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ABSTRACT
The generation of robot controllers for a task requiring a se-
quence of elementary behaviors is still a challenge. If these
behaviors are known, intermediate steps can be given to
help bootstrap the search, thus leading to task decomposi-
tion or incremental approaches. The goal of this paper is
to propose an alternative, within which such behaviors do
not need to be known. The proposed approach relies on
a classical multi-objective evolutionary algorithm and con-
sists in designing objectives dedicated to the enhancement
of evolutionary search abilities. These objectives are to be
used in addition to performance objectives rewarding the
efficiency, robustness, or whatever aspect a robot designer
might be interested in. Two different kinds of objectives are
proposed, tested and compared on a ball collecting problem.
Both rely on states that can be directly extracted from the
sensors and are completely independent from the genotype
and phenotype. They show promising results, even with a
simple direct neural network encoding.

Categories and Subject Descriptors: I.2.6 [Artificial
intelligence]: Connectionism and neural nets

General Terms: Algorithms.

Keywords: Evolutionary robotics, multi-objective evolu-
tionary algorithms, behavioral diversity, sequential tasks.

Complex task resolution with Evolutionary Algorithms is
often faced with premature convergence to an easy to find
local optimum. In a robotics context, several solutions have
been proposed. Incremental approaches require a manual
decomposition of the task to be solved in simpler sub-tasks.
The task is then solved through several steps, each step con-
centrating on a particular sub-task [4]. Such approaches im-
ply a sequential resolution that is highly dependent on the
quality of the task decomposition. Another related possi-
bility consists in using a multi-objective scheme to add as
many different selective pressures as necessary. New objec-
tives may thus reward sub-tasks [5], with the advantage of
an automatic switch between the different tasks. To avoid
premature convergence, another objective may also directly
push towards diversity on the genotype [1]. Multi-objective
evolutionary algorithms can then be exploited to enhance
the search ability of the algorithm. In this multiobjectiviza-
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Figure 1: Overview of the arena and of the robot.

The initial positions of the three evaluation experi-

ments used for the fitness computation are plotted

on the figure.

tion approach [3], we will propose two new simple objectives
that are adapted to robot tasks requiring a sequence of ele-
mentary behaviors.

Both objectives rely on the definition of discrete states
on the basis of sensor information. The states are used for
fitness design only and are not used at all in the robot con-
troller.

The first objective relies on an available knowledge on
the ‘desired” transitions between different states and con-
sists in rewarding the robot for following a supposedly right
sequence of states. Fitness evaluation requires the definition
of two counters for each state: nt and ng ; nt evaluates the
total number of times the state has been reached and ng

evaluates the number of times that the following state was
the desired one. If N is the number of different states, the
fitness objective may be expressed as follows:

ost(x) =
PN

i=0 stc(x, i) ∗ 10rg(x,i)

with stc(x, i) =

(

min(9, 1 + ng [i]) if nt[i] 6= 0

0 otherwise

and rg(x, i) =
Pi

j=0(1 − δ
nt[j]
0 ), δ

j

i being Kronecker delta.

Our second objective defines a selective pressure towards
diversity, as evaluated on the basis of the behavior, not on
the genotype or phenotype. The behavioral diversity will
be evaluated here on the basis of simple statistical informa-
tion concerning the states we have previously defined. The
behavioral diversity objective requires to compute the vec-
tor nt,x reflecting the total number of times each state has
been reached by the robot described by genotype x. The
behavioral diversity objective associated to individual x is
then: obd(x) = 1

size(P )

P

y∈P
d(x, y) with P the current pop-
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Figure 2: State definition tree used with the arena

experiment described on figure 1.

ulation and d(x, y) =
Pns−1

i=0 di(x, y) with ns the number of
states. di(x, y) is a square euclidian distance normalized by
the maximum number of times state i has been reached by
x and y. This avoids individuals reaching a huge number of
times a particular state to be over-rewarded.

To test the proposed fitness objectives, we have defined
a task consisting in collecting some balls in an arena and
putting it into a basket located at a particular place (fig.
1). The robot is a simple two-wheeled robot that has the
following sensors: two wall distance sensors; two bumpers;
two object detection sensors; two basket detection sensors;
one carry ball sensor. The effectors are the following: left
wheel motor; right wheel motor; catch ball motor. Once a
ball is thrown, even not in front of the basket, it is removed
from the arena. Figure 1 shows the arena with the details
of the sensor configuration of the robot.

The chosen states are depicted on figure 2. We have also
built a simple goal objective og(x), that takes the number
of collected balls nc(i) during evaluation i, summed over the
neval evaluations of individual x. Last, we have defined an
objective or(x) with a random value for comparison pur-
pose: this objective takes a random value between 0 and 10.
We end up with five different experiment setups which only
differ on the objectives to maximize. The Control experi-
ment maximizes og(x) only and all other experiments add
one or two objectives: random experiment adds or(x), di-

versity experiments adds obd(x), transition adds ost(x) and
transition+diversity adds obd(x) and ost(x).

Individuals are tested in three different setups character-
ized by the robot starting points which are represented on
figure 1. Robot controllers are neural networks whose struc-
ture and parameters are generated via the EA with a di-
rect encoding. The EA we used is NSGA-II [2]. 20 runs
with 2000 generations were launched for each configuration.
The mean, max and min numbers of collected balls over the
twenty launched runs at some particular generations are the
following (best values are in bold font, standard deviation
are also provided):

name stat 500 1000 1500 2000

control

mean 0.35 0.6 0.6 0.75
max 2 2 2 3
min 0 0 0 0
stdev 1.5 1.6 1.6 1.7

random

mean 0.35 0.5 0.6 0.7
max 2 2 2 3
min 0 0 0 0
stdev 1.4 1.5 1.7 1.8

diversity

mean 2.7 3.95 4.55 4.8

max 6 9 9 9

min 1 1 1 1

stdev 2.6 3.2 4.5 5.6

transition

mean 3.5 4.2 4.55 4.75
max 6 8 8 8
min 1 1 1 1

stdev 2.9 3.2 4.5 4.5

transition+diversity

mean 3.05 4.25 4.55 4.8

max 6 8 8 8
min 1 1 1 1

stdev 2.0 4.0 5.0 5.2

Control and random experiments (group 1) generate con-
trollers that can collect no more than one ball per evaluation,
whereas the other experiments (group 2) have all generated
individuals able to do it. The statistical difference between
these two groups of experiments is significant (T-Test) and
the difference between members of a same group is not sig-
nificant.

The two proposed additional objectives have been able to
drive the evolutionary process to solve the task in a single
evolutionary run, i.e. without any behavioral decomposition
and incremental approach. Using a direct encoding, neural
network controllers have been evolved that are able to catch
a ball, navigate towards a hidden basket, reach the basket
and release the ball inside it before going back exploring and
finding new balls to catch and doing this cycle again until
no balls are available or the evaluation time has elapsed.
Both objectives are independent from any controller encod-
ing and are compatible in particular with indirect encodings.
They require to define states on the basis of sensorial data.
The first objective requires to know what the desired state
transitions are, i.e. what state the robot should reach from
a particular state.The second objective requires less a pri-
ori knowledge and aims at encouraging behavioral diversity.
The two objectives gave similar results. Being simpler and
based on less a priori knowledge, the behavioral diversity
objective appears as the most promising approach.

REFERENCES
[1] E. D. de Jong, R. A. Watson, and J. B. Pollack. Reducing bloat

and promoting diversity using multi-objective methods.
Proceedings of the Genetic and Evolutionary Computation

Conference, pages 11–18, 2001.

[2] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for
Multi-Objective Optimization: NSGA-II. In Marc Schoenauer
et al., editor, Proceedings of the PPSN VI Conference, pages
849–858, Paris, France, 2000. Springer. LNCS No. 1917.

[3] Julia Handl, Simon Lovell, and Joshua Knowles.
Multiobjectivization by decomposition of scalar cost functions.
In Proceedings of the PPSN X Conference, pages 31–40. 2008.

[4] J. Kodjabachian and J.-A. Meyer. Evolution and development of
neural networks controlling locomotion, gradient-following, and
obstacle-avoidance in artificial insects. IEEE Transactions on

Neural Networks, 9:796–812, 1997.

[5] J.B. Mouret and S. Doncieux. Incremental evolution of animats’
behaviors as a multi-objective optimization. In From Animals
to Animats 10, volume 5040 of Lecture Notes in Computer

Science, pages 210–219. Springer, 2008.


