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The zeroth line bundle cohomology on Calabi-Yau three-folds encodes information about the ex-
istence of flop transitions and the genus zero Gromov-Witten invariants. We illustrate this claim
by studying several Picard number 2 Calabi-Yau three-folds realised as complete intersections in
products of projective spaces. Many of these manifolds exhibit certain symmetries on the Picard
lattice which preserve the zeroth cohomology.

I. INTRODUCTION

It has long been known that the understanding of the
massless states resulting from string compactifications re-
lies on the understanding of certain cohomology groups
on the internal space. To achieve this, one often has to go
through lengthy computations of bundle-valued cohomol-
ogy groups on Calabi-Yau three-folds. Various algebraic
and topological tools can be employed to derive cohomol-
ogy from local data, but such methods inevitably hide
away much of the information encoded therein. The pur-
pose of the present letter is to highlight the richness of
structure present in the zeroth cohomology of line bun-
dles on Calabi-Yau three-folds by case-studying a small
number of Picard number two manifolds realised as com-
plete intersections in products of projective spaces (CICY
three-folds) [1, 2]. In particular, in these examples one
can discern the presence of flops, the value of certain
genus zero Gromov-Witten invariants, and the existence
of symmetries in the cohomology data.

This study is part of the greater quest to understand
the extent to which line bundle and more generally vec-
tor bundle cohomology can be expressed in terms of an-
alytic formulae on spaces of interest in string theory. A
systematic understanding of these formulae, for which we
present the first steps in this work, will likely open up new
approaches for bottom-up string model building. Initial
evidence for the existence of such formulae has been ob-
tained through a combination of direct observation [3–7]
and machine learning [8, 9] of line bundle cohomology
dimensions computed algorithmically on several classes
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of two and three-dimensional complex manifolds, such as
complete intersections in products of projective spaces,
toric varieties and hypersurfaces therein, del Pezzo and
Hirzebruch surfaces. Subsequently, for certain classes of
surfaces widely used in string theory such as toric sur-
faces, weak Fano surfaces and K3 surfaces, explicit for-
mulae describing all cohomology groups of line bundles
have been established through rigorous proofs [10, 11].

Much less is currently understood about the structure
of bundle cohomology on three-folds, except in the case
of simple elliptic fibrations over two-dimensional bases
[11] or for certain divisors on toric hypersurfaces [12].
The empirical evidence suggests that the Picard group
can be divided into disjoint regions, in each of which the
cohomology dimensions are described by functions that
are polynomial or very close to polynomial in the first
Chern class of the line bundle. This seems to be the
case for the zeroth as well as for all higher cohomologies,
though here we will only study the zeroth cohomology.

II. GENERALITIES

To set the scene, let X ⊂ A be a smooth CICY three-
fold defined as the common zero locus of several multi-
homogeneous polynomials in the coordinates of the prod-
uct space A = Pn1 × · · · ×Pnm . The multi-degrees of the
defining polynomials can be recorded as the columns of
a matrix, known as the configuration matrix, of the form

Pn1

...

Pnm


q1
1 · · · q1

R

... · · ·
...

qm1 . . . qmR


h1,1(X), h2,1(X)

(II.1)

where h1,1(X) and h2,1(X) are the two non-trivial Hodge
numbers of X. The condition that X has vanishing first
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Chern class corresponds to the condition that the sum of
the degrees in each row of the configuration matrix equals
the dimension of the corresponding projective space plus
one. All CICY three-folds are simply connected.

Holomorphic line bundles are specified by their first
Chern class, which is an element of H2(X,Z). All Calabi-
Yau manifolds X ⊂ A discussed in this letter benefit
from being ‘favourably’ embedded, in the sense that a
basis of H2(X,Z) can be obtained by pulling-back the
Kähler two-forms of the hyperplane bundles over the Pn

factors of A. We denote this basis by (D1, D2, . . . , Dm)
for A = Pn1 × · · · × Pnm and the dual basis of curve
classes by (C1, C2, . . . , Cm). The vast majority of CICY
three-folds can be favourably embedded [13].

Several cones in H2(X,R) play an important role in
the present discussion, whose definition we briefly review.
The Kähler cone K is the set of cohomology classes of
smooth positive definite closed (1, 1)-forms. For all the
manifolds studied below, the Kähler cone descends from
the ambient product of projective spaces, which means K
is the positive span of {D1, D2, . . . , Dm}. The closure K
is the nef cone. A line bundle is nef if its first Chern class
belongs to the nef cone. A line bundle is called effective
if it has a global section or, equivalently, a non-vanishing
zeroth cohomology.

If L is a line bundle in the interior of the nef cone,
Kodaira’s vanishing theorem guarantees that all higher
cohomologies are trivial and, consequently, h0(X,L) =
χ(X,L), where χ(X,L) is the Euler characteristic of L,
which on a Calabi-Yau three-fold takes form

χ(X,OX(D)) =
1

6
D3 +

1

12
c2(X) ·D . (II.2)

The Euler characteristic is a linear combination of
two basic topological invariants on H2(X,Z), namely
the cup-product cubic form H2(X,Z) → Z given by
D 7→ D3 and the linear form c2 : H2(X,Z) → Z given
by D 7→ c2(X) · D. It is known that a nef line bundle
L = OX(D) on a projective three-fold falls in the interior
of the effective cone iff D3 > 0 (see Thm. 2.2.16. in [14]).

We will make use of three important relations that hold
when X and X ′ are related by a flop which contracts a
finite number of disjoint P1 curves. First, since a flop
is an isomorphism in co-dimension one, H2(X,R) and
H2(X ′,R) can be identified. In the following, divisors
identified in this way will be denoted by the same sym-
bol, primed for X ′ and unprimed for X. Second, since
the zeroth cohomology counts co-dimension one objects,
it is preserved under the flop, that is, h0

(
X,OX(D)

)
=

h0
(
X ′,OX′(D′)

)
where D′ is the divisor on X ′ corre-

sponding to D on X. Note the same is not true of higher
cohomologies. Third, the above two forms have the fol-
lowing transformation rule,

D′3 = D3 −
∑
i

(D · Ci)3

c2(X ′) ·D′ = c2(X) ·D + 2
∑
i

D · Ci ,
(II.3)

where C1, C2, . . . , CN are the isolated exceptional P1

curves with normal bundle O(−1) ⊕ O(−1) contracted
in the flop [15, 16]. The Kähler cones K(X) and K(X ′)
share a common wall. The change in the cup product
cubic form corresponds in topological string theory to
the statement that the A-model 3-point correlation func-
tion on K(X) may be analytically continued to give the
A-model 3-point correlation function on K(X ′) [17].

III. THE MANIFOLD 7887.

In this example X is a generic Calabi-Yau hypersur-
face in the ambient space A = P1 × P3 defined by the
configuration matrix

P1

P3

[
2
4

]2,86

(III.1)

with identification number 7887 in the CICY list [1, 2].
If L is a line bundle over X, we write its first Chern

class as c1(L) = k1D1 + k2D2. Line bundle cohomology
dimensions, computed algorithmically using the CICY
package [18] for −3 ≤ k1 ≤ 4, −1 ≤ k2 ≤ 9 are shown in
the chart below.
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FIG. 1. Zeroth cohomology dimensions on the CICY man-

ifold 7887. Blue region: Kähler cone K(X) of X. Green

region: Kähler cone K(X ′) of the flopped space X ′.

The positive quadrant (blue region in Fig. 1) corre-
sponds to the Kähler cone of X. In this region we have
h0(X,L) = χ(X,L). The Euler characteristic is com-
puted with the following topological data:

d111 d112 d122 d222 c2 ·D1 c2 ·D2

0 0 4 2 24 44
(III.2)

where dijk = Di ·Dj ·Dk. Along the horizontal boundary
of the nef cone the cubic form D 7→ D3 vanishes, which
indicates that this is also a boundary of the effective cone.
The vertical boundary is shared with another cone (the
green region in Fig. 1) which we conjecture to be the
nef cone of a flopped Calabi-Yau three-fold X ′. For line
bundles L in this region this implies

h0(X,L) = h0(X ′, L′) = χ(X ′, L′) . (III.3)
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Indeed, fitting the cohomology data to the formula (II.2),
one finds the following topological data for X ′

d′111 d′112 d′122 d′222 c′2 ·D′1 c′2 ·D′2
−64 0 4 2 152 44

(III.4)

where D′i is the divisor on X ′ corresponding to the di-
visor Di on X. These changes are consistent with the
hypothesis that X and X ′ are related by a flop in which
64 isolated P1 curves with class C1 are being contracted.

In fact, this is precisely the number of genus zero curves
in the class C1, which can be interpreted as the corre-
sponding Gromov-Witten invariant. It is easy to count
these. Denoting the coordinates of the ambient space by
(xa, yb), with a = 0, 1 and b = 0, 1, 2, 3, the defining equa-
tion takes the form x2

0P (yb) + x0x1Q(yb) + x2
1R(yb) = 0.

When P (yb) = Q(yb) = R(yb) = 0, there is an entire P1

worth of solution and, since P,Q,R have degree 4 this
happens at precisely 43 = 64 points in P3.

The curve class C1 is orthogonal to the wall separating
the Kähler cones K(X) and K(X ′), which together form
what is known in the Physics literature as the extended
Kähler cone or, in the Mathematics literature, as the
movable cone. The other boundary of K(X ′) corresponds
to k2 = −4k1, with k1 ≤ 0, and along this edge the cup-
product cubic form vanishes, indicating that this is also
a boundary of the effective cone. This provides evidence
in support of the claim that X has only two birational
minimal models related by a flop. In particular, X is
an example of a Mori dream space [19]. The boundaries
of the effective cone are at finite distance, as measured
with the moduli space metric, but it is evident from the
intersection numbers in Eqs. (III.2) and (III.4) that the
volume (proportional to dijkt

itjtk where ti are the Kähler
moduli) vanishes at the boundaries of the effective cone.
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FIG. 2. A Z2 symmetry of the zeroth coh. for CICY 7887.

What can be said about the flopped manifold X ′? On
general grounds, we know that it is a smooth Calabi-Yau
three-fold with the same Hodge numbers as X. We also
know the triple intersection numbers and the c2 form,
written in the basis {D′1, D′2}, as given in Eq. (III.4).
Choosing as a basis of H2(X ′,Z) the generators of the

Kähler cone K(X ′), namely D̃1 = −D′1 + 4D′2 and

D̃2 = D′2, the triple intersection numbers and the c2
form become identical to those of X. As such, X ′ and X
are diffeomorphic to each other [20, 21].

It is not surprising then that the zeroth cohomology
displays a Z2 symmetry

h0(X,OX(k)) = h0(X,OX(Mk)) (III.5)

with generator

M =

(
−1 0

n 1

)
, (III.6)

where k = (k1, k2)T and n = 4 (see Fig. 2). This follows
only for the zeroth cohomology, as these are preserved
under a flop.

Finally, we write down explicit topological formulae
for the zeroth cohomology of line bundles on X. In-
side K(X), Kodaira’s vanishing theorem guarantees that
h0(X,L) = χ(X,L). Similarly, inside K(X ′) we have
h0(X,L) = h0(X ′, L′) = χ(X ′, L′) where L′ is the line
bundle on X ′ corresponding to L on X. The wall between
the two Kähler cones falls in the interior of the effective
cone and in this case the Kawamata-Viehweg vanishing
theorem implies h0(X,L) = χ(X,L) = χ(X ′, L′). For
the trivial bundle h0(X,OX) = 1, since X has a single
connected component. For line bundles L = OX(k1D1)
lying along the edge k1 > 0, we have h0(X,L) =
χ(P1, k1HP1), where HP1 is the hyperplane class in P1,
a result which can be traced back by sequence chasing.
The Z2 symmetry (III.5) implies then that a similar rela-
tion must hold along the other boundary of the effective
cone, h0(X,OX(k1D1 − 4k1D2)) = χ(P1,−k1HP1), for
k1 < 0. We sum up these formulae in the following table:

region in eff. cone h0(X,L = OX(k1D1 + k2D2))

K(X) χ(X,L)

K(X ′) χ(X ′, L′)

k1 = 0, k2 > 0 χ(X,L) = χ(X ′, L′)

k1 < 0, k2 = −4k1 χ(P1,−k1HP1)

k1 > 0, k2 = 0 χ(P1, k1HP1)

k1 = k2 = 0 1

Similar results, with varying values of n in Eq. (III.6),
are obtained for 19 other Picard number 2 three-folds in
the CICY list, namely those with identifiers 7643, 7668,
7725, 7758, 7806, 7808, 7816, 7819, 7822, 7823, 7833,
7844, 7853, 7867, 7869, 7882, 7883, 7886 and 7888.

IV. THE MANIFOLD 7885.

In this section X is a generic smooth Calabi-Yau three-
fold belonging to the family described by the configura-
tion matrix

P1

P4

[
1 1

4 1

]2,86

(IV.1)

with identifier 7885 in the CICY list.
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FIG. 3. Zeroth cohomology dimensions on 7885. In blue:

K(X). In green: K′(X ′). In yellow: the Zariski chamber Σ.

As before, the positive quadrant corresponds to the
Kähler cone K(X) where h0(X,L) = χ(X,L) and the Eu-
ler characteristic is computed with the topological data:

d111 d112 d122 d222 c2 ·D1 c2 ·D2

0 0 4 5 24 50
(IV.2)

Along the horizontal boundary of the nef cone D3 = 0,
hence this is also a boundary of the effective cone. The
other boundary corresponds to a wall separating K(X)
from what we conjecture to be the Kähler cone of a
flopped manifold X ′. Fitting the zeroth cohomology data
to the Euler characteristic formula we find the following
topological data for X ′

d′111 d′112 d′122 d′222 c′2 ·D′1 c′2 ·D′2
−16 0 4 5 56 50

(IV.3)

The changes in the triple intersection numbers and the
c2 form are consistent with the hypothesis that X and
X ′ are related by a flop in which 16 isolated P1 curves
with class C1 are being contracted. This is indeed the
genus zero Gromov-Witten invariant in the class C1.

The left boundary of K(X ′) is the edge k2 = −4k1,
with k1 ≤ 0. The cup product cubic form does not vanish
along this edge, which must then be contained inside the
effective cone. This is consistent with the cohomology
data shown in Figure 3 which indicates the presence of a
third cone inside the effective cone, denoted by Σ.

In the remaining part of this section we need to distin-
guish between divisors and divisor classes. We continue
to denote divisor classes by capital Latin letters, and use
capital Greek letters for divisors.

The Kähler cones K(X) and K(X ′) together form
the movable cone. It is known that effective integral
divisor classes lying outside of the movable cone have
fixed components. This is consistent with the presence
of an irreducible rigid effective divisor Γ in the class
−D1 + D2, which can be inferred from h0(X,OX(Γ)) =
h0(X ′,OX′(Γ′)) = 1.

The rigid divisor Γ is part of the fixed locus of every
linear system in the cone Σ. The presence of Γ and the

amount by which it is present can be detected by inter-
section properties leading to a Zariski decomposition of
every divisor class in Σ in the sense of [22]. We will not
attempt to say anything general about the existence of
the Zariski decomposition on three-folds which is a diffi-
cult problem in itself. However, the cohomology data in
the yellow region of Fig. 3 shows an obvious pattern - it
is constant along the diagonals - which is consistent with
the following picture.

Let D̃′1 = −D′1 + 4D′2 and D̃′2 = D′2 denote the gen-

erators of the nef cone K(X ′) and let C̃ ′1 and C̃ ′2 denote

the two dual curve classes, C̃ ′i · D̃′j = δij , where the inter-
section is computed with the data (IV.3) for X ′. Let ∆′

be an effective divisor on X ′ with class [∆′] = D′ and as-
sume it has a Zariski decomposition ∆′ = Π′+ N′, where

Π′ and N′ are Q-divisors, Π′ is nef, that is [Π′] ∈ K′(X ′)
and N′ = γΓ′ is effective, γ ∈ Q≥0. Let P ′ = [Π′] and
N ′ = [N′] denote the corresponding divisor classes.

From now on we assume that D′ ∈ Σ, which is the case
we are interested in. In this case, P ′ lies on the bound-
ary shared by Σ and K(X ′). From general properties of
Zariski decomposition we know that

h0(X ′,OX′(D′)) = h0(X ′,OX′([bΠ′c])) , (IV.4)

where bΠ′c is the round down version of Π′. The round
down version of a Q-divisor is defined as the divisor ob-
tained by rounding down all the coefficients in its expan-
sion. In the context of Zariski decomposition, when D′ is
an integral divisor class, the class [bΠ′c] is well-defined,
as explained in [11].

In the {D̃1, D̃2} basis, we have [Γ′] = D̃′1 − 3D̃′2 and

P ′ is a rational multiple of D̃′1. Since D′ = P ′ +N ′ and

D̃′1 · C̃ ′2 = 0, it follows that D′ · C̃ ′2 = N ′ · C̃ ′2 = γΓ′ · C̃ ′2,

from which γ = D′ · C̃ ′2/Γ′ · C̃ ′2. Consequently,

h0(X ′, OX′(D′)) = h0(X ′,OX′(D′−dγeΓ′))

= χ

(
X ′,OX′

(
D′ −

⌈
D′ · C̃ ′2
Γ′ · C̃ ′2

⌉
Γ′

))
,

(IV.5)

which is also equal to h0(X,OX(D)), where D is the
divisor class on X corresponding to D′ on X ′. With
D = k1D1 + k2D2 it is straightforward to compute γ =
(4k1 + k2)/(−3).

We summarise the zeroth cohomology formulae on the
manifold 7885 in the following table:

region in eff. cone h0(X,L = OX(D = k1D1 + k2D2))

K(X) χ(X,OX(D))

K(X ′) \ {OX} χ(X ′,OX′(D′)

Σ χ
(
X ′,OX′

(
D′ −

⌈
D′·C̃′

2

Γ′·C̃′
2

⌉
Γ′
))

k1 > 0, k2 = 0 χ(P1, (D · C1)HP1)

k1 = k2 = 0 1

Seven other Picard number 2 CICY three-folds, with the
identifiers 7807, 7817, 7840, 7858, 7868, 7873 and 7883,
can be treated in a similar way.
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V. THE MANIFOLD 7863.

In this section X is a generic smooth Calabi-Yau three-
fold belonging to the family described by the configura-
tion matrix

P3

P3

[
2 1 1

2 1 1

]2,66

(V.1)

with identifier 7863 in the CICY list.
The manifold has an obvious (non-freely acting) Z2

symmetry inherited from an ambient space symmetry
that exchanges the two P3 spaces. This symmetry is ev-
ident in the cohomology data shown in Figure 4.
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FIG. 4. Zeroth cohomology dimensions for the CICY

manifold 7863.

In the Kähler cone K(X) (the blue region in Fig. 4),
we have h0(X,L) = χ(X,L) and the index is computed
with the following topological data:

d111 d112 d122 d222 c2 ·D1 c2 ·D2

2 6 6 2 44 44
(V.2)

In this example the cup-product cubic form does not van-
ish along either of the two boundaries of the nef cone
K(X), hence neither of these is a boundary of the ef-
fective cone. There are two cones neighbouring K(X),
which we denote by K(X ′(1)) and K(X ′′(1)), with gener-
ators {(−1, 6), (0, 1)} and {(6,−1), (1, 0)}, respectively.
The reasons for using this slightly cumbersome notation
will become evident in the following. As before, we con-
jecture that these regions are the Kähler cones of two
flopped Calabi-Yau three-folds X ′(1) and X ′′(1). Fitting
the zeroth cohomology data to the Euler characteristic
in these cones, the following topological data is obtained
for X ′(1) and X ′′(1):

d′111 d′112 d′122 d′222 c′2 ·D′1 c′2 ·D′2
−110 6 6 2 220 44

(V.3)

d′′111 d′′112 d′′122 d′′222 c′′2 ·D′′1 c′′2 ·D′′2
2 6 6 −110 44 220

(V.4)

Due to the underlying Z2 symmetry of the cohomology
data, it is sufficient to focus on the manifold X ′(1).

The changes in the topological numbers (V.3) are con-
sistent with a flop between X and X ′(1) in which a total
of 84 isolated curves with normal bundle O(−1)⊕O(−1)
are contracted, 80 of which are in the numerical class C1

and 4 of which are in the numerical class 2C1. The num-
ber 80 does indeed match the genus zero Gromov-Witten
invariant in class C1.

It is useful to recast the topological data (V.3) in a ba-
sis which uses the generators of the Kähler cone K(X ′(1)),

namely D̃′1 = −D′1+6D′2 and D̃′2 = D′2. In this basis, the
cup product cubic form and the c2 form become identi-
cal to those on X, which indicates that X and X ′(1) are
diffeomorphic. As such the cohomology data must be in-
variant under the Z2 symmetry that exchanges D1 and
D̃1 and fixes D2 = D̃2, which is

h0(X,OX(k))=h0(X,OX(M1k)) , M1=

(
−1 0

n1 1

)
(V.5)

with n1 = 6, mapping K(X) to K(X ′(1)). Similarly, there
is an involution

h0(X,OX(k))=h0(X,OX(M2k)) , M2=

(
1 n2

0 −1

)
(V.6)

with n2 = 6, mapping K(X) to K(X ′′(1)).
The existence of these involutions has important con-

sequences. Under M1, the Kähler cone K(X ′′(1)) must
be mapped to a new cone, lying to the left of K(X ′(1))
with generators {(−1, 6), (−6, 35)}, which we denote by
K(X ′(2)). Similarly, the image of K(X ′(1)) under M2 will
be a new cone, lying below K(X ′′(1)), which we denote
by K(X ′(2)). These cones are very sharp and were not
represented in Fig. 4.

The two involutions do not commute. Together, by
acting on K(X) they generate two infinite series of
Kähler cones K(X ′(i)) and K(X ′′(i)), whose envelope is

the (irrational) cone with generators (−1, 3 + 2
√

2) and

(1,−3 − 2
√

2), which we conjecture to be the pseudo-
effective cone of divisors. Each of the manifolds X ′(i)

and X ′′(i) is a birational model of X, diffeomorphic to X.
This provides an example of a variety with an infinite
number of Mori chambers.

In each of these Kähler cones, the zeroth line bun-
dle cohomology can be computed as an index, for ex-
ample h0(X,OX(D)) = χ(X ′(i),OX′(i)(D′(i))), for D ∈
K(X ′(i)). The Euler characteristic can be easily com-
puted, since in a basis of generators of K(X ′(i)) the re-
quired topological data is identical with that of X given
in (V.2) and the generators can be found iteratively by
applying the two involutions. Similar statements hold for
D ∈ K(X ′′(i)).

On each of the manifolds X ′(i) the boundary of the
Kähler cone is at a finite distance in moduli space.
In fact, since the intersection form remains unchanged,
these distances are the same for all X ′(i). This means
that the two boundaries of the effective cone are at an
infinite distance in moduli space.
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Several other CICY manifolds with Picard number 2,
including those with indentifiers 7644, 7726, 7759, 7761
and 7799 display similar features, with varying values of
the numbers n1 and n2 in Eqs (V.5) and (V.6). For some
of these n1 6= n2, and there is no Z2 symmetry inherited
from the ambient space.

VI. CONCLUSIONS

The main lesson to learn from the present work is that
the zeroth line bundle cohomology on a Calabi-Yau three-
fold X encodes a wealth of information about the flops
connecting the birational models of X, as well as about
certain Gromov-Witten invariants. This insight can fa-
cilitate the computation of the true effective cone, which
in some cases is irrational. In all the cases studied here
we were able to decompose the effective cone into co-
homology chambers and express the zeroth line bundle
cohomology as an index. These chambers were either
Mori chambers (Kähler cones of birational models of X)
or Zariski chambers. In many cases, there are symme-
tries relating the cohomology dimensions between differ-
ent Mori chambers. On the manifold 7863 the number of
Mori chambers turned out to be infinite. These results
are the first steps towards a general prescription or pos-
sibly “master formula” which allows deriving analytical
cohomology formulae for three-folds, in terms of basic
topological quantities such as the intersection numbers.

Some words of caution are in order. Most of the re-
sults presented here are grounded in the calculation of a
small number of line bundle cohomology dimensions and
hence have a conjectural character. However, we have
performed many non-trivial checks which indicate that
the general picture is correct.

Out of the 36 Picard number 2 families of CICY three-
folds, in 34 cases the above techniques allow a descrip-
tion of all zeroth cohomologies. This includes the bicubic
(the Calabi-Yau hypersurface of degree (3, 3) in P2×P2),
which is particularly simple as in this case the effective
and the nef cones overlap. On the remaining 2 families
of manifolds, with identifiers 7821 and 7809, there are
computational difficulties in finding a sufficient number
of cohomology values to facilitate the analysis.

We note in passing that the CICY with identifier 7887,
treated above as an example, admits a complex structure
tuning in which the 64 flopping curves coalesce into a di-
visor, as discussed further in Ref. [23]. The flop is then
replaced by an ‘elementary transformation’, which in par-
ticular signals the presence of a symmetry on the entire
complex structure and Kähler moduli space, as discussed
in Ref. [24] and references therein, and which hence can
be seen to imply the symmetry in cohomology on the
generic CICY discussed in Section III. It would be inter-
esting to investigate whether other cases of symmetry in
cohomology arise in a similar manner.

It remains to be seen how much of the present discus-
sion can be generalised to other Calabi-Yau three-folds,
including examples with larger Picard number. There
are preliminary indications that similar structures can
be found in CICY three-folds with Picard number 3. Ex-
ploring higher cohomology is another important topic to
which we would like to return in a future publication.
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