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Abstract

We study control properties of a linearized fluid-structure interaction system, where the structure is a
rigid body and where the fluid is a viscoelastic material. We establish the approximate controllability and
the exponential stabilizability for the velocities of the fluid and of the rigid body and for the position of
the rigid body. In order to prove this, we prove a general result for this kind of systems that generalizes
in particular the case without structure. The exponential stabilization of the system is obtained with a
finite-dimensional feedback control acting only on the momentum equation on a subset of the fluid domain
and up to some rate that depends on the coefficients of the system. We also show that, as in the case without
structure, the system is not exactly null-controllable in finite time.
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1 Introduction

We study some controllability properties of a mathematical model describing the motion of a rigid body
immersed in a viscoelastic fluid. First we describe the corresponding model: we denote by Ω ⊂ R3 a
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bounded domain containing the fluid and the rigid body. The structure domain S(t) can be described
through its orientation Q(t) ∈ SO(3) and its center of mass h(t) ∈ R3, whereas the fluid domain F(t) is the
complement of the structure domain in Ω:

S(t) = h(t) +Q(t)S0, F(t) = Ω \ S(t),

where S0 ⊂ R3 is the reference domain of the rigid body, chosen as a nonempty regular domain with center
of mass 0.

Now, to describe the dynamics of the corresponding fluid-structure interaction system, we use the Newton
laws to obtain the equations below on the linear and angular velocities of the rigid body ` ∈ R3 and ω ∈ R3:{

h′ = ` ∀t > 0,
Q′ = S(ω)Q ∀t > 0,

(1.1)


m`′ = −

∫
∂S(t)

τfluidndΓ t > 0,

(Jω)′ = −
∫

∂S(t)

(x− h)× τfluidndΓ t > 0,
(1.2)

where τfluid is the stress tensor of the fluid, where m > 0 and J are the mass and the moment of inertia of
the rigid body and where

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (ω ∈ R3).

For the fluid, its velocity u and pressure p satisfy{
∂u

∂t
+ (u · ∇)u− div τfluid = fχO t > 0, x ∈ F(t),

div u = 0 t > 0, x ∈ F(t),
(1.3)

{
u = 0 t > 0, x ∈ ∂Ω,

u(t, x) = `(t) + ω(t)× (x− h(t)) t > 0, x ∈ ∂S(t),
(1.4)

where f is the control of the system, acting on a part of the fluid domain O ⊂ Ω (χO is the characteristic
function of O). We assume that O is a nonempty domain with O ⊂ F(t) for all t.

Finally, it remains to describe the stress tensor of the fluid. For that, we consider the Johnson-Segalman
model for viscoelastic flows, that is

τfluid = Σ(u, p) + τ,

where

Σ(u, p) = 2ηD(u)− pI3, D(u) =
1

2

(
∇u+∇u>

)
and where

∂τ

∂t
+ (v · ∇)τ + ga(τ,∇u) + λτ = 2κDu t > 0, x ∈ F(t), (1.5)

Here a ∈ [−1, 1] is a constant and

ga(τ,∇u) = τW(u)−W(u)τ − a(D(u)τ + τD(u)), W(u) =
1

2

(
∇u−∇u>

)
.

In the above relations, η, λ and κ are positive constants and W(u) denotes the vorticity tensor. Local
existence of solutions of viscoelastic fluids for arbitrary data and global existence of solutions for sufficiently
small data in appropriate spaces have been established in [14, 12]. Regarding a detailed discussion on
Johnson-Segalman fluid flow and viscoelastic fluids in general, we refer to [26].

The corresponding system (1.1), (1.2), (1.3), (1.4), (1.5) with initial conditions for u, τ , h, Q, ` and ω is
already studied in [13] and [32]. They show the well-posedness of the system respectively in a Lp−Lq setting
and in Hilbert setting. Their methods are based on a change of variables to handle the moving and unknown
fluid domain F(t), a linearization and a fixed point argument. Due to the viscoelastic part corresponding to
τ , the system is more complex to study than the system of interaction between a rigid body and Newtonian
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fluid governed by the classical Navier-Stokes system (that is τ = 0 in the above system). In particular in
the linearization, the equation of τ is treated separately.

Here our aim is to present a linearization of the above system and to study some control properties
of this linearization, seen as a first step towards some control results for the nonlinear system. A similar
linearization is used for the well-posedness and the controllability results of the system composed by a rigid
body and Newtonian fluid (see for instance, [15], [4], [3]). The idea is to consider a change of variables to
write the above system with fixed domains F and S and then remove all the nonlinear terms coming from
the model and from the change of variables. This leads to the following system

∂u

∂t
− div (Σ(u, p) + τ) = fχO t > 0, y ∈ F ,

div u = 0 t > 0, y ∈ F ,
∂τ

∂t
+ λτ = 2κDu t > 0, y ∈ F ,

(1.6)

{
u = 0 t > 0, y ∈ ∂Ω,

u(t, y) = `(t) + ω(t)× y t > 0, y ∈ ∂S, (1.7)
m`′ = −

∫
∂S

(Σ(u, p) + τ)ndΓ t > 0,

J0ω
′ = −

∫
∂S

y × (Σ(u, p) + τ)ndΓ t > 0,
(1.8)

{
h′ = ` ∀t > 0
θ′ = ω ∀t > 0.

(1.9)

Note that in the above system, F and S are now time-independent regular domains with F = Ω\S. We keep
the same notation as in (1.1), (1.2), (1.3), (1.4), (1.5) for u, τ , `, ω but these variables have been modified
through the change of variables. J0 is time-independent positive symmetric matrix and the rotation matrix
Q has been replaced by a local chart of SO(3) (for instance the Euler angles), that is θ(t) ∈ R3. If we
introduce the density ρS of the rigid body, and we assume it is a positive constant, we have the following
relation:

m = ρS |S|, J0 = ρS

∫
S

(
|y|2I3 − y ⊗ y

)
dy, (1.10)

where |S| is the Lebesgue measure of S. We can assume that 0 is the center of gravity of S so that∫
S
y dy = 0. (1.11)

In what follows, we only consider a particular case of (1.6)-(1.9), where we assume that τ is of the form
τ = 2D(v). Due to the incompressibility condition of u and its boundary values, we finally consider the
following linear system: {

∂u

∂t
− div (Σ(u, p) + 2D(v)) = fχO t > 0, y ∈ F ,

div u = 0 t > 0, y ∈ F ,
(1.12)

{
u = 0 t > 0, y ∈ ∂Ω,

u(t, y) = `(t) + ω(t)× y t > 0, y ∈ ∂S, (1.13)
m`′ = −

∫
∂S

(Σ(u, p) + 2D(v))ndΓ t > 0,

J0ω
′ = −

∫
∂S

y × (Σ(u, p) + 2D(v))ndΓ t > 0,
(1.14)

{
∂v

∂t
+ λv = κu t > 0, y ∈ F ,

div v = 0 t > 0, y ∈ F ,
(1.15)

{
v = 0 t > 0, y ∈ ∂Ω,

v(t, y) = k(t) + r(t)× y t > 0, y ∈ ∂S, (1.16)
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{
k′ + λk = κ` ∀t > 0
r′ + λr = κω ∀t > 0

(1.17){
h′ = ` ∀t > 0
θ′ = ω ∀t > 0

(1.18){
u(0, ·) = u0, v(0, ·) = v0 in F ,

h(0) = h0, θ(0) = θ0, `(0) = `0, ω(0) = ω0, k(0) = k0, r(0) = r0.
(1.19)

In order to study the above system, it is standard to extend u and v as functions of Ω by setting

u(t, y) = `(t) + ω(t)× y, v(t, y) = k(t) + r(t)× y (t > 0, y ∈ S)

and similar formula for u0 and v0. This leads us to introduce the following space

H =
{
u ∈ L2(Ω) ; div u = 0 in Ω, D(u) = 0 in S, u · n = 0 on ∂Ω

}
. (1.20)

We recall (see [36, Lemma 1.1, p.18]) that D(u) = 0 in S, if and only if there exist `u, ωu ∈ R3 such that

u(y) = `u + ωu × y (y ∈ S).

We consider the inner product on L2(Ω) defined by

(u, v) =

∫
F

u · v dy +

∫
S

ρSu · v dy,

where ρS is the density of the rigid body. The corresponding norm is equivalent to the usual norm in L2(Ω)
and if u, v ∈ H, then we have:

(u, v) =

∫
F

u · v dy +m`u · `v + J0ωu · ωv.

We also define the spaces

H1/2 =
{
u ∈ H1

0 (Ω) ; div u = 0 in Ω, D(u) = 0 in S
}
, and H1 =

{
u ∈ H1/2 ; u|F ∈ H2(F)

}
. (1.21)

Then, we will show that if u0 ∈ H1/2, v0 ∈ H1, (h0, θ0) ∈ R6 and f ∈ L2(0, T ;L2(O)), there exists a unique
solution to (1.12)–(1.19)

u ∈ H1(0, T ;H) ∩ L2(0, T ;H1) ∩ C0([0, T ];H1/2), v ∈ H1(0, T ;H1), (h, θ) ∈ H1(0, T ;R6).

Note that it implies in particular that

(`, ω, k, r) ∈ H1(0, T ;R12).

We say that (1.12)–(1.19) is approximately controllable in time T > 0 if for any u0, u1 ∈ H1/2, v0, v1 ∈ H1,

(h0, θ0), (h1, θ1) ∈ R6 and for any ε > 0, there exists f ∈ L2(0, T ;L2(O)) such that the solution to (1.12)–
(1.19) satisfies ∥∥[u(T, ·), v(T, ·), h(T ), θ(T )]− [u1, v1, h1, θ1

∥∥
H1/2×H1×R6 < ε.

In the earlier works on controllability of linear viscoelastic models [19, 18, 17], Leugering considered an
integro-differential equation and focus on the control of the velocity but not on the residual stresses. Then, in
[9], the authors addressed the problem of control for both the velocity and the stress of a viscoelastic material.
Precisely, they stated an approximate controllability result for fluids of the Jeffreys kind (system (1.6)) and
null approximate controllability results for fluids of the Maxwell kind (that is system (1.6) with η = 0 in
Σ(u, p)). In [27], Renardy considered one-dimensional shear flows of multimode linear Maxwell and Jeffreys
fluids (see (6.6)) with a distributed control. Exact controllability for single-mode Maxwell fluids, approximate
controllability of multimode Maxwell and Jeffreys fluids hold when the control is restricted to a subinterval
and exact controllability in the case of several relaxation modes holds if the control is on the entire interval.
In [8], the authors considered higher-dimensional single mode Jeffreys fluid and established the approximate
controllability result in an arbitrarily small time only for the velocity with distributed or boundary controls
supported by arbitrarily small sets. The controllability properties for both the velocity and the stress of a
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single mode Maxwell model in higher dimension with distributed or boundary controls is analyzed in [2]: they
proved the large time approximate controllability and under a geometric condition imposed on the controlled
region along with an additional restriction on the constants λ and κ, a large time exact controllability was
also established. Several improvements of these results on controllability of [8, 2] have been done in [5]
where the authors proved the approximate controllability of both the velocity and the stress for single and
multi-mode Jeffreys fluids. Under the usual geometric condition on the controlled domain, they established
the exact controllability with interior controls for the single mode and the approximate controllability for
multimode Maxwell models. The lack of null controllability of Jeffreys and Maxwell fluids with distributed
control is considered in [21]. They established that the solution of single mode and multimode Jeffreys
systems cannot reach zero. Due to the finite speed of propagation property, the single mode Maxwell system
cannot be null controllable for small time whereas the multimode Maxwell system is not null controllable
for any time.

In all these results for linear viscoelastic flows in higher dimensions, control of the stress tensor is possible
only under the constraint that the stress is the symmetric part of a gradient. This is the main hindrance
to work with nonlinear viscoelastic model and only few results are available [28, 29, 33] regarding the
characterization of the set of reachable states.

Let us mention some works concerning the controllability of fluid-structure interaction system. Regarding
one-dimensional viscous Burgers-particle system, Doubova and Fernández-Cara proved in [7] that the local
null controllability holds by boundary controls acting on both ends of the finite interval. Later, Liu et. al.
[20] improved this result by using only one control (located at one end of the interval). A simplified 2D
model where the fluid equations are replaced by the Helmholtz equations and the structure is modeled by a
harmonic oscillator is considered in [25] and the exact controllability is established with an internal control
acting only in the fluid part. In the case of a 2D fluid-structure system where a rigid ball is moving inside
a viscous, incompressible Navier-Stokes fluid, the exact controllability with an internal control in the fluid
equation is proved in [16]. In [4], Boulakia and Osses obtained the same result but for a body of more
general shape. These results have been extended to 3D and for a general shaped rigid body in [3]. Finally,
the authors in [30] prove the local null controllability for a 2D Boussinesq flow in interaction with a rigid
body by using controls acting only on the temperature equation.

The above mentioned works related to fluid-structure interaction systems correspond to the case where
the control acts on the fluid. Some articles are available concerning the case where the control is supported
on the structure. In [6], the authors deal with the one-dimensional case and the null controllability for the
velocities of the fluid and of the particle and the approximate controllability for the position of the particle
are established with a control acting only on the particle. Note that in this result, no smallness assumption
is considered, but the time of controllability can be large and may depends on the initial data and the final
data. In [23], the authors show that this time of controllability can be uniform with respect to the initial
data. In [24], the structure is a deformable beam located at the boundary of the fluid domain and the author
obtains the local stabilization of the corresponding system. In [35] (respectively [31]), an open stabilization
result is proved in the case of rigid ball moving into viscous incompressible (respectively compressible) fluid
with a spring-damper type control.

In the literature, there are no available controllability or stabilizability results concerning the motion of
a rigid body inside a viscoelastic fluid. In this article, we want to explore the control properties for fluid-
structure system (1.12)-(1.19). This is the first result in the context of controllability and stabilizability of
viscoelastic fluid-rigid body interaction problem. More precisely, our main result is the following one

Theorem 1.1. Assume O is a nonempty open subset of F . Then the linear system (1.12)-(1.19) is approx-
imately controllable. Assume moreover that

0 < β < λ+
κ

η
.

Then the system (1.12)-(1.19) is exponentially stabilizable with rate −β and with a feedback of finite dimen-
sion: there exists

[φj , ψj , αj ] ∈ H×H1 × R6, wj ∈ L2(O) (j = 1, . . . ,K), C > 0

such that the system (1.12)-(1.19) with

f =

K∑
j=1

(
〈φj , u〉H + 〈ψj , v〉H1 + 〈αj , (h, θ)〉R6

)
wj
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admits a unique solution [u, v, h, θ] ∈ C0([0,∞);H×H1 × R6), with

‖u(t, ·)‖H + ‖v(t, ·)‖H1
+ ‖(h(t), θ(t))‖R6 6 Ce−βt

(∥∥u0
∥∥
H +

∥∥v0
∥∥
H1

+
∥∥(h0, θ0)

∥∥
R6

)
(t > 0).

This result will be a consequence of a general result on approximate controllability that we state and prove
in Section 2. We start with an abstract operator form and we analyze spectral properties of the corresponding
operators. The approximate controllability and the exponential stabilizability of the abstract system follow
from the well-known Fattorini criterion (see, for instance [1]). We extend this abstract result from single
mode to the multiple modes framework in Section 3. The analysis concerning behavior of eigenvalues and
generalized eigenfunctions is more technical in this multimode part. Section 4 is devoted to the proof of
the main result of the paper. The idea is to define appropriate operators and spaces corresponding to the
fluid-structure interaction system so that we can apply our abstract result obtained in Section 2. Precisely,
the Fattorini criterion reduces to a unique continuation problem for fluid-structure interaction system that
we deal in this section. In Section 5, we show that if the support of the control is not F , then there exists
an initial data such that for any control, the solution of the fluid-structure interaction system cannot be
brought to a smooth trajectory in finite time and hence that the system is not null controllable. Finally, we
take advantage of our abstract result in Section 2 to mention some possible extensions of the main result in
Section 6: for instance the case of controls with a null component and the case of a fluid-rigid body system
when the fluid follows a linear Jeffreys model with several relaxation mode.

The main novelties that we bring in this article are :

• In the literature, only existence results in appropriate spaces for the fluid-structure interaction system
where a rigid body is moving inside a viscoelastic fluid are available (see [13, 32]). At the best of our
knowledge, the controllability and stabilizability properties of such system have not yet been studied
in the literature.

• We prove some general results in abstract framework on approximate controllability and stabilizability
of coupled systems. As an application of that abstract result, the approximate controllability and
exponential stabilizability results for the interaction between a single mode Jeffreys fluid (linearized
version of nonlinear viscoelastic model) and a rigid body are established. Note that our abstract results
permit to recover previous results in the case of a fluid without structure.

• Further, we show that the system is not exactly null controllable and hence the approximate control-
lability and the exponential stabilizability are the best possible results for the system in this direction.

• We have also extended our results to the interaction between Jeffreys fluid with multiple relaxation
modes and a rigid body and the case of controls with a null-component.

2 An abstract result

In this section, we state and prove a general result that will imply Theorem 1.1.
Let us consider H,U Hilbert spaces, A0 : D(A0) → H a self-adjoint positive operator with compact

resolvent. We use the following notation:

Hγ :=

{
D(Aγ0 ) if γ > 0,

D(A−γ0 )′ if γ < 0,

where V ′ stands for the dual space of V with respect to the pivot space H.
We also assume B0 ∈ L(U,H) and C0 ∈ L(H,RN ), where N ∈ N∗. From standard results on parabolic

equations, we deduce from the above hypotheses that if f ∈ L2(0, T ;U) and u0 ∈ H1/2 then there exists a
unique solution

u ∈ H1(0, T ;H) ∩ L2(0, T ;H1) ∩ C0([0, T ];H1/2)

of the Cauchy problem
u̇+A0u = B0f, t ∈ (0, T ), u(0) = u0. (2.1)

Let us recall the definition of (A0, B0) approximately controllable in time T > 0: for any u0, u1 ∈ H1/2 and

ε > 0, there exists f ∈ L2(0, T ;U) such that the solution u of (2.1) satisfies ‖u(T )− u1‖H1/2
< ε. Using the

standard criterion of Fattorini-Hautus that we recall below, the time T > 0 in the above definition can be
chosen arbitrary.
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We consider η, λ, κ ∈ R∗+ and the following system
u̇+ ηA0u+A0v = B0f,

v̇ + λv = κu,
ȧ = C0u,

(t > 0),


u(0) = u0,

v(0) = v0,

a(0) = a0.

(2.2)

In the above system, Z = [u, v, a] is the state and f is the control. We will see in Section 4 that the system
(1.12)-(1.19) can be written under the above form.

We can write (2.2) as follows:

Ż = AZ +Bf, t > 0, Z(0) = Z0, (2.3)

by defining

X := H×H1 × RN , D(A) := H1 ×H1 × RN , A :=

−ηA0 −A0 0
κ I −λ I 0
C0 0 0

 , B :=

B0

0
0

 , (2.4)

and
Z = [u, v, a], Z0 = [u0, v0, a0].

First, we have the following result on A:

Proposition 2.1. The operator (A,D(A)), defined by (2.4) generates an analytic semigroup in X. Its adjoint
in Y := H×H−1 × RN is given by

D(A∗) := {[φ, ψ, α] ∈ Y ; −ηA0φ+ κψ ∈ H} , (2.5)

A∗ =

−ηA0 κ I C∗0
−A0 −λ I 0

0 0 0

 . (2.6)

Proof. First we split A into two parts:

A = A1 +A2, A1 :=

−ηA0 0 0
κ I 0 0
0 0 0

 , A2 :=

 0 −A0 0
0 −λ I 0
C0 0 0


and we note that A2 ∈ L(X). Then, using that A0 is self-adjoint and positive, we deduce that there exists
ϑ ∈ (π/2, π) such that for all µ ∈ C∗, | argµ| < ϑ,∥∥(µ I−A1)−1

∥∥
L(X)

6
C

|µ|

which yields that A1 generates an analytic semigroup in X. We then apply Theorem 2.1 in [22, p.80], to
deduce that A = A1 +A2 also generates an analytic semigroup in X.

Formulas (2.5) and (2.6) are obtained by standard computation.

From the above result and standard results on parabolic equations, we deduce that if

Z0 = [u0, v0, a0] ∈ D(A1/2) = H1/2 ×H1 × RN , f ∈ L2(0, T ;U),

then (2.2) admits a unique solution

u ∈ H1(0, T ;H) ∩ L2(0, T ;H1) ∩ C0([0, T ];H1/2), v ∈ H1(0, T ;H1), a ∈ H1(0, T ;RN ).

We say that (2.2) is approximately controllable in time T > 0 if for any

u0, u1 ∈ H1/2, v0, v1 ∈ H1, a0, a1 ∈ RN ,

and ε > 0, there exists f ∈ L2(0, T ;U) such that the solution [u, v, a] of (2.2) satisfies

‖u(T )− u1‖H1/2
+ ‖v(T )− v1‖H1 + ‖a(T )− a1‖RN < ε.
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We are also interested by stabilization results: we say that the system (2.2) is stabilizable in X with a rate
lower than −β if there exists Fβ ∈ L(X,U) such that Aβ := A + BFβ with domain D(Aβ) = D(A) is the
infinitesimal generator of an analytic and exponentially stable semigroup on X of type lower than −β. In
our main result, we obtain a feedback operator Fβ of finite rank K. In that case, there exists

[φj , ψj , αj ] ∈ X, wj ∈ U (j = 1, . . . ,K), C > 0

such that for any
Z0 = [u0, v0, a0] ∈ X,

the system (2.2) with

f =

K∑
j=1

〈[φj , ψj , αj ], [u, v, a]〉Xwj

admits a unique solution [u, v, a] ∈ C0([0,∞);X), with

‖[u(t), v(t), a(t)]‖X 6 Ce−βt
∥∥[u0, v0, a0]

∥∥
X (t > 0).

Our main result in this section is the following theorem:

Theorem 2.2. Assume (A0, B0) is approximately controllable and that B∗0A
−1
0 C∗0 : RN → U is injective.

Then the system (2.2) is approximately controllable for any T > 0.
Assume

0 < β < λ+
κ

η
. (2.7)

Then, the system (2.2) is stabilizable in X with a rate lower than −β. More precisely, by denoting

K := max{dim ker(µ I−A) ; µ ∈ σ(A), Re(µ) > −β} <∞,

there exists Fβ ∈ L(X,U) with rank(Fβ) = K such that Aβ := A + BFβ with domain D(Aβ) = D(A) is the
infinitesimal generator of an analytic and exponentially stable semigroup on X of type lower than −β.

The proof of Theorem 2.2 mainly relies on the application of the Fattorini criterion, see [1]. Let us recall
the hypotheses of [1].

(H1) The spectrum of A consists of isolated eigenvalues with finite algebraic multiplicity.

(H2) The family of root vectors of A is complete in X.

(H3) The semigroup (etA) is analytic.

Then [1, Theorem 1.3] states as follows:

Theorem 2.3. Assume (H1)–(H3). Then (A,B) is approximately controllable if and only if

A∗ξ = µξ and B∗ξ = 0 =⇒ ξ = 0. (2.8)

Adding the following hypothesis on the spectrum of A, we can obtain a stabilization result.

(H4) There exists β0 > 0 such that the spectrum of A has no cluster point in

{z ∈ C ; Re z > −β0} .

More precisely, [1, Theorem 1.6] implies the following result:

Theorem 2.4. Assume (H1), (H3) and (H4). Let us consider β ∈ (0, β0) and

K := max{dim ker(µ I−A) ; µ ∈ σ(A), Re(µ) > −β} <∞.

Assume
∀µ ∈ C, Reµ > −β, A∗ξ = µξ and B∗ξ = 0 =⇒ ξ = 0. (2.9)

Then, there exists Fβ ∈ L(X,U) with rank(Fβ) = K such that Aβ := A+ BFβ with domain D(Aβ) = D(A)
is the infinitesimal generator of an analytic and exponentially stable semigroup on X of type lower than −β.

Remark 2.5. In fact [1, Theorem 1.6] is stated in the case where there is no cluster point in the spectrum
of A, but the proof of [1, Theorem 1.6] implies the above result.
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In order to prove Theorem 2.2, let us start by studying the spectral properties of A∗. With the properties
of A0, the spectrum of A0 is reduced to a nondecreasing sequence of eigenvalues {Λk}k>1 ⊂ R∗+ such that
Λk →∞ as k →∞. Moreover, there exists a corresponding orthonormal basis of H composed of eigenvectors
wk with

A0wk = Λkwk (k > 1). (2.10)

Using the above notation, we can obtain the eigenvalues of A∗. More precisely, let us define

δk := (λ+ ηΛk)2 − 4Λk(ηλ+ κ), (2.11)

K− := {k > 1 ; δk < 0}, K0 := {k > 1 ; δk = 0}, K+ := {k > 1 ; δk > 0}. (2.12)

Note that, since Λk →∞, K− and K0 are finite sets whereas K+ is an infinite set.
Then we write

µ0 := 0 (2.13)

µ1
k :=

−(λ+ ηΛk) + i
√
−δk

2
, µ2

k :=
−(λ+ ηΛk)− i

√
−δk

2
, (k ∈ K−) (2.14)

µk :=
−(λ+ ηΛk)

2
, (k ∈ K0), (2.15)

and

µ1
k :=

−(λ+ ηΛk) +
√
δk

2
, µ2

k :=
−(λ+ ηΛk)−

√
δk

2
, (k ∈ K+). (2.16)

One can check that
µk < 0 (k ∈ K0), Reµjk < 0 (k ∈ K− ∪K+, j = 1, 2), (2.17)

µk + λ 6= 0 (k ∈ K0), µjk + λ 6= 0 (k ∈ K− ∪K+, j = 1, 2), (2.18)

lim
k→∞

µ1
k = −

(
λ+

κ

η

)
, lim

k→∞
µ2
k = −∞. (2.19)

We also define

ξ∗j0 =

λA−1
0 C∗0 ej
−C∗0 ej

(λη + κ)ej

 (1 6 j 6 N), ξ∗jk =

λ+ µjk
−Λk

0

wk (k ∈ K− ∪K+, j = 1, 2), (2.20)

ξ∗1k =

λ+ µk
−Λk

0

wk, ξ∗2k =

 0
(λ+ µk)/κ

0

wk (k ∈ K0). (2.21)

Then we have the following property

Proposition 2.6. The eigenvalues of A∗ are given by

µ0, µjk (k ∈ K− ∪K+, j = 1, 2), µk (k ∈ K0).

A corresponding family of generalized eigenvectors of A∗ associated with the above eigenvalues is given by
(2.20), (2.21). More precisely, we have the following formula

A∗ξ∗j0 = 0 (1 6 j 6 N), A∗ξ∗jk = µjkξ
∗j
k (k ∈ K− ∪K+, j = 1, 2), (2.22)

A∗ξ∗1k = µkξ
∗1
k , A∗ξ∗2k = µkξ

∗2
k + ξ∗1k , (k ∈ K0). (2.23)

If A∗ξ∗ = µξ∗, then ξ∗ is a linear combination of

ξ∗j0 (1 6 j 6 N), ξ∗jk (k ∈ K− ∪K+, j = 1, 2), and ξ∗1k (k ∈ K0). (2.24)

Proof. Assume that

A∗

φψ
α

 = µ

φψ
α

 . (2.25)

First assume that µ 6= 0. Then we have α = 0, κψ = µφ+ ηA0φ and

− (η(λ+ µ) + κ)A0φ = µ(λ+ µ)φ.
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• Case 1: φ = 0. Then [φ, ψ, α] = 0.

• Case 2: φ 6= 0 and η(λ + µ) + κ = 0. Then µ(λ + µ) = 0 and since µ 6= 0, κ > 0, this leads to a
contradiction.

• Case 3: φ 6= 0 and η(λ + µ) + κ 6= 0. Then, from (2.10), we deduce that µ satisfy for some k > 1 the
equation

(µ+ λ)(µ+ ηΛk) + κΛk = 0. (2.26)

Then solving this equation in µ leads to formula (2.11), (2.14)-(2.16). Standard computation yields that
[φ, ψ, α] is a linear combination of

ξ∗jk (k ∈ K− ∪K+, j = 1, 2), and ξ∗1k (k ∈ K0).

Second, assume that µ = 0 in (2.25). Then, if α = 0, we deduce that [φ, ψ, α] = 0. Else, we can check that
[φ, ψ, α] is a linear combination of ξ∗j0 (1 6 j 6 N) given by (2.20).

Similarly, we can define

ξj0 =

 0
0
ej

 (1 6 j 6 N), ξjk =


µjk

(
λ+ µjk

)
wk

κµjkwk(
λ+ µjk

)
C0wk

 (k ∈ K− ∪K+, j = 1, 2), (2.27)

ξ1
k =

µk (λ+ µk)wk
κµkwk

(λ+ µk)C0wk

 , ξ2
k =

 (λ+ µk)wk
(κλ) (λ+ µk)−1 wk

0

 (k ∈ K0). (2.28)

Then standard computation shows that

Aξj0 = 0 j = 1, . . . , N, Aξjk = µjkξ
j
k (k ∈ K− ∪K+, j = 1, 2), (2.29)

Aξ1
k = µkξ

1
k, Aξ2

k = µkξ
2
k + ξ1

k, (k ∈ K0), (2.30)

Moreover we have the following result:

Proposition 2.7. The family of root vectors of A is complete:

span

({
ξjk

}
k>1,j=1,2

∪
{
ξj0

}
j=1,...,N

)
is dense in X.

Proof. Assume [f, g, α] ∈ Y is such that

〈[f, g, α], ξjk〉 = 0 (k > 1, j = 1, 2), 〈[f, g, α], ξj0〉 = 0 (j = 1, . . . , N). (2.31)

From (2.27), we deduce that α = 0.
Now, we decompose f, g in the orthogonal basis (wk) :

f =
∑
k>1

fkwk, g =
∑
k>1

gkwk,

and we deduce from (2.27) and (2.28) the following relations:[
µjk

(
λ+ µjk

)
κµjk

]
·
[
fk
gk

]
= 0 (k ∈ K− ∪K+, j = 1, 2), (2.32)

[
µk (λ+ µk)

κµk

]
·
[
fk
gk

]
= 0,

[
(λ+ µk)

(κλ) (λ+ µk)−1

]
·
[
fk
gk

]
= 0 (k ∈ K0). (2.33)

Using (2.14)–(2.16), we deduce fk = gk = 0 for all k > 1.

We are now in a position to prove Theorem 2.2:
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Proof of Theorem 2.2. We apply Theorem 2.3 (that is [1, Theorem 1.3]). First, since (A0, B0) is approxi-
mately controllable and satisfies (H1)–(H3), we deduce that B∗0wk 6= 0 for all k > 1.

Now, from Proposition 2.1, Proposition 2.6 and Proposition 2.7, (A,B) satisfies (H1)–(H3). We can thus
apply again Theorem 2.3 and use the Fattorini criterion to prove the approximate controllability of (2.2).

From (2.4), (2.20)-(2.21) and (2.18), we have

B∗ξ∗j0 = λB∗0A
−1
0 C∗0 ej 6= 0 j = 1, . . . , N,

B∗ξ∗jk = (λ+ µjk)B∗0wk 6= 0 (k ∈ K+ ∪K−, j = 1, 2),

B∗ξ∗1k = (λ+ µk)B∗0wk 6= 0 (k ∈ K0).

Using Proposition 2.6, we deduce that (2.8) holds true and that (A,B) is approximately controllable.
To obtain the stabilizability result, we apply Theorem 2.4 (that is, [1, Theorem 1.6]) combined with

(2.19).

3 Case of multiple modes

We can generalize the result obtained in Section 2. Let us consider the same hypotheses on H,U, A0, B0

and C0. We consider η > 0, M ∈ N∗, λi, κi ∈ R∗+ (i ∈ {1, . . . ,M}. We assume that λi are distinct and for
instance we assume

0 < λ1 < . . . < λM . (3.1)

We consider the following generalization of (2.2):
u̇+ ηA0u+

M∑
i=1

A0vi = B0f,

v̇i + λivi = κiu (i ∈ {1, . . . ,M}),
ȧ = C0u.

(t > 0),


u(0) = u0,

vi(0) = v0
i (i ∈ {1, . . . ,M}),

a(0) = a0.

(3.2)
Setting Z = [u, v1, . . . , vM , a], we can write (3.2) under the form

Ż = AZ +Bf, t > 0, Z(0) = Z0

by defining
X := H×HM1 × RN , D(A) := H1 ×HM1 × RN , (3.3)

A :=



−ηA0 −A0 −A0 · · · −A0 0
κ1 I −λ1 I 0 · · · 0 0
κ2 I 0 −λ2 I · · · 0 0

...
...

...
. . .

...
...

κM I 0 0 · · · −λM I 0
C0 0 0 · · · 0 0


, B :=


B0

0
...
0

 , (3.4)

and
Z = [u, v1, . . . , vM , a], Z0 = [u0, v0

1 , . . . , v
0
M , a

0]

In order to state our main result, let us consider the function

µ 7→ η +

M∑
j=1

κj
λj + µ

. (3.5)

One can check that it has exactly M roots (µj)Mj=1 that are real and satisfy

µM < −λM < µM−1 < −λM−1 < · · · < µ1 < −λ1.

The definitions of approximate controllability and stabilization are the same as in the previous section.
Our main result in this section is the following theorem:
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Theorem 3.1. Assume (A0, B0) is approximately controllable and that B∗0A
−1
0 C∗0 : RN → U is injective.

Then the system (3.2) is approximately controllable for any T > 0.
Moreover, for any

0 < β < −µ1 (3.6)

the system (3.2) is stabilizable in X with a rate lower than −β. More precisely, by denoting

K := max{dim ker(µ I−A) ; µ ∈ σ(A), Re(µ) > −β} <∞,

there exists Fβ ∈ L(X,U) with rank(Fβ) = K such that Aβ := A + BFβ with domain D(Aβ) = D(A) is the
infinitesimal generator of an analytic and exponentially stable semigroup on X of type lower than −β.

The proof of Theorem 3.1 follows closely the proof of Theorem 2.2. First, following the proof of Propo-
sition 2.1, we deduce

Proposition 3.2. The operator (A,D(A)), defined by (3.3)–(3.4) generates an analytic semigroup in X. Its
adjoint in Y := H×HM−1 × RN is given by

D(A∗) :=

{
[φ, ψ1, . . . , ψM , α] ∈ Y ; −ηA0φ+

M∑
j=1

κjψj ∈ H

}
, (3.7)

A∗ =



−ηA0 κ1 I κ2 I · · · κM I C∗0
−A0 −λ1 I 0 · · · 0 0
−A0 0 −λ2 I · · · 0 0

...
...

...
. . .

...
...

−A0 0 0 · · · −λM I 0
0 0 0 · · · 0 0


. (3.8)

Then, we use again the families (Λk, wk) associated with A0 (see (2.10)), but we do not have here explicit
formula such as (2.13)–(2.16). We have the following result:

Proposition 3.3. The eigenvalues of A∗ are µ0 = 0 and the roots µjk (j = 1, . . . ,M + 1, k > 1) of the
function

µ 7→ µ

Λk
+ η +

M∑
i=1

κi
µ+ λi

. (3.9)

There exists k0 > 1 such that for k > k0 these roots are real negative with

µM+1
k < −G < µMk < −λM < µM−1

k < −λM−1 < · · · < µ1
k < −λ1, (3.10)

where G > 0 is independent of k. We have

µjk → µj (j = 1, . . . ,M), µM+1
k ∼ −ηΛk. (3.11)

The eigenvectors of A∗ are of the form[
φ,− A0φ

µ+ λ1
, . . . ,− A0φ

µ+ λM
, 0

]
(3.12)

with φ an eigenvector of A0 or[
A−1

0 C∗0α,−
C∗0α

λ1
, . . . ,−C

∗
0α

λM
,

(
η +

M∑
i=1

κi
λi

)
α

]
. (3.13)

Finally, if µjk = µj
′

k′ , then Λk = Λk′ and in particular, the algebraic multiplicity of the eigenvalues of A∗ are
finite.
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Proof. Assume that

A∗


φ
ψ1

...
ψM
α

 = µ


φ
ψ1

...
ψM
α

 . (3.14)

Case 1: assume that µ 6= 0. Then we have α = 0. If there exists i0 ∈ {1, . . . ,M} such that µ = −λi0 ,
then [φ, ψ1, . . . , ψM , α] = 0. We thus assume that for all i ∈ {1, . . . ,M}, µ + λi 6= 0. Again, if φ = 0, then
[φ, ψ1, . . . , ψM , α] = 0. We thus obtain that

ψi = − A0φ

µ+ λi
,

and that there exists k such that µ is a root of (3.9) and such that φ is an eigenvector associated with Λk.
In particular, µ is a root of the polynomial

Pk(X) :=

(
X

Λk
+ η

) M∏
i=1

(X + λi) +

M∑
i=1

κi

M∏
` 6=i

(X + λ`) .

One can check that Pk admits a real root in the interval (−λi+1,−λi), i = 1, . . . ,M − 1. Since Λk → ∞,
there exists k0 > 1 such that

Λk > max

(
2M+2

η2

M∑
i=1

κi,
4λM
η

)
(k > k0). (3.15)

Let us consider G such that

max

(
2M+1

η

M∑
i=1

κi, 2λM

)
< G <

ηΛk0
2

. (3.16)

With this choice, we can check that Pk has a real root in the interval (−G,−λM ). In that case (that is for
k > k0), the last root of Pk is also real and from the change of signs of Pk in the intervals (−λi+1,−λi) and
(−G,−λM ), we see that this last root belongs to (−∞,−G). We thus deduce (3.10) and the limits of µjk for
j 6M .

For
(
µM+1
k

)
k>k0

, if it admits a bounded subsequence, we see that it converges towards a root of (3.5)

so that for k large enough, it belongs to one of the intervals (−λi+1,−λi) and (−G,−λM ) which is false.
Therefore,

µM+1
k → −∞

and from (3.9), we deduce that
µM+1
k ∼ −ηΛk.

Case 2: assume µ = 0. Then standard computation yields (3.13).

One can check that the eigenvectors of A are of the form[
0, 0, . . . , 0, a

]
, a ∈ RN , a 6= 0

for the eigenvalue µ = 0 and [
wk,

κ1

µ+ λ1
wk, . . . ,

κM
µ+ λM

wk,
1

µ
C0wk

]
(3.17)

for the eigenvalues solutions of (3.9). Using this, we can show the following result:

Proposition 3.4. The family of root vectors of A is complete.

Proof. Assume F = [f, g1, g2, . . . , gM , α] ∈ Y = H×HM−1 × CN is such that

〈F, ξ〉 = 0 (3.18)

for any ξ root vector of A.
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We decompose f and gi in the orthogonal basis (wk) :

f =
∑
k>1

fkwk, gi =
∑
k>1

gi,kwk, i = 1, 2, . . . ,M,

and we deduce from (3.17), that for k > k0 (that is when we have (3.10)),〈[
fk, g1,k, . . . , gM,k

]
,

[
1,

κ1

µjk + λ1

, . . . ,
κM

µjk + λM

]〉
= 0, ∀k > k0, j = 1, 2, . . . ,M + 1

for the usual scalar product of CM+1. Noting that

[
1,

κ1

µjk + λ1

, . . . ,
κM

µjk + λM

]
, j = 1, 2, . . . ,M + 1 are

independent vectors of CM+1 for k > k0, we deduce that

F ∈ (Wk0)M+1 × CN , where Wk0 = span {wk, k < k0} .

From the expression (3.4) of A, we see that it is a linear operator of the finite-dimensional subspace
(Wk0)M+1 × CN . From classical result of linear algebra, we deduce that the corresponding linear opera-
tor admits a basis of root vectors in (Wk0)M+1 × CN and thus we deduce that F = 0.

Combining Proposition 3.2, Proposition 3.3 and Proposition 3.4 and following the proof of Theorem 2.2,
we can prove Theorem 3.1 in a completely similar way. We thus skip the corresponding proof.

4 Proof of Theorem 1.1

In order to show Theorem 1.1, we are going to apply Theorem 2.2. First we show that (1.12)–(1.19) can be
written under the form (2.2). We recall that H is defined by (1.20). Now we define A0 as follows:

D(A0) =
{
u ∈ H1

0 (Ω) |u|F ∈ H2(F), div u = 0 in Ω, D(u) = 0 in S
}
, (4.1)

A0u =


−∆u in F 1

m

∫
∂S

2D(u)n dΓ

+

J−1
0

∫
∂S

ỹ × 2D(u)n dΓỹ

× y in S
(u ∈ D(A0)), (4.2)

A0u = PA0u (u ∈ D(A0)) (4.3)

where P is the orthogonal projector from L2(Ω) onto H.
The operator C0 ∈ L(H,R6) is defined by

C0u = (`u, ωu) if u(y) = `u + ωu × y (y ∈ S). (4.4)

We also set U := L2(O) and the control operator B0 ∈ L(L2(O),H) is given by

B0f = P(fχO) f ∈ U. (4.5)

We set the initial conditions as:

u0 =

{
u0 in F
`0 + ω0 × y in S,

v0 =

{
v0 in F
k0 + r0 × y in S,

a0 = [h0, θ0], (4.6)

where u0, v0, `0, ω0, k0, r0, h0 and θ0 are as given in (1.19).
With this notation, we see that we can write (1.12)–(1.19) as (2.2), where a = [h, θ] ∈ R6. We are now

in a position to prove Theorem 1.1:
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Proof of Theorem 1.1. We recall (see, for instance, [34, Proposition 5.3]) that A0 is positive and self-adjoint.
The couple (A0, B0) is approximately controllable. Indeed, by using the Fattorini criterion (that is Theo-
rem 2.3), we only need to show that if

−∆u+∇p = µu in F ,
div u = 0 in F ,
u = 0 on ∂Ω,

u(y) = `+ ω × y y ∈ ∂S,

mµ` =

∫
∂S

Σ1(u, p)ndΓ,

J0µω =

∫
∂S

y × Σ1(u, p)ndΓ,

(4.7)

and if B∗0u = u|O ≡ 0, then u ≡ 0. In the above system,

Σ1(u, p) = 2D(u)− pI3.

By the standard unique continuation property on the Stokes system (see [11]), then u ≡ 0 in F and thus
` = ω = 0 by using the trace of u on ∂S.

It remains to show that B∗0A
−1
0 C∗0 : R6 → U is injective. We endow R6 with the scalar product

〈(k, r), (k′, r′)〉 = mk · k′ + J0r · r′.

Then, using (1.10) and (1.11)

〈(k, r), (k′, r′)〉 =

∫
S
ρS(k + r × y) · (k′ + r′ × y) dy.

It yields that if ξ = (k, r) ∈ R6, then
C∗0 ξ = P [(k + r × y)χS ] ,

where χS is the characteristic function of S.
Thus, with (4.1)–(4.3), we deduce that if B∗0A

−1
0 C∗0 ξ = 0, then

−∆u+∇p = 0 in F ,
div u = 0 in F ,
u = 0 on ∂Ω,

u(y) = `+ ω × y y ∈ ∂S,

mk =

∫
∂S

Σ1(u, p)ndΓ,

J0r =

∫
∂S

y × Σ1(u, p)ndΓ,

u ≡ 0 in O.

(4.8)

By using again the unique continuation property of the Stokes system, then u ≡ 0 in F and ∇p ≡ 0
in F . Thus k = r = 0 and we deduce the injectivity of B∗0A

−1
0 C∗0 . Applying Theorem 2.2, we deduce

Theorem 1.1.

5 Lack of null controllability

The goal of this section is to show that if O is a proper open subset of F then there exists an initial condition
[u0, v0, (h0, θ0)] ∈ H1/2 × H1 × R6 such that for any finite time T > 0 and for any control f , the solution
[u, v, (`, ω), (k, r), (h, θ)] of (1.12)-(1.19) cannot be driven to 0 for the fluid velocity.

The proof is based on a localization procedure in the fluid and thus can be deduced from results obtained
in [21]. The statement is the following one:
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Theorem 5.1. Assume O is an open subset of F , O 6= F . There exists [u0, v0, (h0, θ0)] ∈ H1/2×H1×R6 such

that for any T > 0 and for any f ∈ L2(0, T ;L2(O)), the solution [u, v, (`, ω), (k, r), (h, θ)] of (1.12)-(1.19)
satisfies

u(T, ·) 6≡ 0.

In order to prove the above result, we have the following results:

Proposition 5.2. Assume O is an open subset of F , O 6= F . and let us consider f ∈ L2(0, T ;L2(O)). Then
the solution of [u, v, (`, ω), (k, r), (h, θ)] of (1.12)-(1.19) with u0 ≡ 0, v0 ≡ 0 satisfies

u, v ∈ C∞
(
(0, T ]×

(
F \ O

))
. (5.1)

Proof. The proof is based on Theorem 3.3 and the proof of Theorem 3.1 in [21]. First, from Proposition 2.1,
we deduce that

u ∈ H1(0, T ;L2(F)) ∩ L2(0, T ;H2(F)) ∩ C0([0, T ];H1(F)), v ∈ H1(0, T ;H2(F)).

Second, let us consider x0 ∈ F \ O and r0 > r1 > 0 with B(x0, r0) ⊂ F \ O. We also take χ̃0 a smooth
function with support in B(x0, r0) and equal to 1 in B(x0, r1). Then we deduce from (1.12)–(1.19) that

ϑ = χ̃0 curlu, ζ = χ̃0 curl v,

satisfy 

∂ϑ

∂t
− η∆ϑ−∆ζ = F in (0, T )×B(x0, r0),

∂ζ

∂t
+ λζ = κϑ in (0, T )×B(x0, r0),

ϑ = ζ = 0 on (0, T )× ∂B(x0, r0),

ϑ(0, ·) = ζ(0, ·) = 0 in B(x0, r0),

(5.2)

where
F = −2(η(∇ curlu) + (∇ curl v))∇χ0 −∆χ0(η curlu+ curl ṽ) ∈ L2(0, T ;L2(F)).

Using again Proposition 2.1 or directly Theorem 3.3 in [21], we deduce that

ϑ ∈ H1(0, T ;L2(B(x0, r0))) ∩ L2(0, T ;H2(B(x0, r0))), ζ ∈ H1(0, T ;H2(B(x0, r0))).

Proceeding by induction as in the proof of of Theorem 3.1 in [21] (here we see that the equations of the rigid
body are not used), we can show that that

ϑ, ζ ∈ C∞ ((0, T ]×B(x0, r))

for some r ∈ (0, r1).
Then using that

−∆u = curlϑ and −∆v = curl ζ in B(x0, r),

we deduce the result from the interior regularity of the laplacian (see, for instance, [10, Theorem 3, p.334]).

Then, we have the following result:

Proposition 5.3. Assume O is an open subset of F , O 6= F . and let us consider x0 ∈ F \ O. Then there
exists [u0, v0, (h0, θ0)] ∈ H1/2 ×H1 ×R6 such that the solution [u, v, (`, ω), (k, r), (h, θ)] of (1.12)-(1.19) with
f ≡ 0 satisfies that for any t > 0, u(t, ·) is not C∞ at x0.

Proof. We start with the system 
∂ϑ

∂t
− η∆ϑ−∆ζ = 0 in R∗+ × R3,

∂ζ

∂t
+ λζ = κϑ in R∗+ × R3,

ϑ(0, ·) = ϑ0, ζ(0, ·) = ζ0 in R3.

(5.3)
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From Theorem 3.5 in [21], there exists u0
∗ ∈ H1(R3) and v0

∗ ∈ H2(R3) such that the solution of the above
system with ϑ0 = curlu0

∗ and ζ0 = curl v0
∗ satisfies for any t > 0,

ϑ(t, ·), ζ(t, ·) ∈ C∞(R3 \ {x0})

and ϑ(t, ·) is not C∞ at x0.
Then, we apply Lemma 3.7 in [21] to deduce the existence of u0 ∈ H1

0 (F) and v0 ∈ H2(F)∩H1
0 (F), with

div u0 = div v0 = 0 such that
curlu0 = ϑ0 and curl v0 = ζ0

in a neighborhood of x0. Extending u0 and v0 by 0 in S, we deduce that u0 ∈ H1/2 and v0 ∈ H1. Taking

(h0, θ0) ∈ R6 arbitrarily we can thus consider the solution [u, v, (`, ω), (k, r), (h, θ)] of (1.12)-(1.19) with
f ≡ 0. Then

ϑ̃ := curlu− ϑ, ζ̃ := curl v − ζ
satisfy 

∂ϑ̃

∂t
− η∆ϑ̃−∆ζ̃ = 0 in (0, T )×B(x0, r),

∂ζ̃

∂t
+ λζ̃ = κϑ̃ in (0, T )×B(x0, r),

ϑ̃ = g1, ζ̃ = g2 on (0, T )× ∂B(x0, r),

ϑ̃(0, ·) = ζ̃(0, ·) = 0 in B(x0, r),

(5.4)

for r > 0 small enough, where g1 = ( curlu − ϑ)|(0,T )×∂B(x0,r) and g2 = ( curl v − ζ)|(0,T )×∂B(x0,r). As for
(5.2), one can show that

ϑ̃, ζ̃ ∈ C∞ ((0, T ]×B(x0, r̃))

for r̃ small enough. This yields the result.

From the above two propositions, we can deduce Theorem 5.1.

Proof of Theorem 5.1. We consider the initial condition [u0, v0, (h0, θ0)] ∈ H1/2×H1×R6 of Proposition 5.3

and we assume f ∈ L2(0, T ;L2(O). We can then decompose the corresponding solution [u, v, (`, ω), (k, r), (h, θ)]
of (1.12)-(1.19) into a solution with null initial conditions and a solution with null source. Gathering Propo-
sition 5.2 and Proposition 5.3, we deduce that u(T, ·) is not C∞ at x0 and thus is not null.

6 Some extensions of Theorem 1.1

Using the proof and the framework of Section 4 to obtain Theorem 1.1, we see that we can deduce several
extensions of Theorem 1.1.

For instance, we can obtain the approximate controllability and stabilization of (1.12)–(1.19) with a
control f with one component that cancels. For instance, we assume that f3 = 0 and we thus control the
fluid-structure system with only two scalar controls (f1 and f2). We thus replace the equation (1.12) by{

∂u

∂t
− div (Σ(u, p) + 2D(v)) = (f1, f2, 0)χO t > 0, y ∈ F ,

div u = 0 t > 0, y ∈ F ,
(6.1)

Theorem 6.1. Assume that O is a nonempty open subset of F . Then the system (6.1), (1.13)-(1.19) is
approximately controllable. Assume moreover that

0 < β < λ+
κ

η
.

Then the system (6.1), (1.13)-(1.19) is exponentially stabilizable with rate lower than −β and with a feedback
of finite dimension.
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Proof. The proof is completely similar to the proof of Theorem 1.1, we only replace (4.5) by

B0(f1, f2) = P((f1, f2, 0)χO), (f1, f2) ∈ U. (6.2)

Then, applying the Fattorini criterion to show that (A0, B0) is approximately controllable, we consider a
solution (u, p) of (4.7) with B∗0u = (u1|O, u2|O) ≡ 0. Combining this with div u = 0, we deduce

∂u

∂x3
≡ 0 in O.

Moreover,

(
∂u

∂x3
,
∂p

∂x3

)
satisfies the following system:
−∆

(
∂u

∂x3

)
+∇

(
∂p

∂x3

)
= λ

(
∂u

∂x3

)
in F ,

div

(
∂u

∂x3

)
= 0 in F ,

and from [11], we deduce
∂u

∂x3
≡ 0 in F .

By applying the Poincaré inequality, the above relation yields

u ≡ 0 in F

and thus ` = ω = 0 by using the trace of u on ∂S.
The proof of the injectivity of B∗0A

−1
0 C∗0 : R6 → U is done similarly. Applying Theorem 2.2, we thus

deduce Theorem 6.1.

We can also obtain the approximate controllability and stabilization of a linear fluid-rigid body system
for a fluid modeled by a linear Jeffreys model with several relaxation mode:{

∂u

∂t
− div (Σ(u, p) + 2D(v)) = fχO t > 0, y ∈ F ,

div u = 0 t > 0, y ∈ F ,
(6.3)

{
u = 0 t > 0, y ∈ ∂Ω,

u(t, y) = `(t) + ω(t)× y t > 0, y ∈ ∂S, (6.4)
m`′ = −

∫
∂S

(Σ(u, p) + 2D(v))ndΓ t > 0,

J0ω
′ = −

∫
∂S

y × (Σ(u, p) + 2D(v))ndΓ t > 0,
(6.5)

{
∂vi
∂t

+ λivi = κiu t > 0, y ∈ F , i ∈ {1, . . . ,M}
div vi = 0 t > 0, y ∈ F , i ∈ {1, . . . ,M}

(6.6){
vi = 0 t > 0, y ∈ ∂Ω, i ∈ {1, . . . ,M}

vi(t, y) = ki(t) + ri(t)× y t > 0, y ∈ ∂S, i ∈ {1, . . . ,M} (6.7){
k′i + λiki = κi` ∀t > 0, i ∈ {1, . . . ,M}
r′i + λiri = κiω ∀t > 0, i ∈ {1, . . . ,M} (6.8){

h′ = ` ∀t > 0
θ′ = ω ∀t > 0

(6.9){
u(0, ·) = u0, vi(0, ·) = v0

i , i ∈ {1, . . . ,M} in F ,
h(0) = h0, θ(0) = θ0, `(0) = `0, ω(0) = ω0, ki(0) = k0

i , ri(0) = r0
i , i ∈ {1, . . . ,M}.

(6.10)

Our main result is the following one

Theorem 6.2. Assume O is a nonempty open subset of F . Assume also that 0 < λ1 < . . . < λM . Then the
system (6.3)-(6.10) is approximately controllable. Assume moreover that

0 < β < −µ1

where µ1 is the largest root of (3.5). Then the system (6.3)-(6.10) is exponentially stabilizable with rate lower
than −β and with a feedback of finite dimension.
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