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Nonlinear Attitude and Position Control of a Micro

Quadrotor using Sliding Mode and Backstepping

Techniques

Patrick Adigbli∗

Technische Universität München, 80290 München, Germany and

Christophe Grand† and Jean-Baptiste Mouret‡ and Stéphane Doncieux§

ISIR, Institut des Systèmes Intelligents et Robotique, 75016 Paris, France

The present study addresses the issues concerning the developpment of a reliable assisted
remote control for a four-rotor miniature aerial robot (known as quadrotor), guaranteeing
the capability of a stable autonomous flight. The following results are proposed: after
establishing a dynamical flight model as well as models for the rotors, gears and motors
of the quadrotor, different nonlinear control laws are investigated for attitude and posi-
tion control of the UAV. The stability and performance of feedback, backstepping and
sliding mode controllers are compared in simulations. Finally, experiments on a newly
implemented quadrotor prototype have been conducted in order to validate the theoretical
analysis.

I. Introduction

A
s their application potential both in the military and industrial sector strongly increases, miniature
unmanned aerial vehicles (UAV) constantly gain in interest among the research community. Mostly

used for surveillance and inspection roles, building exploration or missions in unaccessible or dangerous
environments, the easy handling of the UAV by an operator without hours of training is primordial. In order
to develop a reliable assisted remote control or guarantee the capability of a stable autonomous flight, the
development of simple and robust control laws stabilizing the UAV becomes more and more important.

This article addresses the design and analysis of nonlinear attitude and position controllers for a four-rotor
aerial robot, better known as quadrotor. This aircraft has been chosen for its specific characteristics such
as the possibility of vertical take off and landing (VTOL), stationary and quasi-stationary flight and high
manoeuverability. Moreover, its simple mechanical structure compared to a helicopter with variable pitch
angle rotors and its highly nonlinear, coupled and underactuated dynamics make it an interesting research
platform.

The present article proposes the following results: in the second part, models for the propulsion system
and the flight dynamic of the UAV are proposed. In the third part, different nonlinear control laws to
stabilize the attitude of the quadrocopter are investigated. In the fourth part, a new position controller for
autonomous waypoint tracking is designed, using the backstepping approach. Finally, the performance of
the investigated controllers are compared in simulations and experiments on a real system. For that purpose,
a prototype of the quadrocopter has been implemented.

II. Modelling the electromechanical system

In this section, a complete model of the quadrocopter system is established. First, a model of the
propulsion system represented in Fig.1 is proposed, deriving theoretical linear and nonlinear models for the
rotor, gear and motor.
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Figure 1. Propulsion system.

The reactive torque τR caused by the drag of the rotor blade
and the thrust f are proportional to the square of the rotational
velocity ω of the rotor (see McKerrow et al.1):

f = kl ω
2, τR = kd ω2 (1)

The gear is located between the rotor and the couple-
generating motora, in order to transmit the mechanical power
while changing the motor couple τM and the rotational veloc-
ity ω. Considering the mechanical losses by introducing the
efficiency factor ηG, the gear reduction ratio G as well as the
total torque of inertia J̃tot on the motor side can be calculated:

G =
ω̃

ω
=

τM

τ̃M

1

ηG
and J̃tot =

JR

G2
+ JM (2)

The well-known electromechanical model of the dc motor is described by the two following equations,
introducing the back-EMF constant kemk and the torsional constant kM :

LM i̇M = ūM − RM iM − kemk ω (3)

J̃tot
˙̃ω = τ̃M − τ̃R = kM iM − τ̃R (4)

With respect to the fact that the motor inductivity LM can be considered small in comparison to the motor
resistance RM , the system dynamic can be reduced. By taking into account the equations (1) and (2), the
simplified nonlinear model for the propulsion system is:

ω̇ =
kM

RM G J̃tot

ūM −
kM kemk

RM G J̃tot

ω −
kd

G2 ηG J̃tot

ω2 (5)

The stationary response curve can be linearized around the operating point (ω∗, ū∗
M ), finally leading to the

simplified and linearized propulsion system model used in this article b:

ω =
K1

T s + 1
ūM +

K2

T s + 1
(6)

Figure 2. Representation of the quadrotor sys-
tem, introducing torques, forces and coordinate
systems.

This model has been verified by an experimental analy-
sis on the propulsion system, using the Least-Square-Fitting
method.

After proposing the model of the electromechanical propul-
sion system, a simplified quasi-stationary flight dynamic model
based on the work of Lozano et al.2 and Bouabdallah and
al.3 will be established. Considering the whole quadrotor
system represented in Fig.2, the earth-fixed coordinate sys-
tem SW = [X,Y ,Z]T and the body-fixed coordinate system
Suav = [x,y,z]T are introduced. The position ξ = [x, y, z]T of
the UAV is given by the position of the origin of the body-fixed
coordinate system relativ to the origin of the earth coordinate
system. The orientation of the UAV in space is described by the Tait-Bryan-angles η = [Φ,Θ,Ψ]T and the
rotation matrix R c:

aAll variables on the motor side are marked with a tilde, while all variables on the rotor side aren’t marked.
bWith the parameters:

K1 =
ηG G kM

2 kd ω∗ RM + ηG G kemk kM

, K2 =
kd ω∗2 RM

2 kd ω∗ RM + ηG G kemk kM

, T =
ηG G2 J̃tot RM

2 kd ω∗ RM + ηG G kemk kM

cIn this article, the representation of the rotation matrix R is based on the following rotation order: the first rotation with
the angle Φ around the x-axis, the second rotation with the angle Θ around the new y-axis and the third rotation with the
angle Ψ around the new z-axis.
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R =







cΘcΨ sΦsΘcΨ − cΦsΨ cΦsΘcΨ + sΦsΨ

cΘsΨ sΦsΘsΨ + cΦcΨ cΦsΘsΨ − sΦcΨ

−sΘ sΦcΘ cΦcΘ






(7)

The angular rotation velocities Ω in the body-fixed coordinates can be obtained with respect to the
angular rotation velocities η̇ in the earth-fixed coordinates:

Ω =







1 0 −sΘ

0 cΦ sΦcΘ

0 −sΦ cΦcΘ






η̇ = W (η) η̇ (8)

Now, a full dynamical model of the position and angular acceleration of the quadrocopter is derived,
showing that the Euler-Lagrange-formalism, which is also used in the work of Lozano et al.,2 leads to
the same results as the Newton-Euler approach used by Bouabdallah et al.3 Introducing ρ = [ξ,η]T and
applying the Hamilton principle to the Lagrange function L(ρ, ρ̇) = T (ρ, ρ̇)−V(ρ) composed of the kinetic
and potential energies T and V of the global mechanical system leads to the Euler-Lagrange-equations:

d

dt

(

∂L

∂ρ̇i

)

−
∂L

∂ρi

= Qi with i = 1 . . . 6 (9)

First, all components of the Lagrange function L and the generalized potential-free force vector Q have to
be identified. Both can be divided in a translational and a rotational part:

Ltrans = Ttrans − V =
1

2
muav ξ̇

T
ξ̇ + muav g z Qtrans = R

(

0
0

−F

)

Lrot = Trot =
1

2
Ω

T I Ω =
1

2
η̇T J η̇ Qrot = τ + τ gyro =

(

0 l kl 0 −l kl

l kl 0 −l kl 0
kd −kd kd −kd

)

ω2

+

4
∑

i=1

JR (Ω × ez) (−1)i+1 ωi

Now, the Euler-Lagrange-equations for position and orientation can be deduced independently:

Qtrans = d
dt

(

∂Ltrans

∂ξ̇

)

− ∂Ltrans

∂ξ

Qrot = d
dt

(

∂Lrot

∂η̇

)

− ∂Lrot

∂η

⇔
ξ̈ = Qtrans

muav
+

(

0
0
g

)

η̈ = J−1
(

Qrot + 1
2

∂
∂η

(

η̇T J η̇
)

− J̇ η̇
) (10)

After considering the hypothesis of small angles and small angular velocities, the full dynamical model
(10) can be simplified, resulting in a nonlinear coupled model containing terms for the coriolis forces and
gyroscopic torques:

ẍ = − F
muav

(cΦ cΨ sΘ + sΦ sΨ)

ÿ = − F
muav

(cΦ sΨ sΘ − sΦ cΨ)

z̈ = − F
muav

(cΦ cΘ) + g

Φ̈ = τΦ

Ix
− JR Π

Ix
Θ̇ + Θ̇ Ψ̇

(

Iy−Iz

Ix

)

Θ̈ = τΘ

Iy
+ JR Π

Iy
Φ̇ + Φ̇ Ψ̇

(

Iz−Ix

Iy

)

Ψ̈ = τΨ

Iz
+ Φ̇ Θ̇

(

Ix−Iy

Iz

)

(11)

III. Attitude stabilization

In a next step, different nonlinear control laws for the control torque vector τ ctrl = [τ ctrl
Φ , τ ctrl

Θ , τ ctrl
Ψ ]T

are investigated in order to stabilize the highly nonlinear, underactuated system, even in presence of pertur-
bations. The control architecture represented in Fig.3 remains the same for the different control laws.
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Figure 3. Attitude control architecture.

First, a quaternion-based feedback controller
presented by Tayebi et al.4 has been chosen for its
model parameter independent, simple implementa-
tion:

τ ctrl = −µq

(

q − qd
)

− µΩ (12)

with the reduced quaternion vector q = [q1, q2, q3]
T ,

the positive parameter µq and the positive definite
3x3 diagonal matrix µ. It is shown in4 that the
control law is globally asymptotically stable.

The second controller has been derived using the
backstepping approach, especially adapted to the
present system, where the states of the rotational subsystem can be considered as inputs for the trans-
lational subsystem. First, the dynamical model from (11) is rewritten as:

x1 = Φ

x2 = ẋ1 = Φ̇

ẋ2 = Φ̈

x3 = Θ

x4 = ẋ3 = Θ̇

ẋ4 = Θ̈

x5 = Ψ

x6 = ẋ5 = Ψ̇

ẋ6 = Ψ̈

Next, the x-coordinates are transformed into new z-coordinates by means of a diffeomorphism. This is
illustrated using the x1, x2-coordinates:

z1 = x1 − xd
1, z2 = x2 − ẋd

1 − α1(z1),

ż1 = ẋ1 − ẋd
1 = z2 + α1(z1)

By introducing the partial lyapunov functions V1 = 1
2z2

1 and V2 = 1
2

(

z2
1 + z2

2

)

, it is possible to determine

the function α1(z1), two parameters a1, a2 > 0 and the control law for τΦ such that the derivate V̇2 ≡

−
∑2

i=1 aiz
2
i < 0. Therefore, referring to the lyapunov stability theorem, the global asymptotical stability of

the equilibrium point z∗ = 0 is guaranteed and Φ tends to Φd. Applying this procedure to all x-coordinates
and assuming that η̈d = η̇d = 0 and η̇ ≃ Ω, one obtains the following backstepping control law:

τ ctrl = − I
( a1 a2−1 0 0

0 a3 a4−1 0
0 0 a5 a6−1

)

(η − ηd)

− I
( a1+a2 0 0

0 a3+a4 0
0 0 a5+a6

)

Ω

(13)

In accordance with the previous work of Wendel et al.,5 it will be shown in section V that in realistic
scenarios the performance of the derived backstepping controller is superior to the feedback controller.

Eventually, a new sliding mode attitude controller is proposed in this article. Based on the works of Utkin,
Kondak et al. and Brandstätter et al.,6–8 this approach is more robust against parameter uncertainties and
perturbations and can easily be implemented. In comparision to the work of Bouabdallah et al.,3 the
proposed sliding mode controller is much simpler, shows good performances in realistic simulations of the
complet UAV system and its stability is formally proven.
Introducing the extended state vector x = [η, η̇]T and the input vector u = τ = [τΦ, τΘ, τΨ]T , the system
behaviour can be described as:

ẋ = f(x) + B(x)u ⇔
v = η̇

v̇ = η̈
(14)

The control error and its derivative are given by e = η−ηd, ė = η̇− η̇d = η̇ and the switching or sliding
manifolds S are characterized by S =

{

x ∈ R
3 | s(x) = 0

}

with s(x) = C1 e + C2 ė, where C1,C2 are two
diagonal matrices. To achieve motion along these sliding manifolds, a discountinuous control law is used:

uctrl(x) = −K sign (s(x)) =

{

u+(x), s(x) > 0

u−(x), s(x) < 0
(15)
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In order to formally prove the stability of this sliding mode controller, the following two assumptions
have to be verified:

1. The system has to reach the sliding manifolds Si after a finite time, independently from the systems
initial state x0.

2. The motion along the sliding manifolds Si must have a stable behaviour.

In order to verify the second assumption, Utkins equivalent control method will be used:6 therefore, a
continuous equivalent control variable ueq must exist and verify the condition:

min (u) ≤ ueq ≤ max (u) (16)

In the sliding mode, ueq replaces u and with (14), we have ṡ(x) = 0 and ṡ(x) = ∂s
∂x

ẋ = ∂s
∂x

(f (x) + B ueq).
Consequently, the equivalent control is given by:

ueq = −

(

∂s

∂x
B

)−1
∂s

∂x
f (x) with

∂s

∂x
B =

(

c4/Ix 0 0
0 c5/Iy 0
0 0 c6/Iz

)

(17)

The existence of ueq is guaranteed, because the inverse of ∂s
∂x

B exists and the components of the term
∂s
∂x

f (x) could become zero only in single isolated points of the state space. Thus, the second assumption
is partially verified, only (16) has to be satisfied. To guarantee this, we consider assumption 1, which is
equivalent to finding the so called domain of sliding mode and can be reduced to a stability problem with
the state vector s and the lyapunov function V (s) = sign(s)T s. Considering (14), (17) and (15), the
derivative of V is:

V̇ (s) = −K sign(s)T ∂s

∂x
B sign(s) − sign(s)T ∂s

∂x
B ueq

Because ∂s
∂x

B is positive definite, the first term of V̇ is confined to cmin ‖sign(s)‖2 ≤ sign(s)T ∂s
∂x

B sign(s) ≤

cmax ‖sign(s)‖2 with cmin = min
{

c4

Ix
, c5

Iy
, c6

Iz

}

and cmax = max
{

c4

Ix
, c5

Iy
, c6

Iz

}

and we have:

V̇ (s) ≤ −K cmin ‖sign(s)‖2 + ‖sign(s)T ‖ ‖
∂s

∂x
B‖ ‖ueq‖

Outside of the sliding manifolds Si, we have ‖sign(s)‖ ≥ 1, because at least one component si 6= 0.
Therefore, the derivative of the lyapunov function is negative, when we have:

K >
‖ ∂s

∂x
B‖ ‖ueq‖

cmin
(18)

By choosing K according to (18), the domain of sliding mode corresponds to the whole state space,
verifying assumption 1. Furthermore, we will now show that (16) ⇔ −K ≤ ueq ≤ +K ⇒ ‖ueq‖ ≤ K

is satisfied by this choice of K. Considering the Frobeniusnorm ‖ ∂s
∂x

B‖2
F =

(

c4

Ix

)2

+
(

c5

Iy

)2

+
(

c6

Iz

)2

, the

stability of the sliding mode controller is formally proven, because we have:

‖ueq‖ < K
cmin

‖ ∂s
∂x

B‖F

≤ K (19)

IV. Position control

Another main contribution of the present article is the design of a position controller based on the
backstepping approach. The superposition of the position controller over the attitude controller in a cascade
architecture (shown in Fig.4) enables the robot to perform autonomous waypoint tracking: the operator
or path planner provides the desired values xd, yd, zd and Ψd and the position controller calculates the
corresponding control values Φctrl,Θctrl and F ctrl, which represent the set values of the underlying attitude
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controller. To derive the backstepping position control law, a diffeomorphism transforms the position vector
ξ = [x, y, z]T into z-coordinates. This operation will be illustrated using the x-coordinate:

z1 = x − xd, z2 = ẋ − ẋd − β1(z1),

ż1 = ẋ − ẋd = z2 + β1(z1)

Figure 4. Cascade control architecture.

By introducing the partial lyapunov functions
V1 = 1

2z2
1 and V2 = 1

2

(

z2
1 + z2

2

)

, it is possible to
determine the function β1(z1) and two parameters

b1, b2 > 0 such that the derivate V̇2 ≡ −
∑2

i=1 biz
2
i <

0:

β1 = −b1z1

V̇2 = z1 ż1 + (ż1 − β(z1))(z̈1 − β̇1) ≡ −
2

∑

i=1

biz
2
i ⇔ z1 + z̈1 + b1 ż1 + b2 z2 = 0

After applying the same procedure to the y

and z-coordinates and retransforming from z to ξ-
coordinates, we obtain:

− F
muav

(cΦ cΨd sΘ + sΦ sΨd) + r1 = 0

− F
muav

(cΦ sΘ cΨd + sΦ sΨd) + r2 = 0

− F
muav

(cΦ cΘ) + g + r3 = 0

with

r1 = (1 + b1 b2) (x − xd) + (b1 + b2) ẋ

r2 = (1 + b3 b4) (y − yd) + (b3 + b4) ẏ

r3 = (1 + b5 b6) (z − zd) + (b5 + b6) ż

(20)
Considering that xd, yd, zd and Ψd are known and η, ξ, ξ̇ can be measured, the equations (20) can be

solved in order to determine the control variables Φctrl,Θctrl and F ctrl, d obtaining the following backstepping
position controller:

F ctrl =
muav

cΦ cΘ
(r3 + g)

Φctrl = arcsin
(muav

F ctrl
(r1 sΨd − r2 cΨd)

)

Θctrl = arcsin

(

muav

F ctrl cΦctrl

(r1 cΨd + r2 sΨd)

)

(21)

V. Simulation and experimental results

In order to evaluate and compare the investigated control laws, various simulations have been performed
on the complete closed loop system. The models for the propulsion group (6) and the flight dynamics
(11) have been implemented in scilab/scicos and the following disturbances have been added: the motor
dynamics are delayed and bounded, the measured angles are overlaid with an additive gaussian noise (mean
value µ = 0◦, standard deviation σ = 2◦), the digitally implemented controllers work at a frequency of 50
Hz and the control output is bounded.

In the first simulation, all control laws have to stabilize the attitude of the UAV, bringing it from an
initially inclined to a horizontal configuration (ηd = 0) within approximately 1 sec: as seen in Fig.5, it
appears that for this task the performance of the control laws is comparable. Furthermore, a scenario has
been simulated, where each controller has to track a given setpoint, bringing the attitude from the UAV
from an initial configuration η = 0 to the desired configuration ηd = [30◦, 20◦,−45◦]T within approximately
2 seconds: Fig.6 shows that in our simulations the necessary high gains for this short convergence time make
the behaviour of the feedback controller unstable, whereas the backstepping and sliding mode controller
behave well.

dTo rule out trigonometric singularities, the argument of arcsin() has to be limited to [−1; 1] and the angles Φ and Θ have
to be limited to ] − π

2
; +π

2
[.
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Figure 5. Simulation results of the attitude stabilisation, ηd = [0◦, 0◦, 0◦]T . Top row: angles with feedback control (left),
backstepping control (middle), sliding mode control (right). Bottom row: control torques with feedback control (left),
backstepping control (middle), sliding mode control (right). Controller parameters: µx = µy = µz = 0.4, µq = 10, a1 =
a2 = a4 = a6 = 7, a3 = 2, a5 = 5, K = 0.04, c1 = c3 = c5 = 1, c2 = 0.3, c4 = 0.5, c6 = 0.4
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Figure 6. Simulation results of the setpoint tracking, ηd = [30◦, 20◦,−45◦]T . Top row: angles with feedback control
(left), backstepping control (middle), sliding mode control (right). Bottom row: control torques with feedback control
(left), backstepping control (middle), sliding mode controller (right). Controller parameters: µx = µy = µz = 0.7, µq =
5, a1 = a3 = a5 = 4, a2 = a4 = a6 = 3, K = 0.03, c1 = c3 = c5 = 1, b2 = 0.4, b4 = b6 = 0.5

For the validation of the position controller, various scenarios have been simulated, showing promissing
results for an implementation on the real system. For example, the UAV has to follow a helix formed
path while rotating around his own z-axis: the simulation result is represented in Fig.7, showing the stable
tracking behaviour of the complete closed loop system.

Moreover, a low cost autonomous miniature drone (represented in Fig.8) has been designed and imple-
mented, using exclusively off-the-shelf components and open source software: employing a highly integrated
embedded inertial measurement unit discussed in the work of Jang et al.9 and the power of a real time
onboard CPU, the backstepping control law has been implemented on the real system suspended on a tri-
pod. Fig.9 shows some first test results obtained with the prototype, which is stabilized around η = 0.
Improvements have still to be made on the hardware to enhance the controller dynamics, particularly with
regard to the closed-loop speed control of the motors.
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Figure 9. First test results of the backstepping attitude controller.

VI. Conclusion

Figure 8. Quadrocopter prototype with an
highly integrated Inertial Measurment Unit and
a ARM-based CPU running a linux OS.

In this article, a complete and a simplified model for a four-
rotor flying robot have been proposed. Moreover, three differ-
ent control approaches have been investigated and discussed: a
feedback control law, a backstepping control law and a newly
established sliding mode control law. The performances have
been analysed using various simulation results, showing the
robust behaviour of the backstepping and sliding mode con-
trollers regarding the stabilization and the setpoint tracking
of the complete UAV model, whereas the feedback controller
shows poor performance regarding the setpoint tracking. Fur-
thermore, a new position controller has been proposed, permit-
ting an autonomous waypoint tracking and showing promissing
simulation results. Finally, a low cost prototype has been im-
plemented, showing promissing first test results.
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