processes running in parallel (q parameter). Each process will be initially in charge of finding a solution for the subgraph induced by the set V i , where

|V i | = |V | /q.
The SplitGraphBetweenP rocesses procedure (Algorithm 1) generates an initial vertex-process partition Φ, comprised of q subsets, from V 1 to V q , and delegates to each process q j the task of finding the solution of the CC problem on the corresponding subgraph induced by V j . Let R be the set of vertices not yet associated to any process. For each process q j , the procedure initially adds to the subset V j the vertex v ∈ R with the smallest negative-edge sum considering the residual subgraph induced by set R (line 4). Then, at each step, the vertex v max is added to the referred partition. This vertex, which has not been previously inserted in V j , is chosen so that it presents the maximum cardinality of positive edges between itself and V j (line 6). In other words, this criterion tends to minimize the number of mistakes of the initial partition, since vertices with higher affinity (i.e. more positive edges) will be included in the same subgraph (same process). At the end, each subset V j in the initial partition Φ is forwarded to the corresponding process (line 10).

In a second version of the initial distribution, Algorithm 1 was replaced by a uniformly random distribution of the vertices between the processes, which scales to huge graph instances. We applied such distribution approach only when the graph was too big for a single machine's memory. As seen in the next section, the experiments performed with the most dense graph instances have confirmed the scalability and efficiency of our Algorithm 1: SplitGraphBetweenP rocesses (master procedure)

Variables: G = (V, E) and number of processes

q 1 R ← V ; 2 C ← ∅, Φ ← ∅; 3 for each process q j such that 1 ≤ j ≤ q do 4 V j ← {arg min{Ω -(R, {v}) | v ∈ R}}; 5 while |V j | < |V | q do 6 v max ← arg max{Ω + (V j , {v}) | v ∈ (R \ V j)}; 7 V j ← V j ∪ {v max }; 8 R ← R \ V j ; 9 Φ ← Φ ∪ V j ;
10 send message (InitialDistribution , V j) to process q j ; solution method.

Distributed optimization and load balance

After the initial distribution of vertices, the master executes DistributedILS (Algorithm 2), which is based on the Variable Neighborhood Descent (VND) [START_REF] Mladenović | Variable neighborhood search[END_REF] procedure. It is in charge of exploring four different distributed neighborhood structures (vertex/cluster movements between process partitions), listed in Figure 1. The master generates new vertex partitionings Φ, distributed among the processes, allowing that a better global solution be reached if and only if an improvement of imbalance for the whole graph is obtained. The master procedure sends, to each worker process q j , the requested neighborhood movement type and the new vertex-process partition Φ. After receiving the processing results, the individual CC solution of each modified subgraph (C j) is then merged into a global solution C for the whole graph (lines 9-10) and the corresponding global imbalance I(C) is tested for improvement (line 11). If this is the case, the new incumbent is updated and r is returned to its initial value (line 12). Otherwise, the next neighborhood is considered (line 14). The algorithm halts when no better clustering solution is found in the most distant neighborhood of the current best solution (C) or if the time limit is exceeded.

Algorithm 2: DistributedILS (master procedure)

Variables: G = (V, E), vertex-process partition Φ, clustering C, number of processes q 1 r ← 1 , C ← ∅ , I(C) ← ∞; 2 while r ≤ 4 and time limit not exceeded do 3 Φ ← Φ; 4 UpdatePartition (Φ, MovementType(r)); 5 for each process q j where 1 ≤ j ≤ q do 6 send message (M ovementT ype(r) , Φ) to process q j ; 7 C ← ∅; 8 for each process q j where 1 ≤ j ≤ q do 9 receive message (ILSResult , C j) from process q j ; // Go to the next VND neighborhood 15 return Φ, C; Algorithm 3 summarizes the tasks performed by each worker process. The initial distribution of vertices is received in the beginning of the program. The main loop is then responsible for processing the messages received from the master process, which contain the neighborhood movement requested. A load balancing procedure (line 4) tries to rebalance the number of vertices in each subgraph, to prevent a process from being overloaded. This first step is fast and computationally inexpensive, since moving clusters of the current solution between processes causes no change in the CC solution value. Afterwards, the neighborhood movement (requested by the master process) is performed (line 5), as depicted in Figure 1. Then, each worker process runs the ILSM ultiStartCC procedure on its modified subgraph G (V j) (line 7). Finally, on the next line, the local ILS clustering result C j is sent back to the master process q m . Algorithm 3: DistributedILS (worker procedure)

Variables: G = (V, E), clustering C j , number of processes q 1 receive message (InitialDistribution , V j) from process q m ; 2 while not terminate do 3 receive message (M ovementT ype , Φ) from process q m ; 4 Φ ← LoadBalance (Φ,q); 5

V j ← Repartition (M ovementT ype , Φ); 6 G ← subgraph induced by V j ∈ Φ; 7 C j ← ILSMultiStartCC (G); 8 send message (ILSResult , C j) to process q m ; 9 if termination detected then 10 terminate ← true; V 2 V 4 V 1 V 3 move V V 2 V 4 V 1 V 3 move V move MovementType(1): 1-move-cluster MovementType(2): 2-move-cluster V 2 V 4 V 1 V 3 V swap V 2 V 4 V 1 V 3 V move quasi- clique
MovementType(3): 1-swap-cluster MovementType(4): move-quasi-clique Remark that the objective function calculation also benefits from parallelism. For every change in the clustering, a reduction operation is in charge of receiving the local solution value of each subgraph (lines 9-10 in Algorithm 2), from every participating process. Based on these values, the change in global solution is then computed according to the new CC clustering C, as well as the vertex-process partition Φ and the edges that connect vertices from different processes.

The most complex neighborhood structure is M oveQuasiClique (Movement-Type(4) in Figure 1). The algorithm identifies vertex-overloaded processes, i.e. processes with more than (n/q) vertices. Then, for each process that falls into this category, the procedure tries to identify and move a subset of vertices K (here defined as a quasi-clique) from an existing cluster to a new cluster in another process. A quasi-clique2 K exhibits high affinity, that is, a high density of internal positive edges and, at the same time, a low density of internal negative edges, and therefore constitutes a good subset of vertices to be moved.

Termination detection

The master process finishes its work and terminates when no additional improvement can be found based on the current best solution or if the time limit is exceeded. In other words, the procedure in Algorithm 2 returns when no better clustering solution is found in the most distant neighborhood of the current solution C. This propagates a termination message to all worker processes as well.

Experiments

The goal of these experiments is to assess the performance of the DistributedILS algorithm using different sets of signed graph instances, when compared to our previous best solution technique, the Independent Parallel ILS -CC algorithm (P arILS) [START_REF] Levorato | Evaluating balancing on social networks through the efficient solution of correlation clustering problems[END_REF]], which from now on will be called baseline. The local search procedure used by both algorithms (baseline and DistributedILS) runs on the GPU [Levorato et al. 2015a].

Computational environment

The algorithms described in the previous section were implemented in ANSI C++, MPI (OpenMPI) for message passing and Boost Parallel BGL for graph data parallelism. All experiments were performed (with exclusive access) on the SDumont cluster[LNCC 2017] with 198 nodes, each one with two Intel Xeon E5-2695v2 Ivy Bridge @2.4GHz processors (12 cores each) and 64GB of RAM under Linux (Red Hat 6.4). Each node is also equipped with two NVIDIA Tesla K40 GPUs containing 12GB of RAM and 2880 CUDA cores. CUDA code was written in the "C for CUDA V6.5" [NVIDIA 2014] environment. The presented results were obtained from 50 independent runs.

Test problems

Computational experiments were undertaken on (i) a set of 2 social networks from the literature, (ii) a set of 3 network instances generated from MovieLens movie ratings website, and (iii) a set of 6 random signed networks with a predefined community structure. We will briefly describe these instances3 .

(i) This set of instances is composed by two signed networks: the first representing the large scale social network of technology-related news website Slashdot [START_REF] Leskovec | Signed networks in social media[END_REF][START_REF] Facchetti | Computing global structural balance in large-scale signed social networks[END_REF], and the second one contains the Epinions [START_REF] Epinions | Website[END_REF]] signed network, an on-line review website which allows users to either like or dislike other people's reviews. Since both networks are originally signed digraphs, they were converted to undirected graphs. (ii) We generated three signed social networks based on movie ratings given by each user from the MovieLens Website. The dataset used was MovieLens 20M (20 million ratings and 465,000 tag applications applied to 27,000 movies by 138,000 users; Released on 4/2015). 4 The signed graphs were generated according to the following algorithm. Let the movie rating be an integer between 1 and 5. For each pair of users, we identify the list of movies both users have rated. Based on this list, we totalize the number of similar ratings each user gave to the same movie. A movie rating from users a and b is similar if both users gave a rating of 1 or 2 (bad movie), or if both users rated the movie with 3 (regular movie), or if both users rated the movie with 4 or 5 (good movie). We then normalize the ratings by subtracting from each user rating the its own average rating, in order to prevent problems with the difference of scaling between users. Based on this data, a user-user matrix D = {d uv : u, v ∈ V } of cosine distance similarities is then calculated. Each value is in the range of [-1,1], where -1 represents perfect disagreement and 1 means perfect agreement between users. If the absolute value of d uv is greater than a given threshold mw, we add a positive or negative edge between users u and v, according to the sign of d uv . (iii) We generated six large random signed networks with a predefined community structure, according to [START_REF] Yang | Community mining from signed social networks[END_REF]]. The random signed network is defined as SG(c, n, k, p in , p -, p +), where c is the number of communities in the network, n is the number of nodes in each community, k is the degree of each node, p in is the probability of each node connecting other nodes in the same community, p -denotes the probability of negative links appearing within communities, and p + denotes that of positive links appearing between communities. Each generated instance has a different value for the parameter c. The other parameters were fixed to n = 4096, k = 16, p in = 0.8, p -= 0.8 and p + = 0.6.

Obtained results

Baseline was configured to use 10 processes running in parallel, equally dividing the number of multistart iterations of the original ILSM ultiStartCC procedure. In DistributedILS, the runtime configuration used 8 processes for instances with the number of vertices |V | ≤ 5 × 10 5 , and 16 processes for larger graphs. After running both algorithms for 2 hours, DistributedILS has enhanced the solution quality on Epinions instance (Figure 2-b) with an average improvement of 9.9%. On the other hand, when solving the Slashdot instance (Figure 2-a), the baseline achieved the best solution value, but with a slight average gap (smaller than 0.8%) when compared to DistributedILS.

Regarding the solution of the MovieLens instances in (ii), as shown on Figure 2, an analysis of the gap in solution values between DistributedILS and baseline also indicates the superiority of the proposed method. For the mw = 0.90 instance, the solution values were 19.23% smaller than those obtained by baseline. When solving larger instances with mw = 0.85 and mw = 0.80, DistributedILS presented solutions with average improvements of 1.83% and 1.38%. Finally, when solving the random instances with predefined community structure in (iii), the proposed algorithm returned an improved solution on test instances c = 8, c = 16 and c = 32 (Figure 2-(iii)). The average gaps in solution values were -14.96%, -5.47% and -4.87%, respectively. The baseline method was not able to process the remaining instances (c ≥ 64), either for not providing an initial solution within the 2h time limit or due to lack of memory. Therefore, in these cases, we only display the solution values obtained by DistributedILS.

Concluding remarks

We developed a distributed algorithm for efficiently solving the CC problem, based on a heterogeneous computing platform. It iteratively repartitions the graph between processes, invoking the ILS metaheuristic locally on each node and merging individual results into a global solution. Experiments were conducted on both synthetic and real datasets.

On the synthetic dataset our approach is able to scale to 1,048,576 nodes and 8,388,608 edges. The proposed algorithm can provide efficient solutions to the CC problem when traditional metaheuristics fail due to the need to be aware of the entire graph, relying on a single memory space. Many future research topics could be built upon this framework, including a fully distributed heuristic for building an initial global solution. Larger signed graph instances (both in the number of vertices and edges) may be generated as well.

Figure 1 .

 1 Figure 1. Distributed ILS neighborhood structures. A cluster movement between processes involves at most three modified subgraphs, thus requiring three processes to execute the local ILS procedure (e.g. 2-move-cluster moves two clusters -and corresponding vertices -from one process subgraph to two different processes). The remaining (idle) processes can be then used to compute other neighborhood movements in parallel.

Figure 2 .

 2 Figure 2. Baseline (ParILS) and DistributedILS (DistILS) CC results for literature instances (i), for Movielens network instances (ii), and for random networks with predefined community structure (iii). The boxplot shows the distribution of the solution values obtained by each algorithm after running for 2 hours, considering 50 independent executions.

Table 1 . Dimensions of each signed graph instance

 1

	Instance	|V |	|E|	Instance	|V |	|E|
	Slashdot	82144	500481	Random c = 8	32768	262144
	Epinions	131828	711210	c = 16	65536	524284
	MovieLens mw = 0.90 138494	371118	c = 32	131072 1048576
		mw = 0.85 138494 3451683	c = 64	262144 2097152
		mw = 0.80 138494 10211818	c = 128 524288 4194304
				c = 256 1048576 8388608

|V |: number of vertices, |E|: number of edges.

Epinions signed social network has 131828 vertices and 711210 edges.

A quasi-clique is an almost complete subgraph[START_REF] Brunato | On effectively finding maximal quasi-cliques in graphs[END_REF]].

All instances are available in http://www.ic.uff.br/ ˜yuri/CCinst-large.html.

Available at http://grouplens.org/datasets/movielens/

Acknowledgement

The authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer, which have contributed to the research results reported within this paper. URL: http://sdumont.lncc.br We also thank the National Council for Scientific and Technological Development (CNPq) Cnpq-Universal project number 443883/2014-9.