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Introduction

During the second half of the twentieth century, algebraic methods have been increasingly
recognised as powerful approaches to the formalisation of musical structures. This is evident in the
American music-theoretical tradition as well as in the European formalised approach to music and
musicology. We mention the mathematician and composer Milton Babbitt, the Greek composer
lannis Xenakis and the Roumanian theoretician and composer Anatol Vieru, that gave important
impulses to the subject of our paper (Babbitt, 1960; Xenakis, 1971; Vieru, 1980). We also mention
Gerald Balzano's original contribution (Balzano, 1980) and Dan Tudor Vuza's model of Vieru's
modal theory (Vuza, 1982-), as well the approaches of Guerino Mazzola (Mazzola, 1990), Harald
Fripertinger (Fripertinger, 1991) and Marc Chemiillier (Chemillier, 1990), who opened the path to a
generalisation and implementation of algebraic properties of musical structures.

This paper especially deals with the implementation of Vuza's model of periodic rhythm in
OpenMusic, an open source visual language for composition and music analysis developed by
IRCAM. This has been done in a specific library OMCanons as a part of a more general library
called Zn, entirely based on the algebraic properties of finite cyclic groups and their applications to
music. A complete catalogue of intervallic structures (up to transposition) is the starting point for a
classification of intervallic structures by means of musically interesting algebraic properties
(Olivier Messiaen's limited transposition property, Milton Babbitt's all-combinatoriality, Anatol
Vieru's partitioning modal structures etc.), their generalisation for any n-tempered system and
reinterpretation in the rthythmic domain.

In this article we deal with rhythmic canons of various kinds in order to show how the new OM-
library can be used. However, there is a strong connection between well-known phenomena in n-
tempered systems and n-cyclic time. Just to mention one example, Messiaen's limited
transpositional modes are related to non-maximal-category canons (see below).”

Rhythmic Canons Tiling the Space

The present essay focuses on the implementation of a family of rhythmic canons having the
property of tiling musical time space. Before describing them in terms of an abstract model of
cyclic time, we view them as they may appear within a musical composition, in the 'free' linear
time, which has no cyclicity. Like in a melodic canon, one has several voices that may enter one
after the other until all voices are present. As in the case of a melodic canon all voices are just
copies of a ground voice that is suitably translated in the time axis. For simplicity - but yet with
respect to linear time - we suppose here, that all voices are extended ad infinitum. We further
suppose that the ground voice is a periodic rhythm that we will call the ‘inner rhythm'. Following
Vuza's definition, a periodic thythm is an infinite subset R of the rationals Q (marking the attacks
points, or onsets) with R = R + d for a suitable period d. Furthermore, R is supposed to be locally
finite (i.e. the intersection of R with every time segment [a, b] is finite). The period of a periodic
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rhythm R is the smallest positive rational number dR satisfying R = R + dR. We also mention
another important characteristic of a periodic rhythm - its pulsation pR. It is defined as the greatest
common divisor of all distances between its attack points. Obviously, the pulsation pR of a periodic
rhythm always divides its period dR.

In order to include the idea of tiling time space into the definition of a rhythmic canon, we need a
further preparation: For each voice V of a canon we consider all rational numbers s such that V=R
+ 5. The collection S of all these translations for all voices is itself a periodic rhythm (with period
dS dividing dR) that works in fact as a 'meter’ for the canon. Note that R and S may have different
pulsations pR and pS. The pulsation of a canon is hence to be defined as the greatest common
divisor p of the pulsations pR and pS.

The ratio n = dR/p is central in order to switch from linear time, modelled by rational numbers to
circular time modelled by residue classes of integers. The transition goes as follows: Let r denote a
fixed attack point within the inner rhythm R (If only one canon is being considered one can always
suppose r = 0). Then each attack point in any of the voices has the form r + t p for a suitable integer
t, i.e. the whole canon is contained in the sublattice r + p Z of Q. Because everything is periodic
with period dR, we can work with classes of points in linear time and identify them with cyclic
time points. Mathematically, one works with the factor space (r + p Z) / dR Z which may be
identified with Z/nZ where n = dR/p.

From now on, we consider the whole canon within Z/nZ. We study the projections of R and S as
well as those of the voices V (using the same notation) and formulate additional conditions in order
to characterise rhythmic canons. For practical reasons we also allow cycles n that are multiples of
dR/p.

Consider two subsets R and S of Z/nZ, the inner thythm and the outer rhythm. Moreover consider
the Voices Vs = R + s, where s runs through S. The pair (R, 8) is said to generate a rhythmic tiling
canon with the voices Vs if the following conditions are fulfilled:

1) The voices Vs cover entirely the cyclic group Z/nZ.. With respect to the linear time this means
that the canon is completely tiling musical time space at the (regular) pulsation p.

2) The voices Vs are pairwise disjoint. This means that the voices are complementary.

Periods dR and dS and pulsations pR and pS of R and S are also defined in Z/nZ. Among all canons
having the properties 1) and 2) there is the special class of Regular Complementary Canons of
Maximal Category, shortly RCMC-Canons (Vuza, 1995). They have the following additional

property:

3) The periods pR and pS coincide.

Formally speaking, a RCMC-Canon is a factorisation of a cyclic group Z/nZ into two non periodic
subsets (where a subset M of Z/nZ is said to be periodic if there exists an element t in Z/nZ such
thatt + M = M).

This transition from free linear time to cyclic time, that has been implemented together with all
numerical invariants attached to a rhythm (period, number of attacks in a period, pulsation of a
rhythm, ...), reduces the difficulty of many operations on rhythms that arc connected with the
construction of canons. One operation, called 'composition’, is particularly relevant in this context.
It represents Vuza's translation, in the rhythmic domain, of Anatol Vieru's composition of modal
structures. We recall that for Vieru, a modal structure is a transposition class of any subset of the

94



Les Actes des 8e Journées d’'Informatique Musicale - Bourges 2001

cyclic group Z/nZ. Composing two modal structures simply means to take the union of the
transpositions of the first one by the intervals determined by the second structure (or vice versa,
because of the commutativity of transpositions). This operation, which is in fact a generalisation of
Boulez' 'multiplication d'accords’, leads to the formalisation of the canons construction process, as
the composition of two rhythmic structures, respectively the inner class and the outer class
(replacing Vuza's ground and metric classes). The first one gives the rhythmic pattern of a voice
and the second one defines where the other voices have to enter. A special case consists of
composing a rhythm with a regular rhythmic structure. This operation is called 'condensation’. In
the case of canons, condensation is a powerful operation in interaction with another one: the
exchange of the roles of inner and outer classes. This combination allows starting with any canon
and ending up with a canon of maximal category. The implementation of this minmax-
condensation algorithm (Vuza, 1995) is particularly useful for composers who are interested in the
collection of all canons sharing, in some sense, the same genetic information of a particular
prototype. For RCMC-canons, the implementation of Vuza's algorithm on OpenMusic enables to
calculate, for any period n, all possible inner and outer structures associated with. It offers to
understand the relationships between a period and the number of voices for such a canon. For
example, the smallest RCMC-canon has a period equal to 72 and a number of voices equal to 6.
This is the consequence of the algebraic property that no cyclic group smaller than Z/727Z can be
'factorised' in two non-periodic subsets. We now use this example to explain the idea of canon
modulation.

Canon Modulation

In a compositional situation one might intend to work with more than just a single canon.

In that case it is interesting to investigate the inner syntagmatic structures of canons with respect to
the paradigmatic relations between several canons. The suggestive term 'canon modulation' shall in
fact refer to structural analogies in harmony. A typical modulatory effect in harmony is forced by
the re-interpretation of a chord in a new harmonic role.

This works with canons as follows:

Consider a canon consisting of 6 exemplars R + s of the inner rhythm R = 0156122529 36
42 48 49 53) with starting points s in the outer rhythm S = (0 22 38 40 54 56). These starting
points s in S parameterise the rhythmic roles of the 6 copies of R within the canon. To modulate
into another canon within the same translation class means to modulate into a canon with the same
fundamental rhythm R, but S replaced by S + t for some t. Candidates for rhythmical re-
interpretation are hence the elements in the intersection of S and S + t.

Fort=16 one has S1 =S + 16 = (16 38 54 56 70 0), i.e. there are 4 points in S that can be re-
interpreted within S1. This example (listen to the attached midifile ModulationMod72.mid) is
constructed as a cyclic sequence of 9 modulations each being a translation of interval 16 mod 72.
The re-interpretation of the common rhythm is stimulated by a re-instrumentation of the percussion
instruments according to their rhythmic roles.

In this paper we will also focus on another, deeper analogy with harmonic modulation, this is the
three-step modulation scheme of Arnold Schoenberg, that has later been modelled mathematically
by Guerino Mazzola (Mazzola, 1990), where one not only looks for common chords, but actually
studies the process of destabilisation of the old key and the stabilisation of the new one on the basis
of an interaction between the two. Finally, we will refer to finite poly-canonic rhythms (with
variable periods) for which there exist canons in different cycles. '
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Augmented rhythmic canons

While we have been concerned only with translations so far, we will now present a suitable
generalisation, that leads to canons with augmented voices.

Consider two sequences, R and S, of (invertible affine) symmetries [a,t](x) := a x + t modulo m*n,
with R having m entries and S having n. We call R the inner symmetries and S the outer
symmetries. Each symmetry consists of an augmentation with factor a and a translation with
summand t.

Let A(R) and A(S) denote the augmentation factors of the symmetries in R and

S, and let T(R) and T(S) denote the corresponding translations respectively.

By R*S we denote the mxn - matrix of all pairwise concatenations r*s where r runs through R and s
runs through S. This matrix is a candidate of what we call a "canon of symmetries": By |[R*S| we
denote the set consisting of all entries in the matrix R*S. Now, the pair (R,S) is said to generate the
symmetry canon R*S, if T(|[R*S|) = Z/m*nZ, i.c. if every translation mod n*m occurs exactly once
among the symmetries in [R*S|.

The non-augmented case is characterised through A(R) = (1 ... 1) and A(S) = (1... 1). Moreover,
there is a duality of canons in the sense that S*R is the transposed matrix of R*S.

In the augmented situation, however, if we are given a symmetry-canon-generating pair (R,S), it is
generally not the case that the pair (S,R) is also canon-generating. In case it is, one has

T(R*S|) = T(|S*R]) = Z/m*nZ,

but this does not imply |R*S| = |S*R| nor the even stronger condition, that R*S is the transposed
matrix (S*R)" of S*R.

From the musical point of view, it is very interesting to make use of the non-commutativity of
symmetries, i.€. to benefit from R*S being different from S*R".

We say, that a symmetry-canon-generating pair (R,S) has a dual one, if [R*S| = [S*R].

The following is a suggestive example in the case n =4 and m = 3:
R=([11,0][5, 11[5,3]1 {11 10]) and S = ([11, 0] {5, 1] [5, 5])

In this example one has:

R*S =(
(1,01 {7,11] {7, 7))
(7,11 [1,6] [L,2])
(17,31 11,8] [1,4])
)([1,10] (7,91 [7,5D)

(S*R)" =
(I1,0) [7,11(7.5))
(7, 1] 1,611, 10)
(7,9 [1,4101,81)
.21 0.310.7)

That is, [R*S| = |S*R|, but R*S and (S*R)" differ from each other in 10 of 12 entries.

Now we explain, how to obtain augmented canons from a symmetry canon. Apply

the entries of R to some onset x mod n*m, say x = 0, in order to generate a inner voice. In the
example, R*x = R*0 = (0 1 3 10). From R*x one generates the voices of the desired canon by
applying the entries of S to R*x. In the example, we obtain the augmented canon:
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S*R*0=((0 11 9 2)
(1 64 3)
(510 8 7))

Analogously, the dual canon turns out to be

R*S*0=((0 11 7)
(1 62)
(3 8 4)
(10 9 5))

The composer Tom Johnson experimented with the idea to augment the voices in the sense of
playing them at different 'tempos'. (Johnson, 2001).

In that case, the lowest common multiple of A(S) defines a long cycle of

repetitions of the inner m*n cycle that has to be filled by a suitable number

of copies of each voice.

In our example we start with 3 longer voices modulo 4*3*5%11 = 660:
V1=(01133 110132 143 165 242 ... 528 539 561 638)
V2=(161651616676111..601 606616 651)
V3=(5102055657080 115 ... 605 610 620 655)

In order to fill the whole cycle mod 660 one needs 11 copies of V1, 5 copies

of V2 as well as 5 copies of V3.

Hence, the whole augmented canon consists of 21 voices:

(VI,V1+12,., V1 +120,V2,V2+12,.., V1 +48,V3,V3+12,..,V3+

48) everything modulo 660. Similarly, its dual canon can be realised with 32 voices. Listen to the
attached Midifiles CanonMod12.mid and DualCanonMod12.mid where each Voice is played on a
separate pitch of a diatonic scale.

Conclusions

The problem of constructing rhythmic canons tiling the space and the effective possibility to solve
it by means of a group-theoretical algorithm shows the usefulness of an algebraic-oriented
approach to the formalisation of musical structures. The OpenMusic library OMCanons allows the
graphical manipulation of rhythmic operations leading to the complete description of two main
families of canons that we tried to present in a formal way: the RCMC-canons and the augmented
canons. It also shows how to deal with complex musical transformations, as the modulations
between different canons. There are suitable OM-Patches (visual programs) in order to produce all
examples presented in this paper and to generalise them according with compositional applications
or music-theoretical investigations. Positive reactions of composers already working in different
compositional projects suggest looking for other musical transformations (like generalised
symmetries), including an extension of the model in the pitch domain. This will be part of a more
general OpenMusic library called Zn that is entirely based on the algebraic properties of (cyclic)
groups and their application to music.
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