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I. INTRODUCTION

During the last years different robots have arrived to the
domestic environment. Service robots, as Roomba1, are able
to clean both the floors and carpets of a house, for example.
Its success mainly stems from the fact that it does not interact
with objects. It just needs to move around in a room while
avoiding obstacles to fulfill its mission. To be able to perform
more complex tasks in our environment, a robot should be
able to identify our everyday life objects and know what to do
with them: it needs to know their affordances. Developmental
robotics [1] proposes to make robots learn by themselves such
affordances through a dedicated exploration step, similar to the
body babbling [2] performed by infants.

Previous works explored the environment based on the
concept of intrinsic motivations [3]. The Intelligent Adaptive
Curiosity [4] relies on predictive models of action results and
focuses the babbling on actions associated to predictive models
whose learning progress is maximal. The Novelty-driven Evo-
lutionary Babbling [5] looks for behaviours generating novel
perceptions. Novelty Search [6] is used in this work to generate
trajectories to be executed by the end-effector of the robot,
focusing on those that modify the scene, i.e. those moving
one or more objects without the need to provide the robot
with the notion of what an object actually is [5].

In this work and to discover object affordances, we propose
an approach to generate large sets of diverse behaviours
involving interactions with the target object. No primitive
behaviour is provided. The proposed babbling relies on the
detection of the position of the object and tries to generate,
thanks to robot arm movements, as many different object
positions as possible. The proposed approach discovers how
to grasp, push and throw objects at different locations, which
are behaviours that are usually difficult to generate without
prior information about the dynamics of the robot and of the
objects.

II. METHOD AND RESULTS

To generate a diversity of arm trajectories of interest for ob-
ject manipulation while exploring an environment, we utilize
an evolutionary algorithm called Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites) [7], [8]. This algorithm defines

1http://www.irobot.fr/

Fig. 1. Example of a trajectory to launch the cube into a basket: (1) the
robotic arm is in its initial position, (2) the arm gets close to the cube, (3)
the arm gets the ball and moves to a new position, and (4) the arm launches
the cube to the basket and reaches the final position.

a multi-dimensional grid (called map) that it will try to fill.
Each dimension corresponds to a behaviour descriptor. The
dimensions are discretized and each ’cell’ in this map contains
at most one controller (e.g., a trajectory): the controller that
generates a behaviour fitting with the behaviour descriptor
value of the cell and having the best performance according
to a user defined fitness function. Controllers are randomly
generated at first. They are then evaluated to see where they fit
in the map. If the corresponding cell is empty, they are added
to the map; otherwise, only the best performing controllers
among those in the cells and the new ones are kept in the map.
New individuals are generated thanks to a mutation operator
and likewise added to the map if the corresponding cell is
empty or if they behave better. See [8] for more details. Finally,
the algorithm returns the highest performing solution for each
encountered behaviour descriptor value.

We have defined an experiment to evaluate the performance
of MAP-Elites for an object babbling purpose. The evaluated
scenario is composed of a table, a small cube and four baskets



Fig. 2. Results obtained after the execution of the MAP-Elites algorithm. The
big blue box represents the table, the medium one the robotic arm, and the
small one the initial position of cube. Each point represents a final position
reached by the small cube after the execution of a trajectory. The color of
each point corresponds to the number of different ways to reach each position.

(Figure 1). The goal is to discover what the robot can do
with the small cube and in particular what displacement of
the object it can perform, without providing it with pushing
or grasping primitives. The proposed behaviour descriptors
are: x, y, z, ∆x, ∆y and ∆z; where x, y and z are the final
position of the cube after each movement, and ∆x, ∆y and
∆z define, for each dimension, the difference between the two
most extreme positions of the cube during its movement (for
example, ∆x = xmax−xmin). These 3 additional dimensions
allow the algorithm to get different ways of putting the cube
at a particular position. The performance comparison is based
on the total torque required to perform the cube displacement
(to be minimized). During the experiment both the arm and
the cube are reinitialized to their initial positions after the
execution of a movement.

The simulated robot arm is based on the features of a
Crustcrawler Pro-Series robotic arm2. A controller represents
a trajectory, initially composed of one end position of the arm.
A dedicated mutation operator can add intermediate positions
to create more complex trajectories. A position is defined by
seven values related to the six joint values composing the arm,
and another value related to the opening of the gripper in
between positions.

The results obtained are depicted in Figure 2. Most of the
discretized positions on the table have been reached by the
cube, including positions within the four baskets (95.2% of
the 352 cells located on the table are filled). Other positions
over the table have been also reached while the gripper held
the cube in the air. MAP-Elites thus revealed to be able
to launch the cube into the baskets, as exemplified by the
trajectory plotted on Figure 1. This result implies for the robot
to grasp the object, to lift it and to launch it towards the
basket, which requires to move towards the cube and open

2http://www.crustcrawler.com/

the gripper at the right moment. MAP-Elites has then been
able to generate a diverse repertoire of trajectories putting the
cube in many different positions, including positions requiring
a non-trivial sequence of cube manipulations without any
primitive behaviour. More than 60,000 behaviours have been
autonomously found by the algorithm after 1.6 millions of
evaluations. These data could actually be used to automatically
design primitive behaviours on which a physical robot can
rely on or to extract higher level information about the object
affordances. An online video showing several executions of
the experiment is available at https://youtu.be/FSn YeAiHAs.
We are currently working on the transfer of the behaviours
generated in simulation on the real robot arm, notably with
the transferability approach [9].
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