N

N

Representations of shifted quantum affine algebras

David Hernandez

» To cite this version:

David Hernandez. Representations of shifted quantum affine algebras. Int.Math.Res.Not., 2023, 2023
(13), pp.11035-11126. 10.1093/imrn/rnacl49 . hal-02987492

HAL Id: hal-02987492
https://hal.science/hal-02987492
Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02987492
https://hal.archives-ouvertes.fr

2010.06996v3 [math.RT] 28 Oct 2021

arXiv

REPRESENTATIONS OF SHIFTED QUANTUM AFFINE ALGEBRAS
DAVID HERNANDEZ

ABSTRACT. We develop the representation theory of shifted quantum affine algebras U (g)
and of their truncations which appeared in the study of quantized K-theoretic Coulomb
branches of 3d N = 4 SUSY quiver gauge theories. Our approach is based on novel
techniques, which are new in the cases of shifted Yangians or ordinary quantum affine
algebras as well : realization in terms of asymptotical subalgebras of the quantum affine
algebra Uq(g), induction and restriction functors to the category O of representations of
the Borel subalgebra Uq(B) of Uq(g), relations between truncations and Baxter polyno-
miality in quantum integrable models, parametrization of simple modules via Langlands
dual interpolation. We first introduce the category O, of representations of Ul (g) and
we classify its simple objects. Then we establish the existence of fusion products and we
get a ring structure on the sum of the Grothendieck groups Ko(O,). We classify simple
finite-dimensional representations of U} (g) and we obtain a cluster algebra structure on the
Grothendieck ring of finite-dimensional representations. We prove a truncation has only
a finite number of simple representations and we introduce a related partial ordering on
simple modules. Eventually, we state a conjecture on the parametrization of simple mod-
ules of a non simply-laced truncation in terms of the Langlands dual Lie algebra. We have
several evidences, including a general result for simple finite-dimensional representations.
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1. INTRODUCTION

Shifted quantum affine algebras and their truncations arose in the study of quan-
tized K-theoretic Coulomb branches of 3d N = 4 SUSY quiver gauge theories in the sense
of Braverman-Finkelberg-Nakajima [BENI] which are at the center of current important
developments (see for instance [N4| [F] and references therein). A presentation of (trun-
cated) shifted quantum affine algebras by generators and relations was given by Finkelberg-
Tsymbaliuk [ET]. Their rational analogs, the shifted Yangians, and their truncations,
appeared in type A in the context of the representation theory of finite W-algebras [BrK],
then in the study of quantized affine Grassmannian slices [KIWWY] for general types and in
the study of quantized Coulomb branches of 3d N = 4 SUSY quiver gauge theories [BENT]
for simply-laced types and [NW] for non simply-laced types.

Shifted quantum affine algebras U, ™"~ (g) can be seen as variations of Drinfeld-Jimbo
quantum affine algebras U, (g) in their Drinfeld presentation, but depending on two coweights
t4, p— of the underlying simple Lie algebra g. In the particular case puy = p— = 0, the
algebra U"(§) is a central extension of the ordinary quantum affine algebra Uq(g). The
algebra U,(g) and its representations have been under intense study in recent years, the
reader may refer to the recent ICM talks [Kas3l [O] for recent important developments.

The truncations depend on additional parameters, including a dominant coweight .
In this context, these parameters A and g = p4 + p— can be interpreted as parameters

for generalized slices of the affine Grassmannian W/); (usual slices when g is dominant)
or its symplectic dual in the sense of [BLPW], a Nakajima quiver variety M) ,. Up to
isomorphism, U, ™*~ (g) only depends on p and will be denoted simply by U (g).

For simply-laced types, representations of shifted Yangians and related Coulomb branches

have been intensively studied, see [BrKl [KTWWYT KTWWY?2| and references therein. For

non simply-laced types, representations of quantizations of Coulomb branches have been
studied by Nakajima and Weekes [NW]| by using the method originally developed in
for simply-laced types.

In the present paper, we develop the representation theory of shifted quantum affine
algebras with an approach based on several novel techniques :

(1) for p anti-dominant, realization in terms of the asymptotic algebra introduced in
[HJ], which is a subalgebra of the ordinary quantum affine algebra U,(g),
(2) induction and restriction functors to the category O of representations of the Borel

subalgebra U, (b) of Uy(g),
(3) relations of truncations with Baxter polynomiality in quantum integrable models,

(4) parametrization of simple modules via Langlands dual interpolating (g, t)-characters.

We underline that these techniques, and a large part of our results, are also new for
ordinary quantum affine algebras or shifted Yangians. Hence our study goes beyond a
trigonometric version of known results for Yangians.

Let us explain our results. We first relate these representations to g-oscillator algebras
and to the quantum affine Borel algebra uq([;). It is known since that certain rep-
resentations of the g-oscillator algebra give rise to representations of the quantum affine

Borel algebra uq(B) of the quantum affine algebra uq(glg). For general untwisted types,



REPRESENTATIONS OF SHIFTED QUANTUM AFFINE ALGEBRAS 3

the category O of representations of the quantum affine Borel algebra U, (b) was introduced
and studied in [HJ]. Some representations in this category extend to a representation of
the whole quantum affine algebra U,(g), but many do not, including the prefundamental
representations constructed in [HJ] and whose transfer-matrices have remarkable properties
for the corresponding quantum integrable systems [FH2]. However, it was first observed
in [HJ] that for some of the simple representations in O, the structure of representation of
uq([;) can be extended to a larger subalgebra of U,(§), the asymptotic algebra U,(g). It
was observed in [Z] that, in the Yangian case, certain examples of simple representations in
an analog of the category O can be extended to a shifted Yangian. We will prove that all
antidominant shifted quantum affine algebras can be realized in terms of U,/(g).

This picture motivated us to introduce a category O,, of representations of U5 (§) which is
an analog of the ordinary category O. In particular, the category Qg contains the category
of finite-dimensional representations of the quantum affine algebra U,(g), but for some other
i, there are much more finite-dimensional representations in the categories O, which seem
to be a natural extension of the ordinary representation theory of quantum affine algebras.
These categories O,, are the main categories studied in the present paper.

Our main results are the following :

(1) The classification of simple representations in the category O,,.

2)

3)

(4) A cluster algebra structure on the Grothendieck ring of finite-dimensional repre-
sentations of shifted quantum affine algebras.

The classification of simple finite-dimensional representations of Uj ().

A ring structure on the sum of Grothendieck groups Ko(0,) from fusion products.

(5) A g-characters formula for simple finite-dimensional representations of U4 (g) in

~

terms of the g-character of simple representations of Uy(b).

(6) The rationality and polynomiality of remarkable Cartan-Drinfeld series on simple
representations in O, using Baxter polynomiality of quantum integrable models.

(7) The proof of the finiteness of the number of simple isomorphism classes for trun-
cations for general types and their complete classification for g = sls.

(8) A new partial ordering on simple representations of Uf(g).

(9) The statement of a conjecture to explicitly parametrize simple representations of
non simply-laced truncated shifted quantum affine algebras involving the Langlands
dual U, (Fg).

(10) The proof that simple finite-dimensional representations descend to a truncation
as in the conjecture.

Let us comment on related structures and on previous results.

For simply-laced types, simple representations of truncated shifted Yangians have been
parametrized in terms of Nakajima monomial crystals [KTWWY?2]. Combining with [N5],
this implies an analog statement for simply-laced shifted quantum affine algebras. This
is a fundamental motivation for our conjecture (9) in non simply-laced types. We have
several strong evidences, including a complete result in type Bs, and a general result for
finite-dimensional representations as mentioned above.
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Based on [N5], Nakajima-Weekes [NW] gave a bijection between more general simple rep-
resentations of a non simply-laced quantized Coulomb branch and those for simply-laced
types (they are parametrized by the same canonical base). Nakajima explained to the au-
thor this bijection preserves finiteness of dimension and category O. Thus, combining with
[KTWWY?2], this gives an explicit parametrization of simple representations in category O
of truncated non simply-laced shifted Yangians and quantum affine algebras. After using
the comparison between simply-laced and twisted g-characters [Hed], one can consider a
possible relation between the two parametrizations. In small examples discussed in a corre-
spondence between Nakajima and the author, this different method seems to give the same
parametrization as our result. Note also that results (7) above can be obtained by this
method from simply-laced types and an equivalence of representations of truncated shifted
Yangians/quantum affine algebras. For this last point, in the formulation of [N5, [NW],
once the spectral parameters are specialized, the algebras relevant to homological and K-
theoretic Coulomb branches become isomorphic by Riemann-Roch theorem (there should
be also other approaches to this last problem in some cases, in the spirit of [GTL]).

One of the aims of the last part of the paper is to understand truncations and their
representations, uniformly, from the direct methods developed in the first parts. We show
that it is also relevant to use the theory of quantum integrable models we have previously
studied. We derive an explicit parametrization using the direct algebraic and transfer-
matrices approaches.

Let us recall that to each finite-dimensional representation V' of U,(g), and more generally

to each representation of U,(b) in the category O, is attached a transfer-matrix ¢y (z) which
is a formal power series in a formal parameter z with coefficients in U,(g) (the transfer-
matrix is defined via the R-matrix construction). Given another simple finite-dimensional
representation W of U,(g), we get a family of commuting operators on W{[z]]. This is a
quantum integrable model generalizing the X X Z-model. As conjectured in [FR2] and estab-
lished in [FH2], the spectrum of this system, that is the eigenvalues of the transfer-matrices,
can be described in terms of certain polynomials, generalizing Baxter’s polynomials asso-
ciated to the X X Z-model. These Baxter’s polynomials are obtained from the eigenvalues
of transfer-matrices associated to prefundamental representations of uq([;). Moreover, this
Baxter polynomiality implies the polynomiality of certain series of Cartan-Drinfeld elements
acting on finite-dimensional representations [FH2|. We relate this result to the structures of
representations of truncated shifted quantum affine algebras (results (6), (8), (10) above).
In non-simply-laced types, the parametrization (9) does not involve directly the monomial
crystal or the g-character of a standard module, but a "mixture” between the g-characters
of Langlands dual standard modules obtained from interpolating (gq,t)-characters. The
latter were defined in [FHI] as an incarnation of Frenkel-Reshetikhin deformed W-algebras
interpolating between g-characters of a non simply-laced quantum affine algebra and its
Langlands dual. They lead [FHR] to the definition of an interpolation between the
Grothendieck ring Rep(U,(g)) of finite-dimensional representations of U,(g) (at t = 1) and
the Grothendieck ring Rep(U;(*g)) of finite-dimensional representations of the Langlands
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dual algebra quantum affine algebra U;(*g) (at ¢ = € a certain root of 1) :

ﬁqﬂt

e ~N
- ~ g=¢
e ~N
— ~N
t=1 N

Rep(uq(g)) Rep(Uy(“§))

Here R, is the ring of interpolating (g, t)-characters. To describe our parametrization (9),
we found it is relevant to use a different specialization of interpolating (g, t)-characters that
we call Langlands dual g-characters (with ¢ = 1 for variables but ¢ = € for coefficients).

The interpolating (g, t)-characters are closely related to the deformed W-algebras which
appeared in [FRI] in the context of the geometric Langlands program. Note also that the
parametrization in for simply-laced types can be understood in the context of
symplectic duality (more precisely from the equivariant version of the Hikita conjecture
for the symplectic duality formed by an affine Grassmannian slice and a quiver variety).
Hence the statement of our conjecture has also as main motivations the symplectic duality
and the Langlands duality.

Let us discuss another application of our approach in the context of cluster algebra theory
(result (4) above). The cluster algebra A(Q) attached to a quiver @) is a commutative ring
with a distinguished set of generators called cluster variables and obtained inductively via
the Fomin-Zelevinsky procedure of mutation [FZ]. A monoidal category € is said to be a
monoidal categorification of A(Q) if there exists a ring isomorphism A(Q) = Ko(€), with
some additional properties, in particular with cluster variables corresponding to classes of
certain (prime) simple modules (see [HLI]). Various examples of monoidal categorifica-
tions have been established. It was proved in that the Grothendieck rings of certain
categories of representations of uq(B) have a cluster algebra structure. Using (3) and induc-
tion/restriction functors, we obtain a cluster algebra structure on the Grothendieck ring of
finite-dimensional representations of shifted quantum affine algebras (result (4)).

We expect our results and conjectures will lead to further developments in the represen-
tation theory of shifted quantum affine algebras. We also expect our results to extend to
twisted shifted quantum affine algebras.

The paper is organized as follows.

In Section 2l we consider finite-type analogs of shifted quantum affine algebras and we
underline the relation with the g-oscillator algebras.

In Section 3, we recall the definition of shifted quantum affine algebras Uf (g). In the slo-
case, we consider evaluation morphisms to the g-oscillator algebra (Proposition B.8]) which
give examples of evaluation representations. For general types, we prove for p anti-dominant
that UL (g) can be realized from the asymptotic algebra and that it contains a subalgebra
isomorphic to the quantum affine Borel algebra U, (b) (Proposition B4)).

In Section @, we introduce the category O, of representations of the shifted quantum
affine algebra Ul (g) and we classify its simple objects (Theorem EI2). The category 0" =
&P uea Op is the sum of the abelian categories O,. We study shift functors induced by shift

homomorphisms.
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In Section Bl we construct the fusion product of representations of shifted quantum
affine algebras by using the deformed Drinfeld coproduct and the renomalization procedure
introduced in [He2] (Theorem [5A4)). This leads to the definition of a ring structure on the
Grothendieck groups Ko(O%"). We establish a simple module in 0" is a quotient of a fusion
product of various prefundamental ones (Corollary [0.0]). Along the way we consider analogs
of Frenkel-Reshetikhin g-characters of representations of shifted quantum affine algebras.
We establish ¢-characters of simple representations satisfy a triangularity property with
respect to Nakajima partial ordering (Theorem [B.TT]).

In Section [6] we classify the simple finite-dimensional representations of shifted quantum
affine algebras (Theorem [6.4]).

In Section [, we define and study induction and restriction functors relating the category
O of representations of the quantum affine Borel algebra uq([;) and the categories O, of
representations of shifted quantum affine algebras.

In Section B we establish a g-characters formula for simple finite-dimensional represen-
tations of shifted quantum affine algebras in terms of the g-characters of certain simple

A~

representations of U,(b) in the category O (Theorem BI). Then, we prove the results in
[HL3] imply a description of simple finite-dimensional representations of Uj (§lg) (Theorem
B4, isomorphisms of Grothendieck rings between categories of representations of U (g)
associated to dominant and anti-dominant p (Theorem B7)), and a cluster algebra structure
on the Grothendieck ring of finite-dimensional representations of shifted quantum affine
algebras (Theorem B.I0).

In Section [ we recall Cartan-Drinfeld series Y;(z), T (2) introduced respectively in
[ER2] and in in the study of transfer-matrices of representations of quantum affine
algebras. We establish (Theorem [I12) the rationality of Y;*(z) (resp. the polynomiality of
(T:£(2))¥') on a simple representation of a shifted quantum affine algebra in the category
O, using Baxter polynomiality of quantum integrable models [FH2].

In Section M0, we recall the definition of truncated shifted quantum affine algebras and
we explain how it appears naturally in terms of the Cartan-Drinfeld series Y= (2), T (2).
We establish (Proposition [[0.7]) a necessary and sufficient condition for the defining series
to have a rational action on a simple representation.

In Section [II], we start investigating which simple representations descend to truncated
shifted quantum affine algebras. We establish a necessary condition (Proposition [ITT.IT]).
It implies that a truncated shifted quantum affine algebra has only a finite number of
isomorphism classes of simple representations (Theorem [[T.T5]). Then we introduce a partial
ordering <y on simple modules, related to the Langlands dual Lie algebra “g. We prove
a related triangularity property for simple representations of truncated shifted quantum
affine algebra (Theorem [IT.9). In the sly-case we characterize simple representations of a
truncated shifted quantum affine algebra (Theorem [IT.17]).

In Section [[2] we state a conjecture (Conjecture [Z2]) on the parametrization of simple
modules of non simply-laced truncated shifted quantum affine algebras. It is given in
terms Langlands dual g-characters that we introduce. We establish in type Bo that our
parametrization indeed gives representations of the truncated shifted quantum affine algebra
(Proposition [2.7)). In general, we establish that a simple finite-dimensional representation
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of a shifted quantum affine algebra descends to a truncation as in Conjecture [[2.2] (Theorem
M2.8]). The proof of this last result is based on Baxter polynomiality.

Acknowledgments : The author is grateful to Sasha Tsymbaliuk for a very careful
reading of a first version of this paper and for numerous precious comments. The author
is grateful to Hiraku Nakajima for useful discussions and correspondences, in particular
for a question on prefundamental representations from which this project started and for
explanations of the consequences of results in [N5]. He is also grateful to Vyjayanthi Chari,
Pavel Etingof, Christof Geiss, Bernard Leclerc, Alex Weekes and Huafeng Zhang for useful
discussions. The author was supported by the European Research Council under the Euro-
pean Union’s Framework Programme H2020 with ERC Grant Agreement number 647353
Qaffine.

2. ¢-OSCILLATOR ALGEBRAS

We first consider finite-type analogs of shifted quantum affine algebras and we underline
the relation with the g-oscillator algebras.

2.1. Definition. Let g be a simple finite-dimensional of rank n and I = {1,--- ,n}. We
denote by (wi)ier, {aitier, {a) }ier, {w) }ier the fundamental weights, the simple roots,
simple coroots and fundamental coweights respectively. P is integral weight lattice and
Py = P ® Q. The set of dominant weights is denoted by P*. The Cartan matrix is
C = (aj(a)))ijer and r1,--+ ,ry, > 0 integers are minimal so that we have a symmetric
matrix

B = diag(ry, -+ ,r)C.

Let ¢ € C* be not a root of unity. For ¢ € I, we set ¢; = ¢"*. The quantum Cartan matrix
C(q) is defined for i # j € I by

Cii(q) = [2]g, and C; ;(q) = [Ci jlq,

with the standard g-number notation [m], = “—%" for m € Z, u € C*\ {—1,1}.

u—u—1

Set t¥ = ((CX)I, and endow it with a group structure by pointwise multiplication. We

Vv
define a group morphism ~ : Py — t* by setting w(i) = qf(a" ). We shall use the standard
partial ordering on t*:

w=w if ww tisa product of {@; }ier-

We consider the following generalization of g-oscillator algebras. For J, K C I, the algebra
uq‘]’K(g) is defined by the same generators k:iil, ei, fi as for the quantum group U,(g) but
with the modified relation

) S, -1
lei, fil = Oigrchi — Digsh; forie 1.

g —q;"

The other relations are the same, that is for ¢,j € 1

kikj = kiki | kie; = qf eski | kify = a; O fik,
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and if i # j, [e;, f;] = 0 and
1-Cijl 1-Cosm 1-Cij] pcijm
e ] B D DIV Rl I 72
0<r<1-Ci 4i 0<r<1-C; ; i
We used here the standard g-binomials from the standard g-factorial notations.

Remark 2.1. For gl,.1, certain contracted algebras are introduced in and are

very close the algebras ug’K(slnH) above. This was pointed out to the author by Huafeng
Zhang.

2.2. g-oscillator algebras in the sls-case. We recover the usual g-oscillator algebras
U (sl2) = UM (s1) and U (slo) = USHO(sly).
u;;c(slg) is generated by e, f, k, k~! with relations

+E*!
Cg—q "

ke=q%ek , kf =q 2fk , kk' =k k=1, [e, f]

Note that exchanging e and f, k and k~!, we have an isomorphism
(2.1) U (sly) ~ Uy (sla).

Remark 2.2. (i) The quantum Boson algebra B, (sly) of Kashiwara [Kasl] is isomorphic
to the subalgebra of WS (sl2) generated by f and

¢ =(qg— q_l)k_le as e f— ¢ fe =1.
(ii) We denote u;loc(slg) the algebra u;;c(slg) localized at the Casimir central element
q$1ki1 qilkil
(q—q71)? (@—q ")
(iii) The algebra u(f(slg) has a natural triangular decomposition. In particular the Borel
subalgebra Uq(b) C Ug(sla) generated by e, k, k™' is a subalgebra of UF(sly).

Cy=cef+ = fe+

Proposition 2.3. There is an anti-isomorphism S : U (sly) — U, (sl2) defined by
Se)=—ek , S(f)=—k"1f,Sk)=k"1, Sk =k
Composing with the isomorphism (2.1]), it gives also anti-automorphisms
SE L UE(sly) — UF(slo).

Proof. It suffices to check the relations are preserved. For the first three relations, it follows
from the fact that the usual antipode is well-defined. For the last one, one has :

k_l

[S(f), S(e)] = [f,el = e S([e, f1)-
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Proposition 2.4. There are algebra morphisms
A Ug(sla) — UE(sla) @ UT (sla),

Ai(e) =e@1+k¥F'@e, AL(f) = FRk +10f , As(k) =k®k , Ax(k™) =k '@k,
The same formulas define left-comodule and right-comodule structures :

Ug (sl2) = Ug(sly) @ Uy (sl2) , UT (sla) — UT (sla) @ Ug(sla).

Proof. 1t suffices to check the compatibility with the defining relations of Uy(slz). For the
first three standard relations which are the same as for the quantum groups, it follows from
the fact that the usual coproduct is well-defined. For the last one, one has :

Ar(e),AL(f)]=[e@1+ kT Qe fOkT+10fl=[e®@ 1, fRkH ]+ kT ®e 1® f]

+kE KU kok—klokt

kT FETl @ = = A+(le, f]).
q—q! * q—q! q—q! +(le- 7]

Note that composing with the isomorphim (2.1]), we also get algebra morphisms
Ug(sl2) = U (sl2) @ U (sla)

which can be considered as analogs of a coproduct for u;(slg). The author believes these
maps are known but could not find them in the literature.

2.3. Representations of ulf(slg). Let Cp be the category of U,(slz)-modules and €; be
the category of u;(slg)—modules. It is well known that €y has a monoidal structure
®: €y x Cy — Co.
From the algebra morphisms above we get bi-functors
CoxC —=C1,C xC—C,C xC — Cp,

which make the category Cy @ C; into a Z/2Z-graded monoidal category. In particular we
have a ring structure on
Ko(Co) & Ko(C1).

Remark 2.5. (i) Cy admits a left and a right action by the category Cy.
(i) For V* a representation of Uflt(slg), VIV~ and V- @ VT are Uy(slz)-modules.
(iii) We expect to get a (Z/27)"-graded monoidal category for a general g, although we
will not use it in this paper. We plan to come back to it in a forthcoming paper.

From the triangular decomposition (see (iii) in Remark 22), WS (sl2) (resp. U (sl2))
has a Verma module V(v) (resp. W (7v)) associated to each v € C* eigenvalue of k. These
representations V' (y) = Vect(v,)r>0, W(7v) = Vect(w;),>0 can be explicitly described :

. r+1 _
evy = 0p>0Up—1 , f0r = Y4 Té — q_][i Up41 kv, = 4 2rvry

1 ert+1 _
ewy = OpsoWyr_1 , fow, = —7y 1qrwwrﬂ s kaw, = vq T w,.

q—q!
qy1ld
q—q1)*"

J’_
q,loc

Remark 2.6. V(7) is also a representation of W', (sl2) as the action of Cy is 0
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For L a representation of U (sl), we can define its weight space L, = {v € V|k.v = yv}
for v € C*. We have a corresponding category O4 of u;t(slg)-modules (defined as for the
ordinary category O, see Section [L]]) and the corresponding character morphisms :

X Ko(0x) = &, x(L) = > dim(L,)[],
Y

where € C Z© is a ring of formal power series as for the category O of U,(sls) (see [HJ,
Section 3.4] for instance).

Proposition 2.7. The Verma modules of uf;(s@) are irreducible and exhaust all sim-

ple modules of the category O4. The non-zero representations of u;;c(slg) are infinite-
dimensional.

Proof. In V() (resp. W(7)), the highest weight vectors C.vg (resp. C.wg) are the only
primitive vectors. This implies V() and W () are simple.

By standard arguments, a simple finite-dimensional representation of u;t(s@) is a quo-
tient of a Verma module, the second point follows. O

Example 2.8. (i) For v, € C*, the Uy(slz)-modules V(v) @ W(B) and W(B) @ V() have
the same character

> Ba T =3 x(M(vBg))

r,r'>0 r>0

where M ()) is the Verma module of U,(sl2) of highest weight \. For v, 3 so that v3 ¢ ¢,
these representations are semi-simple and

V() @W(B) ~W(B) @ V() ~ @ MHBg™).
r>0

Indeed, the weight space associated to vB3q~%" has dimension v+ 1. Hence e is not injective
on this weight space which contains a primitive vector generating M (yBq=2").
(i1) For v € C* and V a fundamental Uy(slz)-module of highest weight [q], we have

VeV ~Vvg e Viyveh).

3. SHIFTED QUANTUM AFFINE ALGEBRAS

We recall, for i in the coweight lattice, the definition of the shifted quantum affine algebra
U4 (§) in the sense of Finkelberg-Tsymbaliuk [ET] and its first properties. In the sly-case,
we consider evaluation morphisms to the g-oscillator algebras of the previous section which
give examples of evaluation representations (Proposition B.8]). For general types, we prove
that for p anti-dominant, the shifted quantum affine algebra U4 (g) can be realized from a
subalgebra of the ordinary quantum affine algebra, the asymptotic algebra introduced in
[HJ]. We also prove that for p anti-dominant, it contains a subalgebra isomorphic to the

~

quantum affine Borel subalgebra U, (b) of the quantum affine algebra (Proposition B.4)).
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3.1. Definition and first properties. For g an untwisted affine algebra, recall the Drin-
feld presentation of the quantum affine algebra U,(g) (established in Da2], see for
instance [CP]).

Let A = D, Zw,’ be the coweight lattice (that is the weight lattice of the Langlands dual
Lie algebra ©g). It contains the set A* of dominant coweights w" € A so that a;(w") > 0
for i € I.

Let pio, ui— € A. The shifted quantum affine algebra U, ™"~ (g) is defined in [ET], Section

5] by Drinfeld generators :L"Zm, gbzm, i with ¢ € I,m € Z,r € Z\ {0} and the same
relations as for the ordlnary quantum affine algebra except that

+ i +
Z ¢z 2 =0 (2 (2) = 27 (1) ¢z Fay( /H:)exp (@i — 4 Z hi, i"z

rez r>0

with gbz N which are invertible and satisfy the same relations as the ordinary k‘;tl.
Exphc1tly, fori,j eI, r,r' € Z, m € Z\ {0}, we have
+ +
(32) [qbi,r’ qu,r’] = [ i ,r? ¢;FT’ ] = 0
+ :|: == :|: + — :I: FCi :I:
(3.3) i asu)Tir =G T390 ayue) O B0 )T TG Ty
+ 1 +
(3.4) [him, 25,1 = £ 1mCijlq,25 mrs
+ — (bz—l—r—}—r - z'_,r—l—r’
(3.5) [xi’r, Lt ] = 6i ) )
qi — 4q;
+ + +B; .. £ .+ _ B; ..t £ + +
(36) $i,r+1$j,r’ —4q ? xj,r’xi,r-l—l - q J$z rx] 1 j,r’—l—lxi,r”
and for i # j, r/,r1,--- ,rs € Z where s =1 — C} j,
:I: + + .+ + _
(37) Z Z |: :| 7‘ T (1) o xim‘rr(r)xjvrll'ivrﬂ(rﬁ»l) Y xi7rfr(s) - 0
TEX0<r<s qi

The relations may be written in terms of currents 3 (z) = 3., 5 27,27, 6(2) = 3, cz 2"

(07 (2), 67 (w)] = [¢ (2), ¢ (w)] = 0

55) () = T (2 for e =+ or -
(39 o ()5 )] = = [5 (%) o1 (2) =5 (5) 07 21

(w — g™ P z)af (2)a; (w) = (g

Z Z [ ] f(ww(l)) e x;t(ww(r)):z:;c(z)x;t(zw(rﬂ)) e :E;t(zw(s)) =0 for i # j.
q;

TeEX0<r<s



12 DAVID HERNANDEZ

Remark 3.1. (i) Up to isomorphism, Uy™"~(§) depends only on u = puy + pu_, see
Section 5.(1)]. We will simply denote UL (§) = U™ (g).
(ii) For i € I, the product

B oy

i( i,00(p—)
is central. The quantum loop algebra Uy(g) is the quotient of UOO( ) by identifying ¢zo¢z 0
with 1 for i € I, see [F'1].

(iii) The algebra ULT"(§) has a triangular decomposition analogous to the Drinfeld
triangular decomposition of Ugy(g) (see [ET], Proposition 2] and [Hell, Theorem 2]). Each
triangular factor can be presented by their Drinfeld generators and the relations of Wyt~ (g)
involving these generators (there are no hidden relations). The subalgebra generated by the

icm, ((éfcai(“i))ﬂ, with i € I, m € 7, is commutative and called the Cartan-Drinfeld
subalgebra.

(iv) Consequently, for pi,p— € —AT and Jx = {i € Ila;(ux) # 0}, the g-oscillator
algebra UZ]]+’J’ (g) of the previous section is a subalgebra of

UGtH=(8)/ < ¢gdig = Li ¢ Jp U J- >
v e algebra "7 (g) has a natural Z-grading defined so that
ThlbUf;*“Ah lZ ding defined h
deg(xfm) = deg(éfm) =m and deg(h;,) =r forie I, meZ, reZ\{0}.

In particular, for a € C*, there is an algebra automorphism 1, of Wy™"~(g) such that for
iel, meZandreZ\ {0} :

Ta(x;'l,:m) = amfﬂzim ) (‘lszim) = am¢,m s Ta(hiy) = a"hiy.

(vi) =1 in the notations of [FT] is z here.
(vii) In type A, RTT realizations have been established in [F'T, [FPT] when p € —A™.

Example 3.2. Let i € I. For uq“"iv’o(g) (resp. ug"“’iv (§)), the modified relations are :

— _(é'_() — —'i_O
[‘T:Wxi,—r] = 77’7_1 (7”68]). [‘T:W‘Ti,—r] = %) fOT’ r €z,
4 — 4 4 —q;

with the definition of the (b;fr (resp. ¢; _,) modified to :

¢ (2) = 207 exp((qi — ;") Y hirz")

(resp. ¢; (2) = 2 "¢ _yexp(—(qi — ;) D> hiy-r2™ "))

r>0

3.2. Antidominant case : relation to asymptotic and Borel algebras. The asymp-
totic algebra Ug,(g) is defined in [HJ| as the subalgebra of ordinary quantum affine algebra
U,(g) generated by the

+ k‘_l —

im "V zm’

¢Zm,k‘i formeZ,iel.
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These elements are denoted respectively by i:m, Z; o QNSfEm, k;. Note that (5{0 = 1 and
qNS;O = k2. We will denote
T+ T+ +
¢; (2) = Z ®; xm? ™.
m>0
Consider an antidominant coweight 4 € —AT. The defining relations of the shifted

quantum affine algebra and the presentation of the asymptotic algebra by generators and
relations in Section 2.2] imply the following.

Proposition 3.3. The shifted quantum affine U (g) is obtained from the quotient
Wy(8)/ (i = &y =+ = B g uyer = 0,0 € 1)

by localizing at the ¢;q, () for all i € I, and by adding, for i € I so that ai(p) < 0, the
generators k' with the quasi-commutation relations (33), (33).

~

Let Uy (b) be the quantum affine Borel subalgebra of Uy(g), in the sense of Drinfeld-
Jimbo. It is generated by the subset e;, kfﬁl, i € 1 {0}, of the Chevalley generators of
Uy (9).

From the last Proposition, we have a natural algebra morphism

Uy (b) NUy(8) — UL (D).

But U, (b) is obtained from U,(b) N Uy(§) by localization at the k;, i € I, and so the
morphism extends to an algebra morphism

I+ Uy (b) — UL(9)-
Proposition 3.4. If p € —A™, then U5 (g) contains a subalgebra isomorphic to uq(ﬁ).
Proof. Let us consider the triangular decomposition of U,(g) as in (iii) of Remark Bl It

induces a triangular decomposition of the quantum affine Borel algebra U,(b) (this follows
from Dall, see Section 2.3] for instance) :
Uy(b) =~ U (b) @ UL (D) ® U (b).

Now let us consider the analogous triangular decomposition of U (g) :

Uj (8) =~ U™ () @ Up°(5) © U™ (g)
as in (iii) of Remark Bl The triangular decomposition statement is not only a linear
isomorphism with the tensor product of the three algebras. In addition, it states that each
of the three algebras can be presented by Drinfeld generators and the relations involving
these generators only (no additional hidden relations are necessary).

Hence each triangular factor, U4~ (§), UA%(§), UL (§), is isomorphic, as an algebra,
to the corresponding triangular factor in UJ(g). Hence Uy~ (g) (resp. UL (g), UL (d))
contains a subalgebra isomorphic to Uq_([;) (resp. ug(ﬁ), u;(ﬁ)) By construction, these
three isomorphism are given by the restrictions of I, to the corresponding triangular factors.
This implies that I, is injective as it is injective on each triangular factor. Consequently

A~

these three subalgebras generate a subalgebra isomorphic to U,(b).
0
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The images I,(e;) of the Chevalley generators e;, i € I U {0}, of Uy(b)), now seen in
U4 (§), will be denoted by the same symbols e;.

Example 3.5. For n € —A™T, the subalgebra of ug‘(sZQ) generated by e = ZEIO, ey =
((b o)t Ty, ((bfo)il is isomorphic to Uy(b) C Ugy(sla).

Remark 3.6. The algebra uq(B) contains the xzm, T, Zm, (¢;y)~ " fori eI, m>0,
r > 0, but is not generated by these elements (emcept in the slo- case)
The same argument as for the proof of Proposition B4 implies the following.
Proposition 3.7. Let p € A. The subalgebras of Uy (6) and of U (§) generated by :
-1
xZT ) ZS ’ ¢Z’f‘ ) ( )
foriel, r>0,s> Max(0,a;(p)), are isomorphic.

We will denote this algebra by U4 (b).
3.3. Example - the algebras Ui(glg). In the sly-case, we will simply denote
U (512) = UG~ (513) and U (sly) = Ug“T(s1y).

Note that we have e; = 27, and ey = k! Ty, in Uy (b).
It is well known there exist evaluation morphisms U, (b) — u(f(slg) (see ) but they

can not be extended to uq(512). We prove it can be extended to a shifted quantum affine
algebra.

Proposition 3.8. For a € C*, we have evaluation morphisms
evy U (sly) = U, (slo)
defined for m € Z, r > 0 by :
evg () = amek™ | evy(x,,) = a"k™f,
v () = a'[ek”, fllg—q") s eva(dZ,) = a”"lek ™", flg™" — q),
eva(9y) = x4k , eva(dy) = 0 k.
Remark 3.9. (i) Only the last two formulas differ from the Jimbo evaluation morphism [J]
Uy (slz) — Ugy(sly).

(i1) Closely related morphisms are introduced in [FPT, Proposition 3.85 and Remark 3.89]
or g = glp+1 using an RITT-presentation.
+

Proof. First we have
evg (63,) = —¢'aT (g — ¢ ) CukT!

which is invertible in ugtl oe(8l2). We have to check the other defining relations of u,;i(élz) are
compatible with the defining formulas of ev,. From the result for the standard evaluation

morphism, this is clear for the formulas B.2)), (33), (34), B.3), (B6) except of r + 1 =0
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(note that there are no Drinfeld-Serre relations ([3.7)) in the slo-case). In the last case, we

have for r € Z

_ %5 — @y, Oxak—0x kTl
= — — =
qa—q q—q

J’_

[xr 71':7"] [6, f] = [aekr’ a_rk_rf] = [eva(a:;r), eva(x;)].

0

Example 3.10. Recall the Verma module V () of U (sl2). Its evaluation at ¢*y~" satisfies

_ r+1 _
€0-Ur = (¢ T+2%’UT+1 , f().'UT» = 7q 21)r_1.
By twisting by the automorphisms 1,, we get a continuous family of representations that we

denote by L ,. The action of ¢1(z) € u;(sZQ)[[zil]] is given by

— € L[],

+ N2 )
¢ (Z)"U] =7q (1 . q2_2jaz)(1 o q_2jaz) 'U] v,a

This matches formulas in Section 4.1] : the restriction to Uy(b) is [y] ® LY~ where
LY is a prefundamental representation and [y] is 1-dimensional (see Section ). Note
that for m >0, r > 0, we recover the action on L , from the action on Ly, by the twist

— - ot +  gE +
T, =YL, , Ty T G YD

Remark 3.11. The action of Uy(b) on L[{; can not be extended to Uy(sly) (see [HJ]).
This implies there is no embedding Uy (sls) C u;(§l2) which induces the embedding U,(b) C
u;'(glg) above.

4. CATEGORY O3h

In this section we introduce categories O, of representations of shifted quantum affine
algebras and classify their simple objects (Theorem EI2). The category O* is the sum of
these abelian categories. We also study shift functors induced by shift homomorphisms.

4.1. Reminder - the category O for the quantum affine Borel algebra. The category

O of representations of U, (b) is defined in as an analog of the ordinary category O (see

[Kacl). It is the category of U,(b)-modules V' which are the sum of their weight spaces
Vo =A{v e Vl]kj.w = w(i)v, Vi € I} where w € t*,

such that the V, are finite-dimensional and there are a finite number of wq, -+ ,ws € t* so
that the weights of V', that is the w so that V, # 0, belong to D(wy) U -+ U D(ws) where

D(w;) ={w € t'w S w;}.

A series W = (¥, ,)icrm>0 of complex numbers such that W; o # 0 for all ¢ € I is called
an (-weight. We also denote

W = (U;(2))ier where U;(z) = Z\Pi,mzm.

m>0
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A U, (b)-module V is of highest f-weight ¥ if there is v € V with V = U,(b).v and
eiv=0 (iel), (b;fmv:\lli,mv (tel, m>0).

~

We recall here that the QS:m, with ¢ € I, m > 0, are indeed in Uy(b).
For any (-weight ¥, there exists a unique simple highest (-weight U, (b)-module L°(®)
of highest (-weight ¥. For example, for i € I and a € C*, we have the prefundamental

representations

(1 - Z(l) (] = Z) )
1 (J#1).
The superscript b is to distinguish with representations of shifted quantum affine alge-

bras we will study. For w € t*, we have the 1-dimensional representation, called constant
representation

(4.10) Liw = L(WE)) where (®;,);(2) = {

[w] = L°(®,) where (¥,);(z) =w(i) (i€l).
Let t be the group of rational ¢-weights ¥, so that the W;(z) are rational for ¢ € I (the
group structure is given by the ordinary multiplication of rational fractions).

Theorem 4.1. [HJ] The simple modules in the category O are the L°(¥) for ¥ € t.
For V in the category O and W an (-weight, we have the /-weight space

(4.11) Vo ={veV|3p>0,Yiecl,Vm>0,(¢f, — Vim) v =0}

A representation in the category O is the direct sum of its ¢-weight spaces. Moreover :

Theorem 4.2. For V' in category O, Vi # 0 implies ¥ € t.

4.2. Reminder - the category O for the quantum affine algebra. The category O of
U, (§)-modules which are in the category O as U,(b)-modules was introduced in [Hel]. The
categories O and O are monoidal (with respect to the ordinary Drinfeld-Jimbo coproduct)
and there is a forgetful functor

f :0 = 0.
The following was established by Bowman [Bo] and Chari-Greenstein [CG] for finite-dimensional
representations. The proof in Proposition 3.5] can be adapted to the category o.

Proposition 4.3. For V a simple representation in (5, f(V) s stmple.

Remark 4.4. (i) It is proved in [Hell Lemma 14] and [HJ, Lemma 3.9] that for i € I, the

action of QS;L(z) and ¢; (2) coincide on a representation V in O, seen as rational operators
on each weight space (it follows directly from the existence of a polynomial P(z) so that
P(2)(¢f (2) — ¢; (2)) = 0; this is also proved in [GTTL, Section 3.6]).

(i) As ¢7 (2) (resp. @7 (2)) is reqular at O (resp. oc), this also implies that ¢j (2)
has degree 0 and that (bf(O)(ﬁj(oo) = Id. In particular, the simple representations V in
O are parametrized by the highest (-weight ¥ of f(V) o it is rational of degree 0 with
U, (0)¥;(c0) = 1 fori € I. The converse statement is true by : these rational (-

weights parametrize the simple representations in O.
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4.3. The category O for the asymptotic algebra. Recall the asymptotic algebra ﬂq(@)
which is a subalgebra of U,(g) (see Section B.2)). For our purposes, we will consider rep-
resentations of ﬂq(@) with 0 as a possible eigenvalue of x;. Hence we have to modify the
axioms to introduce the proper notion of category O for this algebra.

A representation V' of ﬂq(@) is said to be t*-graded if there is a decomposition into a
direct sum of finite-dimensional subspaces (the weight spaces) V' = @ V) such that

iE v @ oyl Lo, V@ v v c v for anywe tt, i€ I, r e Z,m > 0.

i,r i,+m

The weights of V are the w so that V) =£ 0.

The same argument as in Remark [£.4] (i) shows that for each i € I, the action of gzgzt(z) are
rational on weight spaces and coincide as rational operators. The representation V' is the
direct sum of its f-weight spaces corresponding to pseudo-eigenvalues ¥;(z) of the ¢ (2).
Besides, for i € I, we have deg(¥;) < 0 from the development of the rational function at oo
and ¥;(0) = 1 from the development at 0. Hence we have

V= EB Viw
peE—AT

where for u € =A™, V{,,) is the sum of the (-weight spaces Vigy with deg(¥;) = ().
For w € t* and p € —A™, we set

Vinw) = {0 € Vi@, 0 = w(i)v, Vi € T},

Definition 4.5. A t*-graded representation V of ﬂq(@) 1$ said to be in the category ) if :

(i) We have V = @ue—Atwet* Viuw) -
1) The spaces Vi, = _a+ Viuw) are finite-dimensional.
(w) pe—A+ ¥ (pw)

(iii) There are a finite number of elements wy,--- ,ws € t*, so that V@ £0 or Viwy #0
implies w € Uy <j<s D(wj)-

As for the category O, a simple representation in O is determined up to isomorphism by
its highest (-weight ¥. It is rational, with deg(¥;) > 0 and ¥;(0) = 1 for any ¢ € I. We
will prove that such ¥ parametrize the simple representations in 0 (see Theorem [T.2)).

It is proved in Section 2.4] that a t*—gradedﬂ representation V' gives a representation

of Uy(b) such that
4.12 v =1, ev=yv, kv=wiv Gel, veVW¥W),
2,0

where y € U,(g) is a certain distinguished element defined via iterated quantum brackets.
This defines a functor

f :0 = 0.
This is how the prefundamental representations Lfa_ are constructed in [HJ].

Example 4.6. For i € I, a € C*, the prefundamental representation Lfa_ of uq(B) s in
the image of a module in O by the functor f (see [HJ]).

It is proved in [[J] for Q-graded representations, but the proof also works for t*-graded representations.
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Example 4.7. Monoidal subcategories OF of O were introduced in in the context of
monoidal categorification of cluster algebras. OF is the subcategory of representations in ©
whose simple constituents have highest {-weight which is a product of various ¥; ¥ ti,
‘I,:I:l

1,7

[w] for variousi € I, a € C*, w € t*. By [HL3, Section 7.2|, the simple representations

in O~ are in the image of the functor f.

4.4. The category O, for the shifted quantum affine algebra. For jj,u_ € A, we
introduce the following category.

Definition 4.8. The category Oy, ,._ is the category of Wy™"~ (§)-modules

v=EPvi=pv,

wet* wet*

where for w € t*, the weight spaces

VS ={ve Ve w=w@pYiel},Vy={veVlg, , o= (i) 'vViel}

ai(pt)’ 60 (1)

are finite-dimensional and there are a finite number of wy,--- ,ws € t* so that V. # {0} or
V., # {0} implies
w € D(wy)U---UD(ws).

and ¢,

Remark 4.9. (i) In general VJ and V,; do not coincide as qb;r_a_( are not

i (1) 4,06 (1)

inverse one to each other.

(ii) By (i) in Remark[31, this category depends only on p = py + p—. We will be simply
denote O, = Qg .

(iii) By (ii) in Remark[31), the category O is a full subcategory of O.

Proposition 4.10. Let V' be a representation in O, (or in (~9) For each weight space of
V', there is a mon-zero polynomial P(z) so that for any i € I, P(2)(¢] (2) — ¢; (2)) and
P(2)x(2) are zero on this weight space. The action of ¢ (2) and ¢; () are rational of
degree o (1) on this weight space and coincide as rational operators.

Proof. The same argument as in Remark [£.4] (i) shows that for each ¢ € I, the action of
¢; (2) and ¢; (z) are rational on weight spaces of a representation in O, and coincide as

rational operators. In particular on each weight space qu(z) is equivalent to qﬁ;ai () 2 (1)

when z — oo, which implies the degree is «;(u) as b; . () is invertible. The statement for
the 23 (2) is proved as in [He2, Proposition 3.8] (it is proved there under the assumption the
representation is integrable, but the fact that weight spaces are finite-dimensional is only
used there; an analogous result was also obtained in [BeK]). O

As above, the representations in O, are the direct sum of their /-weight spaces corre-
sponding to pseudo-eigenvalues of the qu(z). The simple representations are determined
up to isomorphism by their highest /-weight ¥ which is rational with deg(¥;) = a;(n). We
will denote by t,, the set of such /-weights :

= {® = (Vi(2))ier € t|deg(Vi(2)) = ailp)}-
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A representation in O, is said to be of highest /-weight ¥ € v, if it is generated by a
vector v such that

z v =0 and (bgtm.vz\llgtmv foriel, meZ,

,m’
where
U(z) = \I/:mzm = Z U 2" eC(z).
m=>0 m>—a;(p)
Here, the second and third expressions are just expansions of the same rational function in
z and 27! respectively.

Corollary 4.11. A simple representation in the category O,, p € —AT (resp. in the
category O) is simple as a representation of Uy(b).

Proof. Consider a simple representation V' in the category O,. From Proposition E.10, we

have established that the action of the operators :E:m (resp. x]_m) for m € Z are determined

by the action of these operators for m > 1, which are in U, (b). Hence, V is generated by

~

its highest weight vector and has no other primitive vector as a representation of U,(b). So
it is simple. ]

Theorem 4.12. For ji € A, the simple modules in the category O, are parametrized by v,,.

Proof. We have seen in Section 4] that for 7 € I, a simple representation in the category
O, has a highest (-weight ¥ satisfying deg(V;) = a;(u) and that ¢; (2), ¢; (2) coincide as
rational operators on this representation. So we have to prove that there exists a simple
representation in the category O, for each such /-weight W. In contrast to the case of the
category O, we have all Drinfeld generators in U5 (§). So we do not have to use the strategy in
(asymptotic representation theory), but we can use arguments as for finite-dimensional
representations in (see also Theorem 3.6]). We consider a representation L of
highest /-weight ¥ (such a representation can be constructed from a Verma module of
highest ¢-weight as in [HJ] for instance). It suffices to prove its weight spaces L, ' € t*,
are finite-dimensional. Let w = ¥(0) € t* be the highest weight of L. As in [CP| Section 5,
PROOF of (b)], this is proved by induction on the height of w'w™" factorized as a product
of simple roots. The first step in the proof is to establish that for any j € I, Lwa—jﬂ is

finite-dimensional (the induction starts on weights w’ so that w'w ™' has height 2). By the
properties of W, there is a non-zero polynomial P(z) such that for any ¢ € I, the operator
P(2)(¢f (2) — ¢ (2)) is 0 on Ly,. For i,j € I and s € Z, by the relation (3],

z (P(2)z; () =0

on L. As L is simple, we get P(z)z; () = 0 on L. This implies that L -1 is finite-
dimensional. We finish the proof word by word as in [CP| Section 5, PROOF of (b)]. O

Example 4.13. For i € I,a € C*, we have the positive and negative prefundamental
representations L?’Ea = L(\Ilfci) in the category Oy,v. The representation L(¥;4) is one-
* equal to O forj eI, meZ, and

-]7m

gbj(z) =1—az2d;; , ¢; (2) = 2(z~" — adi ).

dimensional, with the action of the x
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The structure of u;“’iv (g)-module of L, extends the structure of uq(ﬁ)—module. This gener-

i,a
alizes the result in the sly-case obtained in terms of evaluation morphisms in Example [3 10
(L3, there is L(y(1 — za)™Y)). In the case of shifted Yangians, these examples were first

discussed in [Z). Tt was first noted in [HJ] that the action of Uy(b) can be extended to the
asymptotic algebra, but not to the whole quantum affine algebra : we understand now that
the correct framework is given by shifted quantum affine algebras.

We now define the direct sum of the abelian categories

0" =Ho,.

HEA

By Theorem BIZ] the simple objects in O%" are parametrized by t.

4.5. Shift functors. A shift homomorphism is introduced in Section 10.(vii)] as an
analog of the morphism defined for shifted Yangians in [FKPRW]. For u € A, i/ € —AT
and a € C* there is an algebra morphism

b a * ug(@) — ung (g)

defined by the following (for i € I) :

(4.13)  2f(2) = 2l (2) , 27 (2) = (1 —a2) W@ (2) , 65 (2) = (1 — az) W @D gE(2).

i )
This is obtained from the shift homomorphism in after conjugating by the change of
variables z — az.

Proposition 4.14. [ET| The shift homomorphism v, o is injective.

Remark 4.15. (i) This is proved explicitly in type A in Proposition 1.4], but Tsym-
baliuk explained to the author the same argument, combined with embedding into shuffle
algebras, gives the result for general types.

(it) Consequently, for p € —A™, U (@) contains a subalgebra isomorphic to UY(g) and so

a subalgebra isomorphic to Uy(b). It is not equal to the subalgebra constructed in the proof

of Proposition if w# 0 (this follows from Remark [311).
Let € A and i/ € —A™. Then the shift homomorphism ¢, , defines a functor
Rivira Optpr = Ope
Conversely, for a representation V' of U,(g), let us consider the Uf i (§)-module :
ju,u’,a(v) = uffr“ (@) ®u¢;(g) V.
This gives a functor
Jut o - Mod,, — Mod,, 4,

from the category Mod,, of representations of Uf(g) to the category Mod,,+, of represen-

tations of Uffr“/ (9).
From the defining formulas of ¢,, s 4, we get the following.
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Proposition 4.16. Let L(W¥) be a simple module in O,y,. Then R, s .(L(¥)) is a highest
L-weight module of highest (-weight

v = w [
1€l
and so admits L(®') as a subquotient. Conversely, 3, v o(L(®")) is a representation of
Uffr”/ (g) of highest (-weight ¥ which admits L(¥) as a simple quotient.

Example 4.17. Fori € I and a € C* we have the functor
:Rw;/,—2wly,a : O—w;/ - Ow;/

Then, L:a s a 1-dimensional subquotient of walv’_levﬂ(L;a) which is not simple. Note also
that the functors factors through Oy where we see already a 1-dimensional subquotient.

5. FUSION PRODUCT AND GROTHENDIECK RING

We construct the fusion product of representations of shifted quantum affine algebras
in the category O*" by using the deformed Drinfeld coproduct and the renomalization
procedure in [He2] (Theorem [B.4]). This leads to the definition of a ring structure on the
Grothendieck group KO(OSh). We establish a simple module in O%" is a quotient of a fusion
product of various prefundamental and constant representations (Corollary [5.6]). Note that
the Drinfeld coproduct is not an analog of the shifted Yangian coproduct of [FKPRW] (see
Remark [5.3]). Hence the methods and results in this section are not trigonometric versions
of known results for Yangians.

Along the way we consider analogs of Frenkel-Reshetikhin g-characters of representations
of shifted quantum affine algebras. We establish ¢-characters of simple representations
satisfy a triangularity property with respect to Nakajima partial ordering (Theorem [G.1T]).

5.1. Characters. Following [FR2l [HJ], there is a linear g-character morphism
Xq * KO(OM) — 8&#

where K((0O,) is the Grothendieck group of the abelian category O, and &y, C Z* is a
group of formal series with coefficients in v, as in [HJ]. It is defined by

Xg(V)= ) dim(Vig)[¥]
Wer,
where Vg, is the /-weight space of {-weight ¥ as above and [¥] is the map dy (which
assigns 1 to ¥ and 0 to all other ¥'). We recover the standard character
xX(V) = @(xg(V)) = D dim(Vy,)[w]
wet*

where we have set w([¥]) = ¥(0) € t*.

Due to Theorem 12| the ¢g-characters morphism separates isomorphism classes of simple
modules and the g-characters of simple modules are linearly independent for weight reasons.
Hence, by standard arguments one obtains the following.

Corollary 5.1. The gq-character morphism xq is injective.
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Example 5.2. (i) For i € I and a € C*, the prefundamental representation L;fa mn Owiv
satisfies
Xf](LZ—a) = [lIliya]‘

It is different from the g-character of the corresponding simple uq([;)—module in O which is
infinite-dimensional.
(11) When restricted to the category O C O, we recover the q-character of Uy(g)-modules.
(iii) For g = sla, we have
- -2 1 -1
Xq(Ll,a) - Z[ mlIll aqizm‘I’LaqﬂIll,aq?(l*W]‘
m>0

(iv) More generally, for i € I, a € C*, we get an analog of the q-character formula
established in [FH3| :

. | , . ,
Via= lIli,a H W¥;.aq; H V0¥ g H Vg1 %500 %5003 | 5
T _ —————11\Ti 1
XQ(L(‘I’i,a)) = Z[_mai][q’i,aq;2m‘1’ flI’Z aq2(1 'm)]
m>0

Indeed, this representation can be realized with a basz's (Um)m>0 of L-weight vectors corre-
sponding to the terms in this sum. For r € Z, the x , have a 0 action if j # 1,

_ m—+1
xi—'t_?“ Um arq2r(1 m)6 m>0Um—1 ; L; .-Um arq—(27"+1) %UM—H

Let & =P peA Eru- We get an injective linear morphism.
F Ko(0°") = €D Ko(0,) — &
HEA
We have a natural bilinear product
Eogn @ Eopy = Ctpytpas
which induces a ring structure on &,. Hence, we can multiply g-characters. Let us explain

the categorical meaning of this product.

5.2. Deformed Drinfeld coproduct. The Drinfeld coproduct, and its deformed version
Section 3.1], can be defined for shifted quantum affine algebras by using the same
formula as for quantum affine algebras (see [E'T], Section 10.1]).

For u a formal parameter and py, us € A,

(U (8) ® Ug?(9))((w))

is the algebra of formal Laurent series with coefficients in U4 (§) @ U5 (g). The deformed
Drinfeld coproduct is the algebra morphism :

Ay UGTT(g) — (UG (8) @ U2 (@) ((w)
define by the formulas
Au(af (2) = o (2) ® 1+ 67 (2) @ 2f () , Aula7 (2)) = 1@ 17 (2u) + 27 (2) ® ¢;f (20),
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Au(dF(2)) = 65 (2) ® ¢F (2u).

Remark 5.3. (i) The specialization at u =1 of A, is well-defined only in a completion of
the tensor product U5 (§) ® UL*(g).
(ii) Another coproduct, analog to the Drinfeld-Jimbo coproduct of quantum affine algebras

and to the coproduct for shifted Yangians in [FKPRW], is defined in for type A shifted
quantum affine algebras (it is conjectured to exist for any types).

5.3. Fusion product. Consider Vi, V5 respectively in O,,, O,,. We get a structure of
U4 #2(§)-module on the space of Laurent formal power series with coefficients in V; @ V; :

(V1 ® Va)((u)).

This representation is the sum of its weight spaces which are infinite-dimensional. But let
us study how to get a representation in the category O, y,, from this representation.

We use the fusion procedure introduced in [Hell [He2] for quantum affine algebras (and
quantum affinizations). In general, the formal parameter u can not be specialized directly
to a specific complex number. However, one can prove as in [Hell Lemma 3.10] that for
V = V1 ® Vs, the subspace of rational Laurent formal power series

V(u) € V((u))
is a stable submodule.

Let A C C(u) be the subring of rational fractions regular at 1. An A-form V C V (u) is a
A@UATH2 (§)-submodule generating V (u) as a C(u)-vector space and so that its intersection
with any weight space of V(u) is a finitely generated A-module.

Suppose that Vi, V5 are of highest f-weights. Then it is proved as in [He2, Theorem
6.2] that V'(u) is cyclic for the action of U4 #?(§) ® C(u) generated by a tensor product
v1 ® vy of highest weight vectors vy, vs. Then we obtain as in Lemma 4.8] that the
AUy 1742 (g)-submodule generated by v ® vy is an A-form that we denote V. Then

Vl *V2 = V/(u— 1)‘7
is a U4 M2 (g)-module in the category O, called the fusion product of V; and Va.

Theorem 5.4. The fusion product Vi x Vo is a well-defined highest -weight module in
Oy 4o satisfying
Xg(Vi# V2) = xq(Vi)xq(V2).

For Vi,---,V; a family of highest /-weight representations V; in O, the same procedure
gives a fusion module
VisVosx-oxV,
in Oy, 4.4 4, with
Xqg(Vi Va5 Vi) = xg(V1) -+ Xq(Vir)-
The first example is the following fusion of positive (resp. negative) prefundamental repre-
sentations.

Theorem 5.5. A fusion product of positive (resp. negative) prefundamental representations
s simple :
Lf  #Li, x-xLF >~ L((Wiy,00 Wiy a0 lI’iz\hCLJ\r)il)

11,01 12,02 IN,ON



24 DAVID HERNANDEZ

foranyiy,--- iy €1, ay, -+ ,an € C*.

Proof. For positive prefundamental representations, it is clear as these representations are
one-dimensional. It is proved in [FH2] that a tensor product of negative prefundamental
representations of U, (b) is simple as a U, (b)-module. Hence, by Corollary EETTL this tensor
product has the same g-character as a simple module of the corresponding shifted quantum
affine algebra. But, due to Theorem [5.4] this is also the g-character of the fusion product

of these negative prefundamental representations, hence this fusion product is simple. [

The following confirms prefundamental representations play the role of fundamental rep-
resentations in the category O%".

Corollary 5.6. A simple module in O" is a quotient of a fusion product of various pre-
fundamental representations and a simple constant representation.

Proof. For L(¥) such a simple representation, it suffices to write ¥ = ¥ (0)® ¥~ where
U is a product of various \Il;t; Then L(P) is a subquotient of L(¥(0))* L(®1)* L(¥7).
]

Corollary 5.7. A simple module in %" is a subquotient of a fusion product of 1-dimensional
module by a simple module of Uy (b).

Proof. Let L(¥) be a simple representation in O,. Then we can factorize ¥ = \¥+T¥~
where \ is constant, ¥* is a product of various \I’;tal Then L(A¥™T) is 1-dimensional and

A~

by Corollary 1Tl L(¥ ™) is simple when restricted to Uy(b). Then L(¥) is a quotient of
LOWH) « LT,
O

Remark 5.8. (i) For V5 a fusion product of positive prefundamental representations and
Vi a representation in O, , (Vi ® Vo) ® A is an A-lattice. Indeed Vo is 1-dimensional
and :L'Z:-Ijr act by 0 and <;5;7FT act by O for r large enough. Then the image of uglm (9)
by Ay, after composing by the representation morphisms, gives a Laurent polynomial in
End(Vy @ Vo)[ut!].
(ii) For Vo = L:a, one gets a functor

*i,[l . O“ — Ou_;’_w;/
which preserves the dimension and the character so that xq(%io(V)) = [Wialxq(V). 1t
coincides with the functor R, y,v v o from Section[{.5
5.4. The Grothendieck ring Ky(O*"). As the g-character morphism is injective by Corol-
lary B.1], it follows from Theorem [5.4] that the image

Xq(Ko(0°1)) C &

is a subring of &,. This induces a ring structure on Ko(O%") with positive constant structures
on the basis of simple modules. By construction

Xq : Ko(O%") — &

is an injective ring morphism. Clearly, K¢(Op) is a subring of Kq(O%").
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Example 5.9. (i) For g = sly, we have

LTI = 1+ FallLy,, BlILT,.).

(i) More generally, recall the representations L(® i.a) from Example We have an
analog of the QQ-system established in [FH3| in Ky(O) :

L(@i)[LE,) = Fal L, )L, ]

| II [l | Al | L (2R 1y

J,Cij=—1 J,Ci,j==2 J,Cij=—3

5.5. Root monomials and Nakajima partial ordering. Following [FR2], we introduce
for ¢ € I, a € C* the following ¢-weight which is a monomial analog of a simple root :
(5.14)

_ , -1 -1 —1 - —1y—1
Aiva o Yi,aqiflylﬁaqi H Yj,a H Yj,aqflijaq H Yj ag~ 2Y] a Yj,an ’
jGI,Cj’i:—l jGI,Cj,i:—2 jEI,iji:—
where
Yio= wZ\IlZ au; \Il
Note this (-weight can also be written simply as
=0y H \IIJ aqPii .,a —Bjj-
jel
Remark 5.10. Note that the Langlands dual Cartan matriz (Cj;); ; occurs in the definition

of Aiq in contrast to the definition of the L-weights ‘i’i,a in Example 2.2 However, we can
rewrite the formula therein

Xa(L(Wia) = [Wia] D AGAT) oo AT L0

2,04, 2,a
>0 ) 4q;

We extend Nakajima partial ordering to (-weights : we set ¥ < W if and only if
U'W! is a monomial in the A, ,.

Theorem 5.11. For ¥ an (-weight, we have
Xo(L(®)) € [®]+ > N[¥
v'2w

Proof. By Corollary 0.7 it suffices to prove the statement for prefundamental representa-
tions. This is clear for positive prefundamental representations as they are 1-dimensional.
For negative prefundamental representations L; ,, it follows from Corollary 41Tl that the
g-character coincides with the g-character of the negative prefundamental representation
Lfa_ of U,(b). In this case the result is proved in [[L]]. O

Remark 5.12. (i) The statement was proved for finite-dimensional representations of quan-

tum affine algebras in [EM].
(i) The analogous statement is not satisfied in general for the representations of the

quantum affine Borel algebra (for example for positive prefundamental representations Lb + )
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6. FINITE-DIMENSIONAL REPRESENTATIONS

In this section we classify the simple finite-dimensional representations of shifted quantum
affine algebras (Theorem [G.4)).
For g simply-laced, a classification of simple finite-dimensional representations of simply-

laced shifted Yangians is given in [KTWWY1l Theorem 1.4] (see (iii) in Remark 6.3) by a
different method.
Our results and methods are uniform for any type of g, simply-laced or not simply-laced.

The standard Theorem of Chari-Pressley classifying finite-dimensional representa-
tions of quantum affine algebras in terms of Drinfeld polynomials can be formulated in the
following form (see also Examples in Section 3.2]).

Theorem 6.1. The simple finite dimensional representations of U5="(§) are the L(®)
where W(2)(¥(0))~! is a monomial in the

Yia=0i Yia=¥, , 1(Viag,) ! foricl acC"

Proof. By [CP], the simple finite dimensional representations of the quantum affine algebra
U,(g) are parametrized by the ¥ which are monomial in the Yj ,.

Recall that by (i) in Remark BT UJ(§) is a central extension of Ug(g). Let L(¥) be
a simple finite-dimensional representation of ug(g). Then for A € (C*)™ a square root of
(T(0)¥(00))~t, L(AP) is a simple finite-dimensional representation of U,(g) and so ¥ has
the correct form. Conversely, if ¥ = A~!'W¥ where L(¥’) is a simple finite-dimensional
representation of U,(g) and L(A™!) is a one-dimensional representation of ug(g), then

L(W) ~ LY % L(P)
is a finite-dimensional of UJ(g) with the same dimension as L(®’). O

To generalize this for all shifted quantum affine algebras, first the following follows easily
from the previous results.

Proposition 6.2. For u € A, the algebra U,(g) admits non-zero finite-dimensional repre-
sentations if and only if u is dominant.
Let € AT be dominant and ¥ € v, be such that ¥(¥(0))~! is a product of various

fﬁ-ﬂ and W;, foriel, a e C".
Then L(®) is a simple finite-dimensional representation of U5 (g).

Proof. If there is i € I so that a;(u) < 0, then U5 (g) contains a subalgebra isomorphic
to U (sl2). So it follows from Proposition 2.7 that zero is the only finite-dimensional
representation of U4 (g). This implies the ”only if” part of the first point. For the ”if” part,
it suffices to establish the second point. So consider ¥(z) as in the statement. We can write
W(z) = W(0)M; My where M is a product of various fﬁ-ﬂ and

My = ‘I’i1,a1‘I’i2,a2 T ‘I’iNﬂN
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for various i1,--- ,iy € I, ay, -+ ,ay € C*. Then L(¥(0)M) is a simple finite-dimensional
representation of ug(g) by Proposition Using inductively the functors

RV v
W, W)
21+ + ’LJ71

v 2O vy — O,V v
, wij’a] wi1+ +wij71 Wi1+ +wij

from Section 5] we get from Proposition 16 that L(¥) is finite-dimensional (with di-
mension no larger than the dimension of L(My)). O

Remark 6.3. (i) The condition in Proposition [6.2 appeared in and in for
the l-weights of the simple modules of a category OF of representations of the quantum
affine Borel algebra (see Remark [].7).

(ii) If W satisfies the condition of the statement and in addition is a Laurent monomial
in the ffm, then the powers of the ffw are positive. So, following [FR2, [FEJMM], let us call
a general L-weight satisfying this condition a dominant (-weight.

(iii) Let ¥ (z) be an £-weight whose poles and zeros are in q”. It is a Laurent monomial in
the \I'i:qlr. There is a structure of crystal on the set of such Laurent monomials [N2| Kas2]
(the variables Y o in [N2|,[Kas2] are the W; o here; this should not be confused with the Y; 4
above). Such an C-weight W(z) is dominant if and only if it is highest weight for this crystal
structure. For g simply-laced, it is the condition found in [KTWWYTL Theorem 1.4] where
a classification of simple finite-dimensional representations of simply-laced shifted Yangians
was given (the proof therein is based on type A results in [BrKl Section 7.2]).

We will prove the converse statement which gives a complete classification of finite-
dimensional representations of shifted quantum affine algebras.

Theorem 6.4. The simple finite-dimensional representations of shifted quantum affine al-
gebras are the L(W) where W is dominant.

Proof. From Proposition [6.2] it suffices to prove for g = sly that L(¥) finite-dimensional
implies ¥ dominant.

Let u € AT and suppose that L(®) is a simple finite-dimensional representation of
uy (512). As discussed above, ¥ (z) is a rational fraction of non-negative degree. Without loss
of generality, we may assume ¥(0) = 1. There is a (non-unique) factorization ¥ = ¥+ &0
where

0= (v, ¥, ) (\IIGN\I:;;) for certain N >0, ay,---an, b, -+ ,by € C*,
Ut =W, - ¥, where M = deg(¥) >0 and ¢, - ,cp € C*.
We will denote
F={1<j<Nlay€byg "} and I = {1 <j < Nlay ¢ bjrg "}
so that for j € J (resp. j € J) L(V,;, \I’b_jl) is finite-dimensional (resp. infinite-dimensional).
Moreover, we may assume that forany 1 < j < M, 1< 57 <N :
(6.15) (c; ¢ bj/q_2Z if j/ €7) and (¢; ¢ {bj/,bj/q_z, e ,aij2} if /' € F).

Then we prove that
L(®) ~ L(PY) « L(®T).
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As xo([L(®T)] = [¥T], we want to prove that the multiplicities of f~weights are the same
in x,(L(®)) and in [&]x,(L(P°)). First L(P) is a quotient of L(¥Y) x L(¥T), so the
multiplicities in x,(L(¥)) are lower or equal to the multiplicities in [¥]y,(L(¥%)). But
L(¥Y) is a quotient of L( )x L((®T)~1). We have precise informations on the g-character
of L(¥Y) and L((¥+)~1):
(

Xo(L(TH) ™) € [(BF) TN+ D AL ZA; Naecr),
j

Xq(L(‘I’O)) [ ] [Ab_q 27n]]6$m20Z[A Ab_q 2y ,A;jlqz]jEJ-

(see (iii) in Example 5.2 for the first one; as L(¥, ¥, ') is a quotient of the fusion L(¥,)
L(¥, 1), the second also follows from this Example). Now, from (B.I5), only the (-weight
()71 of L((TH)~!) can contribute to an f-weight of L(¥). So we get that the mul-
tiplicities of f-weights in y,(L(®?)) are lower or equal than in [(¥F)~1]x,(L(¥)). We
have proved the isomorphism L(¥) ~ L(®°) x L(®"). This implies that L(®") is finite-
dimensional and we obtain the desired condition on W, from Theorem Hence the
result. O

Remark 6.5. (i) The result implies that L(W) is finite-dimensional if and only if the simple
module L°(®) of U, (b) is in the category OF (see Remarks .7, [63).

(ii) The factorization of ¥ = WTWO appeared in [FEIMM] in the classification of ”finite-
type” simple representations of Uy(b). The proof that LP(®) ~ LY(®+) @ LO(®Y) in this
context is given in Lemma 5.9] and is more complicated.

(iii) In type A, a classification of simple finite-dimensional representations of shifted
quantum current algebras is obtained in [KW]| in terms of Drinfeld polynomials. These are
subalgebras of a shifted quantum affine algebra of type A generated by positive mode Drinfeld
generators. Their motivation comes from representations of cyclotomic q-Schur algebras.

Example 6.6. In addition to finite-dimensional representations of quantum affine algebras,
there are many new examples of finite-dimensional representations. For example the positive
prefundamental representations L(¥; ) have dimension 1 and for

=¥, I o, g

73,Ci 3750
the (-weight in [HL3| Section 6.1.3], L(\Il;"a) has dimension 2 with
Xl L(®;,)) = [W7,] + DL w0l = W00+ AL,
73,Ci 3750 P45
This representation is in O, with p = ZJ C}.1<0 j and can be realized with a basis vy, v1

of L-weight vectors corresponding to the terms i this sum. Forr € Z, the :Ejfr have a zero
action if j # i and
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We get an analog in Ko(O%") of the QQ*-system established in in Ko(O) :

L ILE) = Fa) T] 27 o 1+ J] L7 ol

- Cii ——
. J,a4 ; . J,a4;
5,Ci 70 5,Ci 70

7. INDUCTION AND RESTRICTION FUNCTORS

We define and study induction and restriction functors relating the category O of repre-

~

sentations of the quantum affine Borel algebra U, (b) and the categories O,, of representations
of shifted quantum affine algebras U4 (g). These functors will be useful tools for our study
in the following. No analogs of these functors are known for shifted Yangians.

7.1. Functors for antidominant weights.

Proposition 7.1. We have an equivalence of categories

0% @ o,

peE—AT

Proof. For p € —A™, let LT)M be the subcategory of representations in O on which for i € I

K = qbi_,—l = ... = qbi,ai(u)-i-l =0

and ¢; () is invertible. It is the subcategory of the representations V' in O sothat V = Viw-
Such representations V' are representations of U4 (§). Indeed, recall from Section that
UL (§) is obtained from a quotient of the asymptotic algebra U, (g). Then for a representation
V as above, we set k;.v = w(i)v for v € V). We obtain an equivalence of categories

0, = 0,
Now let V be a representation in O and € —AT. As the gbi_az_(u) are invertible and

diagonalizable on V() (from the definition of the category (~9), it follows from relations

([B.8) that V[, is a submodule of V' which is in 9) u- Moreover, we obtain that there are no
non-trivial extension between the modules V() and V() for u # p'.

We obtain that O = @ue—A+ Ou- O
For p € —A™, composing the equivalence O, = (?)“ with f, we get a functor
fu:0,— 0.

Any simple module in O is in one of the categories (5#.
As a consequence and from the results of the previous Sections, one gets the following.

Theorem 7.2. The simple modules in the category O are parametrized by rational £-weights
of mon-positive degree and constant term 1.



30 DAVID HERNANDEZ

7.2. Induction functors. To generalize the results of the previous section to p € A, we
have to proceed diﬁerently.
Recall the algebra Uf (b) from Proposition B.7} It is isomorphic to a subalgebra of U (g)

~

and of U, (b).
For V a Uj(§)-module in the category O, one can consider its restriction to Uf (b) and

then its induction to U, (b) :

~

As u;(é) and ug(fw) are both contained in UL (b), the weight spaces of J,(V') are finite-
dimensional and we get a representation in the category O. So this defines a functor

9,:0, = 0.

Remark 7.3. ForV = L(¥) in O, the Uy(b)-module 3,,(V') is of highest -weight generated
by a highest weight vector of V. It admits L°(¥) as a quotient.

Example 7.4. Forie€ I, a € C*, let p=w; and V = L;':a m Owiv. It has dimension 1.

Then 1,y (V) admits the simple infinite-dimensional U, (b)-module Lf: as a quotient. In
the sly-case, we have Uy (b) = Ufjlv([;) ® Clzy,] and so I,y (V) =32, 5o(z1 )"V = LE{:
7.3. Restriction functors. Let p € A. For i € I, we set p; = Max(1, a;(1)).

For V' a representation in O, we consider its subspace V,, (resp. V.,) of vectors v € V' so
that for any i € I, ¢ (2).v € V(2) has degree lower or equal to a;(u) (respectively strictly
lower than a;(p)).

Remark 7.5. V), is not a submodule of V in general. Let g = sly and V = L((1—2)3) with
highest weight vector v. Let
T (2) = Z xh2m.

m>0
For w = z7.v one has 27 (2).w = %v and
_ 1—¢H(g*2? —3¢>2+3) -3
(1= (61 () aw = —aif o (1=g ) (%) 0 = LT )=3,

q—q!
In particular, ((bf(z))_l.w has degree larger or equal to —1. But on the weight space of V
of weight —ay, ¢ (2) = ¢72(1 — 2)31d + N(2) with N(z)3 = 0. Its inverse is

(1 —2)73Id— ¢*(1 — 2)7ON(2) + ¢°(1 — 2) O N?%(2).
Hence N(z) has degree larger or equal to 4, and so is the degree of ¢ (2).

Proposition 7.6. Forv eV, (resp. V<, ), there is M > 0 so that gbjs.fu, x;rm.v, X ,,-v are
in Vy (resp. V<) foranyiel, s >0, m> M.

Proof. It suffices to show the statement for V), as

Veu = Viwy.
el
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Let ve V, and i,j5 € I. Let m > 0 so that

deg((bj(z)a:;fm.v) > deg(qﬁj(z)x;fm_l.v).
Then the relation

qS;"(z)(xIm_l —q zx;-fm).v =(q Wx;-fm_l — zxzm)qu(z).v

implies that deg((bj(z)xzm.v) < @;(p). So we are reduced to the case when for any m > 0,
+

the maximum of the deg(¢; (2)z7,,v), m" = m is realized at m’ = m only. This means

that deg((bj(z)xjm.
dimensional.
This is analogous for the z, v. And it is clear for the qﬁ;fs which commute with ¢; (z). O

v) is strictly decreasing. Contradiction as weight spaces are finite-

~

We identify the elements of U,(b) with the corresponding operators on V. For v €
V., we consider M as in the previous Proposition. Let i € I. The rational function
D omsM x;tm.vzm € Vu(z) has a degree d. Let M’ > Max(M,d). Then ) . ,n :Eszmzm.v

has degree M’. We expand it in z~! and we get a series — Y o<’ U&M/)zm. We also set
vﬁnM/) = x;”mv for m > M’'. We get a new family (vﬁnM/))mez. It does not depend on the

choice of M’. Indeed, for M" > M’ we have

_ Z Yy Z W) Z oM Z M)

mSM” m>M” m>M/ M//Zm>M/
= — Z oM pm Z oM m — Z M) zm
m< M/ M">m>M m< M
Identifying the developments in z~!, we get vﬁnM ) = fuﬁnM) for m < M", and the develop-
ments in 2 vﬁnM ) — vﬁnM) for m > M". So we can set i‘jm.v = vﬁnM) which is well defined

for m € Z. In the same way, one defines operators z;,,onV, foriel, meZ.
These operators are well defined on V,, = V,,/V,. Also ¢ (z) is rational of degree (1)
on this quotient. Expanding in 2z~ we get an operator series

67 (2) € 2 WEnd(V,)[[=~"]).

7

Proposition 7.7. The operators ifm, qﬁii(z) constructed above on Vu define a structure of

Ut (§)-module on Vu which is in the category O,,.
We obtain a restriction functor

Ry:0—= 0,

Proof. We have to check the defining relations of U/ (g) are satisfied. For example let us
study the relation

(w2 Nl (w) = d(zw )¢y (2)
a—q; " ’
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which is the most complicated to handle as it involves all operators. We work on a vector
v for which we can consider M large enough so that i;-tm.v = x;tmv for i € I and m > M.

First, we prove exactly as in Lemma B.2 (c)] that for
+ M M
z;" (2) = Z zi, 2", 6 (2) = Z Giamz™™,

m>M m>M
we have in Uy (b)[[z, w]] :

- 2M — 2M
zMu)l M¢Z+ ( wle M¢:- (Z)

w) —

M (2), 27 (w)] =

(w—2)(gi—q ")
Now we expand this in 27! and we get
—M H2M M - _
ZM’U)I M¢Z (,w) o ,wle M¢Z (Z) 4 ,wMZI M ZOSm<2M (b:-mzm

(w—2)(¢i —q; ")

[~ (2), 2, M (w)] =

where we denote

m<M

This implies

T(2) — o (2
(7 (2), 2, M (w)] = Mty O (2) = 61 (2) (((]i)_ q?l)( ) g)(wz_l)r-

T(z) — o
[j:_(Z), i;’M(w)] _ ZM’lU_M ¢2 (Z) ?21 (Z) Z(zw—l)r‘
(ql - qz ) r>0
The sum of the two relations give the correct relation. O

Example 7.8. (i) Let V be a simple finite-dimensional representation in O. Then, up to
a twist, it is a representation of the quantum affine algebra and the action of the gbf(z) are
of degree 0. This gives the restricted action and R, (V') is simple of dimension dim(V").

(ii) Consider the prefundamental representation V = L?l_ in the sly-case. Then V =
V_wy and R_,v (V) is simple in O_,v.

(iii) Consider the prefundamental representation V = L[{f in the sly-case. Then V =
Viy - By construction, 7 (z) =37 (2) =0 on Ry (V) which is semi-simple in O,y equal to
an infinite direct sum of simple modules of dimension 1.

Remark 7.9. We get functors
J:0" 5 0 and R: 0 — O

We may wonder if these functors are biadjoint.
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8. CHARACTERS AND CLUSTER ALGEBRA STRUCTURES

In this section we establish a g-character formula for simple finite-dimensional represen-
tations of shifted quantum affine algebras in terms of the g-characters of certain simple
representations of the quantum affine Borel algebra U, (b) in the category O (Theorem BI]).
Then, we prove the results in imply a description of simple finite-dimensional repre-
sentations of U4 (sly) (Theorem B, isomorphisms of Grothendieck rings between categories
of representations of Uf (g) associated to dominant and anti-dominant p (Theorem R7)), and
a cluster algebra structure on the Grothendieck ring of finite-dimensional representations
of shifted quantum affine algebras (Theorem [BI0). No analogs of these results are known
for shifted Yangians.

Note that the structure of K-theoretic Coulomb branches of a 3d N = 4 quiver gauge
theory has been studied in the context of cluster theory in [SS]. Here we consider cluster
structures emerging from their representation theory.

8.1. ¢-characters of finite-dimensional representations. For i € I, let x; be the char-
acter of L°(W; 1). It is proved in [HLJ, [FH2] that for a € C* :

(8.16) Xa(LV) = [

Theorem 8.1. Let L(¥) be a simple finite-dimensional representation of Uy(g). The q-
character of the simple Uy(b)-module Lb(\I') is :

Xq(L°(®)) = o) [
icl
Remark 8.2. This generalizes the q-characters formulas (810) for L°(®;,) established in
[FH2]) and the formula in [HL3] for L*(®;},) (see Ezample 60) :

Xo(LO(5)) = (25 + A [T i =xL(®i)) T[T

7,C5,i<0 7,C;,i<0
Example 8.3. Foric I, r >0 and W, is defined as in (iv) of Example 5.3, we have

~ ~ _ _Cl .
Xo(LO(@i 1@, o)) = (W1 @, o] > (Airdy oeee Ay o) T 07
0<m<r jF#i
Indeed, it can be checked along the lines of (iv) of Example[5.2 that L(\ilmllli o2r) s (r+1)-
dimensional with the qg-character corresponding to the formula above.

Proof. From Theorem 6.4l L(W®) is a quotient of L(W¥y) * L(¥T1) where L(®y) is a finite-
dimensional representation of U,(g) and L(¥ ") is one-dimensional.

Consider the U, (b)-module LP(®() ® L*(¥T) in the category O. Let vy and vy be
corresponding highest weight vectors. By [EJMM| Lemma 5.6], the Drinfeld coproduct gives

a well-defined action of uq(B) on this tensor product. Let us denote by V' this representation.
It is established in [FJMM| Lemma 5.7] that any non-zero submodule of V' is of the form
W & LP(®T) where W C L°(®) is a subspace containing vg. In particular, the submodule
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V' of V generated by vg ® v, is simple isomorphic to L°(¥). There is a corresponding
W C L*(®y) :

LB~ WL (¥ =V CV.
By construction, W is stable by the action of the x:m, (bl-i’m for i € I, m > 0. Then by
Formula (8I6]), We have

Xa( L0 (9)) = xg (W)xg(L* (21) = xg(W)[E T T .
el
Consider the restricted representation R,(V') in the category O,. It admits L(¥) as a
subquotient.
By construction, W ® v, is stable for the action of the :i;':m, (JSj:m. Besides, the qS;"(z)
have degree 0 on W (as a subspace of a U,(g)-module). This implies (W ® vy), = W ®@ vy
and (W ® vy)<, = {0}. This implies we have a subspace W ® vy C R, (V).

Now, for m > a;(p), we have x;, vy = 0 (this follows from xzrxi_’m.mr = 0i;(q —
g ) :m+r.v+ for any > 0, j € I). Hence
(8.17) v weu) = Y Uhar Jwev,

0<r<ai(u)

where \I'Z'."T is the eigenvalue of qb;rr on vy. This implies that W ® vy is stable for the action

of U5(§). So, we have a submodule W ® vy C R, (V).
To conclude, it suffices to prove this module is simple isomorphic to L(¥).
Let us prove that the U5 (§)-module W ® vy is generated by vy ® v

A~ ~

Let w ® vy € W. We know there is x in the negative subalgebra U, (b) C U,(b) so that

z.(vp®@v4) = w®wvy. Although all Drinfeld generators are not in U, (b), x can be written in
U4(g) as an algebraic combination of various x;, , and from the Drinfeld coproduct formula.
We have

i,m?

z.(vp ®@vy) € (2.9 ® vy ) + additional terms

where 2’ is obtained from z by replacing each T m by :El_n; = EOST’S as(i) \IJ:T,ZE;m_T, (

formula (8I7)) and the additional terms have a right factor of weight strictly lower than
the weight of v,. Hence

see

wRvy =z.(vg ®vy) = (2"v9) ® vy

This implies that
W ooy C (< a:;,’n >iel,mezZ ) ® vy = (< xz_,;n >ielm>a; () ) ® vy C ug(ﬁ)(’l)o & 1)+).

We have proved that W @ vy = U4(g).(vo @ vy) is an highest f-weight module. To
conclude it is simple, we just have to prove it has no primitive vector except the highest
weight vectors. Recall that the there is a non-zero polynomial P(z) so that P(2).x () =0
on the finite-dimensional representation L(®¥g) (see Proposition for instance). If there
isw®uvy € W®uvg so that :%;rm(w ®uv4) = 0 for any m > a;(u), i € I, then xjmw =0 for
any m € Zy, € I, and w is an highest weight vector. O
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8.2. Description of simple finite-dimensional representations of U} (§l2). We get
a complete description of all simple finite dimensional representations of shifted quantum
affine algebras Uf (512), that is simple objects in the category C** c %" of finite-dimensional
representations.

Suppose that g = sly. A description of simple modules of the category O was given in

[HL3| Section 7.3].
For k > 0 and a € C*, we have the Kirillov-Reshetikhin (KR) module

Wi = L(E@aqfl\lz;qgk,l) = L(YaYog2 - Yot).

It is a representation of uq(élz) of dimension k + 1 obtained by evaluation from a U,(sl2)-
module.

A g-set is a subset of C* of the form {ag? | Ri < r < Ry} for some a € C* and
Ry < Ry € ZU {—00,+00}. The modules Wy, o, Wy, are said to be in special position if
the union of {a,aq?,--- ,ag®* Y} and {b,bg?, --- ,bg>* ~1} is a g-set which contains both
properly. The module W}, , and the prefundamental representation L;’ are said to be in
special position if the union of {a,aq? aq*, - ,ag®* Y} and {bq,bq>, bg®,---} is a g-set
which contains both properly. Two positive prefundamental representations are never in
special position. T'wo such representations are in general position if they are not in special
position.

The invertible elements in the category C" are the 1-dimensional constant simple repre-
sentations [w].

From Theorem [R.I] we have now the following direct consequence of Theorem 7.9].

Theorem 8.4. Suppose that g = sly. The prime simple objects in the category C" are the
positive prefundamental representations and the KR-modules. Any simple object in C" can
be factorized in a unique way as a fusion product of prefundamental representations and
KR-modules (up to permutation of the factors and to invertibles). Moreover, such a fusion
product is simple if and only all its factors are pairwise in general position.

Remark 8.5. (i) This is a generalization of the factorization of simple representations in

the category C of finite-dimensional representations of uq(512) by Chari-Pressley [CP].

(ii) All simple finite-dimensional representations can be factorized in a unique way into a
fusion product of a simple finite-dimensional representation of ug(512) and a one-dimensional
representation.

(iii) This result for g = sly implies that all simple finite-dimensional representations are
real and that their factorization into prime representations is unique.

8.3. Grothendieck ring isomorphisms. Let us consider completed tensor products @z,
as in [HL3, Section 4.1]. We have the following consequence of Theorem

Corollary 8.6. There is a ring isomorphism
Ko(C")&z€ ~ Ko(0T)

which preserves the classes of simple objects.
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Proof. For L a finite-dimensional representation of U4(g), we assign to the class of L in
Ko(C*") the class in Ko(O) of g-character

H XO% (N

el

This defines an injective ring morphism from Ko(C*")@7€ to Ko(O1) which sends a simple
class to a simple class. As Ko(O7F) is topologically generated by the [L°(¥)] where ¥ is a
dominant ¢-weight, the morphism is surjective. O

It is proved in that there is an isomorphism of Grothendieck rings
D: KO(O+) — KO(O_)

which preserves dimensions, characters and so that D([L°(®)]) = [L®(¥~1)]. Note however
that it is not compatible with g-characters.

Let O+ (resp. OSh’_) be the subcategory of representations in ©%" whose simple con-
stituents have a highest /-weight ¥ so that ¥ is dominant (resp. ¥~! is dominant). This
is motivated by analogous categories of uq([;)—modules (see Remarks [A.7] [6.3]).

Note that all simple modules in %" are finite-dimensional and that C" ¢ Osh*,

Theorem 8.7. The categories O™+, 0"~ are stable by fusion product and we have a ring
isomorphism which preserves simple classes

P Ko(0,) D Ko(0%) ~ Ko(0*7) ¢ € Ko(0

HEAT peE—AT

Proof. The stability of O*"% by fusion product follows from the stability of the category
@sh of finite-dimensional representations as both categories have the same simple objects.
We have

Ko(0%h) = Ko(C*M)& €.
The stability of O3~ by fusion product is clear as the simple objects in O~ and O~ have
the same g-character (Corollary E.IT]). Hence we have an isomorphism

Ko(0%"7) =~ Ko(07).

Then we can use the isomorphism in Corollary R.6] combined with the isomorphism D and
the previous line :

KO(Osh,—i-) _ Ko(esh)®zg ~ Ko(o+).

8.4. Cluster algebra structure. A certain monoidal subcategory
0, cOtco

of representations of uq(B) is introduced in [HL3]. It is defined as the subcategory of
representations in O whose simple constituents have a highest /-weight ¥ such that the
roots and the poles of ¥;(z) are of the form ¢" where (i,r) belong to certain remarkable
VCIxZ.
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Its Grothendieck ring KO(O;Z) captures the combinatorics of Ko(O™). Moreover the main
Theorem of is a ring isomorphism

Ko(04,) ~ A®z¢E,

where A is a cluster algebra and the classes of prefundamental representations [L?:;T.](m)ev

in O;Z form an initial seed.
Now consider the subcategory

Csy c et c o

of finite-dimensional representations whose simple constituents have a highest /-weight W

such that the roots and the poles of ¥;(z) are of the form ¢" where (i,7) € V.

Similarly, we have also corresponding categories O;%’i C Osh=E,

Theorem 8.8. We have ring isomorphisms
h A h,—
Ko(05") ~ AdzE ~ Ko(O03 ),
with classes of prefundamental representations corresponding to an initial seed.
Let us recall that a simple object is said to be real if its fusion square is simple.

Conjecture 8.9. The classes of real simple objects in KO(OSZ’JF) (resp. KO(O;%_)) get
identified with cluster monomials.

By the results in the present paper, in particular Corollary Bl this Conjecture B9 is
equivalent to [HL3, Conjecture 7.12]. Moreover, by [HL3| Theorem 7.12], [HL3 Conjecture
7.12] is equivalent to [HL2, Conjecture 5.2]. Then a part of this Conjecture [8.9 was estab-

lished in for ADFE types, for general types recently in [KKOPT, [KKOP2]. Combining
these results, one gets the following.

Theorem 8.10. (i) We have an algebra isomorphism
A~ Ko(€3}).
(ii) The cluster monomials in A are real simple objects in Ko(C3h).

Proof. By the discussion above, (ii) is known. The arguments in Proposition 6.1]
imply that

Ko(€33) C A.
As cluster monomials generate a cluster algebra, now (i) follows from (ii). O

Remark 8.11. In the sly-case, Conjecture [8. is proved in Theorem 7.11].

We will study again these and other cluster algebra structures related to the representa-
tion theory of shifted quantum affine algebras in another work.
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9. CARTAN-DRINFELD SERIES AND BAXTER POLYNOMIALITY

Adjoint versions of shifted quantum affine algebras are defined as the usual adjoint ver-
sions of quantum affine algebras by adding Cartan generators corresponding to fundamental
weights. We discuss series of Cartan-Drinfeld elements Y;*(z) and T;%(z) (i € I) introduced
respectively in [FR2] in the study of transfer-matrices of finite-dimensional representations
of quantum affine algebras and in [HJ| as limits of transfer-matrices of prefundamental
representations of quantum affine Borel algebras.

As the main result of this section (Theorem [LIZ]), we establish the rationality of Y= (2)
(resp. the polynomiality of (7;°(2))¥') on a simple representation in the category O, (up
to the highest eigenvalue). The proof is partly based on the Cartan-Drinfeld polynomiality
established in [FH2] as a limit of Baxter polynomiality of quantum integrable models.
We also obtain the equality up to a scalar multiple of the rational operators associated
respectively to Y, (2) and Y, (2).

These methods and results are also new in the case of ordinary quantum affine algebras
or shifted Yangians.

9.1. Adjoint versions. Adjoint versions for quantum affine algebras are used in the liter-
ature (see [FR2| for instance where additional elements are denoted by k;).
Fix u € A. The adjoint version U ’ad( ) of the shifted quantum affine algebra in [ET] is
a slight extension of U4(§). New generators (qﬁi )EL (qﬁi )1 are added satisfying
—+ . —
[1@)% = oy and [1(6;,)% = o7,
jel jel
and satisfying the analogs of the quasi-commutations relations ([3.2)), (8.3]), that is, for
iL,jel, reZ:
—+ -+ =t = — —
[¢z7¢]]:[¢zv¢] [@ZT,,@ ] [¢1r7¢ ] 07
+6;
J i (b and (b a: qZ jE (b .

O Tjr =G
Remark 9.1. (i) Foric I, 82 ¢, is central in uf;’“d(g).
(ii) There is a group of automorphisms ofuf;’“d(g) isomorphic to (Z/2Z)" : for (€1, -+ ,€,) €
{£1}", there is a unique automorphism so that fori € I and m € Z :

—+ —+ Cii
¢; ek qﬁf > m(blm s Ty N s T where 1 = Hej]’ € {£1}.
jel
This induces a group of automorphisms of Uy (§) that we call sign-twist (the order is 2",
except 2" in type B, and 1 in type Ay).

The representation theory of Uy ’ad(@) is a slight modification of the representation theory
of U5 (g). Indeed, a representation in O, has a structure of U (§)-module, but it is not

unique. A representation of ugv“d(g) is said to be in the category O, qq if it is in the
category O, as a Uy (§)-module. A module in O, 4q is simple if and only if it is simple as a
U% (§)-module. Hence the simple module in O uad are parametrized by triples

_J’_ -
(T, 0", w ) ey, xt" xt"
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satisfying :
1@ ()% = wi(0) and [J@ ()% = (=@ wi(2))(c0) fori € 1.
Jjel JeI

Such @w* are said to be compatible with . The corresponding simple representation is
denoted by L(¥,wt,w~). The dimensions of its weight spaces are the same as those of
L(®) and its structure can be completely described from the structure of L(¥), and @.

Remark 9.2. w" (resp. W™ ) is uniquely determined by ¥ up to an element (cy,--- ,¢,) in
the group K C (C*)" of solutions of the equations [[;<; cjc“ =1.

—wy ,ad

Example 9.3. The algebra U, (sly) has additional generators Ei with ($+)2 = ¢ and
(¢ )2 =¢—,. Fora,be C*, the representation L(b(1—az)~1) is in the category O_,y. For
a (resp. B) a square root of a (resp. b), we have compatible T = 3 and W~ = iBa ! which
give a structure of Uy ! ’ad(glg)—module on L(b(1 —az)™1).

9.2. Fundamental Cartan-Drinfeld series. We consider a collection of Cartan-Drinfeld

series which appear naturally from R-matrices and transfer-matrices in [FR2]. For i € I,
set

YE(2) = 6, exp <i(q - ﬁi,imzim> :

m>0
him = _[ri14Cii(q™)hjm for m # 0,
jel
where C(z) is the inverse of the quantum Cartan matrix C(q) (invertible for a generic q).
By [FR2, Formula (4.9)] (see formula (5.14]) above), we have

(9.18) 2T (2) = Hy(Y((2), -+ Y5 (2))
where H;(Y5(2), -+ ,Y;F(2)) is set to be equal to
Y (2a; )Y (240)
Hjel,cj,i:—l in(z) Hjel,cj,i:—z in(zq_l)yji(ZQ) Hjel,cjyi:—?, Y}i(q_zz)y}i('z)y}i(q%) '

Remark 9.4. Note that for Laurent formal power series d;(z) € A((z)) with coefficients in
a commutative algebra A, if the system of n-functional equations

d,(Z) = Hi(sl(z)v e 73n(2)) J1EL,

has a solution as a formal Laurent power series, it is unique up to constant factors.

The following Cartan-Drinfeld series are introduced in as limits of transfer-matrices
associated to prefundamental representations :

ili m
,,Z—;::t(Z) = exp <:F Z Z:Fm;> .

a0 [rilg[mlq;
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We have
+ -1, 41
(9.19) ()?fgﬁ—i%%

For i € I and a € C*, recall the /-weight \ilw in Example 5.2l Motivated by the next result,
we set

Nig = 0. 0 1 W, g

’l(l

_ , -1 -1 -1 w-ly-!
- ‘PivanI‘I’W‘li H ‘Iljya ‘I’jvaq”‘I’j,aq H ‘I’] aq ¥ J» a‘IIJ}an
7,Cij=—1 5,Cij=—2 J,Cij==3

In particular we have

(920) Ai,a = Oé_iAi,aq_*l/Ai,afh‘

Remark 9.5. The degrees of the coordinates of A, form the simple roots o of the Lang-
lands dual Lie algebra “g, in opposition to the powers of the monomial A o in terms of the
Y, which give the simple roots of g. This is an indication of the important role played by
the Langlands dual Lie algebra “g in the following (see Section[13).

Lemma 9.6. Consider a rational l-weight ¥ = ¥(0)[];cr oecs ‘Illyla" For i € I, the

corresponding eigenvalue of (Ez-t)_lYii(z) s equal to

—t ~ a
Y, w(z) = exp S Ciild™Mvje——2
9 . _m
Fj€I,m>0,aeC*

The following are equivalent :

(i) for any i € 1, ?;rq, (z) is rational.

(ii) for any i € I, Y, g(2) is rational.

(iii) ®(¥(0))~! is a Laurent monomial in the A;q, i € I,a € C*.
Then 72_\1,(7:) and z¥"WY g (2) coincide as rational fractions up to a constant.

Proof. The formula for ?;t‘l,(z) is clear as the eigenvalue of h; ,, associated to W is
Vi a0™
- Y —formeZ\ {0}.
omlai—q ")
Now suppose that (i) is satisfied. There are v;, € Z so that for any i € I, m € Z\ {0} :
~ a™ v; pb™

| > Cjild" Wya—— = > -

jel,acCx beC*
Note that finitely many v;; are non-zero. We obtain for any k € I :

Z Vk,aam = Z Cz k Uz bb

aeC* iel,beC*
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wwo) = [ AK
kel,beC*
Hence we get (iii). The same computation gives that (ii) implies (iii), and that (iii) implies
(i) or (ii).
To conclude, let us suppose that the conditions are satisfied. From (9.I8]), we have
_+ —_—
deg(Y; g (2)) = wi(n) and deg(Y; g (2)) = 0.

The v; , are well-defined from (iii) as the powers of the A, ; in the factorization of ¥ (¥ (0))~1.
Then from the computations above :

?j\II(Z) — H (1—zb)Vit = (_Z)Wi(ﬂ) H bvi,b(l_z—lb—l)vi,b — ((_Z)wi(#) H bvi,b)?i_‘ll(z)'
beC* beC* beC*
O

Remark 9.7. This statement can be seen as a generalization of [FR2, Lemma 5| where the
case when W is a Laurent monomial in the Y; , is considered.

With the same notations as in Lemma [9.6] the eigenvaluda of Tii(z) associated to W is

2T Cria™)
T%, (2) = exp E S gy,
'7q] _ —m J,a

' j€l,m>0,aeC* (qln % )m

9.3. Rationality and polynomiality. Consider W = L(¥) simple in the category O,,.
Let w = ¥(0) be its highest weight and w be a highest weight vector of W.
Let ¥’ be an /-weight space of W. We have proved in Theorem [B.I1] that there are
i1, ,ir € I, a1,--- ,ar € C* so that
—1 ~1
v = ‘IlAil,al . 'AiRﬂR’

The same computation as for [FH2| Proposition 5.8] gives the following.

Proposition 9.8. The eigenvalue of T () on Wy is
Ty =Ty x [ - (ahH™™
1<k<R,ip=i

Remark 9.9. The formula in [C, Proposition 1.6] to define an involution of Uy(g) also
defines an involution

o U g) -5 U0 () U g)
so that fori € I, m € Z, r € Z\ {0} :

+ -+ —F
i,r) = x?,:—T—(si,fai(,u) ) U(hi,m) = _hL—m ) U(¢Z ) = ¢Z .
For W a representation of ugv“d(g), we denote by W its twist by o. Note that we have :

0(9 (2) = 2% We (z71) , o(ViT(2) =Y (z71) L o(TF(2)) = T; (=71,

(2 3 (2

o(x

2This is consistent with the eigenvalue computed in [FH2, (5.20)] when W is a Laurent monomial in the
Y b, except that there is a misprint in that paper : C; ;j(¢"™) there should be C;;(¢™)).
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Example 9.10. The representation W = L(Y?) of Uy(sly) was studied in the Ezample of

[FH2] Section 5.8]. It is a simple representation ofu0 ad(slg) with parameter (qz%, q,q 1).

It has a weight space of weight 0 of dimensz’on 2. In a slight modification of the basis in
, the matriz of T‘(z)/T‘i,( ) and of Y —( /Y (z) are respectively

1 0 0 0 1 q—zpqul 271(10 q ) O
0 1-— zq_l z 0 0 T—2 1 (1—z 11)21 0
0 0 1—zq7? 0 "o 0 g 0 ’
0 0 0 (1—2zq71)? 0 0 0 (q(l_lqr);)_z
T= z_lq_2 1— 2 q—lT— z_lq_l
for lIi( ) 2):< & q1> Yg () = :Il(—l )'
Ty (z7'q?) 1-271q Ty (z'q)
As W ~ L(Y;}zﬁ), the matriz of TT(z )/T:Ir, 2) and YT (2 )/YlIJ; (2) are respectively
1 0 0 0 1 0 0 0
1 2712 g '—2q  2(1—¢%)
0 = e O 0= aee Y
0 0 e 0 1o o == 0 ’
1 —1_,0)2
0 0 0 it 0 0 0o iz
Ty (') Tg(zq)(1 - 2)?
T+ — T (5 1g2)(1 — 2y v _ v .
Jor T (2) = T ™)1 = =70 Y (0) =t T =0t

These operators are rational. The action of Y+(z)/Y‘ir,(z) and Y_(z)/Y‘I_, (z) coincide. On
a weight space of weight @W*a ", the action of the following does not depend on z :
1 0 0 0
A THERTTE) 0 =t 10
T‘JIFI (2)Tg (2) 0 0 —¢' o
0 0 0 q?2

We note that (T*(z )/T$( “1@2)*F and (Ti( )/TH(2))*! are polynomials in 2.

Example 9.11. Consider the prefundamental representation W = L(®1') of uq_wlv (sl2)
as in Example[ZI0. Then we have for j >0 :

Y*(2) ¢ I(1=2q)  THz) 1 B
s = — 2w, = (1—-2F )ﬂFl(l Zﬂquqﬂ?)ﬂF .(1_23qu¢2(] 1))]”.@-,
Y‘Ij;(Z) J 1_q1 2]2 J T‘jI:,() J
for YE = (i)~ exp | — Z Zi—m TZ(2) = ex Z =
v g m>0 m(gm +q7m) ) T ! m>0 m(q*™ —q=2m) |

We have (T*(2)T~ (z)/(T‘JI;(z)T‘i,(z))),Uj = (_Z)jqj(j—l)vj

The following was partly established in Theorem 5.17] for simple finite-dimensional
representations of U,(g). Let w’ be a weight of W. For i € I, we denote by ht;(w(w’)™!)
the multiplicity of @; in the factorization of w(w’)~! as a product of simple roots.
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Theorem 9.12. (i) The operators

Vi) Y
Yz,_\Il (2) Y“I,(z)

are rational of degree O on W and coincide.
(ii) On W, the operators

€ (End(W))(2)

L(Z) ti(w(w’)*l)m
TZ-,_\I; B and 2" T € (EndW,))[z]

are polynomial in z of degree ht;(w(w')™!) and coincide up to a constant operator factor.
Remark 9.13. This constant operator is not necessarily diagonalizable, see Example 910

Proof. For m € Z\ {0}, r € Z, e =1 or ¢ = —1, we have

= + mrily 4 —+ 46 e o =+
[hi7m,x]~7r] = 6z',j m L5 mtr and ¢; x;’,r =g " x;,r¢i :

In particular [z (w), YV E(2)] =0 for j#iand e =1 or —1. For i = j, the relation (34 is

1 4 q2m - Q‘_2m +
[(Qi - ql‘_ )hi,ma xiﬂ«] =+~ m ‘ xi,m—l—r’
It is the same relation as
g 4" —q "
[(q —4q 1)hi,m7$i:r] == m - x?,:m—l—r’

except that in the right side we have ¢; replaced by qi2, the term (¢;—q; 1)him being replaced
by (¢ — g )him as in the definition of Y;*(2) in comparison to the definition of ¢ (2) (we
have the same substitution for the analog of the relations ([33])). Hence we get as for the

relation (B.8) :
+1 di,j
Sl — 2
Y;E(z)xj:(w) = <g;_7i1> xjt(w)Y;e(z) for e = + or —,
q; <
First assume that 7,5 (2)/ Tii\I' (2) has a rational action on W. Then by (@I9) Y;=(2)/ Y;:EIJ (2)
has a rational action on W of degree 0. By the remarks above, the rational operat0r7

Y (2)Y, 5 (2)

PABIANE)
commutes with all operators in the image of U,(g) in the endomorphism ring of W. Hence,
by Schur Lemma, Yf(z)/Y;tI,(z) and Yl_(z)/Y;_‘I,(z), as these operators coincide on an

highest weight vector, they coincide as rational operators on W. Hence (i) is proved.
Besides, consider the rational operator on W, :

L~ hti(w() 1) 17 (2)T (2)

T

V) = z,\Il(Z)T:—\I’ (2)
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Then by (@I9) and (i), we get that U(z) = U(zq¢?) and so U(z) does not depend on z, that
_ TT (2)
L () hti(w(w)™) W
Tﬁ\I, (2)’ T;r(z)
Now we establish (ii) in the Theorem (it does not follow directly from Proposition
0.8 as the operator do not have necessarily a diagonal action). The polynomiality for
T (2) /TZ _\IJ(Z) is known for finite-dimensional simple U,(g)-modules by Theorem
5.17]. But, using the involution o of ugd(g) as in Remark [0.9] we get that T;"(2) is rational
on a finite-dimensional W up to a scalar map, and so that 7, (z)/ T +\Il (z) is rational. By

is coincide up to a constant operator factor.

the discussion in the first part of this proof, this implies the polynomiality result for Tf(z)
in this case.

Now let W be a tensor product of various negative prefundamental representations. By
Corollary 17l it is simple as a uq([;)—module isomorphic to L°(W¥). This representation
can be constructed in [HJ, [HL3] as an inductive limit of a linear inductive system of simple
tensor products of Kirillov-Reshetikhin modules which are simple finite-dimensional repre-
sentations of U,(g). In this inductive system, the highest weight vectors are preserved and
the action of qﬁ?’(z) is stationary up to a scalar function factor. Hence the polynomiality
result follows for 7.7 (z) for W from the result for the finite-dimensional uq([;)—modules.
But not only the inductive construction gives the action of uq(B), but also of the whole
asymptotic algebra U, (g) from which the action of T, (z) on W is obtained. As above, it is
stationary up to a scalar function factor. The polynomiality of T (z)/ TZ o (2) on W, and
the result, follow. 7

The result is also clear for a tensor product of various positive prefundamental represen-
tations as they are one-dimensional. Now, as

AT () =T (2) @ T (2u™ 1),

it follows from Corollary and (i) in Remark that the result holds true for a tensor
product of negative prefundamental representations by a tensor product of positive prefun-
damental representations. The result follows. O

10. TRUNCATED SHIFTED QUANTUM AFFINE ALGEBRAS

Truncations of shifted quantum affine algebras are defined in Section 8.(iii)] in the
study of quantized K-theoretic Coulomb branches of 3d N = 4 SUSY quiver gauge theories
(see the Introduction).

We recall the definition of truncated shifted quantum affine algebras in terms of series
Aiz’i(z) of Cartan-Drinfeld generators. We explain how these series appear naturally in
terms of the Cartan-Drinfeld series derived from transfer-matrices in the previous section.

We establish (Proposition [[0.7]) a necessary and sufficient condition for the defining series
A?’i(z) to have a rational action on a simple representation.

10.1. Truncation series. We consider a variation of the series Y;*(z). We fix

)\:§:J\Q<,u;/€1fr and)\i,u:)\—Zaioz;/ €A,
i€l iel
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with the N;,a; € Z non-negative. We consider a family of polynomials Z; of degree N; :
Zi(z) = (1 = gizzin)(1 — gizzi2) -+ - (1 — qizzi N,),
and we get an (-weight Z = (Z;(z))ier. We also fix additional parameters z, € C* so that
TIGENG = (=a)™zin - zim,-
JelI
These are unique up to the group K of Remark The collection of these data is denoted
2= (Z, 2, 2.
Then we define
—+ _
Yi,Z(Zqi 1)

10.21 AYE (2 AZE AT = ()0
( ) 7 Z z:l:r 7,) }/;i(zqi_l)

r>0

e Uy ed(g)[[=*1]).

In particular, ?i 2o (20 1) is the eigenvalue of A?’Jr(z) on a highest weight vector of a
simple representation L(¥) in O,.
Note that by definition we have
4 Z,— ——\—
(10.22) Az 0+ (¢2 ) ) Ai,() = Z?{(QSZ ) !
From (@.I8]), we recover the defining formula in [ET], that for i € I :
O GE () (Zi(2) T = (B (AT (o), AT ()7

Remark 10.1. (i) The series Aiz’i(z) are uniquely characterized by this property and by

([I0.23), see Remark[9.7)

(ii) The notations could be misleading as the series A;’Z(z) in [F'T] are variations of the
Yi(2) in [FR2], not of the A;(z) therein.

(iii) The subalgebra generated by the Yangian counterpart of the Aizfr 1s called the
Gelfand-Tsetlin subalgebra in [BrK]. It equals the Cartan-Drinfeld subalgebra generated

by the qbz L and the Aibﬂ.
Example 10.2. Assume that g is of type Bs with ry =2 and ro = 1. The formula give
AFT(2) A5 (26%) A (2g?)
ot (2 le_lz 2 2 and ¢ (2 222_1: 1 .
[E@E) = 33 R P and 5 ) = e

10.2. Definition.

Definition 10.3. The truncated shifted quantum affine algebra uf;f(g) is the quotient of

U"’ad( ) by the relations that for i € I, AZ jE( ) is a polynomial of degree a; in 2 and :
ATTATY = ()™ L ATT(2) = (2q7 )M AT (2) Jori € 1.

Remark 10.4. (i) The relations imply ¢;_0¢i_ai(u) = ¢; 2 for

Ni+>2, Cjaj i(p)
piz = (=1)" 2 PN 2172 Zi N -

(11) We do not write the relations [E'T} (8.11)] which are redundant in our notations.
(iii) The relations are not preserved by a twist of the spectral parameter z — az.
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wl,

Example 10.5. U (372) is the quotient of Uy oo ’ad(slg) by the relations :

ATE=0 for s>1, ADTADT = 1 ADT = ARTg AR = AN

In the following, when Z is fixed without ambiguity, we will simply denote A*(z) and
ug, 1(8). The defining relations of Uf; ,(8) can be interpreted in the following way.

Proposition 10.6. For each i € I, the images of ¢7(2) in UZA(A)[[ 2H1] are rational of
degree a;(p) and coincide in U} ,(8)(2). They satisfy ¢ (0) (7 (2)27 1) (00) = ;2.

Proof. The rationality is clear as the A;-t(z) are polynomials. Then we get in U/ o (8)(2) :

o (2) B Hj,cj,i:—1 2% Hj,cj,i:_z(zq_IZQ)aj Hj,cj,i:_1(zq_2zzq2)aj zo‘i()‘_“)qbi_(z)
Zi(2) (2q; ' 2q;) Zi(2)
— H Z_ajcj’i Zai()\_M)QS’i_ (Z) — szEI CJ Wy (/J )\ Oé@()\ U’ ¢z ( ) _ @Z_(Z) .
el Zi(2) Zi(2) Zi(2)

This implies the equality as rational fractions. The degree is

N; — Z C’j,iaj = OZZ()\) + Z Cj,iwj(,u - >‘) = O‘i(/‘)'

Jjel jel

10.3. Rationality of truncation series. Let W = L(¥) be a simple module in O,,.

Proposition 10.7. (1) The following are equivalent :

(i) for any i € 1, AZ-Z’+(Z) is rational on W.

(i) for any i € I, Aiz’_(z) is rational on W.

(iii) ®(0)Z® " is a Laurent monomial in the A; 4, i € I, a € C*.

(2) When these conditions are satisfied, AZ-Z’JF(z) and (zqi_l)“iAiZ’_(z) coincide on W as
rational fractions (up to an element of the group K of Remark[Z2) and have degree a;.
Proof. (1) As above, it does not follow directly from Proposition as the operator do not

have necessarily a diagonal action. However, from Theorem [0.12] A?’i(z) is rational on W
if and only the eigenvalue on a highest weight vector is rational. From Lemma [0.6] this is
equivalent to (i) or (ii) or (iii).

(2) When the conditions are satisfied, it follows from Theorem that Y= (2)/ Yiiql(z)

=+ o
coincide as rational fractions, so it suffices to prove that (2] “Z)‘Si»*YZ-’Z(z) / Yzjill (z) coincide

as rational fractions. From Lemma [0.06] they coincide up to a constant ¢; :
=+ - —
YZ,Z(Z)/}/;:‘:IJ (2) = CiZz{ZalYi,z(Z)/};‘p(Z)'

As

Hi(Y 7(2), Y, 2(2) = (—ai2) N (zi1 - 2in,) " Zi(2),
we get
Zi(2)U(2) = Hi(er, -+, e0)2% M Z(2) ) (2~ W0, (2)),
and so (¢, ,¢p) € K. O
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Example 10.8. We continue Example [9.10. Let us consider the polynomial operators :

Ao TCTQ o) U a e Yy ()

Tg(ztq) T=(z71q7") Y= (2)
P(1—q 2212 0 0 0
_ 0 (?—=z11 -2 2 ¢* —q) 0
0 0 (> —2~H(1 —2z7h 0
0 0 0 q(1—z71)?
o - TR Ty eTe) 0T 20"V (2)
0= T ) Ty V)
g (1 - 2¢°)° 0 0 0
_ 0 (1-2¢>)1—-2)  2(¢°—q) 0
0 0 (1—2¢*)(1 - 2) 0
0 0 0 q(1 —2)?

We note that A*(z) = A% (2) with Z = (1 — 2¢~H2(1 — 2¢*)%, ¢*) as we have

AF(2) = (2¢7" A (2) , Ap(0)A-(o0) = ¢*Id,

(A+(z)A+(zq2))_1 _ ¢+(Z) and (A_(z)A_(zqz))_l _ Z2¢_(z)

(1—2¢71)*(1 — 2¢°)? (1 —2q7")2(1 = 2¢%)*

Remark 10.9. We see from the proof of Lemmal9.8 that the contribution of the factor A,
to the eigenvalue of Af(2) is (1 — zaq; ')~

11. DESCENT TO THE TRUNCATION

We study which simple representations descend to truncated shifted quantum affine al-
gebras using methods which are also new in the case of ordinary quantum affine algebras or

shifted Yangians. See the introduction for a discussion on earlier results
NW].

We establish a necessary condition on a simple representation to be a representation of a
truncated shifted quantum affine algebra (Proposition[IT.I1]). As a consequence we establish
that a truncated shifted quantum affine algebra has only a finite number of isomorphism
classes of simple representations (Theorem [[T.I5]). Then we introduce a partial ordering <
on (-weights (up to sign) and we prove that the simple representations L(¥) of a truncated
shifted quantum affine algebra of parameter Z must satisfy ¥ <y Z (Theorem [[T.9]). We
note this partial ordering is also related to the Langlands dual Lie algebra Lg, a point which
will be crucial in the next Section. In the sly-case we establish a complete characterization
of simple representations of a truncated shifted quantum affine algebra (Theorem [T.17]).
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11.1. Descent.

Definition 11.1. A representation in O, descends to the truncation Uf;’f if it has a struc-

ture of UL (§)-module compatible with the defining relations of the quotient UZ)%(@)
This defines an abelian subcategory Of},z of 0.
Remark 11.2. The category 0272 is stable by sign-twist.

We investigate which simple modules L(®¥) are in 0272' It means that there is a structure
L(®,wt, @) of U (§)-module on L(¥) which is a UZ”)%(@)—module. If T exist, then
(11.23) (@ w ) (i) = zi(—q;) " for any i € I.

By Proposition [0.6] such w® compatible with ¥ € t, exist if and only if for any i € I,
W;(0)(T;(2)2=% W) (00) = ¢; 2. We will denote by t,, 2 the set of such ¥. We will work with

such f-weights (if necessary, although not written explicitly, we will renormalize (-weights
by constants to work in this set). So let us consider ¥ € v, 7 and Wt € t* compatible with

W satisfying the relations (IL23)). Then the central element 5:_ ¢; (resp. A?’SFA?’{)_) acts
as the scalar z(—q;)™® (resp. (—¢;)*) on L(®).

Example 11.3. Suppose A = u. Then for V in OZ,Z’ the operator AiZbJr = AZ-Z’JF(z) =
Aiz’_(z) = A?’b_ is constant and satisfies Id = AZ@JFA?’{)_ = (AZE]JF)Q and ¢ (2)(Zi(2))7! =
Hjej(A]Z-”J)_CJ\i. Hence OZ . is semi-simple, its simple objects are 1-dimensional of highest
C-weight V(z) = (1;Z;(2))ier with n; = -efj’i for a choice of €; = =1 (see Example [{.13).

J
Up to a sign-twist, there is a unique simple representation in OZ,Z'

Example 11.4. Let g = slo, A = 2wy, u = 0. Set Z = ((1 — ag®2)(1 — ag~'2),aq). For

— Vv
P(z) = ag(l-aq_z) L(®) is a 2-dimensional representation in Og? . Indeed its other (-

(1-agz)
weight is W'(z) = %;q‘ggz). Choose a so that a?aq = 1. For A(z) = (a —a~12) and
A'(z) = (qa — a~1q712), one has
Z(2) / Z(2)
V()= —— , V(2) = —F—.
SN e R T B (BT

Remark 11.5. Leti € I and V' be a representation in O, so that the central element E:FEZ_
acts by zl(—q;)~%. As a direct consequence of Proposition [I0.7, if AZ.Z’JF(Z) has a rational
action on V., then Af (2) = (2q; 1) A7 (2) if and only if we have

Af(2) ~oo (=2)5(AF(0) 7!
on V. Besides it suffices that this condition is satisfied on a highest weight vector.

11.2. Partial ordering. We have the following refinement of Proposition [0.71

Lemma 11.6. If for any i € I, AZ-Z’+(2) is polynomial on L(¥), then ®(0)Z¥ ! is a
monomial in the A; ., i € I, a € C*.
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In fact, our proof implies it suffices it is polynomial on a highest weight vector of L(W).
Proof. By Proposition I0.7] ¥(0)Z¥ ! is a Laurent monomial in the Nig,i€1,aeC
Following the proof of Lemmal[9.6] we see that the powers of the A; , have to be non-negative
so that the eigenvalue of AiZ’Jr(z) on a highest weight vector of L(W¥) is a polynomial. [

This suggests the following definition for the set of /-weights :

Ty = U 2.

HEA
For ¥, ¥ € vy, we set ¥ <5 W if (¥(0))~1(¥'(0))¥(P')~! is a monomial in the A;,,
i1el,aeC.
Proposition 11.7. If W' <, ¥, then ¥ is determined by ¥’ and (¥(0))~1(¥'(0))¥(P')~!
up to a sign i € 1.
In particular, <4 defines a partial ordering on vy (up to signs).

Proof. Let ¥ € v, 7, ¥ c t,s 2. It suffices to prove that each W;(0) is determined up to a
sign. The conditions imply that for any i € I, (¥;(0))~(¥;(2)z~*)(c0) is determined.
But ¥;(0)(¥;(2)2z~*M)(c0) is fixed, so (¥;(0))? is determined.

For the second point, it suffices to consider ¥, ¥’ so that ¥ <, ¥’ and ¥’ <, ¥. Then,
(T (0)~1(¥'(0))®(¥')~! =1 and from the first point we get that ¥ and ¥ are equal (up
to a sign for each i € I). O

Remark 11.8. (i) If we add the data of a @ € t* compatible with each ¥ as above, then
as for Lemma [Z0] we can replace "up to a sign” by "up to a sign twist”.

(ii) This partial ordering is different from the extension of Nakajima partial ordering <
in Section [21.

Now Lemma [IT.6] can be reformulated in terms of this partial ordering.
Theorem 11.9. For L(W®) a simple representation in Of; > we have
U <, Z.

Remark 11.10. For L(¥) a representation in Of; ». all its L-weights W' must also satisfy

W' <o Z (by the proof of LemmalZ8). As an example, more concretely, consider an (-weight
of the form ¥’ = \IIAZ_a1 Then Formula [320) gives that a factor A; 44, in the factorization

of Z® " is replaced by A, gt the factorization of Z(¥')~1.
11.3. A necessary condition on highest /-weight and finiteness.

. o , o+ -
Proposition 11.11. Suppose that L(¥) is in O,)),z- Then for i € 1, Yi,Z\Ifl(Zqi 1) and
YZFZ‘I,q(qu-_l)\I’i(z) are polynomials with

+ - a; (ot -
YLz\If*l(zqi 1) ~oo (—2) (YLZ\Irl(O)) !

Remark 11.12. (i) The property does not depend on the choice of @™ but only on ¥,
(ii) The degree of the two polynomials are a; and a; + o;(u) respectively.
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We will use the currents defined for i € I by
T (z) = Z:E:Tzr a2 (2) = — Z:E;Tzr , Ci(2) = (qi—q; Da; T (2)Af (2) = ZC’Z-,TZT.
r>0 r>0 r>0

The following relations were proved in when € —AT. But since the commutators
[mfr, (b;fs] are the same for a general ;1 € A, it holds in general :

(11.24) (w = 2)[Ai(2), Ci(w)lg, = (a5 — 4 ) (2Ci(w) Ai(2) — wCi(2) Ay (w)).

Here we use that standard notation [a,b] +1 = ab — ¢ 'ba.

Proof. Leti € I and v be a highest weight vector of L(¥). The polynomiality of ?:—Z\Ifl (2),

which is the eigenvalue of A?’*’(z) on v, is clear. It is already observed in that the
polynomiality of C;(z) can be deduced in the following way : the coefficient of w in relation

([II24) gives
—2[Af (2), Cinl -1 = (@i — 47 )Ci(2) AT

As A:O is invertible, C;(z) is a polynomial on L(¥). Now we have also :

10 Ci(2)0 = (g; — g D w; (AT ()0 =~ g1 (27 (X (65, — 67,70
r>0

_+ _ _
=Y, g1 (2 NWiz) =T - D ),
0<r<a;(u)

As ?:Z\Ifl (2¢;") and xZO.Ci(z).U are polynomial in z, this implies that ?:Z\Ifl (2q; )04 (2)

=
=
I
_

is a polynomial. For the second point, the eigenvalue of A;':ai onwvis (—1)% (sz‘l,fl (0

This condition is not sufficient in general.

Example 11.13. Let g = sl3, A = wy, p = A—2a) —ay = —2wy, Z1(2) = 1—2z, Zs(z) =1,

v= ((1 - zq‘g)_(i —2q72)’ 1) '

We fix Z with compatible 2}, 2. We have

?IZ\I’”(Zq_l) =a?(1 —2¢7M(1 - 2¢72) and ?;Z‘I,q(zq_l) =a(l —z2¢7?)

with o = ¢*. The condition of Proposition I1.11 are satisfied. However, L(¥) is not
mn (9272. Indeed, by Theorem [5.0, this representation is the fusion product of two negative
prefundamental representations (with a 1-dimensional constant representation). The q-
character of each of these factors is known as it is the same as for the corresponding negative

A~

prefundamental representation of Uy(b) (in the slz-case these representations are explicitly
described in [HI]). The following is an £-weight of L(¥) :

_5 -1
P e q q (1 - zq)
v = ‘IIALq*AZq*1 o <(1 —2q 12 1 —2zq! > '
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and is not of the correct form

((1 —2)As(zq)  Ai(zq) >
A1(2)A1(2q%) " Az(2)Az(2q?)

for Aq(z), As(z) polynomials of respective degrees 2, 1. Indeed, identifying the second
coordinates, we would have Ai(z) of the form (1 — z)(1 — za) up to a constant and for a
certain a € C*. This contradicts the relation for the first coordinates, as q* could not be a
pole of order 1.

However in some cases the conditions are enough to determine the simple representations
in O:\L,Z' This is the case for the g = sls in the next section. We have also the following.

Example 11.14. Let A = w; and p = w) — o . Set Zj(z) = 1 — zaq}8; ; and associate 2

accordingly. Up to sign twist Of;z contains a unique simple representation whose highest £-
weight is \ilm (up to a constant, see Example[5.2). The uniqueness follows from Proposition
171 From Ezample 5.2, the (-weight spaces are of dimension 1 parametrized by m > 0
with the corresponding eigenvalue of A;“’Jr(z) equal to 1 if j # i and if j = i equal to

2

-1 m —-m _
v, gt —viq; "z where v = a; are fizved.

We have the following consequence of Proposition [T.11]

Theorem 11.15. There is a finite number of simple representations L(W¥) in (9272

Proof. Let L(¥) be in O:\L,Z' As W <4 Z by Theorem [IT.9] there are v; , > 0 so that

wwO) =2z [] A
i€l,aeC*
Moreover, ¥ is determined by the v; , up to sign twist. So it suffices to show that there is
a finite number of possibilities for the v; ,. Besides, Zae(c* viq = a;. So it suffices to prove
that there is a finite number of possible a so that v; o # 0.
For i € I, a € C*, let z; 4 be the multiplicity of a=! as a root of Z;(2).
For each 7 € I, let

Zi(z) = H (1 — za)¥%e

acC*
which is equal to ?:Z‘Irl(zqi_ 1) up to a constant. Then from Proposition [T.IT} Zi(zqf)

divides

Z;i(2) H Z (zq;) H Z 2) H Z 2)Z;(2q )Zj(zq4)
Cji=—1 Cji=—2 Cji=—3

Suppose that v; , # 0. Then z; Jag # 0 or there is j # i so that v;; # 0 with b = aq” for
r=r;if Cj; = 1,r—4or21fC'N— —2,r=6o0r4or2if C;; =-3
Consequently : v; o # 0 implies that there is R > 0 and a finite sequence

(io,ao) = (z’,a), (il,al) = (z’l,aq”),- . ,(iR,aR) = (iR,aq’"R)
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so that for any k, rj, < ry41 <7, + 2r;, and v;,_q, > 0, and

Zig,aq"Rqiy, > 0.
This implies that 0 <r <6 ,.; a;. So there is a finite number of possible a and the result
follows. O

Remark 11.16. (i) It follows from the proof that W is the product of Z by various AZ_C} S0
that there are j € I, v > 0 with zj . # 0.

(it) The same proof as above, taking into account not only the fact that the vj, # 0, but
also there actual value, implies that the category

0z =D 0.
nEA

has a finite number of simple objects. Indeed, there is a finite subset A C C* of a € C* so
that one v; o might be non zero. One obtains by induction on |{r > 0,aq” € A}| > 0 that
the possible values of the v; , are bounded.

11.4. Descent for g = slo. We suppose in this section g = sls.
The condition of Proposition IT.11] is

(11.25) (Z(2q72)) 7! =4 W(2) <o Z(2).
Indeed ?erq,fl(zq_l) polynomial means W(z) <y Z(z). Let Z(z) be this polynomial. Then
U(2)Z(z) = Z(2)/Z(2¢?) = Q(z) polynomial means Z(zq?) divides Z(z). But
- Z(2)Z(2q"*) -2
U(2)Z(2q7%) = =220 2 = Q(2)Q(=
(2)Z(2q"7) 2020 Q(2)Q(2q7)
and so W(2)Z(zq7 %) =z 1.
We shall prove now that the condition (II.25]) is sufficient. Let us denote
D(2) =D B2’ =) (6f —07) =¢T()— D o7
r>0 r>0 0<r<ai(p)
Note that if u € —A*\ {0} is strictly antidominant, ®(z) = ¢*(2). For m,m’ > 0, we have
(¢q—q Yk, x| = Py, and so
d - o
L2 =96
qa—q
This generalizes formulas established in for p € —AT. The following relation is estab-
lished in (for 1 € —A™ but the same proof gives the result in general) :

(11.27) [C(z),C(w)] = 0.

We prove the converse of the statement in Proposition [T.11]is true in the sls-case.

(11.26) (z —w)[zTF(2), 27T (w)] =

Theorem 11.17. L(¥) in O, descends to the truncation uZ:)\Z(SZQ) if and only if?JZr‘Irl (zq71)
and 7;‘1,71(24(]_1)\1!(7:) are polynomials with 7;‘1,71(zq_1) ~oo (—z)“(?Jqula(O))_l.
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Proof. One implication is proved in Proposition [T.T1Il Let us suppose that the conditions
are satisfied. We prove that the action of AT (z), and also of C(z), are polynomial on
V = L(¥). Let wy be the highest weight of V. For N > 0, let Vv be the sum of weight
spaces V,, with w —wy = Na.

First we prove that C(z) is polynomial on Vj. Let v € Vj. We prove that for m >
a + |ai(p)], the coefficient of w™ ! in C(w).v is zero. As V is simple, it suffices to prove
this for 1 (2)C(w).v. Due to Proposition 10, it suffices to prove this is true for

et (2)0(w)w = (¢ — ¢~ H)a" 7 (2), 27 (w)] AT (w) 0.
Relation (II.26]) gives
(z —w)x™ T (2)C(w).v = w(®(w) — ®(2)) AT (w).v.
For [ > 0, considering the coefficients of w!*!, we get
—z T (2)Crv + 20T (2)Cpyg.0 = (PA) v — B(2) A0,

where (®A); is the coefficient of 2! in ®(2)A*(z). Let us multiply this relation by 2! and
take the sum of the relations for { = 0,--- ;m. As Cp = 0, AT(2).v is a polynomial of degree
a < m and ®(2)A"(z).v a polynomial of degree lower than m :

et (2)2™ M Cr v = ( Z (PA)2 — (2) A2 ) v = (B(2) AT (2) — D(2)AT(2)).w = 0.
0<i<m

This proves the claim, that is Cy,41.0 = 0.

Now by the relation (IT.27]), we get by induction on N that C'(z) is a polynomial on Vi
of degree lower than a + |ag(p)|. Then, using relation (I1.24]), we obtain that the action of
AT (z) on V is polynomial. We conclude by Remark O

Remark 11.18. As a by product one gets that B(z) = (¢ —q ) AT ()2t (2) and D(2) =
AT (2)pt(2) + (g — ¢ V)22 (2)A(2)x Pt (2) are polynomial on this representation.

Example 11.19. Let A = wy, p = —wy = X — o). We fiz 21,2, € C*. From Ezample
up to sign twist there is a unique simple representation L(W) in Oii}}/,z with

-1

U(z) = #q_%

This is Example [0.3 with a = b = z1q~'. Indeed for L(b(1 —az)~') we have (here o® = a) :

<1

a(l — q?az)qg¥
‘ S
1—q¢*2%az)(1 —q%az)

B(2).vj = a g —q )¢ i1, Cl2)wy = [+ Ugq ¥ a’zvj41 . D(2).vj = ag/v;.

AT (2)vj = (a7'¢ —aqg 7 2)v; , ¢4 (2); = (

The representation L(b(1 —az)™1) descends to a truncation if and only if a = b.

Example 11.20. Let A = 2wy, p = —2w) = X\ — 2ay. We fix 21,29 € C*. Let ¥ be of
degree a(p) = —2 and ¥(0)(¥(z)2%)(c0) = gy = ¢ 2z122. We have 7;‘1,71(2) of degree 2
and

(11.28) U(z) = _+(1 — qzzl)(l_: azz2)
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The conditions of Proposition [I1.11] give that the roots of ?JZF\I,A(Z) are z;', 23! and

_ ¥(0) o q 22129
R S v T v Rl g v [ P

2wy
—2wy 2"

There is one simple representation in O It is a fusion product of two negative pre-

fundamental representations.

Example 11.21. Let A = 2wy, p = 0 = X —af. We fiz 21,20 € C*. Let ¥ be an
(-weight of degree a(u) = 0 and ¥(0)(V(2)2?)(c0) = 2120. We have (I1.Z3) but with
7;1171@) of degree 1. The conditions of the Proposition [I1.11] give that 7;‘1,71(zq_1) =
7;1171(0) - (7;1171(0))_1,2. Hence the root Of?;\Il’l(Z) is 2yt or zyt, say it is 2!

let zj_l be the other root. Then

, and

V(0)(1 —qzjz) g tz(l— qzjz)'

B T e Y R

. . . . 2wy .
Hence if z1 # za, there are two simple representations in Oo,zl . If z1 = zo, there is one

1

Vv
simple representation in (9(2;‘2 , its C-weight is g~ z1 and it is of dimension 1.

Corollary 11.22. If Of},z is non empty then —\ < p =< \. Its simple representations are
in bijection with the divisors Z(2) of Z(zq%) of degree wi(\ — u) satisfying Z(0) = 1. The
corresponding £-weight satisfies

U(z) = \I/(O)%

Z(2q7%)Z(2)
Proof. The conditions of the Theorem [IT.I7 imply that 7;‘1,71(zq) divides Z(z). This
determines W(z) up to the constant ¥(0). Conversely, for each divisor Z(z) of Z(zq?) nor-
malized with Z(0) = 1, we can fix 7;‘1,71(zq_1) = aZ(z) for a certain o € C* determined
up to a sign by the limit condition. O

11.5. An example for g = sl3. Let g = sl3, A = w) with Z1(2) = 1 — 2¢® and Z3(z) = 1.
i = A= w. By Example [T.3] we get L(1 — z¢>,1) is the unique simple in Oﬁ,Z'

p=A—af =wy —w). By Example [T.T4 we get L(l_qzq,v_l(l — 2¢?)) is the unique

simple in Oz @ up to sign twist (here v is a square root of q).

p=—-wy = X—a —ay. By Proposition [T.I1] there is at most one simple module
L(q, %) in Of},z up to sign twist. The action of Uy(b) is described in Section 4.1].
The (-weight spaces are of dimension 1 with /-weights parametrized by 0 < n/ < n :

g2 (1—¢%2)(1 — ¢'72n2) g 1— 22,
(1 — ql—2n’z)(1 — q3—2n’z)’ (1 _ q—2nz)(1 _ q_2n+22) )

with v 1¢" — vg™" 2, ¢" — ¢~ "z respective eigenvalues of Af(z), A;’ (2).
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12. A CONJECTURE : TRUNCATION AND LANGLANDS DUAL STANDARD MODULES

We state a conjecture (Conjecture [I2.2]) on the parametrization of simple modules of non-
simply laced truncated shifted quantum affine algebras. The statement of the conjecture
involves the Langlands dual Lie algebra g : it is given in terms of the structure of a
standard module of the twisted quantum affine algebra uq(L g), more precisely in terms of
its Langlands dual g-character that we introduce.

For simply-laced types, simple representations of truncated shifted Yangians have been
parametrized in terms of Nakajima monomial crystals [KTWWY?2]. Combining with [N5],
this implies an analogous statement for simply-laced shifted quantum affine algebras. This is
a fundamental motivation for our conjecture in non simply-laced types. See the introduction
and Remark for a discussion on earlier results.

We have several strong evidences for our conjecture. We establish in type By that
our parametrization gives representations of the truncated shifted quantum affine algebra
(Proposition [2.7)). In general, we establish that a simple finite-dimensional representation
of a shifted quantum affine algebra descends to a truncation as in Conjecture [I2.2] (Theorem
[[2.8]). The proof of this last result is based on Baxter polynomiality of quantum integrable
models.

For non simply-laced types, the conjecture, these results and these methods are also new
in the case of ordinary quantum affine algebras or shifted Yangians (see the discussion in
the Introduction and Remark [I2.3]).

As in the previous section, we have fixed A\ € AT and corresponding Z, Z.

12.1. Reminder - interpolating (q¢,¢)-characters. Interpolating (g,t)-characters were
introduced in [FHI] as an incarnation of Frenkel-Reshetikhin deformed W-algebras [FR1]
to interpolate between ¢-characters of a non simply-laced quantum affine algebra and its
Langlands dual. These interpolating (g, t)-character are tools in to study Langlands
duality between finite-dimensional representations of quantum affine algebras.

Let 7 = Max;c;(r;) be the lacing number of g. We set € = €™/,

For i e I, a € C*, we set

Ygﬂ if ri=T,
(12.29) Zi,a = Yvi,aq7lyvi,aq ifr;=r—1,
Yi,aq*ZYi,aY;',aﬁ lf r,=1r— 2.

Then W = L(Z; 4) is a Kirillov-Reshetikhin module of the untwisted quantum affine algebra
Uq(g) (it is a fundamental representation when r; = r).

Let us recall that the interpolating (g,t)-character x,:(W) of W (more precisely its
refined version constructed in [FHR]) is an element of a (completion of a) quotient of the
ring

Z[Y}:Elv a]je[,banZtZeZ

where t is an additional formal variable and « is an indeterminate (in type Ga, this inde-
terminate is denoted by $ in [FHI]).
The interpolating (g, t)-characters have various interesting limits, for instance the follow-

ing limits discussed in [FHT] [FHR] :
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When ¢t — 1, « specializes to 1 and x4+(L(Z;,)) specializes to the g-character of the
U,(g)-module L(Z; ).

When ¢ — €, a specializes to 0 and x4+(L(Z;4)) specializes to the t-character of the
fundamental representation VX (a) of highest monomial Z; , of the Langlands dual twisted
quantum affine algebra U;(*§) (in the sense of [Hed]).

12.2. Langlands dual ¢-characters. For ¢ € I, a € C*, consider the interpolating g, t-
character xq+(L(Ziq)).

To state our conjecture, let us consider another specialization : we set ¢t = 1 but we
discard the monomials with coefficient «, that is we set a = 0. By [FHR], this limit is
well-defined, and only variables Z;falqm with 7 € I, m € Z, occur. We get a well-defined
clement x%(V;*(a)) in (a completion of) the ring

Z1Z; gl jer mez,

that we call the Langlands dual g-character of V.*(a).

The Langlands dual ¢g-character in defined from a combination of the limit ¢ = 1, which
gives monomials occurring in the g-character of the U,(g)-module L(Z;,) (which is not a
fundamental representation in general, but a Kirillov-Reshetikhin module), and of the limit
o = 0, which give the coefficients of the t-character of a fundamental Us(*§)-module.

Now let VL be the standard module of U,(£g) of highest monomial

M, :HZ. a1
0 Z7qi Z’L‘71 1,49; zZ; x

; 7 i, N;
el

It is defined as a tensor product (for the ordinary coproduct) of the fundamental represen-
tations V;¥(g; 'z ;) (as for standard modules considered in simply-laced cases in V).
Its isomorphism class depends on the ordering of the tensor product, but not its class in
the Grothendieck ring.
We introduce its Langlands dual g-character
(12.30) xeWh = JI  xbkvit =)
i€l 1<s<N;

It should not be confused with its g-character y,(V%) as a representation of U,(Xg).

We also the use a representation V' of U,(g) which is Langlands dual to V in the sense
of [FHI], that is an (ordered) tensor product of the simple U,(g) representations of highest
monomial Zi’qiflz;jl, expressed in terms of the Yj; variables as in (IZ29]) (these are not

fundamental representations in general).

12.3. Statement. For a Laurent monomial M = Hz‘el,aec* ZZZ;“, we define the correspond-
ing (-weight W = (V;(z))icr by
(12.31) ‘IJZ(Z) = \IIZ(O) H (1 _ Za_l)ui’a,
acC*
with

(¥,(0)* = (] (~a)"so)¢iz

acC*
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(this f-weight is defined up to sign-twist). The corresponding weight is pias = >, I,aeC* Ui qw;’ €
A. As an example, we have ¥, = Z up to a constant.
Recall the partial ordering <4 in Section [I1.21

Proposition 12.1. For a monomial M occurring in the Langlands dual q-character of V',
we have
W, <o Z.

Proof. By definition, M is the limit at ¢ = 1 of a monomial M in the interpolating (q,t)-
character of V', without a factor a. By construction [FHIl Section 4], My is the product of
M by a product of various

AJ pes With j € I so that r; =r,

A ltsA] bgts With 7 € I so that r; =1 and r = 2,

2J,ba—
Aj7bq72tsA] btsA] bths with j € I so that r; =1 and r = 3,

for certain b € qZ{ql Z_pl Yier1<p<n,, S € Z. The limits at t = 1 are respectively
_ ) -1
Ajp = Zj,bq;1 J:bq; Hk,cj’kz—l Zk,bv
_ , -1 -1 -1
Aj,b 71A.7' bg — Z,? bg—1434,bq Hk),Cj’k:—l Zk,b k)710j,k=—2 Zj,bq*IZ‘lj,bq’ .
Aj,bq QAJ bAJ bg? = Zj,bq*1 Jibq Hk,cj,k:—l Zk,b k,Cjr=-3 Zj,bq*2ijij7bq2‘
e corresponding /-wei as define is A;;-1, hence the result.
Th ponding ¢-weight, as defined by is A -1, hence the result 0

Recall that by Theorem [[1.9, L(¥) in 0272 must satisfy W <y Z, the same condition as
in Proposition 211
We state our main Conjecture for g of non simply-laced type.

Conjecture 12.2. (4) For a monomial M occurm’ng in the Langlands dual q-character of

VE, the simple module L(W yr) is in the category OuM -

(B) For a simple module L(W) in a category OMZ, there is a monomial M occurring in
Xq(V) so that ¥ = W and p = pp.

(C) This defines a bijection between the classes of simple representations in Oﬁ up to

sz%n twist and the monomials of weight p occurring in the Langlands dual g-character of
V.
Remark 12.3. (i) As explained above, results already obtained for simply-laced types are
fundamental motivations for this conjecture. Simple representations of simply-laced trun-
cated shifted Yangians have been parametrized in terms of Nakajima monomial crystals
[KTWWY?2|. Combining with [N5|, this implies an analogous statement for simply-laced
shifted quantum affine algebras. In simply-laced type, V' is a standard module of uq(L g) =
U,(§). Note that the set of monomials occurring in x,(V%) is the product of the set of
monomials occurring in the monomial crystals M(Y 1 1), sec [KTWWY1, Section 7].

(ii) Congecture [I2.2 does not involve the monomial crystal for non simply-laced types in
[Kas2] (see also [HN]) or the g-character of the standard module of U,(g) (see also Remark

[22.4)).

(iii) According to our conjecture, the (-weights of simple representations in O 2 can
be read from the monomials in the Langlands dual q-character. By mterpolatzon these
monomials correspond to monomials in the q-character of the standard module of the twisted
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quantum affine algebra, but the £-weights can not be read directly from the latter in general.
Also, by folding in [Hed), these monomials correspond to monomials in the q-character of a
standard module of a corresponding untwisted simply-laced quantum affine algebra. Hence
we get a relation between non simply-laced shifted quantum affine algebras and simply-laced
quantum affine algebras (see also (iii) in Remark [127).

(iv) As discussed in the introduction, Nakajima- Weekes [NW], combining with [KTWWY2],
gave an explicit parametrization of simple representations in category O of truncated non
simply-laced shifted Yangians and quantum affine algebras. Using the previous point (iii),
one can compare and consider a possible relation between the two parametrizations. In small
examples this different method seems to give the same parametrization as our result.

(v) Conjecture[I2.2 implies that an arbitrary simple representation in O, is in one of the
categories O,)),z- Indeed, for anyi € I, a € C*, the monomial Zz_al occurs as the lowest weight
monomial of the g-character of the Uy(g)-module L(Zaaq,rhv ), where 25 qq-rh 18 expressed
in terms of the Y, variables as in (IZ23) (this follows from [EM]). Here h" is the dual
Cozeter number of g and i € I is set so that wo(cy) = —a; for wy the longest element of
the Weyl group of g. Let us assume Conjecture s true. Then the Langlands dual q-
character of the representation VZ—.L(aq_’“hv) has the lowest monomial ZZT al, and an arbitrary
Laurent monomial in the tha1 occurs in the Langlands dual g-character of a standard module
of Us(*g). The statement follows.

(vi) Recall the category O% has a finite number of simple objects by Remark [I1.10. We
may expect it is a categorification of (a natural subspace of ) the module V', associated to the
monomials of x5(VY), in the spirit of [KTWWY?2].

(vii) Should we extend the construction of this paper to twisted shifted quantum affine
algebras, we expect the parametrization of simple representations would involve interpolating
(g, t)-characters of finite-dimensional representations of twisted quantum affine algebras as
in [FHIL Section 6], as well as Langlands dual q-character of standard modules of untwisted
non-simply laced quantum affine algebras.

12.4. Examples in simply-laced types. See the Introduction and Remark [2.3] for gen-
eral earlier results in simply-laced types (see also Corollary for g = sla).

For g = sl3, in the examples in section [[T.5] the 3 simple representations in O% correspond
to the 3 monomials occurring in

Xa(L(Yi4-2)) = Yigos + YooY by + Vsl

12.5. Examples in type B;. We work in type By with r1 =2 and ro = 1.
First let us set A = wy, Z1(z) = 1, Z2(z) = 1—2z. The interpolating (g, t)-character of the

uq(Bgl))—representation L(Z3,) has 11 terms and was computed explicitly in [FHI], Section
3.5 :
Yg’q—1Y2’q + O[YVQ’q—l Y2Tq13t2 Yl,th + Y72Tq1152 YéqustQ YVLtYl’th + OZYVqul Y2,q5t2 Yqu%t?) + YI:QQtYIqu‘ltS

1 -1 1 1 oyl 1 y—1
+Y2,qt2Y2,q5t2Y1,q6t3 Yie+ O‘qu*lyz,qm + Yl,q4t3Y1,q6t3Y2,q3t2Y27q5t2 + O‘Yz,qﬂ Y2,q7t4 Yig

-1 -1 —1 -1
+aY1,q4t3 Ya,g802 Y2,q7t4 + Y2,q5t4 Y2,q7t4 :
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We put a =0, t =1, 227(]7‘ = Yv27q77‘71Y2’q7‘+1, Zl’qr = Y'Lqr and we get
Xg (Vi (D) = Zo + Zy 12 01 Z1 g2 + 21121 g6 2 12 Za gt + D12 21 o+ Dy 6 21 aaZoaqh + Zg s
We have N N N
_ A (2) A3 (2¢?) _ (1—2)A] (zq2).
AT (2)Af (2¢) A3 (2)A7 (24%)
For the following values of p, one gets a unique simple object in Oﬁ,z up to sign-twist :
p=wy: ¥=(1,1-2).
p=A—ay =2w/ —wyj : U= <q2(1 —2¢7H)(1 —z),%).
-8
p=A—ay =20 =w) — 2w : ¥ = <(1_Zq—g)(1_z—q74),q3(1 - zq_4)>.
u:/\—20z§/—20z\1/:—w§/:\11:<q_2 -
The first two cases follow respectively from respective Example I1.3] and Example TT.141
The representation associated to u = wy — 2wy is a subquotient of

-8

-8
q 3 —4 — q 3 —4 -
L <1_72q_47q (1—2q )) ® Ly, and L (1_72(1_6#] (1—2q )> ®Ly

1 () and ¢; (2)

' 1—2¢ 0 )*

This implies [¥ ~']x,(L(¥)) equals

2 (A gt A g A s A oA o A ) (A oo Ay o).
0<a,8,0<y<Min(2a,1+28)
It is a thin representation, that is its /-weight spaces have dimension 1. So to check this
representation descends to truncation reduces to a direct combinatorial check on the explicit
g-character formula, which can be done directly.
By [He3|, Kirillov-Reshetikhin modules are thin in type B and we have an explicit formula
for its g-character. So this is also true for negative prefundamental representations which are
limits of Kirillov-Reshetikhin modules by [HJ]. Hence we can conclude as for the previous
representation.
Let us focus for the details on the most subtle weight = A — ay — oy = 0.
Let L(¥) be a simple representation in O:\L,Z‘ We have

Y pui (20 = (67 =20) Y, g za ) = (77 = )
for some 3,7 € C*. As \IIQ(Z)?;Z‘I,—l(Zq_l) and \Ill(z)?IZ‘Ir1(zq_2) are polynomials, we
have Y;qua(zq_l) = +(q—2¢7 ") and YIZ‘Irl(zq_Q) = +(¢® — 2¢73) or £(¢* — 2q7?).
Hence, up to sign-twist, we get two possibilities for ¥(z) :

1—=2 1— 274 1—2¢72
\Il = —2 ‘I’ = _27 1 .
1 <q 1 _ Zq_ﬁ ) ql — Z(]—2> or %o (q 1_ Zq_47
We can check directly these two simple representations descends indeed to the truncation.
First

Xq(L(‘Ill)) =, Z (Al’qftiAl’qflO o A17q7274a)_1(A27q72A2’q74 o A27q72/3)_1,
af>0,0<2a+1
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with the action on the 1-dimensional ¢-weight space corresponding to each term given by
Af(2) = PP — 2727 L AS(2) = 7 — 2P

The formula is compatible with Remark [[T.10] as Z\Ill_1 = Ay 440y ,-1. Then

XQ(L(lII2)) =¥ Z (Al,q*‘lAl,q*8 T Al,q*4a)_1(A2,q*2A2,q*4 T A2,q*25)_1
af>0,8<2a

with the action on the 1-dimensional /-weight space corresponding to each term given by
Af(2) = "% = 2¢727% L AS (2) = "1 - 2q7P

We get two non twist-equivalent simple representations in the category Of},z as predicted

by Conjecture [[2.2] This proves Conjecture [[2.2] for these weights in type Bs.

Remark 12.4. (i) There are 6 terms in xk (V4 (1)) which is the dimension of the funda-

mental representation Vi (1) of uq(L(Bél))) = uq(A:(f)), but the number of vertices in the
corresponding crystal of finite type By in only 5. This example also explains the importance

of involving the Langlands dual Lie algebra g in Conjecture[IZ.2. Indeed, the study of these
1) .

simple representations in OfLZ would not be compatible with usual q-character of type Cy
-1 -1 —1y—1 -1
Y2,1 + Y2’q4Y1,qY1,q3 + Y17q5Y1,q + YVLqSYVLq5YV27q2 + Yé7q47
or with the monomial crystal :
M(Ya1) = {Yo,1, Y5 Ve YigY

1q37

Y Y2 @ Vs, 4}
(ii) The q-character of Vi (1) would not be directly relevant either :
Zog + Zy i Zi—qZrg+ 2147 0 + 20 g Zy s + Do 21 5 71 L s + Zg s

(iii) For p = 0, we have seen the two (-weights can be read in terms of the Langlands
dual q-character, involving the monomials of the q-character a Kirillov-Reshetikhin modules

of the untwisted quantum affine algebra uq(Bél)) :
Zl,q?Zl—,;4 - Yl,q?Yqul‘l = (Yo -1Y24) A3, lA A_

1 q27
—1 —1 —1 54— —
ZLlZl,qSZ27q2Z2,q4 = (Yé,qflY2,q)A2,1A2’q2A1,q4
By interpolation, they correspond to the following monomials occurring in the q-characters
of the fundamental module L(Z31) of the twisted quantum affine algebra uq(A§,2>) :

2107 L = Zaa Ay AT o 2107y = Zan Ay AL L
By folding [Hed], they correspond to the following monomials occurm’ng in the gq-character
of the fundamental module L(Y3 1) of the simply-laced quantum affine algebra uq(Aél)) :

YI,qY 3—Y21AQqA3 2 ;Y3qY 3_Y21A2qA !

The corresponding eigenvalues of Ay (z) and Ay (2) are respectively
(¢*(1 = 2¢7"),q(1 — 2¢7%)) and (¢*(1 — 2¢7°),q(1 — 2¢7%)),

which correspond to the contribution of A1 ,ZA_ _, and A2 1 1_[11,4 (see Remark [10.9).
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To complete the picture of fundamental representations in type Ba, let us now set A = wy',
Z1(z) =1 —z, Z3(z) = 1. An analogous computation gives

(12.32) XgVi(1) = Z1 + Zy i Zog + Zy g Zrg2 + 21

In the same way the following representations descend to the corresponding truncation :
p=wy: ®=(1-zig"),

Vo

o= A — oy = w2 — wl v = <$7Zq_1(1 - Zq_z)))7

w= )\—al—ag—wlv—a@.\ll—( Y1 —2¢72) i,4>,

? 1—2q
2 ¢ —
p=A—2af —ay = —wy : ¥= (1_2?,1(] 1).

12.6. Reduction to fundamental representations. Let us first study the compatibility
between fusion products and truncated shifted quantum affine algebras.

Let p1, 2 € A and A, \g € AT so that g1 < Ay and ps < Xo. We consider corresponding
set of parameters 21, Zo. The product 212 is defined component-wise.

o g A1 s A2 A1+
Proposition 12.5. If V] is in Om,Zl and V5 is in Ouz,Zz then Vi x Vo is in Ou1+uz,2122

Proof. This follows from

Au(¢7 () = 6F (2) ® 6 (zu).
Let us explain it for ¢ (2). Consider elements A;fu(z) associated to Z1(z)Z2(zu). The
A-form which defines V; x V5 is stable by the coefficients of A;':u(z) and

Au(Af,(2)) = AP (2) @ AT (2u).
Hence A:u(z) is a polynomial in z on the A-form and A;‘(z) is polynomial on Vi * Vo, [

Let p € A and recall the functor *;, : O, — Optwy- Consider V' a representation in O,,.
Let A € AT so that u < .

Proposition 12.6. The representation *; ,(V') is in OMJFWV o if and only if V' is in O
Here Z/ is obtained from Z by replacing Z;(z) by Z;(2)(1 — za).

\/

Proof. If V is in O}, we obtain from Proposition [ZH that L+ «Visin O Y g 8s L

20 ptw;

is in (9 WY 22 (up to a constant). Now, suppose that L+ «Visin O Recall that for

,u—l—wv 2
j € I, the action of AZ /%, +(z) on LJr in the category (9 WY 2 )2 is given by a constant scalar

(see[IT3]). Let us denote ajo € C* thls scalar. The computatlon in the proof of Proposition
12.5] shows that for j € I, we have the following action on the fusion product

A;“I’Jr(z).(vi,a ® V) = aj,0Viq @ (AJZ-’Jr(z).v).
This implies that V' is in the category Of; 7 g

As a consequence, to prove Conjecture [Z.2 (A), it suffices to treat the case when V1 is
a fundamental representation, that is when A is a fundamental coweight.
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Indeed, in Equation (IZ30), a monomial M occurring in Xé(VL ) is of the form

M= J] M.,

i€l,1<s<N;

where M; s is a monomial occurring in x2(V;*(q; lz; ). For each 4, s, consider Z; s associ-
ated to A = w)’ and Z; s = Wy, . If we know that the simple representation L(Wyy, ) is in

Vv
Otjwi i for any 4, s, we obtain that the fusion product of the L(®yy, ) is in Of\‘M’Z from

Proposition 2.5l And so L(W¥);) is in this category Of\‘M’Z as Uy = Hi’s Wy, ,
Consequently, from the examples above, we obtain the following.

Proposition 12.7. In types Az, By, Conjecture [IZ2 (A) is true.

12.7. Finite-dimensional representations. We use Baxter polynomiality of quantum
integrable systems to establish the following.

Theorem 12.8. A simple finite-dimensional representation of a shifted quantum affine
algebra WY (@) is in a category Oﬁ,z’ as predicted by Conjecture [12.2.

From Proposition I2.5land by the classification in Theorem [6.4] it suffices to consider the
case of W simple finite-dimensional representation of Ugy(g).
Let w, be a lowest weight vector. Let w, be its weight. For i € I, let Tli*(z) € C[[zT1]] be

the eigenvalue of T () on w,. By Proposition L8] T; .(2)/T g (z) and zhti(w(w*)71)12+‘1, (z)/T; (2)

are polynomial in z of degree ht;(w(w,)™!).

Example 12.9. This can be observed in Example [ 10 with the respective eigenvalues of
T~ (2) and T (z) on a lowest vector :

(1—2¢ "’Tg(2) =T (=7'¢%) , Tg ()1 —27'q) > = Tg (=7').
More generally we have the following.

Proposition 12.10. For w’ a weight of W, on W, the operators

L (o (i) 1 Ti+ z Ti:k(z)
() )T;Ezi ond 725 € (Bnd(W)le

K3
are polynomial in z of degree ht;(w'(ws)~1) and coincide up to a constant operator factor.

Proof. Tt suffices to twist the representation by the morphism o of [C| Proposition 1.6] as
in the proof of Theorem [9.121 Then the statement follows from this Theorem. O

We consider AZ-Z’JF(Z) (this is analogous for A?’_(z)). We have

e THY Tz
Aiz’+(2’):(¢j)_1Y:z(2qi_l)%:Y:z(zqi_l) C ),

+ 1,2\ ¢
TZ-7\11(2 q;)
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—t T+ 271 Ti+ (Zilq»%)
where Pi(2) = (5) " e e
hti(w'(wi)™Y) = htj(w(ws) ™). Besides
_ Tz -+
(12.33) Yig(zq ) et =Y (g7 X
Z qul(z_lqiz) WAL

2

is a polynomial operator of degree ht;(w(w')™1) +

(=Y
Tig="1)
Note that by Proposition [0.8]

T (/TG = [T 2oy

aeC*

—Vi,a

is a polynomial of degree ht;(w(w,)~!) where we have denoted ¥* = ¥ [Licraecs Ai " the
lowest /-weight of W. We will also denote by u;, the multiplicity of Y;, in ¥ for ¢ € I,
a € C*. Then consider

p— u‘? . — . — u‘?
acC* el i€l ry=1%r

H (‘I’i,aqiqu‘l’aaqf'i*?th)ui’a H (‘I'i,aqiq*“‘I’E,aqf'r4+f'hv)ui'a
i€l ry=r#l i€l r;=3=r
and a corresponding Z, where we use the same notations as in (v) of Remark [2.31 We
claim that ¥ <4 Z, that L(P) is in the category Of},z for the corresponding .

By (v) of Remark [[2.3] with monomials translated in terms of the corresponding ¢-weights
as above, and by Proposition I2.1], we obtain that for each i € I, a € C* :

1 jZ l]:li,al:[lg’aqrhv-

This implies that, up to constants :

-1 ‘ u;, u
2 = H H(‘I’Z’“qiq’iaq”“hv) v H (‘I’iva‘hq177n‘I’g,aqri*T+1+Thv‘I’i,a(h‘qr71lIlg,aqTi+r—1+rhV) o

acC* iel i€l ri=1%#r
u; U;
H (l]:li7aqiq72‘]:’g7aqri,2+rh\/) 7,0 H (‘I”l’7aq¢q74l]:lg,aqri*4+7‘hv) 7,0 EZ 1
i€l ri=r#1 i€l,ri=3=r

For the second point, let v; , > 0 so that
zev ' = J] A%

2,0
i€l,aeC*
We obtain as in the proof of Lemma[0.0 that the eigenvalue of ?::Z‘I’—l (zqi_l) corresponding
to a factor A;, is (1 — zag; ). Hence the condition
(12.34) Viag, = Vig for any i € I, a € C*.
implies that the scalar function (IZ33]) is polynomial and so that L(¥) in O:\L,Z‘ Let us

establish (12.34]).
For simply-laced types, the defining formula of the A in terms of the Wy, . is the same
as the defining formula of the A;; in terms of the Z; . = Y}, .. In particular, the factoriza-

tion of each W; ., ¥ agl+rhy @ product of the A;; is the same as the factorization of each
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Yz‘,ang,aqurhV in terms of the A;;. This implies v; 44 = v;, for any ¢ € I, a € C*, the
condition (I234]) is clear.

For general types, the factorizations of A;; and A;; do not match, and so the powers v; 44
and v; o are not equal in general. However, the computation in the proof of Proposition [12.1]
shows that the factorization of W¥; ,W> v in terms of the A;; matches the factorization

i,aq
of YiaY; ygrnv in terms of the Aj;y if r; = r, in terms of the A;,, 1 4;,,if rj=1=7r—1,1in
terms of the A; ;2 A;pA; 4,2 if 7; = 1 = r—2. Hence, the power a; 45 of Ajp in Yi,aYZaqrhv

and the power b;, jp, of Ajp in ‘I’i,a‘I’Z,aqrhV are related by :
Uiajb = biagpif rj =1,
Gja,5.b = bi’aqj’bqfl + bi,a,j,bq if ri=1=r—1,
Qi ajb = bi’mj,bqﬂ +biq b+ bi,a,j,bq2 iftrj=1=r—-2.
Now for j € I, b € C*, we have :

Vs L= U; b . —1 Uj b - —1 b . — —
J:ba; Z(Z 407 a,5,bq;q; + Z Z’“( i,a,5,bqjq; q" 1 + ia,5,bq5q; 1 ¢t ")

acC* el iel,ri=1#r
+ Z ui’“bi,a,j,bqjqfqu + Z ui’“bi,a,j,bqjqflq‘*)
el ri=r#l iel,r;=3=r
> g UjqQi,a,j,b = Vjb-
i€l,acC*

and we obtain the inequalities (IZ.34]).

To complete the proof of Theorem [I2.8] we check that the truncation we found is one
of the possible truncations predicted by Conjecture Let us assume this Conjecture
is correct and let us check that our result is compatible with it. As we as seen in (v) in
Remark [2.3] for any ¢ € I and a € C*, the monomial Z{ alqrh\/ occurs as a monomial of
XqL (VZLa) Then My, occurs in the Langlands dual g-character associated to Mz. Indeed,
each factor (¥ Lo )W contributes as (¥, WL e = ([—w]Y; ) %e in ©

i,aqi 1,aq;
and all other factors contribute as 1. Now, this implies that L(¥) is in 02 2, Where p is the
weight of Myy. This coincides with the result that we have established.

R
,ag; %,aq

Example 12.11. Let g of type By withry =2 andry = 1. Let ¥ = [—w]Y11 = \I’quz\lll_;g
corresponding to a 5-dimensional fundamental representation. We have its lowest-weight

-1 -1 —1 4=1 g=1 4—1
T* — [_wl]Yl,QG — [_20\)1]@17(18@17(14 — TAl,q2A27q4A27q2A17q4.
We have also for any a € C* :
‘I’l,a‘I’l,aq6 - Al,aq2A2,aq3Al,aq4'
That why we set as is the proof of Theorem :
Z == lIqufZ‘I’l’qB\Ill’llIll’q(S

polynomial so that
A=l A—1 A—1 p—1 p—1 s—1
= ZAl,q4A2,q5A17q6A17q2A17q3A17q4’
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Vv
We see that the inequalities (12.3]]) are satisfied. Hence L(W) is in the category Oéwg for
a certain Z compatible with Z. The corresponding Langlands dual standard module is

V — Vll’/q2 ® Vll;q78 ® Vll’/l ® Vll;q76.
The Langlands dual q-character of the VlLa are give by formula (I2Z.32). We obtain that
Dy Zign =2y 42711704

occurs as a monomial in the Langlands dual g-character XqL (VL) as in Conjecture 12.2.
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