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Evolutionary Algorithms as Exploration and Analysis Helper tools,
Application to a Flapping Wings aircraft

Stéphane Doncieux

Abstract— Evolutionary Algorithms are often used as an
optimization tool. We use this ability here to help explore,
analyse and, on this basis, propose a controller for a complex
robotics system: a flapping wings aircraft. A multi-objective
optimization is performed to find the best parameters of
sinusoidal wings kinematics. The obtained results are not the
end of the process, but rather the begining. Their analysis
provides information concerning the simulated prototype: the
speed-energy relation is empirically evaluated. The analysis of
the regularities of wings kinematics parameters also provides
interesting insights that has led, in a further step, to the
synthesis of an open-loop controller allowing to change speed
during flight.

I. INTRODUCTION

Evolutionary Algorithms (EA) nowadays belong to the
classical toolbox of engineers as powerful optimization al-
gorithms [1]. They differ from other techniques in the fact
that they are derivative free optimization algorithms, i.e.
they don’t need to know the derivative of the function to
be optimized, they don’t even require to know an analytic
expression of the function to be optimized. Actually, they just
require the ability to evaluate the value it takes at different
points.

Real world problems generally include multiple objectives
to be optimized: cost and efficiency, for instance. When
these objectives are antagonistic, there is no single optimal
solution, but rather a set of optimal trade-off solutions. EA
are indeed particularly adapted to this context, because of
their population-based feature: they can approximate the
whole Pareto front at once — or at least a significant part
of it — whereas most other multi-objective algorithms only
discover one trade-off at a time [2]. This particular feature
has made them very popular and examples of applications
are numerous [3], [4], [5].

Besides this use, EA, and in particular Multi-Objective
EA (MOEA) can be used to better understand a particular
problem through an analysis of the generated solutions. As
MOEA don’t generate a single solution but a set of solutions,
an analysis of the relationships between those particular
points may provide interesting insights on the problem that
can lead, in a second step, to the design by an expert of
the field of new and innovative solutions that go beyond the
solutions handled by the MOEA. This allows, for instance,
to evaluate the efficiency of simple and easy to analyse
solutions before designing more complex ones while relying
on the analysis to drive the design. Deb and Srinivasan [6]

S. Doncieux is with ISIR Pierre and Marie Curie University, CNRS
Pyramide Tour 55 Boite courrier 173 4, place Jussieu 75252 Paris cedex 05
France stephane.doncieux@isir.upmc.fr

suggested a systematic approach to these questions and called
it innovization, for innovation through optimization. Their
approach consists in first finding the set of Pareto-optimal
solutions according to problem specific objectives. On the
basis of these data, an analysis is made to identify regularities
and relations between parameters.

In this article, we applied such an approach to a simulated
flapping-wings aircraft. Many studies have been performed
by biologists that have observed natural devices of this kind.
Thanks to statistical studies on flying animals or insects,
biologists have identified relations between significant pa-
rameters like wing area, cruising speed, wing span, flapping
wings frequency, wing load or mass [7]. Wing kinematics
have also been studied for several species. Tobalske and Dial
have observed, for instance, that pigeons and magpies use a
relatively constant flapping frequency across their all range
of speed, i.e. 4 to 14m.s—1 [8]. Meanwhile, Park et al. have
studied the swallow in a wind tunnel and observed an U-
shaped relation between frequency and speed [9], concluding
that such relations may vary upon bird species. Physicists
also try to unravel the physical mechanisms underlying the
flapping flight. Some experiments have been conduced in
which prototypes with a given kinematics were put in a
wind tunnel to study and characterize their behavior [10].
In this case, the kinematics is given, but if we turn to
a roboticist’s point of view, the question becomes : for
a prototype with known features, what are the interesting
kinematics ? The proposed methodology aims at providing
some elements of answer to this question, in a setup that
is as simple as possible. Contrary to biologists, we don’t
already have efficient aircrafts together with their controllers
to help infer relations between the involved parameters. We
are then facing a chicken-and-egg problem that the proposed
approach tries to solve or at least to bootstrap.

Stochastic optimization tools are very interesting in the
context of flapping wings aircrafts due to the complexity of
the relation between the parameters of a particular kinematics
and the resulting speed (or aircraft crash...) [11], [12], [13]
. The work presented here is different in that it does not
aim at generating a single and particular optimal controller,
but rather at generating a set of them, that are not the goal
per se but rather a mean to study properties of the system.
[14] had a similar goal, but a small number of speeds were
initially chosen in the study and runs were launched for each
value. In the work reported here, we are interested here in
generating a continuum of speeds.

It should be noticed that the following results have been
obtained in simulation and are thus highly dependent on



simulation accuracy. Actually, such experiments may be done
on a real prototype. We will discuss this point in section V.

The proposed approach is the following: we first use
a MOEA to generate the set of trade-offs between two
conflicting objectives (speed and energy). We analyze then
the results. To illustrate possible use of this analysis, we then
synthesize a simple open-loop controller allowing to adapt
the speed while in flight by changing only the parameters of
the sinusoidal kinematics of the wings.

II. METHOD

The approach we used here consists in first generating
a set of Pareto-optimal points. These points are particular
in the sense that they share a common specificity: they
are all optimal relative to some (antagonistic) user-defined
objectives. Finding the common features of those points cor-
responds then to finding what characterizes Pareto-optimal
points. Furthermore, the MOEA we will use, i.e. NSGA-II,
aims at finding a dense approximation of the Pareto-front.
This means that the generated solutions will be arbitrarily
close one to the other. This proximity between points will
make the analysis of the solutions easier and result, generally,
in a continuum between the features of these solutions. We
will now turn to a more detailed description of the approach.

The first step consists in choosing two antagonistic ob-
jectives (or more). The objectives explicitely need to be
antagonistic in order to garantee the existence of a set of
trade-off solutions, rather than a single optimum. Although
it may seem at first sight to restrict the field of application,
in practice, it is easy to find such objectives: cost or energy
related objectives are, for instance, generally antagonistic to
performance related objectives (efficiency relative to the task
to be solved, for instance).

Once these objectives are known, a search space has to
be chosen. The search space defines the set of candidate
solutions the EA will explore. All further results and analysis
will be relative to this search space, its choice must then be
done carefully. Besides expert of the field knowledge, search
space choice must also take into account the analysis step of
the method. As the goal is to understand how Pareto-optimal
solutions are related, the chosen search space should allow
to do it as easily as possible.

The next step is straightforward: launch the optimization
to find a good approximation of the Pareto front. Deb and
Srinivasan [6] suggest to do it in several different steps:
perform a standard multi-objective search, perform a single
objective optimization to find the extremum points of the
Pareto front and then use NCM to find a set of points
representing an uniformly distributed sampling of the Pareto
front. All these different steps only aim at providing a better
confidence in the fact that the Pareto front discovered by the
optimization algorithms are indeed near the true Pareto front.
In most real-world applications, there is no way to know it
with precision, it is then important to do whatever possible
to increase the confidence in the quality of the results, as the
quality of the further analysis will critically depend on this
part of the process. In the work reported here, we have done

several independant runs and also tried single optimization
for both extremum points and Pareto front points. As the
points generated by single objective algorithms were clearly
dominated by the points generated by NSGA-II!, we will
focus in the following only on the points generated by this
last MOEA.

The cloud of Pareto-optimal points can then be used to ex-
tract useful information. The Pareto-front itself is interesting,
as it shows the performance of the best solutions to be found
relative to the given search space. Each parameter can also
be plotted relative to one objective or the other, and some
regression may be performed to find an analytical function
approximating this relation. In the case of parameters de-
scribing a robot controller, this step results in the ability to
build a new and more complex controller relative to what EA
has explored and generated: if the parameters are modified
online using the found relationships we have a controller
able to move along the Pareto front and thus to adapt to
the context. Such an approach requires that such online
modification is possible and efficient, what is not guaranteed,
as the MOEA only explored constant parameters controllers.
Anyway, the proposed new controller may be the subject
of further refinements though another innovization step or
through a simple optimization of its parameters concentrated
on the transition phase between changes of parameters.

ITII. EXPERIMENTAL SETUP

To illustrate the proposed method, we have applied it to
the design of a flapping wings controller able to adapt the
speed of the aircraft to a given desired speed. We will use
a MOEA analysis to extract the relationships between the
speed and the different parameters of the kinematics. The
principle is the following: we generate a cloud of Pareto-
optimal points that correspond to different speeds and we
analyse how the parameters change relative to the speed. By
doing some regression on these clouds of points, we will
get a law of variation for each parameter relative to speed.
We will then test it to see if it actually allows to change the
speed of the flapping wings aircraft. Starting from a simple
family of functions, i.e. sinusoidal functions, allowing to fly
at a constant speed, we will then have a controller able to
adapt the speed of the aircraft®.

The first goal is to generate the set of pareto-optimal points
to be studied. Such points should represent a varying speed:
speed will be the first objective. An antagonistic objective
is required to generate a set of individuals and not a single
point. Energy will be used to this end. Two optimizations will
be performed: one will try to maximize speed, while the other
one will try to minimize it. We should get the largest range
of speeds, even in the case of an U-shaped relation between
speed and energy: we will get speeds below the most energy
efficient speed in the speed minimization experiments and
likewise speeds above that value in the speed maximization

we tried a simple rank-based EA.

2This will still be an open-loop controller, as it won’t take into account
real speed, we will propose an extension to design a closed-loop controller
in the discussion.
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Fig. 1.  Pareto-optimal points extracted from the results of the three
speed optimization and the three speed minimization experiments. Each dot
represents the optimal solution found by the EA for a given speed relative
to the energy consumption. X-axis: speed in m.s !, Y-axis: instantaneous
energy in W

experiments. The points generated by the two experiments
are then merged to generate the cloud of points to study.
Wing kinematics are described by the following equations:

DI = a,D[SiIl(zﬂ't/pD[) (1)
TWi = rrw;+arwisin(2r(t/ppr +prwi)) (2)
TWe = rrwe+arwesin(2n(t/ppr + prwe)) (3)

where DI is the wing dihedral, TW74 the internal twist and
TW e the external twist. Wing kinematics is then described
by eight parameters subject to the evolutionary optimization.
The chosen ranges for each value is the following:

o amplitude of the dihedral: apy in [0;45°]

e period of the dihedral (and of all other degrees of
freedom): ppy in [0.2;15]

« reference of the internal twist: rryy; in [—22.5;22.57]

« amplitude of the internal twist: apyy; in [0;45°]

o phase of the internal twist: pry; in [0; 1]

« reference of the external twist: ¥TWe in [—22.5;22.5°]

« amplitude of the external twist: arw. in [0;45°]

« phase of the external twist: prw. in [0;1]

We have used NSGA-II to perform the search, with a
population size of 500 and during 1000 generations. Evolved
parameters are represented as vectors of real values with a
polynomial mutation and a sbx crossover, as described in [2],
pl24.

We have used the simulator described in [14], [15]. The
parameters of the aircraft are given in Appendix.

IV. RESULTS

Two different sets of runs have been performed: one
attempting to maximize speed and the other one trying to
minimize it. Both of them had a second objective: energy
consumption, that had to be minimized. Three different runs
have been launched for each set. Each run shows a similar
pareto front, except for points at highest energy. This result
is not surprizing as these individuals are at the limits of
the simulation we used: small changes may have a huge
consequence on the stability of the simulation, thus making
such part of the search space difficult to explore.

Figure 1 shows the pareto fronts obtained by taking the
non-dominated solutions of the three runs for each set: dots
follow a U-shape, with a minimal energy consumption of
24W at 10.7m.s~ L.

The parameters of the sinusoidal wing kinematics for each
pareto optimal point can be plotted in order to find out how
they are related to the speed (figure 2).

For each parameter, we have performed a polynomial
regression, choosing the degree empirically: lower order have
been tried first and the order has been increased until the
match is visually satisfying. We have thus obtained the
relations reported in Appendix, figure 5, were each parameter
is a polynomial function of speed. Resulting approximation
is also plotted on figure 2.

We used then these approximated functions to pilot the
parameters of the same simulated bird (figure 3). The control
is oscillating, but as did the original controllers: the fitness
did only measure the mean speed, not the ability of the
controller to reduce its standard deviation. The control is not
efficient at all for 8m.s~!, meaning that the approximation
is not good for this speed. For other speeds, the simulated
bird speed tends to oscillate but with a decreasing amplitude.
For a speed of 10 or 11m.s~! the bird altitude isn’t perfectly
maintained, resulting in an increasing speed error when the
bird starts to dive. For each desired speed, the measured
mean speeds are the following:

Desired speed | average speed | abs. error
8 10.15 27%
10 10.64 6.4%
11 11.23 2%
13 13.45 3.5%
15 15.39 2.6%
20 17.61 12%
25 33.94 36%

For speed ranging from 10 to 15m.s~ 1, the error is several
percents, but it gets larger for small or high speeds. This is
not surprising as the physical behavior is less stable in these
cases.

We have also tried to change it online, i.e. during a flight.
To avoid physically unrealistic behavior, we haven’t abruptly
changed the parameters, but we have waited for the wings’
dihedral to pass near zero. Once a small angle is reached,
we let the wings still and wait until the new kinematics also
reaches a small angle and we switch the kinematics only



Wi
aTwi

-15

-20

pTWi
080 08 090 095
| | | |

0.75
I

0.65
I

(c) internal twist reference in deg

(d) internal twist amplitude in deg

Twe

pTWe

0.70
I

0.65
I

(f) external twist reference in deg

(g) external twist amplitude in deg

(h) external twist phase

Fig. 2. Empirical dependency of each parameter relative to speed. Plot of the repartition of pareto-optimal points for each parameter. Each dot represents
a pareto optimal solution. Solid lines represent the approximated fit with a polynomial relation whose parameters are given in Appendix, figure 5.

then. Results are reported on figure 4. What we observe is
that the bird actually changes its speed dynamically, simply
as a result of wing kinematics parameter change (open-loop
modification). The control is certainly not perfect, but we
show here that the adaptation is possible with a simple
open-loop scheme. Actually, we observe a kind of undesired
memory in the system: the control at a given speed may show
different performances (different static errors) depending on
the historical context, i.e. depending on the initial conditions
when the switch is performed. During evolution, every in-
dividual started from a single condition: horizontal flight at

11m.s~!; here, the ’starting’ speed may be very different.
Anyway the bird remains stable and at a relatively constant
altitude (remember that there is no active control at all: none
on speed but none on altitude also).

V. DISCUSSION

The main objective of this work is to get information from
a set of Pareto optimal solutions. A first question is : can
we get the Pareto-optimal points with other methods ? Of
course yes, but MOEA are certainly a good alternative to do
that. In many simple cases, an exhaustive search might do
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flight.

the job. Here, it would be difficult to use as we have eight
continuous parameters. If we discretize and consider only
ten different values, then we have a 10%® search space. A
single MOEA run did around 200,000 different evaluations.
As we did 6 different runs (3 for speed maximization and 3
for speed minimization), the total number of evaluations we
made is then 1.2 % 108, thus two orders of magnitude below
an exhaustive search. Furthermore the search space explored
by the MOEA was continuous and not a discretized one.

All the search was performed on the basis of a simplified
simulation. The conclusions are then only relative the model
that was used and are to be confirmed by experiments on a
real device. Anyway, such an approach can be used directly
on a real prototype. Its main drawback is then the high num-
ber of experiments required to find the pareto front. Some
solutions do exist to this problem. A simplified simulation
may be used first to reject the most inefficient solutions while
testing on the prototype only the most pertinent ones. The
discrepancy between an experiment in simulation and reality
may also be used to drive a model learning loop aimed at
reducing the gap between the two [16], [17].

The simple open loop controller that we have synthesized
is clearly not optimal. An optimization trying to generate so-
lutions more robust to the initial conditions might be required
to avoid the observed memory effect. Another innovization
step might also be launched to study the transition between
different speeds, the compromise here being for instance
between the speed of transition and its stability. Likewise,
starting from the generated open-loop controller, we could
close the loop and optimize the parameter of a controller in
which the speed error is added to the desired speed.

All this study is based on the features of Pareto optimal
points found by the MOEA. The generated Pareto fronts cor-
respond to performance to be expected with a simulated bird
flying with sinusoidal wing kinematics. Changing the family
of wing kinematics may change the shape of Pareto fronts. At
least, using such an approach, we might empirically compare
different kinds of kinematics and look at the advantage of
using more generic periodic functions, for instance.

The main point here is that EA might be used for other
purposes than mere optimization. Here, each generated point
is not an interesting solution in itself, it was interesting as a

50000



mean to capture some regularities of the problem that have
then been exploited manually. This suggests thus another use
of EA as an exploration tool during the very first steps of a
design process, whereas it is usually used at the very end,
when there is ’just’ several parameters to tune. This particular
use requires the analysis of an expert and is not aimed at
automatically designing a solution. It is rather a tool aimed
at helping the engineer or the scientist to gain better insights
about the problem to be solved.

VI. CONCLUSIONS

In this work, we have exploited the ability of MOEA to
generate a set of Pareto optimal points not just to discover
such points and choose one among them, but rather to get
some insights on the relationships between those points. We
have used it to empirically evaluate the trade-off between
speed and energy considering the morphology. Each parame-
ter of the sinusoidal wing kinematics has then been expressed
as a function of speed thanks to a regression performed on
pareto-optimal solutions. An open-loop controller able to
change speed along flight has been synthesized and tested
in simulation.
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APPENDIX

Parameters of the MOEA:

e MOEA: NSGA-II

« population size: 500

o number of generation: 1000

« number of independant run performed for each experi-
mental context: 3

o mutation rate 0.1

e mutation type: polynomial, 7,,: 15 and 7.: 10

e crossover: sbx

Parameters of the aircraft:

e wing span: 1.93m

aspect ratio: 8.5

wing area: 0.407m?

« total mass: 1.3kg

— fuselage mass: 0.915kg

— wing mass: 0.4kg

— elevator/rudder: 0.038kg
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param 00 vl v? v3 vt v° v v’ v8 vY

apr 5.83e3 | -2.85e3 | 5.98e2 | -7.03el | 5.12e0 | -2.40e-1 | 7.25e-3 | -1.36e-4 | 1.46e-6 | -6.73e-9
PDI -3.89¢0 | 1.07e0 | -9.68e-2 | 4.09e-3 | -8.27e-5 | 6.45e-7 - - - -
rewi | -1.16e2 | 2.44el -2.07 8.78e-2 | -1.82e-3 | 1.47e-5 - - - -
prwi | -2.89e-1 | 2.10e-1 | -1.35e-2 | 3.58e-4 | -3.39e-6 - - - - -
arwi 1.30e4 | -6.60e3 | 1.44e3 | -1.76e2 1.34el | -6.57e-1 | 2.09e-2 | -4.14e-4 | 4.66e-6 | -2.28e-8
rrwe | 3.55e2 | -1.38e2 | 2.24el -1.94e0 | 9.62e-2 | -2.76e-3 | 4.22e-5 | -2.68e-7 - -
prwe | 2.11e-2 | 1.49e-1 | -1.04e-2 | 2.97e-4 | -3.03e-6 - - - - -
arwe | 3.00e2 | -6.69el | 5.94e0 | -2.55e-1 | 5.35e-3 | -4.38e-5 - - - -

Fig. 5. Parameters of the polynomials approximating the relations parameter = f(v) for each parameter of wing kinematics submitted to optimization.



