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I. Introduction

A s their application potential both in the military and industrial sector strongly increases, miniature unmanned aerial vehicles (UAV) constantly gain in interest among the research community. Mostly used for surveillance and inspection roles, building exploration or missions in unaccessible or dangerous environments, the easy handling of the UAV by an operator without hours of training is primordial. In order to develop a reliable assisted remote control or guarantee the capability of a stable autonomous flight, the development of simple and robust control laws stabilizing the UAV becomes more and more important.

This article addresses the design and analysis of nonlinear attitude and position controllers for a four-rotor aerial robot, better known as quadrotor. This aircraft has been chosen for its specific characteristics such as the possibility of vertical take off and landing (VTOL), stationary and quasi-stationary flight and high manoeuverability. Moreover, its simple mechanical structure compared to a helicopter with variable pitch angle rotors and its highly nonlinear, coupled and underactuated dynamics make it an interesting research platform.

The present article proposes the following results: in the second part, models for the propulsion system and the flight dynamic of the UAV are proposed. In the third part, different nonlinear control laws to stabilize the attitude of the quadrocopter are investigated. In the fourth part, a new position controller for autonomous waypoint tracking is designed, using the backstepping approach. Finally, the performance of the investigated controllers are compared in simulations and experiments on a real system. For that purpose, a prototype of the quadrocopter has been implemented.

II. Modelling the electromechanical system

In this section, a complete model of the quadrocopter system is established. First, a model of the propulsion system represented in Fig. 1 is proposed, deriving theoretical linear and nonlinear models for the rotor, gear and motor. 

f = k l ω 2 , τ R = k d ω 2 (1) 
The gear is located between the rotor and the couplegenerating motor a , in order to transmit the mechanical power while changing the motor couple τ M and the rotational velocity ω. Considering the mechanical losses by introducing the efficiency factor η G , the gear reduction ratio G as well as the total torque of inertia Jtot on the motor side can be calculated:

G = ω ω = τ M τM 1 η G and Jtot = J R G 2 + J M (2) 
The well-known electromechanical model of the dc motor is described by the two following equations, introducing the back-EMF constant k emk and the torsional constant k M :

L M iM = ūM -R M i M -k emk ω (3) Jtot ω = τM -τR = k M i M -τR (4) 
With respect to the fact that the motor inductivity L M can be considered small in comparison to the motor resistance R M , the system dynamic can be reduced. By taking into account the equations ( 1) and ( 2), the simplified nonlinear model for the propulsion system is:

ω = k M R M G Jtot ūM - k M k emk R M G Jtot ω - k d G 2 η G Jtot ω 2 (5) 
The stationary response curve can be linearized around the operating point (ω * , ū * M ), finally leading to the simplified and linearized propulsion system model used in this article b : This model has been verified by an experimental analysis on the propulsion system, using the Least-Square-Fitting method.

ω = K 1 T s + 1 ūM + K 2 T s + 1 (6) 
After proposing the model of the electromechanical propulsion system, a simplified quasi-stationary flight dynamic model based on the work of Lozano et al. [START_REF] Escareno | Embedded control of a four-rotor UAV[END_REF] and Bouabdallah and al. [START_REF] Bouabdallah | Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor[END_REF] will be established. Considering the whole quadrotor system represented in Fig. 2, the earth-fixed coordinate system S W = [X, Y , Z] T and the body-fixed coordinate system S uav = [x, y, z] T are introduced. The position ξ = [x, y, z] T of the UAV is given by the position of the origin of the body-fixed coordinate system relativ to the origin of the earth coordinate system. The orientation of the UAV in space is described by the Tait-Bryan-angles η = [Φ, Θ, Ψ] T and the rotation matrix R c : a All variables on the motor side are marked with a tilde, while all variables on the rotor side aren't marked. b With the parameters:

K 1 = η G G k M 2 k d ω * R M + η G G k emk k M , K 2 = k d ω * 2 R M 2 k d ω * R M + η G G k emk k M , T = η G G 2 Jtot R M 2 k d ω * R M + η G G k emk k M c
In this article, the representation of the rotation matrix R is based on the following rotation order: the first rotation with the angle Φ around the x-axis, the second rotation with the angle Θ around the new y-axis and the third rotation with the angle Ψ around the new z-axis.

R =    c Θ c Ψ s Φ s Θ c Ψ -c Φ s Ψ c Φ s Θ c Ψ + s Φ s Ψ c Θ s Ψ s Φ s Θ s Ψ + c Φ c Ψ c Φ s Θ s Ψ -s Φ c Ψ -s Θ s Φ c Θ c Φ c Θ    (7) 
The angular rotation velocities Ω in the body-fixed coordinates can be obtained with respect to the angular rotation velocities η in the earth-fixed coordinates:

Ω =    1 0 -s Θ 0 c Φ s Φ c Θ 0 -s Φ c Φ c Θ    η = W (η) η (8) 
Now, a full dynamical model of the position and angular acceleration of the quadrocopter is derived, showing that the Euler-Lagrange-formalism, which is also used in the work of Lozano et al., 2 leads to the same results as the Newton-Euler approach used by Bouabdallah et al. [START_REF] Bouabdallah | Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor[END_REF] Introducing ρ = [ξ, η] T and applying the Hamilton principle to the Lagrange function L(ρ, ρ) = T (ρ, ρ) -V(ρ) composed of the kinetic and potential energies T and V of the global mechanical system leads to the Euler-Lagrange-equations:

d dt ∂L ∂ ρi - ∂L ∂ρ i = Q i with i = 1 . . . 6 (9) 
First, all components of the Lagrange function L and the generalized potential-free force vector Q have to be identified. Both can be divided in a translational and a rotational part:

L trans = T trans -V = 1 2 m uav ξT ξ + m uav g z Q trans = R 0 0 -F L rot = T rot = 1 2 Ω T I Ω = 1 2 ηT J η Q rot = τ + τ gyro = 0 l k l 0 -l k l l k l 0 -l k l 0 k d -k d k d -k d ω 2 + 4 i=1 J R (Ω × e z ) (-1) i+1 ω i
Now, the Euler-Lagrange-equations for position and orientation can be deduced independently:

Q trans = d dt ∂Ltrans ∂ ξ -∂Ltrans ∂ξ Q rot = d dt ∂Lrot ∂ η -∂Lrot ∂η ⇔ ξ = Q trans muav + 0 0 g η = J -1 Q rot + 1 2 ∂ ∂η ηT J η -J η (10)
After considering the hypothesis of small angles and small angular velocities, the full dynamical model (10) can be simplified, resulting in a nonlinear coupled model containing terms for the coriolis forces and gyroscopic torques:

ẍ = -F muav (c Φ c Ψ s Θ + s Φ s Ψ ) ÿ = -F muav (c Φ s Ψ s Θ -s Φ c Ψ ) z = -F muav (c Φ c Θ ) + g Φ = τΦ Ix -JR Π Ix Θ + Θ Ψ Iy-Iz Ix Θ = τΘ Iy + JR Π Iy Φ + Φ Ψ Iz-Ix Iy Ψ = τΨ Iz + Φ Θ Ix-Iy Iz (11)

III. Attitude stabilization

In a next step, different nonlinear control laws for the control torque vector

τ ctrl = [τ ctrl Φ , τ ctrl Θ , τ ctrl Ψ ]
T are investigated in order to stabilize the highly nonlinear, underactuated system, even in presence of perturbations. The control architecture represented in Fig. 3 remains the same for the different control laws. First, a quaternion-based feedback controller presented by Tayebi et al. 4 has been chosen for its model parameter independent, simple implementation:

τ ctrl = -µ q q -q d -µ Ω (12)
with the reduced quaternion vector q = [q 1 , q 2 , q 3 ] T , the positive parameter µ q and the positive definite 3x3 diagonal matrix µ. It is shown in 4 that the control law is globally asymptotically stable.

The second controller has been derived using the backstepping approach, especially adapted to the present system, where the states of the rotational subsystem can be considered as inputs for the translational subsystem. First, the dynamical model from ( 11) is rewritten as:

x 1 = Φ x 2 = ẋ1 = Φ ẋ2 = Φ x 3 = Θ x 4 = ẋ3 = Θ ẋ4 = Θ x 5 = Ψ x 6 = ẋ5 = Ψ ẋ6 = Ψ
Next, the x-coordinates are transformed into new z-coordinates by means of a diffeomorphism. This is illustrated using the x 1 , x 2 -coordinates:

z 1 = x 1 -x d 1 , z 2 = x 2 -ẋd 1 -α 1 (z 1 ), ż1 = ẋ1 -ẋd 1 = z 2 + α 1 (z 1 )
By introducing the partial lyapunov functions

V 1 = 1 2 z 2 1 and V 2 = 1 2 z 2 1 + z 2 2
, it is possible to determine the function α 1 (z 1 ), two parameters a 1 , a 2 > 0 and the control law for τ Φ such that the derivate V2 ≡ -2 i=1 a i z 2 i < 0. Therefore, referring to the lyapunov stability theorem, the global asymptotical stability of the equilibrium point z * = 0 is guaranteed and Φ tends to Φ d . Applying this procedure to all x-coordinates and assuming that ηd = ηd = 0 and η ≃ Ω, one obtains the following backstepping control law:

τ ctrl = -I a1 a2-1 0 0 0 a3 a4-1 0 0 0 a5 a6-1 (η -η d ) -I a1+a2 0 0 0 a3+a4 0 0 0 a5+a6 Ω (13) 
In accordance with the previous work of Wendel et al., [START_REF] Wendel | Comparison of Different Control Laws for the Stabilization of a VTOL UAV[END_REF] it will be shown in section V that in realistic scenarios the performance of the derived backstepping controller is superior to the feedback controller.

Eventually, a new sliding mode attitude controller is proposed in this article. Based on the works of Utkin, Kondak et al. and Brandstätter et al., [START_REF] Utkin | Variable structure systems with sliding modes[END_REF][START_REF] Kondak | Robust Motion Control for Robotic Systems Using Sliding Mode[END_REF][START_REF] Brandtstadter | Control of Electromechanical Systems using Sliding Mode Techniques[END_REF] this approach is more robust against parameter uncertainties and perturbations and can easily be implemented. In comparision to the work of Bouabdallah et al., [START_REF] Bouabdallah | Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor[END_REF] the proposed sliding mode controller is much simpler, shows good performances in realistic simulations of the complet UAV system and its stability is formally proven. Introducing the extended state vector x = [η, η] T and the input vector u = τ = [τ Φ , τ Θ , τ Ψ ] T , the system behaviour can be described as:

ẋ = f (x) + B(x)u ⇔ v = η v = η (14) 
The control error and its derivative are given by e = ηη d , ė = ηηd = η and the switching or sliding manifolds S are characterized by S = x ∈ R 3 | s(x) = 0 with s(x) = C 1 e + C 2 ė, where C 1 , C 2 are two diagonal matrices. To achieve motion along these sliding manifolds, a discountinuous control law is used:

u ctrl (x) = -K sign (s(x)) = u + (x), s(x) > 0 u -(x), s(x) < 0 (15) 
In order to formally prove the stability of this sliding mode controller, the following two assumptions have to be verified: 1. The system has to reach the sliding manifolds S i after a finite time, independently from the systems initial state x 0 .

2. The motion along the sliding manifolds S i must have a stable behaviour.

In order to verify the second assumption, Utkins equivalent control method will be used: 6 therefore, a continuous equivalent control variable u eq must exist and verify the condition:

min (u) ≤ u eq ≤ max (u) (16) 
In the sliding mode, u eq replaces u and with (14), we have ṡ(x) = 0 and ṡ(x) = ∂s ∂x ẋ = ∂s ∂x (f (x) + B u eq ). Consequently, the equivalent control is given by:

u eq = - ∂s ∂x B -1 ∂s ∂x f (x) with ∂s ∂x B = c4/Ix 0 0 0 c5/Iy 0 0 0 c6/Iz (17) 
The existence of u eq is guaranteed, because the inverse of ∂s ∂x B exists and the components of the term ∂s ∂x f (x) could become zero only in single isolated points of the state space. Thus, the second assumption is partially verified, only (16) has to be satisfied. To guarantee this, we consider assumption 1, which is equivalent to finding the so called domain of sliding mode and can be reduced to a stability problem with the state vector s and the lyapunov function V (s) = sign(s) T s. Considering ( 14), ( 17) and ( 15), the derivative of V is:

V (s) = -K sign(s) T ∂s ∂x B sign(s) -sign(s) T ∂s ∂x B u eq
Because ∂s ∂x B is positive definite, the first term of V is confined to c min sign(s) Outside of the sliding manifolds S i , we have sign(s) ≥ 1, because at least one component s i = 0. Therefore, the derivative of the lyapunov function is negative, when we have:

K > ∂s ∂x B u eq c min (18) 
By choosing K according to (18), the domain of sliding mode corresponds to the whole state space, verifying assumption 1. Furthermore, we will now show that (16) ⇔ -K ≤ u eq ≤ +K ⇒ u eq ≤ K is satisfied by this choice of K. Considering the Frobeniusnorm ∂s ∂x B 2

F = c4 Ix 2 + c5 Iy 2 + c6 Iz 2
, the stability of the sliding mode controller is formally proven, because we have:

u eq < K c min ∂s ∂x B F ≤ K (19)

IV. Position control

Another main contribution of the present article is the design of a position controller based on the backstepping approach. The superposition of the position controller over the attitude controller in a cascade architecture (shown in Fig. 4) enables the robot to perform autonomous waypoint tracking: the operator or path planner provides the desired values x d , y d , z d and Ψ d and the position controller calculates the corresponding control values Φ ctrl , Θ ctrl and F ctrl , which represent the set values of the underlying attitude controller. To derive the backstepping position control law, a diffeomorphism transforms the position vector ξ = [x, y, z] T into z-coordinates. This operation will be illustrated using the x-coordinate: 

z 1 = x -x d , z 2 = ẋ -ẋd -β 1 (z 1 ), ż1 = ẋ -ẋd = z 2 + β 1 (z 1 )

By introducing the partial lyapunov functions

V 1 = 1 2 z 2 1 and V 2 = 1 2 z 2 1 + z 2 2
, it is possible to determine the function β 1 (z 1 ) and two parameters b 1 , b 2 > 0 such that the derivate V2 ≡ -

2 i=1 b i z 2 i < 0: β 1 = -b 1 z 1 V2 = z 1 ż1 + ( ż1 -β(z 1 ))(z 1 -β1 ) ≡ - 2 i=1 b i z 2 i ⇔ z 1 + z1 + b 1 ż1 + b 2 z 2 = 0
After applying the same procedure to the y and z-coordinates and retransforming from z to ξcoordinates, we obtain:

-F muav (c Φ c Ψ d s Θ + s Φ s Ψ d ) + r 1 = 0 -F muav (c Φ s Θ c Ψ d + s Φ s Ψ d ) + r 2 = 0 -F muav (c Φ c Θ ) + g + r 3 = 0 with r 1 = (1 + b 1 b 2 ) (x -x d ) + (b 1 + b 2 ) ẋ r 2 = (1 + b 3 b 4 ) (y -y d ) + (b 3 + b 4 ) ẏ r 3 = (1 + b 5 b 6 ) (z -z d ) + (b 5 + b 6 ) ż (20)
Considering that x d , y d , z d and Ψ d are known and η, ξ, ξ can be measured, the equations (20) can be solved in order to determine the control variables Φ ctrl , Θ ctrl and F ctrl , d obtaining the following backstepping position controller:

F ctrl = m uav c Φ c Θ (r 3 + g) Φ ctrl = arcsin m uav F ctrl (r 1 s Ψ d -r 2 c Ψ d ) Θ ctrl = arcsin m uav F ctrl c Φ ctrl (r 1 c Ψ d + r 2 s Ψ d ) (21) 

V. Simulation and experimental results

In order to evaluate and compare the investigated control laws, various simulations have been performed on the complete closed loop system. The models for the propulsion group ( 6) and the flight dynamics (11) have been implemented in scilab/scicos and the following disturbances have been added: the motor dynamics are delayed and bounded, the measured angles are overlaid with an additive gaussian noise (mean value µ = 0 • , standard deviation σ = 2 • ), the digitally implemented controllers work at a frequency of 50 Hz and the control output is bounded.

In the first simulation, all control laws have to stabilize the attitude of the UAV, bringing it from an initially inclined to a horizontal configuration (η d = 0) within approximately 1 sec: as seen in Fig. 5, it appears that for this task the performance of the control laws is comparable. Furthermore, a scenario has been simulated, where each controller has to track a given setpoint, bringing the attitude from the UAV from an initial configuration η = 0 to the desired configuration η d = [30 • , 20 • , -45 • ] T within approximately 2 seconds: Fig. 6 shows that in our simulations the necessary high gains for this short convergence time make the behaviour of the feedback controller unstable, whereas the backstepping and sliding mode controller behave well. For the validation of the position controller, various scenarios have been simulated, showing promissing results for an implementation on the real system. For example, the UAV has to follow a helix formed path while rotating around his own z-axis: the simulation result is represented in Fig. 7, showing the stable tracking behaviour of the complete closed loop system.

Moreover, a low cost autonomous miniature drone (represented in Fig. 8) has been designed and implemented, using exclusively off-the-shelf components and open source software: employing a highly integrated embedded inertial measurement unit discussed in the work of Jang et al. [START_REF] Jang | Automation of small UAVs using a low cost MEMS sensor and embedded computing platform[END_REF] and the power of a real time onboard CPU, the backstepping control law has been implemented on the real system suspended on a tripod. Fig. 9 shows some first test results obtained with the prototype, which is stabilized around η = 0. Improvements have still to be made on the hardware to enhance the controller dynamics, particularly with regard to the closed-loop speed control of the motors. In this article, a complete and a simplified model for a fourrotor flying robot have been proposed. Moreover, three different control approaches have been investigated and discussed: a feedback control law, a backstepping control law and a newly established sliding mode control law. The performances have been analysed using various simulation results, showing the robust behaviour of the backstepping and sliding mode controllers regarding the stabilization and the setpoint tracking of the complete UAV model, whereas the feedback controller shows poor performance regarding the setpoint tracking. Furthermore, a new position controller has been proposed, permitting an autonomous waypoint tracking and showing promissing simulation results. Finally, a low cost prototype has been implemented, showing promissing first test results.

VI. Conclusion
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Figure 2 .

 2 Figure 2. Representation of the quadrotor system, introducing torques, forces and coordinate systems.
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 56 Figure 5. Simulation results of the attitude stabilisation, η d = [0 • , 0 • , 0 • ] T . Top row: angles with feedback control (left), backstepping control (middle), sliding mode control (right). Bottom row: control torques with feedback control (left), backstepping control (middle), sliding mode control (right). Controller parameters: µx = µy = µz = 0.4, µq = 10, a1 = a2 = a4 = a6 = 7, a3 = 2, a5 = 5, K = 0.04, c1 = c3 = c5 = 1, c2 = 0.3, c4 = 0.5, c6 = 0.4
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 79 Figure 7. Simulation results of the position controller. Top row: the UAV tracks well the desired path in form of a helix (left), it's actual position ξ is plotted (middle) and a 3D-animation (right) visualizes the simulation results. Bottom row: the UAV tracks well the desired quadratic path (left), it's actual position ξ is plotted (middle) and the angular values Φ, Θ are plotted (right). Attitude controller parameters: a1 = a2 = a3 = a4 = a5 = a6 = 7, b1 = b2 = 5, b3 = b5 = 1, b4 = b6 = 2
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 8 Figure 8.Quadrocopter prototype with an highly integrated Inertial Measurment Unit and a ARM-based CPU running a linux OS.
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