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List of abbreviations: 

AIC: Akaike information criterion 

AO: adverse outcome 

AOP: Adverse outcome pathway 

BIC: Bayesian information criterion 

BN: Bayesian network 

cDCF: 6-Carboxy-2’,7’-dichlorofluorescein 

cH2DCF: 6-Carboxy-2’,7’-dichlorodihydrofluorescein  

cH2DCFDA: 6-Carboxy-2’,7’-dichlorodihydrofluorescein diacetate 

CKD: Chronic kidney disease 

cytGSH: Cytosolic glutathione 

cytGSSG: Cytosolic glutathione disulfide 

DBN: Dynamic Bayesian network 

DIC: Deviance information criterion 

extGSH: Extracellular glutathione 

extGSSG: Extracellular glutathione disulfide 

GSD: Geometric standard deviation 

GSH: Glutathione 

ITS: Integrated testing strategy 

KBrO3: potassium bromate 

KE: Key event 

Keap1: Kelch-like-ECH-Associated Protein 1 

KER: Key events relationship 

MCMC: Markov chain Monte-Carlo  

MIE: Molecular initiating event 

MRP: Multidrug resistance-associated protein 

NFE2L2, Nrf2: Nuclear Factor (Erythroid-derived 2)-Like 2 p 

Nrf2: nuclear factor (erythroid-derived 2)-like 2, NFE2L2 

OECD: Organisation for Economic Co-operation and Development 

qAOP:  Quantitative adverse outcome pathway 

RFU: Relative fluorescence units 

ROS: Reactive oxygen species 

SB: Systems biology  
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Abstract 

While hazard assessment of chemicals can make direct use of descriptive adverse outcome 

pathways (AOPs), risk assessment requires quantitative relationships from exposure to effect 

timing and magnitude. To seamlessly integrate the data generated by alternative methods or in 

vivo testing, quantitative AOPs (qAOPs) providing dose-time-response predictions are more 

valuable than qualitative AOPs. Here, we compare three approaches to qAOP building: 

empirical dose-response modeling, Bayesian network (BN) calibration, and systems biology 

(SB) modeling. These methods were applied to the quantification of a simplified oxidative 

stress induced chronic kidney disease AOP, on the basis of in vitro data obtained on 

RPTEC/TERT1 cells exposed to potassium bromate. Effectopedia was used to store the 

experimental data and the developed models in a unified representation so they can be 

compared and further analyzed. We argue that despite the fact that dose-response models give 

adequate fits to the data they should be accompanied by mechanistic SB modeling to gain a 

proper perspective on the quantification. BNs can be both more precise than dose-response 

models and simpler than SB models, but more experience with their usage is needed.  
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1 Introduction 

Adverse outcome pathways (AOPs) have become an organizing framework to facilitate the 

development and integration of alternative test methods for assessing hazard of chemicals to 

human health and the environment. A dedicated program is currently running under the 

auspices of the Organisation for Economic Co-operation and Development (OECD). AOPs 

are intended "to outline and capture existing knowledge concerning the biologically plausible 

and empirically supported foundations for predicting apical toxicity from mechanistic data" 

[1]. Practically, an AOP is a chemical-independent description of a linear path from a 

molecular initiating event (MIE) to an eventual adverse outcome (AO) at the organism or 

population level [2] (see Figure 1). In between, there can be any number of intermediate 

critical and measurable key events (KEs) connected by key events relationships (KERs) [3,4]. 

In typical AOP diagrams, KEs are represented by boxes and KERs by single one-directional 

arrows connecting them (Figure 1). The path linking the various KEs should not form loops 

(feedback or feed-forward loops between two consecutive KEs can simply be indicated by a 

symbol and included in the KER). Thus, according to graph theory, in the absence of loops 

within KERs, AOPs are acyclic directed graphs [5]. 
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Figure 1: Chronic kidney disease AOP diagram. KEs are in green boxes, readout 

are in yellow boxes, KERs are represented by arrows. 

AOPs can support the development of integrated testing strategies (ITS) and their application 

in risk assessment [7,8]. In case of ITS building, the data generated by alternative methods 

(i.e., in silico, in chemico, in vitro), when combined with existing animal data, are used and 

assessed by means of a fixed data interpretation procedure [1,9]. For this purpose, quantitative 

AOPs (qAOPs) that provide dose-response and time-course predictions [10] are likely to be 

more valuable for ITS construction than qualitative AOPs. Parameter values for a qAOP can 

be either obtained from legacy data or new targeted experimental work, or by optimizing the 

fit of model predictions to data [2]. So far, the few published qAOPs use either empirical 

dose-response models to quantify KERs [e.g., 11], or are based on an underlying systems 

biology (SB) model [e.g., 10]. We propose here the use of Bayesian networks (BNs). Unlike 

SB models which may contain feedback and feed-forward loops, but like AOPs, BNs use 

acyclic directed graphs as their organizational structure [12]. The links between their nodes 

correspond to simple statistical dependencies. Thus, BNs can be viewed as an intermediate 

approach between empirical models and SB models. They have already been applied to AOPs 
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in the area of skin sensitization to facilitate potency assessment for classification purposes and 

to support hazard characterization in a semi-quantitative way [13,14]. Here, we demonstrate 

the application of (dynamic) BNs to AOP quantification. Moreover, we compare the results 

obtained by using the three modeling approaches mentioned above (i.e., linked statistical 

dose-response relationships, dynamic BNs, and SB models) to quantify a chronic kidney 

disease (CKD) AOP. 

CKD is a multifactorial progressive syndrome, of which aging, cardiac insufficiency, diabetes 

and chemical-induced nephrotoxicity are both initiating and accelerating factors. All of these 

factors have an oxidative stress component: Nrf2 activation and its downstream genes, 

including Heme Oxygenase-1, are markers of CKD [15,16]. Indeed, pharmaceutical activation 

of Nrf2 via bardoxolone methyl has been shown to slow CKD progression [17]. In order to 

develop the BN framework we have taken a relatively simple in vitro model, i.e. differentiated 

RPTEC/TERT1 cells treated with the oxidant and renal carcinogen potassium bromate 

(KBrO3) [18,19]. Previous evidence suggests that KBrO3 is a thiol reactive oxidant and a 

strong inducer of Nrf2 and mitochondrial injury [18,20]. Mitochondrial perturbation through 

increased production of reactive oxygen species is a well-described phenomenon [21]. Also 

we have shown using the same biological model that several compounds both activate Nrf2 

and increase glycolysis rates and subsequent lactate production. These compounds include 

cadmium chloride, chloroacetaldehyde, cidofovir, cisplatin and cyclosporine A [22–25]. Thus 

enhanced lactate production is a good surrogate for decreased mitochondrial capacity in 

RPTEC/TERT1 cells, where HIF-1 alpha is not suspected to be activated (which would also 

lead to increased lactate production). 

Finally, we present the implementation of the developed qAOP in Effectopedia, an OECD 

software tool that aims to gather experimental data and models in a unified representation, so 

that they can be compared, further analyzed, and used for hazard and risk assessment 
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purposes. Effectopedia is compliant with the OECD guidance document for the development 

and assessment of AOPs, according to its supplemental Users’ Handbook [4,26]. 

2 Methods 

2.1 Chronic kidney disease AOP 

The proposed AOP (Figure 1) links thiol oxidation to CKD via oxidative and mitochondrial 

stress. Within the nephron, the proximal tubule is especially susceptible to injury from 

oxidative chemicals, as they can cause mitochondrial damage, which in turn can result in 

impairment of active and secondary transport, as well as in cell death. CKD is characterized 

by a progressive loss of renal function, the onset of which is initiated and/or accelerated by 

other factors such as diabetes, high blood pressure or exposure to nephrotoxic chemicals 

[22,27]. Given its high energy demand for active transport, the proximal tubule is especially 

susceptible to injury from oxidative chemicals and mitotoxins [28]. This AOP fulfills several, 

but not all, Bradford Hill criteria for weight-of-evidence assessment [8]. It should therefore be 

considered as preliminary, rather than definitive: 

- The experimental dose-response relationships corresponding to the various KERs are 

consistent with the expected effects (depletion of GSH is associated with increased DCF, 

and increased lactate production, see the data in Figures 5-7 for example). 

- There is temporal concordance among the key events and adverse outcome: GSH depletion 

is fast, DCF production slower, lactate response even slower (Figures 5-7), and CDK takes 

years to develop. 

- The biological plausibility, causal coherence and consistency of experimental evidence for 

this AOP is strong (note that a full documentation of this evidence would extend beyond 
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scope and length of this paper). This AOP is being ported to the AOPWiki 

(https://aopwiki.org) and more supporting information should be available there soon. 

- Alternative mechanisms are possible, as further discussed in this paper, but they would not  

exclude the mechanism postulated by the AOP. 

- A major data gap is that we do not yet have data on a sufficient number of chemicals to 

assess the strength, consistency and specificity of the association of the AO to the MIE or 

the potential impact of alternative mechanisms. Consequently, uncertainties are quite high, 

as will be shown by the SB model, and the proposed AOP is not yet very well 

characterized. 

Here, we quantified this AOP up to the initiation of cell death following induction of 

oxidative stress, since our analysis is based on in vitro data obtained in human proximal 

tubule (RPTEC/TERT1) cells exposed to KBrO3. The link from cell death to kidney function 

impairment therefore cannot be modeled based on the available data and we will focus on a 

set of core early KEs leading to proximal tubule damage. 

2.2 Experimental data 

Thiol oxidation following exposure to various concentrations of potassium bromate (KBrO3) 

(control, 0.375, 0.75, 1.5. 3, and 6 mM) was measured through glutathione (GSH) depletion in 

a cell-free environment (see Figure 5). Depletion was measured in triplicates after 1 hour, 

using the luminescence-based GSH-Glo kit from Promega (V6912), according to 

manufacturer’s instructions, as described in Limonciel et al. [18]. 

Oxidative stress was quantified using the Invitrogen™ Carboxy-H2DCFDA test (catalog 

#C400). In brief, the cell permeant reagent 6-carboxy-2’,7’-dichlorodihydrofluorescein 

diacetate (cH2DCFDA) is first introduced in the culture medium. After diffusion into cells, it 
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is deacetylated by cellular esterases to 6-carboxy-2’,7’-dichlorodihydrofluorescein (cH2DCF), 

which remains trapped in the cell and is oxidized by hydroxyl, peroxyl radicals and other 

reactive oxygen species (ROS) to 6-carboxy-2’,7’-dichlorofluorescein (cDCF), which is 

highly fluorescent. RPTEC/TERT1 cells were grown as described by Aschauer et al. [29] and 

exposed to various concentrations of KBrO3 (control, 0.75, 1.5. 3, and 6 mM) as described by 

Limonciel et al. [18]. Briefly, cells were grown and matured into a mature monolayer in 96-

well cell culture plates kept at 37°C / 5% CO2 and were fed fresh medium 24 hours before 

chemical exposure. Cells were incubated with 40 µM cH2DCFDA 4 hours before washing out 

the excess extracellular dye and starting exposure to KBrO3 dissolved in culture medium. 

cDCF production was measured over time (approximately every 15 min, up to 24 hours, in 8 

replicates) as relative fluorescence units (RFU) by fluorescence spectroscopy using a Tecan 

Pro M200 microplate reader.  

Mitochondrial injury was estimated by lactate concentration in collected RPTEC/TERT1 cell 

culture supernatants, measured in quadruplicates at the start of the experiments and then every 

24 hours, up to 3 days, following exposure to various KBrO3 concentrations (control, 0.25, 

0.5, 1, 2, and 4 mM) (see Figure 6). Supernatant lactate production rate is a measure of 

glycolysis rate, and increased glycolysis can be due to a decrease in mitochondrial respiration 

[30]. The culture medium, with the given KBrO3 concentrations, was changed every day after 

an aliquot was taken for lactate measurement using the absorbance-based assay described in 

Limonciel et al. [15]. 

2.3 Dose-response based qAOP 

In the empirical dose-response approach, dose(-time)-response equations were fitted to data 

on the effect of KBrO3 on GSH, cH2DCF, and lactate. With such data, linking chemical 
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exposures to KEs, the corresponding equations need to be mathematically inverted to obtain 

chemical-independent KERs. Only the exposure to MIE relationship can be used as is. For 

example, if we have three data sets for the activity at dose DX of chemical X on each KE of an 

AOP, we need to fit three dose-response equations: 

 ��� = ����	 (1) 

 ��
 = ����	 (2) 

 ��� = ℎ���	 (3) 

The relationship between KE1 and DX is given directly by Eq. 1 However, the relationship 

between KE1 and KE2 needs to be derived from Eqs 1 and 2: 

 ��
 = ����	 = ���������	� (4) 

where f-1 denotes the inverse function of f. Similarly, for the relationship between KE3 and 

KE2 we have: 

 ��� = ℎ���	 = ℎ�������
	� (5) 

For dose-time-response relationships, the principle is the same, with time as an extra variable 

in the above functions. However, in some cases the function may not be monotonic and 

therefore will not be invertible. 

The relationship between the concentration of KBrO3 (CKBrO3) and the percentage of GSH 

(PctGSH) remaining in vitro after one hour, representing the MIE, was modeled with a 

modified exponential decrease equation (Eq. 6): 

 ������ = 100 × ����−� ⋅  !"#$%& � (6) 
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Its parameters are the GSH degradation rate constant k, and power b (which increases the 

degradation rate if b>1). 

The inverse of Eq. 6 is: 

  !"#$% = '()*��++	�()*�,-./01	2 3� &⁄
 (7) 

The relationship between CKBrO3, time t and the quantity of cDCF formed (QcDCF, reflecting 

the amount of oxidative stress) was modeled empirically by Eq. 8: 

 5-678 = 9 + ; ⋅ '1 + < − ����−�= ⋅  !"#$%�3 �1 − ����−�. ⋅ �	� (8) 

Its parameters are A (baseline response), B (maximum increase above baseline), δ (maximum 

increase modulation by dose), kd (dose coefficient), kt (time coefficient). 

The solution of Eq. 8 for CKBrO3 is: 

  !"#$� = >?� @A1 + < − BCDEF�G
"⋅���HIJ��2K⋅.	�L

�2MN (9) 

Replacing CKBrO3 in Eq. 8 by the expression given in Eq. 7, we obtain the following KER 

between PctGSH and QcDCF: 

 5678 = 9 + ; ⋅ @1 + < − ��� A−�= ⋅ '()*��++	�()*�,-./01	2 3� &⁄ LN �1 − ����−�. ⋅ �	�(10) 

To model the CKBrO3 - time - lactate concentration (Clac) relationship, we used a polynomial 

equation which adequately fitted the data: 

  (O- = P + Q !&#$% + �� + � !&#$�	� + �R + � !&#$�	�
 (11) 
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If we replace CKBrO3 in Eq. 11 by the value given in Eq. 8, the relationship between QcDCF, 

time and Clac becomes: 

 

 SO- = P + Q ⋅ >?� @A1 + < − BCDEF�G
"⋅���HIJ��2K⋅.	�L

�2MN
+ T� + � ⋅ >?� @A1 + < − BCDEF�G

"⋅���HIJ��2K⋅.	�L
�2MNU �

+ TR + � ⋅ >?� @A1 + < − BCDEF�G
"⋅���HIJ��2K⋅.	�L

�2MNU �

 (12) 

A relationship (even more complex) between GSH and lactate concentration could be 

obtained by replacing QcDCF by PctGSH, using Eq. 10. 

2.4 Bayesian network qAOP 

A BN is a probabilistic model whose underlying structure is a graph (equivalently, a network) 

where each node represents a variable of the problem (i.e., for an AOP: chemical substance, 

MIE, KEs and AO), and each arc between two nodes represents a direct dependency (ideally, 

a causal relationship) [31]. The AOP shown on Figure 1 can be taken as a BN structure. 

Within such a BN, a probabilistic relationship (specifically, a component of a conditional 

distribution function) is defined by each arc linking two variables. For example, if an arc joins 

variables A and B, a relationship such as “A is distributed normally around k�B, with a 

variance equal to s2” has to be defined. As a result, every node of the network has a 

probability distribution conditioned by other network variables. This implies that a variable 

cannot depend upon itself, even indirectly, and therefore cycles are not allowed in BNs. 

Evidence on a set of nodes (for example, measurement of some KEs) affects the probability 

distributions of all their dependent nodes [32]. Training a BN from data means that one 

searches for those dependencies (and associated distributions) between variables that best 

explain the data. On the other hand, calibrating a BN implies estimating the parameters of the 



13 

distribution functions that link variables. In our case, we do not need to learn our BN's 

structure, since it is given by the AOP in Figure 1, but we need to calibrate it. 

However, standard BNs do not provide a direct mechanism for representing temporal 

dependencies. Given that we have dose-time-response data on cDCF and lactate production, 

and that their time evolution is progressive rather than instantaneous, it is natural to use a 

dynamic Bayesian network (DBN) to integrate those data [33]. DBNs, typically, replicate an 

underlying structure at several (discrete) times corresponding to measurement time points. 

Figure 2 shows the DBN we constructed to quantify the chronic kidney disease AOP. Each 

node of a given time slice may depend on nodes in the previous time slice and on nodes in the 

same time slice [34]. In this way, the value of a node at time ti may depend on its own value at 

time ti-1, without introducing a loop in the graph. For example, in Figure 2, the cDCF readout 

at a given time point depends on its previous value (indeed, in the in vitro system cDCF 

accumulates with time). The same applies to the lactate concentration. There are also some 

instantaneous or constant dependencies: We considered that CKBrO3 was constant with time 

throughout the experiments (note that this is an approximation, but we have no information on 

the kinetics of KBrO3 in the in vitro system). The thiol depletion readout (GSH level 

remaining after 1 hour) is simply an indicator of KBrO3 potency and was also taken to be 

constant. The DBN structure being defined, we now turn to the form of the conditional 

distributions linking the nodes. 
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Figure 2: Structure of the dynamic Bayesian network qAOP for chronic kidney disease. 

KBrO3 concentration and the GSH readout do not vary with time, while the cDCF and lactate 

readouts were observed at different time intervals. The arrows indicate probabilistic 

dependencies. 

2.4.1 Node to node relationships 

For the dependence of observed PctGSH on CKBrO3 we use a simplified probabilistic version the 

dose-response based qAOP (cf. Eq. 6): 

 ������ ∼ W?XYP>�100 × ����−���� ⋅  !"#$�	, [���
 	 (13) 

with depletion rate constant kGSH and variance σ2
GSH. Note that for simplicity we set parameter 

b to 1. 

The conditional distribution of QcDCF observations at time t, given PctGSH and the QDCF 

observation at the previous time t - h, is given by an extension of the standard DBN model in 
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which PctGHS,t influences the equilibrium value (EcDCF,t) for QDCF,t to which it converges over 

time at exponential dampening rate ν: 

 5678,. ∼ W?XYP> @�-678,. − \�-678,. − 5-678,.�]^ ⋅ ��_CDEF], `��HabCDEFc
��HabCDEF ⋅ [-678
 N (14) 

 �-678,. = d+,-678 + d-678������ (15) 

where EcDCF,t is the equilibrium value of QcDCF (a linear function of PctGSH), h is the (positive) 

time interval between two consecutive observations, νcDCF (positive), β0,cDCF, βcDCF, and 

variance σ2
cDCF are the parameters to estimate. The cDCF RFU value at time zero, cDCF0, 

was not measured, but it should be different from zero given the 4-hour pre-treatment phase in 

the protocol and was therefore also estimated. Positive values of ν and h ensure that e-νh is 

bounded between 0 and 1. 

A similar relationship was used for lactate by replacing QcDCF,t by Clac,t, and PctGHS by QcDCF,t 

in Eqs 14 and 15. Given the recurrent experimental change of medium during the experiment, 

lactate concentration was set to zero at the start of the experiment and reset to that value every 

24 hours. 

2.5 Systems biology model 

We used a SB model to analyze the oxidative stress (cDCF) data. The model does not 

describe lactate formation and hence we did not consider the lactate data in this approach. It 

focuses on the control of the oxidative stress by Nrf2 and glutathione, one of the major 

toxicity pathways studied in systems toxicology [30,35,36]. Therefore, we used it only to 

study the relationship between KBrO3 exposure, time, and cDCF fluorescence in detail (the 
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model is in fact a detailed representation of the KER linking the MIE and first KE of the AOP 

in Figure 1). 

The Nuclear Factor (Erythroid-derived 2)-Like 2 NFE2L2 pathway, commonly known as 

Nrf2, is an important adaptive response to oxidative stress [37]. In homeostatic conditions, 

Nrf2 is mostly bound to the cytoskeleton-associated Kelch-like-ECH-Associated Protein 1 

(Keap1) in an inactive complex within the cytoplasm, which facilitates Nrf2 degradation. 

Upon oxidative stress, Keap1 is oxidized and the complex dissociates, and Nrf2 can migrate 

to the nucleus [38], where it activates the transcription of a set of target genes implicated in 

the metabolism and transport of xenobiotics, and ROS scavenging by GSH [39]. When the 

intra-cellular level of ROS exceeds the capacity of this defense system to replenish GSH 

through new synthesis, GSH depletion occurs and the remaining ROS cause extensive cellular 

damage, cell death, nephron attrition and CKD. 

Figure 3 shows the SB model we developed to study the transcriptional regulation of the GSH 

pathway by the Nrf2 - Keap1 complex, which merges variants of the Hamon et al. model for 

RPTEC/TERT1 cells [40] and a model developed by Geenen et al. [41]. Whereas Hamon’s 

model is more elaborate with respect to genes transcription, the Nrf2 - Keap1 interaction, and 

the role of ATP, Geenen’s model details GSH synthesis. Coupling the two models greatly 

improves the description of the regulation of oxidative stress in RPTEC/TERT1 cells. When 

merging the two models, we simplified the description of the transcription/translation process, 

without loss of precision in the predictions: We replaced a cascade of differential equations 

operating at quasi-steady-state (for gene/receptor binding/unbinding, transcription induction 

by activator(s), translation and degradation of mRNA) by a single Hill equation. We also 

simplified the folate cycle (which was at steady-state), replacing it by a constant 

tetrahydrofolate concentration. We removed acetaminophen- and cyclosporine-specific 

reactions as these were irrelevant for the current application. We finally included the 
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description of the dynamics of HMOX1 and SRXN1 genes, which are often used as activation 

markers for the Nrf2 pathway. The simplification protocol, its validation and the resulting 

Hill-based equations are presented in Supplemental Material (Figure S1, Supplemental 

Protocol and Table S8).  

 

Figure 3: Schematic overview of the assembled SB model. All steps are modeled. This model 

covers both transcriptional and biochemical aspects of GSH synthesis and metabolism and its 

control by the Nrf2-Keap1 signaling pathway. The blue compartment is cytosol and the red 

one is nucleus. Blue arrows show reactant(s):product(s) exchange during biochemical or 

transport reactions, and red arrows indicate enzymatic catalysis (diamond heads) or gene 

transcription (round heads). In the nucleus, red boxes represent genes and arrows indicate 

gene activation. Names of genes are in orange, of mRNA are in green, of enzymes are in 

purple, of other proteins and metabolites in blue and of extracellular constants in yellow. 



18 

In order to calibrate the model with our experimental data on the effect of KBrO3 on GSH and 

cH2DCF, we added several first order reactions to the model (Figure 4): 

a. Action of KBrO3 on extra-cellular GSH (parameter kGSHe,KBrO3); 

b. Formation of cDCF from cH2DCF by ROS-mediated oxidation (parameter kcDCF,ROS); 

c. MRP-driven efflux [42,43] or passive bleaching of cDCF (the same parameter, kbl, can 

describe the two processes); 

d. Formation of cDCF from cH2DCF by direct action of KBrO3 (parameter kcDCF,KBrO3); 

e. Action of KBrO3 on intra-cellular GSH (parameter kGSHc,KBrO3, which is multiplied by 

kGSHe,KBrO3 to yield the reaction rate constant, and is in fact the ratio of the external to 

internal reaction rate constants).  

The complete model code (with 57 differential equations and 335 parameters) is given as 

Supplemental Material.   



19 

 

Figure 4: Potassium bromate (KBrO3) and 6-carboxy-2’,7’-dichlorofluorescein (cDCF) 

specific reactions of the SB model. Other abbreviations: extGSH is extra-cellular glutathione; 

cytGSH: cytosolic glutathione; extGSSG: extra-cellular oxidized glutathione; cytGSSG: 

cytosolic oxidized glutathione; ROS: reactive oxygen species; cH2CFD: 6-carboxy-2’,7’-

dichlorodihydrofluorescein. Reactions are represented by red circles: a is the oxidation of 

extGSH by KBrO3; b: oxidation of cH2CFD by ROS; c: cDCF efflux or bleaching; d: 

oxidation of cH2DCF by KbrO3; e: oxidation of cytGSH by KBrO3.  

2.6 Parameter estimation 

Parameter calibrations for the three types of qAOP investigated were done in a Bayesian 

statistical framework, using Markov chain Monte Carlo (MCMC) simulations [44,45], or 

Hamiltonian MCMC [46]. Basically, for each parameter to calibrate, a prior distribution 

summarizing existing knowledge was updated on the basis of the likelihood of the current 

data to yield a posterior distribution. Those distributions were obtained by random sampling 
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from several simulated Markov chains. The convergence of the simulated chains was checked 

using the Rhat criterion of Gelman and Rubin [47].  

The complexity of the various qAOP models differed and slightly different sampling 

strategies were used. For the dose-response based qAOP, we used a Metropolis-Hastings 

MCMC algorithm, as implemented in the GNU MCSim software [48]. Two Markov chains of 

50,000 iterations were run in parallel, keeping one in four of the last 40,000 iterations. For 

each estimated parameter, non-informative uniform prior distributions were used (note that 

the boundaries of those prior distributions were never reached) (see Table S1 in Supplemental 

material). As usually done for measurements at different concentrations, the data were 

considered to be log-normally distributed with geometric means given by the corresponding 

model predictions and geometric standard deviations (σ GSH, σ cDCF, and σ lac), sampled from 

half-normal distributions (with a priori about 5%, 20% and 20% precision respectively, see 

Table S1 in Supplemental material). Note that in this qAOP, the statistical error model (i.e., 

the likelihood of the data) is clearly separated from the structural equations.  

For the BN qAOP, posterior parameter distributions were obtained by Hamiltonian MCMC, 

using the Stan software [49]. Three simulated Markov chains were run in parallel for 12,000 

iterations, keeping the last 6,000 iterations. Non-informative uniform prior distributions were 

used for each parameter except for the parameters in the cDCF - time - lactate portion of the 

model where weakly informative Gaussian priors were used to stabilize inference (see Table 

S2 in Supplemental material). In this qAOP model, the data likelihood is embedded in the 

model formulation. There is one clear constraint for this model: time and exposure conditions 

must match for all the variables describing a particular node to node relationship. For 

example, lactate was measured every 24 hours and depends on cDCF, which was measured 

every 15 minutes, but for different KBrO3 concentrations. Therefore we need to statistically 
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“impute” (randomly draw from their conditional distribution) the expected cDCF values at the 

concentrations used in the lactate experiment. Note that the alternative solution of describing 

the cDCF dynamics only at time points zero and 24 hours would discard most of the cDCF 

data and is thus unsatisfactory. To reduce the number of data points to be imputed, we chose 

to use only one in four cDCF data points (one per hour). 

For the SB model, parameter calibration was done with Metropolis-Hastings MCMC with 

GNU MCSim. Three Markov chains of 30,000 iterations were run in parallel, keeping the last 

5,000 iterations. For each estimated parameter, non-informative uniform prior distributions 

were used (see Table S3 in Supplemental material). The data were considered to be log-

normally distributed with geometric means given by the corresponding model predictions and 

geometric standard deviations σ cDCF (see Table S3 in Supplemental material). The data 

likelihood is clearly separated from the structural equations. To calibrate the model with our 

experimental data on the effect of KBrO3 on GSH and cH2DCF, we proceeded step by step, 

increasing the complexity of the model by introducing reactions according to the following 

schedule: 

1.  Action of KBrO3 on extra-cellular GSH (parameter kGSHe,KBrO3), on the basis of the 

KBrO3 - GSH cell-free experimental data; kGSHe,KBrO3 was held at its maximum posterior 

value in the subsequent steps. 

2.  Action of KBrO3 on extra-cellular GSH (parameter kGSHe,KBrO3) and formation of cDCF by 

ROS-mediated oxidation (kDCF,ROS): this represents a minimal model for explaining the 

KBrO3 - time - cDCF data. 

3.  Adding efflux or bleaching of cDCF (kbl). 

4.  Adding the direct formation of cDCF by KBrO3 (kcDCF,KBrO3) (step 4a) or the action of 

KBrO3 on intra-cellular GSH (kGSHc,KBrO3) (step 4b). 

5. All of the above. 
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To compare the eventual improvement in fit brought about by the various model refinements 

we used various measures of model fit to the data: the data log-likelihood, the residual 

geometric standard deviation (GSD), the Akaike information criterion (AIC) (twice the 

difference between the number of parameters and the data log-likelihood), the Bayesian 

information criterion (BIC), and the Deviance information criterion (DIC) [50].  

2.7 Uncertainty propagation 

The output of MCMC simulations is a sample of parameter sets (or parameter vectors) drawn 

from their joint distribution. Those sets of parameter values were used to rerun the 

corresponding model to make predictions for unobserved values. This is a type of Monte 

Carlo simulations in which the MCMC sampler acts as a random parameter values generator. 

We obtained distributions of predicted values that reflects the uncertainty of all parameter 

values. For example, when using Eq. 12 to compute a lactate concentration, the uncertainty of 

all parameters entering the equation was convolved by Monte Carlo sampling and their 

uncertainty was fully propagated to the result. The same applies to the other models we used. 

2.8 Software 

The dose-response based qAOP and the SB model were simulated and calibrated with the 

GNU MCSim software, version 5.6.6 (hwww.gnu.org/software/mcsim) [48]. The BN qAOP 

model was simulated and calibrated using Stan (mc-stan.org) [49]. All plots were created with 

R, version 3.4.4 (cran.r-project.org) [51]. Effectopedia version 1.2.51 (www.effectopedia.org) 

[52] was used for implementation of the qAOP on the internet. 



23 

3 Results 

3.1 Dose-response based qAOP 

The empirical dose response models given by Eqs 6, 8, and 11 described the KBrO3 - GSH, 

KBrO3 - time - cDCF, and KBrO3 - time - lactate relationships reasonably well (see Figure 5 

and Figure 6, top row). Equivalent 2D representations of the time course of cDCF and lactate 

at the various KBrO3 concentrations are given in Supplemental material Figures S2 and S3, 

respectively. The uncertainty of the model predictions is low for GSH (Figure 5), and it 

amounts to about 0.5% to 1.5% for cDCF and 5% to 12% for lactate (this cannot be usefully 

visualized in Figure 6 for reasons of readability). Residual uncertainty (an estimate of 

measurement error) is about 22% for GSH, 20% for cDCF and 30% for lactate. Table 1 

summarizes the posterior distributions of the parameter values obtained by Bayesian 

calibration.  
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Table 1: Summary of the posterior parameter distributions for the dose-response based qAOP 

fitted to GSH, cDCF and lactate data. 

Parameter Units Maximum 

posterior value 

mean (SD) [2.5pctile, 97.5pctile] 

KBrO3-GSH model    

k 1/mMb 1.44 1.44 ± 0.06 [1.32, 1.56] 

b - 0.73 0.73 ± 0.028 [0.68, 0.79] 

σ GSH % 1.22 1.22 ± 0.022 [1.18, 1.27] 

KBrO3-time-cDCF model    

A RFU 2100 2100 ± 33 [2000, 2200] 

B RFU 12500 12500 ± 210 [12200, 12800] 

δ - 0.21 2.1×10-1 ± 5.3×10-3 [0.2, 0.22] 

kd 1/mM 0.62 6.2×10-1 ± 1.7×10-2 [0.6, 0.65] 

kt 1/h 0.14 0.14 ± 6.7×10-3 [0.13, 0.15] 

σ cDCF RFU 1.19 1.19 ± 0.0022 [1.18, 1.19] 

KBrO3-time-lactate model    

a mM 2.9 2.8 ± 0.22 [2.4, 3.2] 

b - -6.2×10-2 -5.0×10-3 ± 0.11 [-0.18, 0.18] 

c mM/h -0.057 -5.5×10-2 ± 0.015 [-0.080, -0.030] 

d mM/h2 1.0×10-3 0.001 ± 2.2×10-4 [6.5×10-4, 0.0013] 

e 1/h 0.041 0.040 ± 9.6×10-3 [0.023, 0.056] 

f 1/h2 -3.8×10-4 -3.7×10-4 ± 1.5×10-4 [-6.1×10-4, -1.2×10-4] 

σ lac mM 1.27 1.28 ± 0.026 [1.24, 1.34] 
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Figure 5: Fit of the KBrO3  - GSH data (circles; each color represents one of the replicates) 

using the three qAOP models developed. The black line corresponds to the empirical model 

(Eq. 6). The best fit (solid line) is shown along with 20 additional random fits (gray), showing 

the uncertainty of the model predictions. The black dashed line represents the best fit obtained 

with the DBN qAOP. The red line shows the best fit for the SB model. 
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Figure 6: Fit (top row) and predictions (bottom row) of the dose-response based qAOP for 

the cDCF (measured in RFU) (left) and lactate (right) readouts. The best fit surfaces (gray) 

are plotted along with all individual data (colored dots). The predicted chemical-independent 

relationships (in red) for GSH - time - cDCF, or GSH - time -lactate were obtained by 

inversion of the qAOP equations (see text). The maximum posterior parameter values given in 

Table 1 were used to draw the figures. 

By inversion of the empirical models, we can deduce the relationship between GSH, time, and 

cDCF or GSH, time, and lactate production (Figure 6, bottom row). These relationships 

should, in theory, be independent of the thiol-reactive chemical. They can be used to make 

predictions, including full parametric uncertainty propagation since we used a Bayesian 

statistical framework for parameter inference. For example, a dose causing 80% reduction of 

GSH after 1 hr (i.e., 20% GSH left), in the test conditions described in Methods, should lead 

to a lactate concentration of 4.6 ± 0.3 [4.1, 5.1] mM (mean, SD, 5 and 95 percentiles) after 3 

days of exposure. 
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3.2 Bayesian network qAOP 

The fit of the DBN qAOP to GSH, cDCF, and lactate data is shown on Figures 5 and 7. 

Equivalent 2D representations are given in Supplemental material Figures S4 and S5. The fits 

for GSH and cDCF are less good than those of the empirical models. The fit to the lactate data 

(Figure 7) looks very different for the DBN model, compared to the empirical model, because 

the DBN model takes into account the change of medium every 24 hours. Note that all 

parameters of the DBN model are estimated together, so that modeling errors are spread over 

the overall dataset. Also, the model uses linear relationship between nodes, except for the link 

KBrO3 - GSH. Residual uncertainty (an estimate of measurement error) is about 50% for 

GSH, 25% for cDCF and 10% for lactate. The error model, however, is different (normally 

distributed residuals, rather than log-normally distributed as in the empirical model). Table 2 

summarizes the posterior distributions of the parameter estimates obtained. The model 

parameters have some physical interpretation: Parameter ν controls the speed at which 

plateaus are reached in Figure 7. The β parameters condition the height of the plateaus. 

However, there is a subtle interplay between convergence speed, plateau level, time and dose, 

as can be seen in Figure S5. All parameters are significantly different from zero. 
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Table 2: Summary of posterior parameter distributions of the dynamic Bayesian network 

qAOP fitted to GSH, cDCF and lactate data. 

Parameter Units Maximum 

posterior value 

mean (SD) [5pctile, 95pctile] 

KBrO3-GSH link    

k GSH 1/mM 0.61 0.75 ± 0.18 [0.48, 1.1] 

σ GSH % 18 15 ± 6.3 [6.9, 27] 

GSH-cDCF link    

cDCF0 RFU 2160 2160 ± 20 [2130, 2190] 

β 0,cDCF RFU 1.89×104 1.9×104 ± 1.1×103 [1.7×104, 2.1×104] 

β cDCF RFU/% -117 -130 ± 9.8 [-148, -117] 

ν cDCF 1/h 0.0783 0.10 ± 0.011 [8.2×10-2, 0.12] 

σ cDCF RFU 906 890 ± 10 [880, 910] 

cDCF-lactate link    

β 0,lac mM 9.68×10-3 1.7 ± 3.9×10-1 [1.05, 2.3] 

β lac RFU/mM 4.05×10-4 2.5×10-4 ± 3.7×10-5 [1.95×10-4, 3.2×10-4] 

ν lac 1/h 0.267 0.35 ± 0.064 [0.25, 0.46] 

σ lac mM 0.185 0.64 ± 0.097 [0.48, 0.78] 
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Figure 7: Fit (top row) and predictions (bottom row) of the dynamic BN qAOP for the cDCF 

(measured in RFU) (left) and lactate (right) readouts. The best fit surfaces (gray) are plotted 

along with the data mean (black dots) and all individual data (colored dots). The predicted 

chemical-independent relationships (in red) are shown for GSH - time -  cDCF and GSH -

 time - lactate. The maximum posterior parameter values given in Table 2 were used to draw 

the figures. 

The DBN qAOP model does not need mathematical inversion to produce chemical-

independent predictions of the levels of cDCF and lactate as a function of GSH depletion and 

time, because they can be directly simulated (Figure 7, bottom row). The resulting 

relationship for cDCF is quite similar to that obtained with the previous qAOP, except for the 

linearity of the GSH - cDCF relationship. However, the GSH - lactate relationship is very 

different, even though constant exposures to KBrO3 are simulated in both cases (the 

simulation is now considering a single medium change at time point zero). Note that lactate 

starts at zero to reach a plateau in about three days. The relationship between GSH and lactate 

is predicted to be linear by the DBN model, instead of being strongly nonlinear in the 



30 

empirical qAOP. As before, predictions with uncertainty estimates can be easily made. For 

example, the DBN qAOP predicts that a chemical dose causing 80% reduction of GSH after 1 

hour (i.e., 20% GSH left) leads to a lactate concentration of 5.8 ± 0.4 [5.2, 6.5] mM (mean, 

SD, 5 and 95 percentiles) after 3 days of exposure. This is significantly different from the 

prediction of the empirical qAOP. 

3.3 Systems biology model 

The fit of the SB model to the GSH data (calibration step 1) is shown in Figure 5 (red line). It 

is better than the fit of the DBN qAOP (residual uncertainty for the GSH data is about 40%), 

despite the fact that both use the same decreasing exponential relationship between KBrO3 

and GSH. However, kGSHe,KBrO3 was calibrated to the data independently of the others 

parameters and its fit is not constrained by the cDCF data. The fits obtained for the KBrO3 -

 time - cDCF data at the various model calibration steps (parameters were re-calibrated at 

each step) are shown on Figure 8. Equivalent 2D representations are presented in 

Supplemental material Figures S6 to S9. Measures of the quality of fit are given in 

Supplemental Material Table S4. Note that the model takes into account the 4 hours of cells 

pre-incubation with cH2DCFDA, and the simulation therefore starts already before exposure 

to KBrO3 (which is defined to occur at time point zero). During that period of time, ROS 

already starts forming cDCF, explaining the relatively high level of fluorescence at time point 

zero. At step 2, with just a depletion of extra-cellular GSH by KBrO3 and the formation of 

cDCF by ROS the model is unable to explain the data (Figure 8A). The depletion of extra-

cellular GSH has only a minor effect on the intra-cellular GSH level (Supplemental Material 

Figure S6). Therefore, only background cellular ROS produces cDCF, at a constant rate, and 

the accumulation of cDCF is predicted to be linear (according to the experimental protocol 

cH2DCFDA is expected to be in excess, and not depleted). Allowing cDCF efflux or 
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bleaching offers an explanation for the leveling off of its fluorescence, yet the effect of KBrO3 

is still not explained satisfactorily and the data fit is very poor (Step 3, Figure 8B), despite the 

fact that efflux is mediated by MRP, which is under Nrf2 control (the MRP level stays at its 

background level and is not affected by KBrO3, since intra-cellular GSH itself is not 

significantly lowered). Adding the possibility that KBrO3 directly oxidizes cH2DCF improves 

the fit markedly (Step 4a, Figure 8C), and the residual error σcDCF goes down to about 20% 

(see Table 3). However, the effect of KBrO3 is linear, which is not what the data show. In this 

case, also, the effect of KBrO3 on ROS is close to zero. Instead of a direct oxidation of 

cH2DCF by KBrO3, we also tested the possibility that KBrO3 acts on intra-cellular GSH (Step 

4b, Figure 8D). This has a clear effect on cDCF production, but it is extremely nonlinear and 

does not lead to a reasonable fit to the data. Finally, in step 5, we put all the above parameters 

in the model and re-calibrated them. This did not lead to an improvement compared to step 4a 

(see Supplemental Material Table 4) and the effect of KBrO3 on intra-cellular GSH was 

estimated to be nearly absent (data not shown).  
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Table 3: Summary of the posterior distribution of the five SB model parameters describing 

the action of KBrO3 on the formation of cDCF. The best parameterization (setting kGSHc,KBrO3 

at zero) is presented.  

Parameter Units Maximum posterior mean (SD) [2.5pctile, 97.5pctile] 

kGSHe,KBrO3  (μM.s)-1 2.65×10-7 2.65×10-7 ± 8.45×10-9 

[2.48×10-7, 2.81×10-7] 

kcDCF,ROS (zmol.s)-1 1.20×10-7 1.21×10-7 ± 3.2×10-9  

[1.14×10-7, 1.27×10-7] 

kbl  s-1 3.50×10-5 3.50×10-5 ± 1.4×10-6 

[3.23×10-5, 3.77×10-5] 

kcDCF,KBrO3 (μM.s)-1 1.22×10-9 1.22×10-9 ± 4.5×10-11 

[1.13×10-9, 1.30×10-9] 

kGSHc,KBrO3 - 0 0 

σ cDCF RFU 1.20 1.20 ± 6.8×10-3 [1.18, 1.21] 

 

 

 

Figure 8: Best fits of SB model (gray surfaces) to the cDCF RFU data (colored dots), for 

different levels of model complexity: (A) action of KBrO3 on external GSH and formation of 

cDCF by ROS; (B) same as A but with the addition of cDCF efflux or bleaching; (C) same as 
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B but with the addition of a direct formation of cDCF by KBrO3; (D) same as B, but with the 

addition of an action of KBrO3 on internal GSH. 

Table 3 lists the best value (maximum posterior), the mean, the standard deviation and the 

confidence interval [2.5 percentile, 9.75 percentile] of each of the four parameters calibrated 

at step 4a (yielding the best and most parsimonious model). The values of the parameters 

directly related to cDCF do not have an explicit biological interpretation because cDCF is 

measured in RFU (which should be proportional to concentration, but with an unknown 

proportionality constant). Note that the cDCF efflux/bleaching rate constant corresponds to a 

half-life of about 6 hours. The SB model can also be used to make predictions, with full 

uncertainty propagation. For example, a 4 mM concentration of KBrO3 is predicted to lead to 

a cDCF fluorescence of 16600 ± 250 [16200, 17100] RFU (mean, SD, 5 and 95 percentiles) 

after 24 hours. 

3.4 Effectopedia implementation 

Effectopedia provides a graphical user interface to build an AOP diagram, which in turn gives 

easy access to relevant descriptions, data and models. In addition to a qualitative description 

of the AOP, Effectopedia provides structure for representation of test methods, collected data 

and executable models implemented in the supported programming languages (R, MATLAB, 

Java). Effectopedia was used to create several iterations of the AOP diagram. Initially, the 

sequence of KEs included relevant feedback mechanisms or parallel processes (branches). 

However, in the following step of identification of measurement methods, some of these 

events did not have a separate method of observation and were therefore combined into a 

single KE. Other events were determined to be modification factors rather than being causally 

related to the AO and were removed from the pathway diagram. The current version of the 
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AOP diagram implemented in Effectopedia is shown in Supplemental Material Figure S10. 

Each of the elements in the diagram can be expanded and details can be added to their 

description. Models were implemented in R and their source code contributed to the 

description of the in silico models, allowing other users to execute them with the same and/or 

different data and model parameters. 

4 Discussion 

In this paper, we explored various options for quantifying an AOP and deriving chemical 

independent KERs. Quantitative AOPs have been described previously [10,11], but we strove 

for a rigorous statistical treatment of the models, which is particularly important for 

quantifying uncertainties associated with predictions and extrapolations. For that purpose, we 

used MCMC simulations in a Bayesian framework [44]. Dealing with dose-time-response 

data significantly complicates the problem and very few off-the-shelf software provide 

adequate tools and models for such data, despite the fact that time is a key variable in disease 

progression. While spatial structure is evident in AOP representations (from molecules to 

cells, tissues etc.), time is implicit, masking large time-scale differences: Molecular reactions 

typically take seconds, cells respond in hours, tissues in a matter of days, and the whole body 

can take years to be significantly affected. A qAOP considering only dose and assuming 

instantaneous or fixed-delay effects would be of limited usefulness for risk assessment. This 

is particularly true for chronic renal disease, as humans have a large renal functional reserve 

and ill health is only apparent when that reserve is breached. The time-course of exposure to 

stressors is also important and should be considered during qAOP calibration, because in vitro 

cellular concentrations of test chemicals are usually different from the nominal medium 

concentrations and change with time [53]. To that purpose, qAOPs can be linked with 
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pharmacokinetic models, but only if they are time-consistent. Nevertheless, in the absence of 

kinetic data on KBrO3 concentrations in vitro, we considered here the nominal KBrO3 

concentrations to be an adequate measure of exposure. Note also that the AOP we used is 

illustrative and not OECD approved. We deliberately focused on a short sequence of KEs to 

demonstrate what can be achieved with different modeling approaches. The link to cell death 

and the subsequent link to kidney function impairment have not been included in our models 

given the absence of data on these downstream KEs. A final general comment is that for a 

complete AOP quantification, data on the effects of several chemicals on the KEs should be 

studied, in order to make sure that the KERs derived are fully chemical-independent. Such 

data are currently not available and our qAOP thus only serves to demonstrate quantification 

methods. 

Table 4 summarizes the principle, as well as the pros and cons of the three approaches taken. 

All three require proper statistical treatment to propagate the uncertainty implied by imprecise 

data measurements through the AOP. An excellent way to propagate uncertainty, and translate 

it to risk assessment in the form of Monte-Carlo samples, is to use Bayesian model calibration 

[44,45,50]. In any case, relatively complex and specific software is required. It will be 

interesting to follow the development of Effectopedia, as it offers a user-friendly and 

toxicology-specific AOP quantification environment. Conditional on proper statistical 

treatment and user-defined modeling assumptions, all three methods can describe the data 

well, albeit with different constraints (discussed below in more detail). Note that consistent 

dose-time-response relationships found by any of the three methods do support causality and 

concur a posteriori to other Bradford-Hill criteria. Therefore, qAOP modeling could provide 

further validation of those criteria.  

Dose-response based qAOPs may seem the easiest to develop, as most toxicologists 

understand what is dose-response modeling. However, such modeling is less user-friendly 
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than it seems. It requires either modeling skills (to find “good” dose-time-response equations) 

or black box curve-fitting approaches. Given the immense number of possible choices, 

finding the “best” model given the data is a very difficult task, and the question of structural 

model uncertainty is acute. This is compounded by the fact that the data are taken at “face 

value” and cannot be critically evaluated (except through residual analysis such as outlier 

detection, but these depend on the model adopted, which is still arbitrary). All this makes the 

domain of application of empirical qAOPs strictly limited to the time and dose range of the 

data, and strongly dependent on how relevant the experimental protocol is towards the actual 

disease process, without providing any indication of that relevance. Furthermore, for correct 

statistical inference and chemical-independent KERs, some or all dose-time-response 

relationships fitted must be mathematically inverted. Simply chaining such relationships (that 

is, using the best predictions for one KE as input to the next KER, as it is often done) does not 

account for uncertainties in the “independent” variable at each step and does not correctly 

propagate uncertainty through the AOP. The result would be a largely over-optimistic 

precision for predictions. 

DBN qAOPs offer an automatic or standardized way to develop semi-empirical qAOPs, while 

tuning simply the complexity of the KERs. They can nicely describe complex time 

dependencies in the data, e.g., they successfully modeled a fairly complex time-dose-

relationship for the lactate readout (cf. Figure 7). The end-results differ visually from those of 

the dose-response qAOP, because in our DBN the KER links for cDCF and lactate are 

linearly related to GSH levels (we are currently working on nonlinear extensions of the DBN 

model). That DBN qAOP is, to our knowledge, the first attempt to use such a model for a 

continuous dose-time-response predictive model. To accommodate the time-dependency of 

the data, we used a special formulation of the DBN where time enters the KERs. The work of 

Jaworksa et al. [13,32,54] pioneered the application of BNs for qualitative (i.e., hazard) 
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assessment of chemicals, and we extend it here to qAOPs and risk assessment. The largest 

constraint for (D)BNs lies in the design of the experiments providing the data. The same 

doses and observation times should be used as much as possible. Otherwise, statistical 

imputation has to be used to obtain uniform dose and time schedules across experiments, and 

the statistical estimation problem may become overwhelming. From an experimental point of 

view, however, it might not be feasible to observe the different KEs with the same time frame 

and on the same time scale, even though it might be possible to simplify time dependencies by 

considering some effects to be instantaneous in comparison to others. Finally, it is possible to 

couple PK models with DBN models, either by pre-computing the value of the dose nodes in 

the DBN with a pharmacokinetic model, or by extending the DBN to simulate the 

pharmacokinetic data available. 
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Table 4: Summary characteristics of the three quantification methods used.  

Method Principle Pros Cons 

Dose-

response 

modeling 

Find empirical 

equations that  fit 

the data and, if 

needed, 

mathematically 

invert the models   

to link KEs. 

Mildly simple and fast to obtain. 

Can describe the data well. 

Mathematical sophistication 

required. 

Inversion arbitrarily constrains 

the KERs equations. 

Complex KERs may be modeled 

in an overly simple manner given 

the underlying biology. 

Parameter values can only be 

obtained by fitting. 

Resulting qAOP should not be 

used outside the time and dose 

range of the data. 

Linking with PK is difficult. 

Dynamic 

Bayesian 

networks 

KERs are 

modeled with 

simple equations 

and the whole set 

of KERs is 

modeled by a 

causal network. 

Time is built in 

the network 

structure. 

Equations are simple and the 

network structure is dictated 

automatically by the AOP. 

Ability to describe complex 

behavior comes from structure 

rather than from complicated 

KER equations.  

Can describe the data well, more 

flexibly than dose-response 

models. 

Linking with PK is feasible. 

Statistical sophistication needed. 

Parameter values can only be 

obtained by fitting. Unbalanced 

experimental design requires 

heavy statistical calculations. 

Resulting qAOP should not be 

used outside the time and dose 

range of the data. 

Systems 

biology 

modeling 

A set of 

differential 

equations is used 

to represent the 

KERs and time 

evolution of the 

nodes of the KEs. 

Complex KEs and feed-back 

loops or modifiers can be 

modeled in detail. 

Forces mechanistic questioning 

of the data and allow formal 

testing of mechanistic 

hypotheses. 

Parameter values can be obtained 

from various sources in addition 

to fitting. 

Time, dose, and spatial 

organization (at the organelle, 

cell, or tissue level) can be 

seamlessly integrated. 

Linking with PK is easy. 

Resulting qAOP can be used 

outside the time and dose range 

of the data, if the structure is 

trusted. 

Mathematical and statistical 

sophistication needed. 

Complex to develop and check, 

many parameters make the 

approach data-hungry. 
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The SB model we developed addresses only part of the CKD AOP: It does not include 

mitochondrial injury. But, for chemicals causing oxidative injury in the renal proximal tubule, 

it describes the links between GSH, the control of oxidative stress by Nrf2 and the formation 

of fluorescent cDCF in a very detailed way. The model is complex though, with 57 

differential equations and 335 parameters. However, since it has been already parameterized 

for RPTEC/TERT1 cells, only the five parameters specific to KBrO3 and cDCF reactions 

needed to be calibrated with the current data. We essentially found that a reasonable fit could 

be obtained if KBrO3 acts directly on cH2DCF, and that cDCF is transported out of the cells 

or bleaches significantly with time. We also found that modeling the pre-incubation period 

gives important information about the cellular background rate of oxidative stress. Such 

informative modeling is easy to do with a mechanistic model and impossible to do with the 

previous two approaches. The non-linearity of the effect of KBrO3 on cH2DCF is not well 

explained by a first-order reaction, but we did not introduce ad hoc equations or further 

hypotheses, because the mismatch already leads to the following point of discussion: 

According to our SB model, neither action on extra-cellular nor on intra-cellular GSH can 

entirely explain the cDCF data. This questions the application of the GSH readout as a 

measure of KBrO3 effect in this AOP. While it is well accepted that thiol depletion can induce 

oxidative stress, the model suggests that this may not be the main mechanism of action of 

KBrO3 in the readout test. Thus, KBrO3 may not be well suited to quantify our AOP, which 

also calls into question the results obtained with the other two models. SB models force us to 

think mechanistically about the data, asking which biochemical reactions could explain them. 

They can also simulate particular details of the experimental protocols and background 

cellular processes, improving our understanding of the biology and of the tests themselves. 

However, we cannot entirely exclude that the model may be misleading, because its many 

parameters have not all been calibrated perfectly. SB models can also naturally integrate 
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pharmacokinetic models, since those are based on the same principles and same mathematical 

objects. Therefore, complicated SB models should be seen as investment for the future rather 

than as quick answer to urgent questions. 

An Effectopedia implementation of both BN and SB models faces challenges, of which the 

most important is matching the internal structure of the models to the conceptual structure 

provided by the AOP. Currently, Effectopedia allows “global models” in which one BN or SB 

model can cover several KEs. Such models need to have specific outputs matching the AOP 

KEs. A problem in that approach is the derivation of reusable KERs. If the global model 

contains complex time or variable dependencies between non-adjacent KEs, they need to be 

explicitly represented in the AOP as feedbacks, feed-forwards or modifying factors. However, 

extracting such dependencies is non-trivial. Alternatively, the AOP can be re-designed if the 

global model indicates that some tightly coupled KEs can be merged. 

5 Conclusion 

The three approaches tested have different advantages. Dose-response based qAOPs may 

seem the easiest to develop at first sight, but they have very limited extrapolation and 

explanatory power. Bayesian networks are in fact easier to develop, once the technology is 

mastered, but they impose either strong constraints on experimental design (fixed dosing and 

observation schedules) or require complex statistical treatment (imputation). Systems biology 

models are more complex to develop, but one can strive for parsimony, as when we simplified 

the gene regulation part of our model. Importantly, they offer insight in the data relevance and 

biology that the other approaches cannot afford. In any case, the three approaches we 

presented can all fully propagate uncertainty about qAOP predictions, which is essential for 
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proper risk assessment. The contrasted results we obtained demonstrate that the choice of 

approach is not neutral. They also emphasize the importance of data collection on: 

-  In vitro kinetics, to understand and take into account the fate of the chemicals in the test 

system; 

- Baseline behavior of the cells, in the absence of chemical exposure. For that, raw 

experimental data should be delivered to modelers without pre-processing such as 

normalization to background values. If such normalization had been applied to our cDCF 

data, for example, we would have lost important information on background ROS 

production. Correcting for background may impair essential mechanistic understanding of 

AOPs, which are as much about the underlying biology as about the effects of stressors; 

- Different readouts, to select the most relevant one for the underlying KE or to better 

understand a complex KE (such as oxidative stress); 

- Other chemicals to check whether the parameterized KERs are robust and really chemical-

independent. 

To avoid pitfalls in qAOP development, we suggest to take at least two approaches in parallel: 

First, a mechanistic modeling path, able to help test hypotheses, design experiments and 

deeply understand the results; Second, because we cannot always wait to have a fully 

mechanistic model developed, a lighter statistical approach. At the moment dose-response 

based modeling is the simplest, but we hope that we can contribute to a more wide-spread 

dissemination of dynamic Bayesian networks in this area. In this spirit, one of the goals of the 

Effectopedia platform is to facilitate the creation of qAOPs by integrating and comparing the 

results brought by various modeling approaches. 
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Figure captions 

Figure 1: Chronic kidney disease AOP diagram. KEs are in green boxes, readout are in 

yellow boxes, KERs are represented by arrows. 

Figure 2: Structure of the dynamic Bayesian network qAOP for chronic kidney disease. 

KBrO3 concentration and the GSH readout do not vary with time, while the cDCF and lactate 

readouts were observed at different time intervals. The arrows indicate probabilistic 

dependencies. 

Figure 3: Schematic overview of the assembled SB model. This model covers both 

transcriptional and biochemical aspects of GSH synthesis and metabolism and its control by 

the Nrf2-Keap1 signaling pathway. The blue compartment is cytosol and the red one is 

nucleus. Blue arrows show reactant(s):product(s) exchange during biochemical or transport 

reactions, and red arrows indicate enzymatic catalysis (diamond heads) or gene transcription 

(round heads). In the nucleus, red boxes represent genes and arrows indicate gene activation. 

Names of genes are in orange, of mRNA are in green, of enzymes are in purple, of other 

proteins and metabolites in blue and of extracellular constants in yellow. 

Figure 4: Potassium bromate (KBrO3) and 6-carboxy-2’,7’-dichlorofluorescein (cDCF) 

specific reactions of the SB model. Other abbreviations: extGSH is extra-cellular glutathione; 

cytGSH: cytosolic glutathione; extGSSG: extra-cellular oxidized glutathione; cytGSSG: 

cytosolic oxidized glutathione; ROS: reactive oxygen species; cH2CFD: 6-carboxy-2’,7’-

dichlorodihydrofluorescein. Reactions are represented by red circles: a is the oxidation of 

extGSH by KBrO3; b: oxidation of cH2CFD by ROS; c: cDCF efflux or bleaching; d: 

oxidation of cH2DCF by KbrO3; e: oxidation of cytGSH by KBrO3. 
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Figure 5: Fit of the KBrO3  - GSH data (circles; each color represents one of the replicates) 

using the three qAOP models developed. The black line corresponds to the empirical model 

(Eq. 6). The best fit (solid line) is shown along with 20 additional random fits (gray), showing 

the uncertainty of the model predictions. The black dashed line represents the best fit obtained 

with the DBN qAOP. The red line shows the best fit for the SB model. 

Figure 6: Fit (top row) and predictions (bottom row) of the dose-response based qAOP for 

the cDCF (measured in RFU) (left) and lactate (right) readouts. The best fit surfaces (gray) 

are plotted along with all individual data (colored dots). The predicted chemical-independent 

relationships (in red) for GSH - time - cDCF, or GSH - time -lactate were obtained by 

inversion of the qAOP equations (see text). The maximum posterior parameter values given in 

Table 1 were used to draw the figures. 

Figure 7: Fit (top row) and predictions (bottom row) of the dynamic BN qAOP for the cDCF 

(measured in RFU) (left) and lactate (right) readouts. The best fit surfaces (gray) are plotted 

along with the data mean (black dots) and all individual data (colored dots). The predicted 

chemical-independent relationships (in red) are shown for GSH - time -cDCF and GSH -

 time - lactate. The maximum posterior parameter values given in Table 2 were used to draw 

the figures. 

Figure 8: Best fits of SB model (gray surfaces) to the cDCF RFU data (colored dots), for 

different levels of model complexity: (A) action of KBrO3 on external GSH and formation of 

cDCF by ROS; (B) same as A but with the addition of cDCF efflux or bleaching; (C) same as 

B but with the addition of a direct formation of cDCF by KBrO3; (D) same as B, but with the 

addition of an action of KBrO3 on internal GSH. 




