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LONG-TIME EXISTENCE FOR SEMI-LINEAR BEAM EQUATIONS ON

IRRATIONAL TORI.

JOACKIM BERNIER, ROBERTO FEOLA, BENOÎT GRÉBERT, AND FELICE IANDOLI

Abstract. We consider the semi-linear beam equation on the d dimensional irrational
torus with smooth nonlinearity of order n− 1 with n ≥ 3 and d ≥ 2. If ε ≪ 1 is the size
of the initial datum, we prove that the lifespan Tε of solutions is O(ε−A(n−2)− ) where
A ≡ A(d, n) = 1 + 3

d−1
when n is even and A = 1 + 3

d−1
+max( 4−d

d−1
, 0) when n is odd.

For instance for d = 2 and n = 3 (quadratic nonlinearity) we obtain Tε = O(ε−6− ),
much better than O(ε−1), the time given by the local existence theory. The irrationality
of the torus makes the set of differences between two eigenvalues of

√
∆2 + 1 accumulate

to zero, facilitating the exchange between the high Fourier modes and complicating the
control of the solutions over long times. Our result is obtained by combining a Birkhoff
normal form step and a modified energy step.
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1. Introduction

In this article we consider the beam equation on an irrational torus

(1.1)





∂ttψ +∆2ψ + ψ + f(ψ) = 0 ,

ψ(0, y) = ψ0 ,

∂tψ(0, y) = ψ1 ,

where f ∈ C∞(R,R), ψ = ψ(t, y), y ∈ Tdν , with ν = (ν1, . . . , νd) ∈ [1, 2]d and

(1.2) T
d
ν := (R/2πν1Z)× · · · × (R/2πνdZ) .
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The initial data (ψ0, ψ1) have small size ε in the standard Sobolev space Hs+1(Tdν) ×
Hs−1(Tdν) for some s≫ 1. The nonlinearity f(ψ) has the form

(1.3) f(ψ) := (∂ψF )(ψ)

for some smooth function F ∈ C∞(R,R) having a zero of order at least n ≥ 3 at the
origin. Local existence theory implies that (1.1) admits, for small ε > 0, a unique smooth
solution defined on an interval of length O(ε−n+2). Our goal is to prove that, generically
with respect to the irrationality of the torus (i.e. generically with respect to the parameter
ν), the solution actually extends to a larger interval.
Our main theorem is the following.

Theorem 1. Let d ≥ 2. There exists s0 ≡ s0(n, d) ∈ R such that for almost all ν ∈ [1, 2]d,
for any δ > 0 and for any s ≥ s0 there exists ε0 > 0 such that for any 0 < ε ≤ ε0 we have
the following. For any initial data (ψ0, ψ1) ∈ Hs+1(Tdν)×Hs−1(Tdν) such that

(1.4) ‖ψ0‖Hs+1 + ‖ψ1‖Hs−1 ≤ ε ,

there exists a unique solution of the Cauchy problem (1.1) such that

(1.5)

ψ(t, x) ∈ C0
(
[0, Tε);H

s+1(Tdν)
)⋂

C1
(
[0, Tε);H

s−1(Tdν)
)
,

sup
t∈[0,Tε)

(
‖ψ(t, ·)‖Hs+1 + ‖∂tψ(t, ·)‖Hs−1

)
≤ 2ε , Tε ≥ ε−a+δ ,

where a = a(d, n) has the form

(1.6) a(d, n) :=

{
(n− 2)

(
1 + 3

d−1

)
, n even

(n− 2)
(
1 + 3

d−1

)
+ max{4−d,0}

d−1 , n odd .

Originally, the beam equation has been introduced in physics to model the oscillations
of a uniform beam, so in a one dimensional context. In dimension 2, similar equations can
be used to model the motion of a clamped plate (see for instance the introduction of [28]).
In larger dimension (d ≥ 3) we do not claim that the beam equation (1.1) has a physical
interpretation but nevertheless remains an interesting mathematical model of dispersive
PDE. We note that when the equation is posed on a torus, there is no physical reason to
assume the torus to be rational.

This problem of extending solutions of semi-linear PDEs beyond the time given by
local existence theory has been considered many times in the past, starting with Bourgain
[1], Bambusi [3] and Bambusi-Grébert [5] in which the authors prove the almost global
existence for the Klein Gordon equation:

(1.7)





∂ttψ −∆ψ +mψ + f(ψ) = 0 ,

ψ(0, x) = ψ0 ,

∂tψ(0, x) = ψ1 ,

on a one dimensional torus. Precisely, they proved that, given N ≥ 1, if the initial datum
has a size ε small enough in Hs(T)×Hs−1(T), and if the mass stays outside an exceptional
subset of zero measure, the solution of (1.7) exists at least on an interval of length O(ε−N ).
This result has been extended to equation (1.7) on Zoll manifolds (in particular spheres) by
Bambusi-Delort-Grébert-Szeftel [4] but also for the nonlinear Schrödinger equation posed
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on Td (the square torus of dimension d) [5, 18] or on Rd with a harmonic potential [24].
What all these examples have in common is that the spectrum of the linear part of the
equation can be divided into clusters that are well separated from each other. Actually if
you considered (1.1) with a generic mass m on the square torus Td then the spectrum of√
∆2 +m (the square root comes from the fact that the equation is of order two in time)

is given by {
√

|j|4 +m | j ∈ Zd} which can be divided in clusters around each integers n
whose diameter decreases with |n|. Thus for n large enough these clusters are separated
by 1/2. So in this case also we could easily prove, following [5], the almost global existence
of the solution.
On the contrary when the equation is posed on an irrational torus, the nature of the
spectrum drastically changes: the differences between couples of eigenvalues accumulate
to zero. Even for the Klein Gordon equation (1.7) posed on Td for d ≥ 2 the linear
spectrum is not well separated. In both cases we could expect exchange of energy between
high Fourier modes and thus the almost global existence in the sense described above is
not reachable (at least up to now!). Nevertheless it is possible to go beyond the time given
by the local existence theory. In the case of (1.7) on Td for d ≥ 2, this local time has
been extended by Delort [13] and then improved in different ways by Fang and Zhang [19],
Zhang [29] and Feola-Grébert-Iandoli [20] (in this last case a quasi linear Klein Gordon
equation is considered). We quote also the remarkable work on multidimensional periodic
water wave by Ionescu-Pusateri [26].

The beam equation has already been considered on irrational torus in dimension 2 by R.
Imekraz in [25]. In the case he considered, the irrationality parameter ν was diophantine
and fixed, but a mass m was added in the game (for us m is fixed and for convenience we

chose m = 1). For almost all mass, Imekraz obtained a lifespan Tε = O(ε−
5
4
(n−2)+) while

we obtain, for almost all ν, Tε = O(ε−4(n−2)+) when n is even and Tε = O(ε−4(n−2)−2+)
when n is odd.

We notice that applying the Theorem 3 of [8] (and its Corollary 1) we obtain the almost
global existence for (1.1) on irrational tori up to a large but finite loss of derivatives.

Let us also mention some recent results about the longtime existence for periodic water
waves [12, 10, 9, 11]. In the same spirit we quote the long time existence for a general class
of quasi-linear Hamiltonian equations [21] and quasi-linear reversible Schrödinger equations
[22] on the circle. The main theorem in [21] applies also for quasi-linear perturbations of
the beam equation. We mention also [16], here the authors study the lifespan of small
solutions of the semi-linear Klein-Gordon equation posed on a general compact boundary-
less Riemannian manifold.

All previous results ([13, 19, 29, 20, 25]) have been obtained by a modified energy
procedure. Such procedure partially destroys the algebraic structure of the equation and,
thus, it makes more involved to iterate the procedure1. On the contrary, in this paper,
we begin by a Birkhoff normal form procedure (when d = 2, 3) before applying a modified
energy step. Further in dimension 2 we can iterate two steps of Birkhoff normal form and
therefore we get a much better time. The other key tool that allows us to go further in time
is an estimate of small divisors that we have tried to optimize to the maximum: essentially

1Actually there are papers in which such procedure is iterated. We quote for instance [14] and reference
therein.
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small divisors make us lose (d − 1) derivatives (see Proposition 2.2) which explains the
strong dependence of our result on the dimension d of the torus and also explains why
we obtain a better result than [25]. In section 1.2 we detail the scheme of the proof of
Theorem 1.

1.1. Hamiltonian formalism. We denote by Hs(Td;C) the usual Sobolev space of func-
tions Td ∋ x 7→ u(x) ∈ C. We expand a function u(x), x ∈ Td, in Fourier series as

(1.8) u(x) =
1

(2π)d/2

∑

n∈Zd

une
in·x , un :=

1

(2π)d/2

∫

Td

u(x)e−in·x dx .

We also use the notation

(1.9) u+1
n := un and u−1

n := un .

We set 〈j〉 :=
√

1 + |j|2 for j ∈ Zd. We endow Hs(Td;C) with the norm

(1.10) ‖u(·)‖2Hs :=
∑

j∈Zd

〈j〉2s|uj |2 .

Moreover, for r ∈ R+, we denote by Br(H
s(Td;C)) the ball of Hs(Td;C)) with radius r

centered at the origin. We shall also write the norm in (1.10) as ‖u‖2Hs = (〈D〉su, 〈D〉su)L2 ,

where 〈D〉eij·x = 〈j〉eij·x, for any j ∈ Zd.
In the following it will be more convenient to rescale the equation (1.1) and work on

squared tori Td. For any y ∈ Tdν we write ψ(y) = φ(x) with y = (x1ν1, . . . , xdνd) and
x = (x1, . . . , xd) ∈ Td. The beam equation in (1.1) reads

(1.11) ∂ttφ+Ω2φ+ f(φ) = 0

where Ω is the Fourier multiplier defined by linearity as

(1.12) Ωeij·x = ωje
ij·x , ωj :=

√
|j|4a + 1 , |j|2a :=

d∑

i=1

ai|ji|2 , ai := ν2i , ∀ j ∈ Z
d .

Introducing the variable v = φ̇ = ∂tφ we can rewrite equation (1.11) as

(1.13) φ̇ = −v , v̇ = Ω2φ+ f(φ) .

By (1.3) we note that (1.13) can be written in the Hamiltonian form

∂t
[
φ
v

]
= XHR

(φ, v) = J

(
∂φHR(φ, v)
∂vHR(φ, v)

)
, J =

[
0 1
−1 0

]

where ∂ denotes the L2-gradient of the Hamiltonian function

(1.14) HR(φ, v) =

∫

Td

(1
2
v2 +

1

2
(Ω2φ)φ+ F (φ)

)
dx ,

on the phase space H2(Td;R)× L2(Td;R). Indeed we have

(1.15) dHR(φ, v)
[
φ̂
v̂

]
= −λR(XHR

(φ, v),
[
φ̂
v̂

]
)
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for any (φ, v), (φ̂, v̂) in H2(Td;R) × L2(Td;R), where λR is the non-degenerate symplectic
form

λR(W1,W2) :=

∫

Td

(φ1v2 − v1φ2)dx , W1 :=
[
φ1
v1

]
,W2 :=

[
φ2
v2

]
.

The Poisson bracket between two Hamiltonian HR, GR : H2(Td;R) × L2(Td;R) → R are
defined as

(1.16) {HR, GR} = λR(XHR
,XGR

) .

We define the complex variables

(1.17)
[
u
ū

]
:= C

[
φ
v

]
, C :=

1√
2

(
Ω

1
2 iΩ− 1

2

Ω
1
2 −iΩ− 1

2

)
,

where Ω is the Fourier multiplier defined in (1.12). Then the system (1.13) reads

(1.18) u̇ = iΩu+
i√
2
Ω−1/2f

(
Ω−1/2

(
u+ ū√

2

))
.

Notice that (1.18) can be written in the Hamiltonian form

(1.19) ∂t
[
u
ū

]
= XH(u) = iJ

(
∂uH(u)
∂ūH(u)

)
=

(
i∂ūH(u)
−i∂uH(u)

)
, J =

[
0 1
−1 0

]

with Hamiltonian function (see (1.14))

(1.20) H(u) = HR(C−1
[
u
ū

]
) =

∫

Td

ūΩu dx+

∫

Td

F
(Ω−1/2(u+ ū)√

2

)
dx

and where ∂ū = (∂ℜu + i∂ℑu)/2, ∂u = (∂ℜu − i∂ℑu)/2. Notice that

(1.21) XH = C ◦XHR
◦ C−1

and that (using (1.17))

(1.22) dH(u)
[
h
h̄

]
= (dHR)(φ, v)[C−1

[
h
h̄

]
]

(1.15),(1.21)
= −λ(XH(u),

[
h
h̄

]
)

for any h ∈ H2(Td;C) and where the two form λ is given by the push-forward λ = λR◦C−1.
In complex variables the Poisson bracket in (1.16) reads

(1.23) {H,G} := λ(XH ,XG) = i

∫

Td

∂uG∂ūH − ∂ūG∂uHdx ,

where we set H = HR ◦ C−1, G = GR ◦ C−1. Let us introduce an additional notation:

Definition 1.1. If j ∈ (Zd)r for some r ≥ k then µk(j) denotes the kst largest number
among |j1|, . . . , |jr| (multiplicities being taken into account). If there is no ambiguity we
denote it only with µk.

Let r ∈ N, r ≥ n. A Taylor expansion of the Hamiltonian H in (1.20) leads to

(1.24) H = Z2 +
r−1∑

k=n

Hk +Rr
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where

(1.25) Z2 :=

∫

Td

ūΩu dx
(1.12)
=

∑

j∈Zd

ωj|uj|2

and Hk, k = 3, · · · , r − 1, is an homogeneous polynomial of order k of the form

(1.26) Hk =
∑

σ∈{−1,1}k , j∈(Zd)k∑k
i=1 σiji=0

(Hk)σ,ju
σ1
j1

· · · uσkjk

with (noticing that the zero momentum condition
∑k

i=1 σiji = 0 implies µ1(j) . µ2(j))

(1.27) |(Hk)σ,j | .k
1

µ1(j)2
, ∀σ ∈ {−1, 1}k , j ∈ (Zd)k

and

(1.28) ‖XRr (u)‖Hs+2 .s ‖u‖r−1
Hs , ∀u ∈ B1(H

s(Td;C)) .

The estimate above follows by Moser’s composition theorem in [27], section 2. Estimates
(1.27) and (1.28) express the regularizing effect of the semi-linear nonlinearity in the Hamil-
tonian writing of (1.11).

1.2. Scheme of the proof of Theorem 1. As usual Theorem 1 will be proved by a
bootstrap argument and thus we want to control, Ns(u(t)) := ‖u(t)‖2Hs , for t 7→ u(t, ·) a
small solution (whose local existence is given by the standard theory for semi-linear PDEs)
of the Hamiltonian system generated by H given by (1.24) for the longest time possible
(and at least longer than the existence time given by the local theory). So we want to
control its derivative with respect to t. We have

(1.29)
d

dt
Ns(u) = {Ns,H} =

r−1∑

k=n

{Ns,Hk}+ {Ns, Rr} .

By (1.28) we have {Ns, Rr} . ‖u‖r−1
Hs and thus we can neglect this term choosing r large

enough. Then we define H≤N
k the truncation of Hk at order N :

H≤N
k =

∑

σ∈{−1,1}k , j∈(Zd)k∑k
i=1 σiji=0, µ2(j)≤N

(Hk)σ,ju
σ1
j1

· · · uσkjk

and we set H>N
k = Hk − H≤N

k . As a consequence of (1.27) we have {Ns,H
>N
k } .

N−2‖u‖k−1
Hs and thus we can neglect these terms choosing N large enough. So it remains

to take care of
∑r−1

k=n{Ns,H
≤N
k }.

The natural idea to eliminate H≤N
k consists in using a Birkhoff normal form procedure

(see [5, 23]). In order to do that, we have first to solve the homological equation

{χk, Z2}+H≤N
k = Zk .

This is achieved in Lemma 3.6 and, thanks to the control of the small divisors given by
Proposition 2.2, we get that there exists α ≡ α(d, k) > 0 such that for any δ > 0

(1.30) |(χk)σ,j | .δ µ1(j)d−3+δµ3(j)
α , ∀σ ∈ {−1, 1}k, j ∈ (Zd)k .
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From [5] we learn that the positive power of µ3(j) appearing in the right hand side of
(1.30) is not dangerous2 (taking s large enough) but the positive power of µ1(j) implies
a loss of derivatives. So this step can be achieved only assuming d ≤ 3 and in that case
the corresponding flow is well defined in Hs (with s large enough) and is controlled by N δ

(see Lemma 3.7). In other words, this step is performed only when d = 2, 3, when d ≥ 4
we directly go to the modified energy step.
For d = 2, 3, let us focus on n = 3. After this Birkhoff normal form step, we are left with

H ◦ Φχ3 = Z2 + Z3 +Q4 + negligible terms

where Q4 is a Hamiltonian of order 4 whose coefficients are bounded by µ1(j)
d−3+δ

(see Lemma 3.5, estimate (3.15)) and Z3 is a Hamiltonian of order 3 which is resonant:
{Z2, Z3} = 0. Actually, as consequence Proposition 2.2, Z3 = 0 and thus we have elimi-
nated all the terms of order 3 in (1.29).

In the case d = 2, Q≤N
4 is still (1 − δ)-regularizing and we can perform a second Birkhoff

normal form. Actually, since in eliminating Q≤N
4 we create terms of order at least 6, we

can eliminate both Q≤N
4 and Q≤N

5 . So, for d = 2, we are left with

H̃ = H ◦ Φχ3 ◦Φχ4+χ5 = Z2 + Z4 +Q6 + negligible terms

where Z4 is Hamiltonian of order 4 which is resonant3, {Z2, Z4} = 0, and Q6 is a Hamil-
tonian of order 6 whose coefficients are bounded by N2δ. Since resonant Hamiltonians
commute with Ns, the first contribution in (1.29) is {Ns, Q6}. This is essentially the state-
ment of Theorem 2 in the case d = 2 and n = 3 and this achieves the Birkhoff normal
forms step.

Let us describe the modified energy step only in the case d = 2 and n = 3 and let us
focus on the worst term in {Ns, H̃}, i.e. {Ns, Q6}. Let us write

Q6 =
∑

σ∈{−1,1}6, j∈(Zd)k

|j1|≥···≥|j6|∑6
i=1 σiji=0

(Q6)σ,ju
σ1
j1

· · · uσ6j6 .

From Proposition 2.2 we learn that if σ1σ2 = 1 then the small divisor associated with (j, σ)
is controlled by µ3(j) and thus we can eliminate the corresponding monomial by one more

2When you have a control of the small divisors involving only µ3(j) then you can solve the homological
equation at any order and you obtain an almost global existence result in the spirit of [5]. This would be
the case if we consider the semi-linear beam equation on the squared torus T

d.
3Notice that there is no resonant term of odd order by Proposition 2.2, in other words Z3 = Z5 = 0.
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Birkhoff normal forms step4. Now if we assume σ1σ2 = −1 we have

|{Ns, u
σ1
j1

· · · uσ6j6 }| = |
6∑

i=1

σji〈ji〉2s||uσ1j1 · · · uσ6j6 |

≤ (〈j1〉2s − 〈j2〉2s + 4〈j3〉2s)|uσ1j1 · · · uσ6j6 |
≤
(
s(〈j1〉2 − 〈j2〉2)〈j1〉2(s−1) + 4〈j3〉2s

)
|uσ1j1 · · · uσ6j6 |

.s (〈j1〉2s−1〈j3〉+ 4〈j3〉2s)|uσ1j1 · · · uσ6j6 |

.s µ
−1
1 ‖u‖6Hs

where we used the zero momentum condition,
∑6

i=1 σiji = 0, to obtain |j1 − j2| ≤ 4|j3|.
This gain of one derivative, also known as the commutator trick, is central in a lot of results
about modified energy [13, 8] or growth of Sobolev norms [2, 15, 7, 6].
So if Q−

6 denotes the restriction of Q6 to monomials satisfying σ1σ2 = −1 we have essen-
tially proved that

|{Ns, Q
−,>N1
6 }| . N−1

1 ‖u‖6Hs .

Then we can consider the modified energy Ns + E6 with E6 solving

{E6, Z2} = {Ns, Q
−,≤N1
6 }

in such a way that

{Ns + E6, H̃} = {Ns, Q
−,>N1
6 }+ {Ns, H̃7}+ {E6, Z4}+ negligible terms .

Since this modified energy will not produce new terms of order 7, we can in the same time

eliminate Q−,≤N1
7 . Thus we obtain a new energy, Ns +E6 +E7, which is equivalent to Ns

in a neighborhood of the origin, and such that, by neglecting all the powers of N δ and N δ
1

which appear when we work carefully (see (4.6) for a precise estimate),

|{Ns + E6 + E7, H̃}| .s N−1
1 ‖u‖6Hs + ‖u‖8Hs +N−1‖u‖3Hs .

Then, a suitable choice of N and N1 and a standard bootstrap argument lead to, Tε =

O(ε−6) by using this rough estimate, and Tε = O(ε−6−) by using the precise estimate (see
section 5).

Remark 1.2. In principle a Birkhoff normal form procedure gives more than just the
control ofHs norm of the solutions, it gives an equivalent Hamiltonian system and therefore
potentially more information about the dynamics of the solutions. However, if one wants to
control only the solution in Hs norm, the modified energy method is sufficient and simpler.
One could therefore imagine applying this last method from the beginning. However,
when we iterate it, the modified energy method brings up terms that, when we apply a
Birkhoff procedure, turn out to be zero. Unfortunately we have not been able to prove the
cancellation of these terms directly by the modified energy method, that is why we use
successively a Birkhoff normal form procedure and a modified energy procedure.

4In fact in section 4, for the sake of simplicity, we prefer to apply a modified energy strategy to all the
terms of Q6 (see also Remark 1.2).
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Notation. We shall use the notation A . B to denote A ≤ CB where C is a positive
constant depending on parameters fixed once for all, for instance d, n. We will emphasize
by writing .q when the constant C depends on some other parameter q.

2. Small divisors

As already remarked in the introduction, the proof of Theorem 1 is based on a normal
form approach. In particular we have to deal with a small divisors problem involving linear
combination of linear frequencies ωj in (1.12).

This section is devoted to establish suitable lower bounds for generic (in a probabilistic
way) choices of the parameters ν excepted for exceptional indices for which the small divisor
is identically zero. According to the following definition such indices are called resonant.

Definition 2.1 (Resonant indices). Being given r ≥ 3, j1, . . . , jr ∈ Zd and σ1, . . . , σr ∈
{−1, 1}, the couple (σ, j) is resonant if r is even and there exists a permutation ρ ∈ Sr

such that

∀k ∈ J1, r/2K,



|jρ2k−1,1|

...
|jρ2k−1,d|


 =



|jρ2k ,1|

...
|jρ2k ,d|


 and σρ2k−1

= −σρ2k .

In this section we aim at proving the following proposition whose proof is postponed to
the end of this section (see subsection 2.3). We recall that a is defined with respect to the
length, ν, of the torus by the relation ai = ν2i (see (1.12)).

Proposition 2.2. For almost all a ∈ (1, 4)d, there exists γ > 0 such that for all δ > 0,
r ≥ 3, σ1, . . . , σr ∈ {−1, 1}, j1, . . . , jr ∈ Zd satisfying σ1j1+ · · ·+σrjr = 0 and |j1| ≥ · · · ≥
|jr| at least one of the following assertion holds

(i) (σ, j) is resonant (see Definition 2.1)
(ii) σ1σ2 = 1 and ∣∣∣∣∣

r∑

k=1

σk
√

1 + |jk|4a

∣∣∣∣∣ &r γ (〈j3〉 . . . 〈jr〉)
−9dr2 ,

(iii) σ1σ2 = −1 and∣∣∣∣∣

r∑

k=1

σk
√
1 + |jk|4a

∣∣∣∣∣ &r,δ γ 〈j1〉
−(d−1+δ)(〈j3〉 . . . 〈jr〉)−44dr4 .

We refer the reader to Lemma 2.9 and its corollary to understand how we get this
degeneracy with respect to j1.

2.1. A weak non-resonance estimate. In this subsection we aim at proving the follow-
ing technical lemma.

Lemma 2.3. If r ≥ 1, (j1, . . . , jr) ∈ (Nd)r is injective5, n ∈ (Z∗)r and κ ∈ Rd satisfies
κi⋆ = 0 for some i⋆ ∈ J1, dK then we have

∀γ > 0,

∣∣∣∣∣{a ∈ (1, 4)d :
∣∣κ · a+

r∑

k=1

nk
√

1 + |jk|4a
∣∣ < γ}

∣∣∣∣∣ .r,d γ
1

r(r+1) (〈j1〉 . . . 〈jr〉)
12
r+1 .

5i.e. ∀k, ℓ ∈ J1, rK, k 6= ℓ ⇒ jk 6= jℓ.
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Their proofs (postponed to the end of this subsection) rely essentially on the following
lemma.

Lemma 2.4. If I, J are two bounded intervals of R∗
+, r ≥ 1, (j1, . . . , jr) ∈ (Nd)r is

injective, n ∈ (Z∗)r and h : Jd−1 → R is measurable then for all γ > 0 we have
∣∣∣∣∣{(m, b) ∈ I × Jd−1 :

∣∣h(b) +
r∑

k=1

nk

√
m+ |jk|4(1,b)

∣∣ < γ}
∣∣∣∣∣ .r,d,I,J γ

1
r(r+1) (〈j1〉 . . . 〈jr〉)

12
r+1

where (1, b) := (1, b1, . . . , bd−1) ∈ Rd.

Proof of Lemma 2.4. The proof of this lemma is classical and follows the lines of [3].
Without loss of generality, we assume that γ ∈ (0, 1). Let η ∈ (0, 1) be a positive number

which will be optimized later with respect to γ. If 1 ≤ i < k ≤ r then we have

|ji|21,b − |jk|21,b = (j2i,1 − j2k,1) + b1(j
2
i,2 − j2k,2) + · · ·+ bd−1(j

2
i,d − j2k,d).

Since, by assumption, (j1, . . . , jr) is injective, either there exists ℓ ∈ J2, dK such that ji,ℓ 6=
jk,ℓ or ji,1 6= jk,1 and ji,ℓ = jk,ℓ for ℓ = 2, . . . , d. Note that in this second case, we have
||ji|21,b − |jk|21,b| ≥ 1. In any case, since the dependency with respect to b is affine the set

P(i,k)
η = {b ∈ Jd−1 | |ji|21,b − |jk|21,b| < η} satisfies |P(i,k)

η | < η(1 + |J |d−1).

Therefore, we have

(2.1)

{(m, b) ∈ I × Jd−1 :
∣∣h(b) +

r∑

k=1

nk

√
m+ |jk|4(1,b)

∣∣ < γ} ≤ r(r − 1)

2
|I| η (1 + |J |d−1)

+ |J |d−1 sup
∀i<k, b/∈P(i,k)

η

|{m ∈ I :
∣∣h(b) +

r∑

k=1

nk

√
m+ |jk|4(1,b)

∣∣ < γ}|.

In order to estimate this last measure we fix b ∈ Jd−1 \⋃i<k P
(i,k)
η and we define g : I → R

by

g(m) = h(b) +
r∑

k=1

nk

√
m+ |jk|4(1,b).

By a straightforward calculation, for ℓ ≥ 1, we have

(2.2) ∂ℓmg(m) = cℓ

r∑

k=1

nk(m+ |jk|4(1,b))
1
2
−ℓ where cℓ =

ℓ−1∏

i=0

1

2
− i.

Therefore, we have



c−1
1 ∂1mg

...
c−1
r ∂rmg


 =




(m+ |j1|4(1,b))0 . . . (m+ |jr|4(1,b))0
...

...

(m+ |j1|4(1,b))−(r−1) . . . (m+ |jr|4(1,b))−(r−1)







n1
√
m+ |j1|4(1,b)

−1

...

nr
√
m+ |jr|4(1,b)

−1


 .
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Denoting by V this Vandermonde matrix, by |x|∞ := max |xi| for x ∈ Rd and also by | · |∞
the associated matrix norm, we deduce that

(2.3)
r

max
i=1

c−1
i |∂img(m)| ≥ |V −1|−1

∞
r

max
i=1

|ni|
√
m+ |ji|4(1,b)

−1
.

We recall that the invert of V is given by

(2.4) (V −1)i,ℓ = (−1)r−ℓ
Sr−ℓ((

1
m+|jk|4(1,b)

)k 6=i)

∏

k 6=i

1

m+ |ji|4(1,b)
− 1

m+ |jk|4(1,b)
(this formula can be easily derived using the Lagrange interpolation polynomials) where
Sℓ : Rr−1 → R is the ℓst elementary symmetric function

Sℓ(x) =
∑

1≤k1<···<kℓ≤r−1

xk1 . . . xkℓ and S0(x) := 1.

Furthermore, we have

(2.5) |V −1|∞ =
r

max
i=1

r∑

ℓ=1

|(V −1)i,ℓ|.

To estimate |V −1|∞ in (2.3), we use the estimates

Sr−ℓ((
1

m+ |jk|4(1,b)
)k 6=i) .r,J,I 1 and

∣∣∣∣∣
1

m+ |ji|4(1,b)
− 1

m+ |jk|4(1,b)

∣∣∣∣∣ &J,I
η

〈jk〉6
.

Indeed, if ||ji|4(1,b) − |jk|4(1,b)| ≥ 1
2 |ji|4(1,b) we have

∣∣∣∣∣
1

m+ |ji|4(1,b)
− 1

m+ |jk|4(1,b)

∣∣∣∣∣ =
∣∣∣∣∣

|ji|4(1,b) − |jk|4(1,b)
(m+ |ji|4(1,b))(m+ |jk|4(1,b))

∣∣∣∣∣ &I,J
1

〈jk〉4

and conversely, if ||ji|4(1,b) − |jk|4(1,b)| ≤ 1
2 |ji|4(1,b) then |ji|4(1,b) ≤ 2|jk|4(1,b) and so, since

b ∈ Jd−1 \⋃i<k P
(i,k)
η , we have

∣∣∣∣∣
1

m+ |ji|4(1,b)
− 1

m+ |jk|4(1,b)

∣∣∣∣∣ &I,J
(|ji|2(1,b) + |jk|2(1,b))||ji|2(1,b) − |jk|2(1,b)|

〈jk〉8
&I,J

η

〈jk〉6
.

Therefore by (2.5) and (2.4), we have

|V −1|∞ .r,I,J η−(r−1)(〈j1〉 . . . 〈jr〉)6

Consequently, we deduce from (2.3) that

(2.6)
r

max
i=1

|∂img(m)| &r,I,J ηr−1(〈j1〉 . . . 〈jr〉)−6|n|∞.

Furthermore, considering (2.2), it is clear that

|∂ℓmg(m)| .ℓ,I,J |n|∞.
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As a consequence, being given ρ > 0 (that will be optimized later), applying Lemma B.1.
of [17], we get N sub-intervals of I, denoted ∆1, . . . ,∆N such that

N .I,r (〈j1〉 . . . 〈jr〉)6η−(r−1),
N

max
i=1

|∆i| .I,r
(
ρ(〈j1〉 . . . 〈jr〉)6
ηr−1|n|∞

) 1
r−1

,

|∂mg(m)| ≥ ρ ∀m ∈ I \ (∆1 ∪ · · · ∪∆N ).

Observing that I \ (∆1 ∪ · · · ∪ ∆N ) can be written as the union of M intervals with
M . 1 +N , we deduce that

|{m ∈ I :
∣∣h(b) +

r∑

k=1

nk

√
m+ |jk|4(1,b)

∣∣ < γ}| < Mρ−1γ +N
N

max
i=1

|∆i|

.I,r (〈j1〉 . . . 〈jr〉)6η−(r−1)

[
ρ−1γ +

(
ρ(〈j1〉 . . . 〈jr〉)6
ηr−1|n|∞

) 1
r−1

]
.

We optimize ρ to equalize the two terms in this last sum :

ρ
r

r−1 = γ

(
ηr−1|n|∞

(〈j1〉 . . . 〈jr〉)6
) 1

r−1

.

This provides the estimate

|{m ∈ I :
∣∣h(b) +

r∑

k=1

nk

√
m+ |jk|4(1,b)

∣∣ < γ}|

.I,r γ
1
r (〈j1〉 . . . 〈jr〉)6η−(r−1)

(
(〈j1〉 . . . 〈jr〉)6
ηr−1|n|∞

) 1
r

.I,r

(
γ

|n|∞

) 1
r

η−(r−1+ r−1
r

)(〈j1〉 . . . 〈jr〉)12 .

Finally, we optimize (2.1) by choosing

η = γ
1
r η−(r−1+ r−1

r
)(〈j1〉 . . . 〈jr〉)12

and, recalling that |n|∞ ≥ 1, we get
∣∣∣∣∣{(m, b) ∈ I × Jd−1 :

∣∣h(b) +
r∑

k=1

nk

√
m+ |jk|4(1,b)

∣∣ < γ}
∣∣∣∣∣

.r,d,I,J

(
γ

1
r (〈j1〉 . . . 〈jr〉)12

) 1

r+ r−1
r .

Since this measure is obviously bounded by |I||J |d−1, the exponent r+ r−1
r can be replaced

by r + 1 in the above expression which conclude this proof. �

Now using Lemma 2.4, we prove Lemma 2.3.
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Proof of Lemma 2.3. Without loss of generality we assume that i⋆ = 1. First, since κ1 = 0,
we note that we have

G(a) := κ · a+
r∑

k=1

nk
√

1 + |jk|4a =
1√
m
(h(b) +

r∑

k=1

nk

√
m+ |jk|4(1,b)) =:

1√
m
F (m, b)

where

m =
1

a21
, b = (

a2
a1
, . . . ,

ad
a1

) and h(b) =
r∑

k=2

κkbk.

Let denote by Ψ the map a 7→ (m, b). It is clearly smooth and injective. Furthermore, we
have

det dΨ(a) =

∣∣∣∣∣∣∣∣∣

−2a−3
1 −a2a−2

1 . . . −ada−2
1

a−1
1

. . .

a−1
1

∣∣∣∣∣∣∣∣∣
= 2 (−1)da−d−2

1 .

Consequently, Ψ is a smooth diffeomorphism onto its image Ψ((1, 4)d) which is included
in the rectangle ( 1

16 , 1) × (14 , 4)
d−1. Therefore, by a change of variable, we have

|{a ∈ (1, 4)d :
∣∣G(a)

∣∣ < γ}| =
∫

a∈(1,4)d
1|G(a)|<γda

=

∫

(m,b)∈Ψ((1,4)d)
1|F (m,b)|<√

mγ(2
√
m

−d−2
)d(m, b)

≤ 22d+5|{(m, b) ∈ (
1

16
, 1) × (

1

4
, 4)d−1 : |F (m, b)| < γ}|.

Finally, by applying Lemma 2.4, we get the expected estimate. �

2.2. Non-resonance estimates for two large modes. In this subsection we consider
r ≥ 3, (jk)k≥3 ∈ (Zd)r−2 and σ ∈ {−1, 1}r such that σ1 = −σ2 as fixed. We define
j≥3 ∈ Zd by

(2.7) j≥3 := σ3j3 + · · ·+ σrjr.

Being given j1 ∈ Zd, we define implicitly j2 := j1 + σ1j≥3 in order to satisfy the zero
momentum condition

(2.8)
r∑

k=1

σkjk = 0,

and we define the function gj1 : (1, 4)d → R by

gj1(a) =
n∑

k=1

σk
√

1 + |jk|4a.

Finally, for γ > 0, we introduce the following sets

I = {i : j≥3,i 6= 0}, Ci = {j1 ∈ Z
d : |j1,i| ≥ 2(1 +

∑

k≥3

|jk,i|2)},
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S = {j1 ∈ Z
d \
⋃

i∈I
Ci : (σ, j) is non - resonant6},

and Rγ = {j1 ∈ S : |j1| ≥ γ−1/2(〈j3〉 . . . 〈jr〉)2dr
2}.

First, we prove the following technical lemma whose Corollary 2.6 allows to deal with
the non-degenerated cases.

Lemma 2.5. If there exists i ∈ J1, dK such that

(2.9) |(j1,i + j2,i)j≥3,i| ≥ 2(1 +

r∑

k=3

j2k,i)

then for all γ > 0

(2.10)

∣∣∣∣∣{a ∈ (1, 4)d : |
r∑

k=1

σk
√

1 + |jk|4a < γ|}
∣∣∣∣∣ <

2 γ

|j1,i + j2,i|
.

Proof. Without loss of generality we assume that σ1 = 1 and σ2 = −1. We compute the
derivative with respect to a1

∂a1

r∑

k=1

σk
√

1 + |jk|4a =
r∑

k=1

σkj
2
k,i

|jk|2a√
1 + |jk|4a

.

Consequently, we have
∣∣∣∣∣∂a1

(
r∑

k=1

σk
√

1 + |jk|4a

)∣∣∣∣∣ ≥
∣∣∣∣∣j

2
1,i

|j1|2a√
1 + |j1|4a

− j22,i
|j2|2a√
1 + |j2|4a

∣∣∣∣∣−
r∑

k=3

j2k,i.

Furthermore, we have ∣∣∣∣∣
|j1|2a√
1 + |j1|4a

− 1

∣∣∣∣∣ ≤
1

2|j1|2a
.

Consequently, we get
∣∣∣∣∣∂a1

(
r∑

k=1

σk
√

1 + |jk|4a

)∣∣∣∣∣ ≥ |j21,i − j22,i| − 1−
r∑

k=3

j2k,i.

Observing that by definition we have j21,i − j22,i = j≥3,i(j1,i + j2,i), we deduce of the as-

sumption (2.9) that
∣∣∣∣∣∂a1

r∑

k=1

σk
√

1 + |jk|4a

∣∣∣∣∣ ≥
1

2
|j≥3,i(j1,i + j2,i)|

Since by (2.9) we know that j≥3,i ∈ Z \ {0}, we deduce that
∣∣∣∣∣∂a1

r∑

k=1

σk
√

1 + |jk|4a

∣∣∣∣∣ ≥
1

2
|(j1,i + j2,i)|.

6see Definition 2.1



LONG-TIME EXISTENCE FOR BEAM EQUATIONS ON IRRATIONAL TORI 15

Therefore a1 7→
∑r

k=1 σk
√

1 + |jk|4a is a diffeomorphism (it is a smooth monotonic func-
tion). Consequently, applying this change of coordinate, we get directly (2.10) which
conclude this proof. �

Corollary 2.6. For all γ > 0 we have

(2.11) ∀i ∈ I, |{a ∈ (1, 4)d : ∃j1 ∈ Ci, |gj1(a)| < γ|j1|−(d−1) log−2d(|j1|)}| .d γ
Proof of Corollary 2.6. Let j1 ∈ Ci. By definition of j2, we have

|j1,i + j2,i| ≥ 2|j1,i| −
r∑

k=3

|jk,i|.

Consequently, since j1 ∈ Ci, we have

|j1,i + j2,i| ≥ 2|j1,i| −
r∑

k=3

|jk,i|2 ≥
3

2
|j1,i|.

Therefore, since j≥3,i 6= 0, we have

|j≥3,i(j1,i + j2,i)| ≥
3

2
|j1,i| ≥ 3(1 +

∑

k≥3

|jk,i|2).

Applying Lemma 2.5, we deduce that for all γ > 0∣∣∣∣∣{a ∈ (1, 4)d : |
r∑

k=1

σk
√

1 + |jk|4a < γ|}
∣∣∣∣∣ <

4γ

3|j1,i|
.

Consequently, we have

|{a ∈ (1, 4)d : ∃j1 ∈ Ci, |gj1(a)| < γ|j1|−(d−1) log−2d(|j1|)}|

=

∣∣∣∣∣∣

⋃

j1∈Ci

{a ∈ (1, 4)d : |gj1(a)| < γ|j1|−(d−1) log−2d(|j1|)}

∣∣∣∣∣∣

≤
∑

j1∈C1

∣∣∣{a ∈ (1, 4)d : |gj1(a)| < γ|j1|−(d−1) log−2d(|j1|)}
∣∣∣

. γ
∑

j1∈Ci

1

|j1|(d−1)|j1,i| log2d(|j1|)
.d γ.

�

In the following lemma, we deal with most of the degenerated cases.

Lemma 2.7. For all γ > 0, we have

(2.12) |{a ∈ (1, 4)d : ∃j1 ∈ Rγ , |gj1(a)| < γ}| .r,d γ
1
r2 (〈j3〉 . . . 〈jr〉)2d.

Proof. Without loss of generality, we assume that γ < min((2r)−2, (36d)−1). If j1 ∈ Rγ
recalling that for x ≥ 0, we have |

√
1 + x− 1| ≤ x/2, we deduce that

|gj1(a)| ≥ |hj1(a)| −
1

2|j1|2a
− 1

2|j2|2a
where hj1(a) := |j1|2a − |j2|2a + σ1

r∑

k=3

σk
√

1 + |jk|4a.
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However, by definition of j2 and Rγ , we have

|j2| ≥ |j1|−
r∑

k=3

|jk| ≥ γ−1/2(〈j3〉 . . . 〈jr〉)2dr
2−(r−2)(〈j3〉 . . . 〈jr〉) ≥

γ−1/2

2
(〈j3〉 . . . 〈jr〉)2dr

2
.

Noting that, for a ∈ (1, 4)d, we have | · | ≤ | · |a, we deduce that

|gj1(a)| ≥ |hj1(a)| − 3γ(〈j3〉 . . . 〈jr〉)−4dr2 .

Consequently, it is enough to prove that

(2.13) |{a ∈ (1, 4)d : ∃j1 ∈ R1, |hj1(a)| < γ(〈j3〉 . . . 〈jr〉)−4dr2}| .r,d γ
1

(r−1)(r−2) .

To prove this estimate, we have to note the following result whose proof is postponed to
the end of this proof.

Lemma 2.8. If j1 ∈ Rγ then there exists κj1 ∈ Zd such that

|j1|2a − |j2|2a = κj1 · a, |κj1 |∞ ≤ 7(〈j3〉 . . . 〈jr〉)3 and ∃i⋆ ∈ J1, dK, κj1,i⋆ = 0.

Now we have to distinguish two cases.

•Case 1: (σk, jk)k≥3 is resonant. If j1 ∈ Rγ , let κj1 ∈ Zd be given by Lemma 2.8. Note

that κj1 6= 0 because else we would have j21,i = j22,i for all i ∈ J1, dK and so (σ, j) would

be resonant (which is excluded by definition of Rγ). Furthermore, here hj1(a) = κj1 · a is
a linear form. Consequently, for all γ > 0, we have the following estimate which is much
stronger than (2.13):

|{a ∈ (1, 4)d : ∃j1 ∈ R1, |hj1(a)| < γ}| ≤
∣∣∣

⋃

κ∈Z
d\{0}

|κ|∞≤7(〈j3〉...〈jr〉)3

{a ∈ (1, 4)d : κ · a < γ}
∣∣∣

≤
∑

κ∈Z
d\{0}

|κ|∞≤7(〈j3〉...〈jr〉)3

|{a ∈ (1, 4)d : κ · a < γ}| ≤ γ(14(〈j3〉 . . . 〈jr〉)3)d

•Case 2: (σk, jk)k≥3 is non-resonant. If j1 ∈ Rγ , hj1 writes

hj1(a) = κj1 · a+
r̃∑

k=1

nk

√
1 + |̃jk|4a

where κj1 is given by Lemma 2.8, r̃ ≤ r−2, (j̃1, . . . , j̃r̃) ∈ (Nd)r̃ is injective, nk ∈ (Z\{0})d
is defined by

nk =
∑

i∈J3,rK

∀ℓ, |ji,ℓ|=j̃k,ℓ

σ1σi.
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Consequently, by Lemma 2.8, we have

|{a ∈ (1, 4)d : ∃j1 ∈ R1, |hj1(a)| < γ}|

≤
∣∣∣

⋃

κ∈Z
d

|κ|∞≤7(〈j3〉...〈jr〉)3
∃i⋆, κi⋆=0

{a ∈ (1, 4)d : |κ · a+
r̃∑

k=1

nk

√
1 + |̃jk|4a| < γ}

∣∣∣

≤
∑

κ∈Z
d

|κ|∞≤7(〈j3〉...〈jr〉)3
∃i⋆, κi⋆=0

|{a ∈ (1, 4)d : |κ · a+
r̃∑

k=1

nk

√
1 + |̃jk|4a| < γ}|.

Finally, by applying Lemma 2.3 we get

|{a ∈ (1, 4)d : ∃j1 ∈ R1, |hj1(a)| < γ}| .r,d γ
1

(r−2)(r−1) (〈j3〉 . . . 〈jr〉)
12
r−1

+3d,

which is also stronger than (2.13). �

Proof of Lemma 2.8. First let us note that

|j1|2a − |j2|2a = κj1 · a where κj1,i = j21 − j22 = σ2j≥3,i(j1 + j2).

First we aim at controlling |k|∞. If i /∈ I then j≥3,i = 0 and so κj1,i = 0. Else, since

j1 ∈ Zd \⋃i∈I Ci, we have |j1,i| ≤ 2(1 +
∑

k≥3 |jk,i|2). Consequently, we deduce that

|κj1,i| ≤


∑

k≥3

|jk,i|




4 + 2

∑

k≥3

|jk,i|2 +
∑

k≥3

|jk,i|


 ≤ 7(〈j3〉 . . . 〈jr〉)3.

Now we assume by contradiction that κj1,i 6= 0 for all i ∈ J1, dK. Consequently, we have
I = J1, dK and so

(2.14) |j1|∞ ≤ 2(1 +
∑

k≥3

|jk|2) ≤ 6〈j3〉 . . . 〈jr〉.

However, since j1 ∈ Rγ , we have |j1| ≥ γ−1/2(〈j3〉 . . . 〈jr〉)2dr
2

which is in contradiction
with (2.14) because we have assumed that γ < (36d)−1. �

Finally in the following lemma we deal with the general degenerated cases.

Lemma 2.9. For all γ > 0, we have

(2.15) |{a ∈ (1, 4)d : ∃j1 ∈ S, |gj1(a)| < γ}| .r,d γ
1

8r4 (〈j3〉 . . . 〈jr〉)5d.
Proof. Without loss of generality we assume that γ ∈ (0, 1). Let η ∈ (0, 1) be a small
number that will be optimized with respect to γ later. From the decomposition S =
Rη ∪ (S \Rη) we get

(2.16) |{a ∈ (1, 4)d : ∃j1 ∈ S, |gj1(a)| < γ}| ≤
∑

j1∈S\Rη

|{a ∈ (1, 4)d : |gj1(a)| < γ}|

+ |{a ∈ (1, 4)d : ∃j1 ∈ Rη, |gj1(a)| < η}|.



18 JOACKIM BERNIER, ROBERTO FEOLA, BENOÎT GRÉBERT, AND FELICE IANDOLI

To estimate the sum, we apply Lemma 2.3 (with κ = 0) and we get
∑

j1∈S\Rη

|{a ∈ (1, 4)d : |gj1(a)| < γ}| ≤
∑

|j1|<η−1/2(〈j3〉...〈jr〉)2dr
2

(σ,j) is non - resonant

|{a ∈ (1, 4)d : |gj1(a)| < γ}|

≤
∑

|j1|<η−1/2(〈j3〉...〈jr〉)2dr2
γ

1
r(r+1) (〈j1〉 . . . 〈jr〉)

12
r+1 .

Furthermore, by the zero momentum condition (2.8), since η ∈ (0, 1), we also have

|j2| .r η−1/2(〈j3〉 . . . 〈jr〉)2dr
2
.

Consequently, we have

∑

j1∈S\Rη

|{a ∈ (1, 4)d : |gj1(a)| < γ}| .r γ
1

r(r+1)η−
1
2
− 12

r+1 (〈j3〉 . . . 〈jr〉)2dr
2+ 12

r+1
+ 24

r+1
2dr2

.r γ
1

2r2 η−
7
2 (〈j3〉 . . . 〈jr〉)15dr

2
.

Therefore, applying Lemma 2.7, we deduce of (2.16) that

|{a ∈ (1, 4)d : ∃j1 ∈ S, |gj1(a)| < γ}| .r,d η
1
r2 (〈j3〉 . . . 〈jr〉)2d+γ

1
2r2 η−

7
2 (〈j3〉 . . . 〈jr〉)15dr

2
.

Finally, we get (2.15) by optimizing this last estimate choosing

η = γ
1

7r2+2 (〈j3〉 . . . 〈jr〉)
15dr2−2d
7/2+1/r2 .

�

2.3. Proof of Proposition 2.2. For r ≥ 3 let Mr and Rr be the sets defined by

Mr = {(σ, j) ∈ ({−1, 1})r × (Zd)r :
r∑

k=1

σkjk = 0} and

Rr = {(σ, j) ∈ ({−1, 1})r × (Zd)r : (σ, j) is resonant}.
On the one hand, as a direct corollary of Lemma 2.9 and Corollary 2.6, for all γ > 0 we
have
∣∣∣{a ∈ (1, 4)d : ∃r ≥ 3,∃(σ, j) ∈ Mr \ Rr, σ1σ2 = −1 and

∣∣
r∑

k=1

σk
√

1 + |jk|4a
∣∣ < cr,dγ

8r4〈j1〉−(d−1) log−2d(〈j1〉)(〈j3〉 . . . 〈jr〉)−44dr4}
∣∣∣ < γ

where cr,d > 0 is a constant depending only on r and d. Consequently, it is enough to
prove that for all γ ∈ (0, 1), we have

(2.17) Iγ :=
∣∣∣{a ∈ (1, 4)d : ∃r ≥ 3,∃(σ, j) ∈ Mr \ Rr, σ1σ2 = 1 and

∣∣
r∑

k=1

σk
√
1 + |jk|4a

∣∣ < κr,dγ
r(r+1)(〈j3〉 . . . 〈jr〉)−9dr2}

∣∣∣ < γ
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where κr,d ∈ (0, 1) is another constant depending only on r and d (and that will be
determined later). Indeed, by additivity of the measure, we have

Iγ ≤
∑

r≥3

∑

(σ,j)∈Mr\Rr
σ1σ2=1

∣∣∣{a ∈ (1, 4)d :
∣∣

r∑

k=1

σk
√

1 + |jk|4a
∣∣ < κr,dγ

r(r+1)(〈j3〉 . . . 〈jr〉)−9dr2}
∣∣∣.

Note that if |j1| ≥ 2
√
r〈j3〉 . . . 〈jr〉 and σ1σ2 = 1 then

∣∣
r∑

k=1

σk
√

1 + |jk|4a
∣∣ ≥

√
1 + |j1|4a −

r∑

k=3

√
1 + |jk|4a ≥

√
1 + |j1|4 −

r∑

k=3

√
1 + 16|jk|4

≥
√

1 + |j1|4 − 4

r∑

k=3

√
1 + |jk|4 ≥ |j1|2 − 4

r∑

k=3

(1 + |jk|2) ≥ 4(〈j3〉 . . . 〈jr〉)2 > 1

and so
∣∣∣{a ∈ (1, 4)d :

∣∣∑r
k=1 σk

√
1 + |jk|4a

∣∣ < κr,dγ
r(r+1)(〈j3〉 . . . 〈jr〉)−9dr2}

∣∣∣ vanishes.

Since the same holds if j1 is replaced by j2, consequently, we have that Iγ is bounded from
above by

∑

r≥3

∑

(σ,j)∈Mr\Rr

|j1|≤2
√
r〈j3〉...〈jr〉

|j2|≤2
√
r〈j3〉...〈jr〉

∣∣∣{a ∈ (1, 4)d :
∣∣

r∑

k=1

σk
√

1 + |jk|4a
∣∣ < κr,dγ

r(r+1)(〈j3〉 . . . 〈jr〉)−9dr2}
∣∣∣.

Now denoting by cr,d > 0 the constant given by Lemma 2.3, we get

Iγ ≤
∑

r≥3

cr,d
∑

(σ,j)∈Mr\Rr

|j1|≤2
√
r〈j3〉...〈jr〉

|j2|≤2
√
r〈j3〉...〈jr〉

(
κr,dγ

r(r+1)(〈j3〉 . . . 〈jr〉)−9dr2
) 1

r(r+1)
(〈j1〉 . . . 〈jr〉)

12
r+1 .

Consequently, we get an other constant c̃r,d > 0 such that

Iγ ≤ γ
∑

r≥3

c̃r,dκ
1

r(r+1)

r,d

∑

j3,...,jr∈Zd

(〈j3〉 . . . 〈jr〉)−9d r2

r(r+1)
+ 36

r+1 .

Noting that 9d r2

r(r+1) −
36
r+1 ≥ 2d, we deduce that

Iγ ≤ γ
∑

r≥3

c̃r,d κ
1

r(r+1)

r,d

( ∑

j∈Zd

〈j〉−2d
)r−2

.

Consequently, we deduce a natural choice for κr,d such that Iγ < γ which conclude this
proof.

3. The Birkhoff normal form step

In the rest of the paper we shall fix the parameter ν, (see (1.2) and (1.12)) defining the
irrationality of the torus, in the full Lebesgue measure set given by Proposition 2.2. For
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d ≥ 2 and n ∈ N we define

(3.1) Md,n :=





n+ 2(n− 2) + 1 if d = 2 and n odd

n+ 2(n− 2) if d = 2 and n even

n+ (n− 2) if d = 3

n if d ≥ 4 .

The main result of this section is the following.

Theorem 2. Let d = 2, 3 and let r ∈ N such that Md,n ≤ r ≤ 4n. There exits β = β(d, r) >

0 such that for any N ≥ 1, any δ > 0 and s ≥ s0 = s0(β), there exist ε0 .s,δ N
−δ and two

canonical transformation τ (0) and τ (1) making the following diagram to commute

(3.2) Bs(0, ε0)
τ (0)

//

idHs

22Bs(0, 2ε0)
τ (1)

// Hs(Td)

and close to the identity

∀σ ∈ {0, 1}, ‖u‖Hs < 2σε0 ⇒ ‖τ (σ)(u)− u‖Hs .s,δ N
δ‖u‖2Hs(3.3)

such that, on Bs(0, 2ε0), H ◦ τ (1) writes

(3.4) H ◦ τ (1) = Z2 +

Md,n−1∑

k=n

Z≤N
k +

r−1∑

k=Md,n

Kk +K>N + R̃r

where Md,n is given in (3.1) and where

(i) Z≤N
k , for k = n, . . . ,Md,n − 1, are resonant Hamiltonians of order k given by the

formula

(3.5) Z≤N
k =

∑

σ∈{−1,1}k , j∈(Zd)k , µ2(j)≤N∑k
i=1 σiji=0∑k
i=1 σiωji

=0

(Z≤N
k )σ,ju

σ1
j1

· · · uσkjk , |(Z≤N
k )σ,j | .δ N δ µ3(j)

β

µ1(j)
;

(ii) Kk, k =Md,n, . . . , r − 1, are homogeneous polynomials of order k

(3.6) Kk =
∑

σ∈{−1,1}k , j∈(Zd)k∑k
i=1 σiji=0

(Kk)σ,ju
σ1
j1

· · · uσkjk , |(Kk)σ,j | .δ N δµ3(j)
β ;

(iii) K>N and R̃r are remainders satisfying

‖XK>N (u)‖Hs .s,δ N
−1+δ‖u‖n−1

Hs ,(3.7)

‖XR̃r
(u)‖Hs .s,δ N

δ‖u‖r−1
Hs .(3.8)

It is convenient to introduce the following class.
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Definition 3.1. (Formal Hamiltonians) Let N ∈ R, k ∈ N with k ≥ 3 and N ≥ 1.
(i) We denote by Lk the set of Hamiltonian having homogeneity k and such that they may
be written in the form

Gk(u) =
∑

σi∈{−1,1}, ji∈Z
d

∑k
i=1 σiji=0

(Gk)σ,ju
σ1
j1

· · · uσkjk , (Gk)σ,j ∈ C ,
σ := (σ1, . . . , σk)
j := (j1, . . . , jk)

(3.9)

with symmetric coefficients (Gk)σ,j , i.e. for any ρ ∈ Sk one has (Gk)σ,j = (Gk)σ◦ρ,j◦ρ.
(ii) If Gk ∈ Lk then G>Nk denotes the element of Lk defined by

(3.10) (G>Nk )σ,j :=

{
(Gk)σ,j , if µ2(j) > N ,
0 , else .

We set G≤N
k := Gk −G>Nk .

Remark 3.2. Consider the Hamiltonian H in (1.20) and its Taylor expansion in (1.24).
One can note that the Hamiltonians Hk in (1.26) belong to the class Lk. This follows form
the fact that, without loss of generality, one can substitute the Hamiltonian Hk with its
symmetrization.

We also need the following definition.

Definition 3.3. Consider the Hamiltonian Z2 in (1.25) and Gk ∈ Lk.
• (Adjoint action). We define the adjoint action adZ2Gk in Lk by

(3.11) (adZ2Gk)σ,j :=
(
i

k∑

i=1

σiωji

)
(Gk)σ,j .

• (Resonant Hamiltonian). We define Gres
k ∈ Lj by

(Gresk )σ,j := (Gk)σ,j , when

k∑

i=1

σiωji = 0

and (Gres
k )σ,j = 0 otherwise.

• We define G
(+1)
k ∈ Lk by

(G
(+1)
k )σ,j := (Gk)σ,j , when ∃i, p = 1, . . . , k s.t.

µ1(j) = |ji| , µ2(j) = |jp| and σiσp = +1 .

We define G
(−1)
k := Gk −G

(+1)
k .

Remark 3.4. Notice that, in view of Proposition 2.2, the resonant Hamiltonians given
in Definition 3.3 must be supported on indices σ ∈ {−1, 1}k, j ∈ Zkd which are resonant
according to Definition 2.1. We remark that (Gk)

res ≡ 0 if k is odd.

In the following lemma we collect some properties of the Hamiltonians in Definition 3.1.

Lemma 3.5. Let N ≥ 1, 0 ≤ δi < 1, qi ∈ R, ki ≥ 3, consider Giki(u) in Lki for i = 1, 2.

Assume that the coefficients (Giki)σ,j satisfy

(3.12) |(Giki)σ,j | ≤ CiN
δiµ3(j)

βiµ1(j)
−qi , ∀σ ∈ {−1,+1}k , j ∈ Z

kd ,
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for some βi > 0 and Ci > 0, i = 1, 2.
(i) (Estimates on Sobolev spaces) Set k = ki, δ = δi, q = qi, β = βi, C = Ci and
Giki = Gk for i = 1, 2. There is s0 = s0(β, d) such that for s ≥ s0, Gk defines naturally a

smooth function from Hs(Td) to R. In particular one has the following estimates:

|Gk(u)| .s CN δ‖u‖kHs ,(3.13)

‖XGk
(u)‖Hs+q .s CN

δ‖u‖k−1
Hs ,(3.14)

‖XG>N
k

(u)‖Hs .s CN
−q+δ‖u‖k−1

Hs ,(3.15)

for any u ∈ Hs(Td).
(ii) (Poisson bracket) The Poisson bracket between G1

k1
and G2

k2
is an element of

Lk1+k2−2 and it verifies the estimate

(3.16) |({G1
k1 , G

2
k2})σ,j | .s C1C2N

δ1+δ2µβ1+β23 µ1(j)
−min{q1,q2},

for any σ ∈ {+1,−1}k1+k2−1 and j ∈ Zd(k1+k2−2).

Proof. We prove item (i). Concerning the proof of (3.13) it is sufficient to give the proof
in the case q = 0. For convenience, without loss of generality, we assume Ci = 1, i = 1, 2.
We have

|Gk(u)| ≤ k!
∑

j1,...,jk∈Z
d

|j1|≥|j2|≥|j3|≥...≥|jk|

|(Gk)σ,k||uσ1j1 | · · · |u
σk
jk
|

.k N
δ
∑

j3∈Zd

|j3|β|uσ3j3 |
k∏

36=i=1

∑

ji∈Zd

|uσiji | .k,ǫ N
δ‖u‖Hd/2+β+ǫ‖u‖k−1

Hd/2+ǫ ,

for any ǫ > 0, we proved the (3.13) with s0 = d/2 + ǫ+ β.
We now prove (3.14). Since the coefficients of Gk are symmetric, we have

∂ūnGk(u) = k
∑

σ1j1+···+σk−1jk−1=n

(Gk)(σ,−1),(j,n)u
σ1
j1
. . . u

σr−1

jr−1

Therefore, we have

〈n〉s+q|∂ūnGk(u)| ≤ k!
∑

σ1j1+···+σk−1jk−1=n
|j1|≥···≥|jk−1|

|(Gk)(σ,−1),(j,n)||uσ1j1 | . . . |u
σr−1

jr−1
|〈n〉s+q

(3.12)
. N δ

∑

σ1j1+···+σk−1jk−1=n
|j1|≥···≥|jk−1|

µ3(j, n)
βµ1(j, n)

−q|uσ1j1 | . . . |u
σr−1

jr−1
|〈n〉s+q.
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We note that in the last sum above, we have 〈n〉 . 〈j1〉, µ1(j, n) ≥ 〈j1〉 and µ3(j, n) ≤ 〈j2〉.
As a consequence, we deduce that

〈n〉s+q|∂ūnGk(u)| .s N δ
∑

σ1j1+···+σk−1jk−1=n
|j1|≥···≥|jk−1|

〈j1〉s〈j2〉β|uσ1j1 | . . . |u
σr−1

jr−1
|

.s N
δ
∑

j1+···+jk−1=n

〈j1〉s〈j2〉β |uj1 | . . . |ujr−1 |.

Consequently, applying the Young convolutional inequality, we get

‖XGk
(u)‖Hs+q = ‖(〈n〉s+q|∂ūnGk(u)|)n∈Zd‖ℓ2 .s N δ‖u‖Hs

( ∑

j∈Zd

〈j〉β |uj |
)( ∑

j∈Zd

|uj |
)k−3

.s N
δ‖u‖k−1

Hs .

The proof of (3.15) follows the same lines. The proof of item (ii) of the lemma is
a direct consequence of the previous computations, definition (1.23) and the momentum
condition. �

We are in position to prove the main Birkhoff result.

Proof of Theorem 2. In the case d = 2 we perform two steps of Birkhoff normal form
procedure, see Lemmata 3.8, 3.12. The case d = 3 is slightly different. Indeed, due to the
estimates on the small divisors given in Proposition 2.2, we can note that the Hamiltonian
in (3.24) has already the form (3.4) since the coefficients of the Hamiltonians K̃k (see
(3.25)) do not decay anymore in the largest index µ1(j). The proof of Theorem 2 is then
concluded after just one step of Birkhoff normal form.

Step 1 if d = 2 or d = 3. We have the following Lemma.

Lemma 3.6. (Homological equation 1). Let qd = 3 − d for d = 2, 3. For any N ≥ 1

and δ > 0 there exist multilinear Hamiltonians χ
(1)
k , k = 1, . . . , 2n− 3 in the class Lk with

coefficients (χ
(1)
k )σ,j satisfying

(3.17) |(χ(1)
k )σ,j | .δ N δµ3(j)

βµ1(j)
−qd ,

such that (recall Def. 3.3)

(3.18) {χ(1)
k , Z2}+Hk = Zk +H>N

k , k = n, . . . , 2n − 3 ,

where Z2, Hk are given in (1.25), (1.26) and Zk is the resonant Hamiltonian defined as

(3.19) Zk := (H≤N
k )res , k = n, . . . , 2n − 3 .

Moreover Zk belongs to Lk and has coefficients satisfying (3.5).

Proof. Consider the Hamiltonians Hk in (1.26) with coefficients satisfying (1.27). Recalling
Definition 3.1 we write

Hk = Zk + (H≤N
k − Zk) +H>N

k , k = n, . . . , r − 1 ,

with Zk as in (3.19). We define

(3.20) χ
(1)
k := (adZ2)

−1
[
H≤N
k − Zk

]
, k = n, . . . , 2n − 3 ,
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where adZ2 is given by Definition 3.3. In particular (recall formula (3.11)) their coefficients
have the form

(3.21) (χ
(1)
k )σ,j := (Hk)σ,j

(
i

k∑

i=1

σiωji

)−1

for indices σ ∈ {−1,+1}k, j ∈ (Zd)k such that

k∑

i=1

σiji = 0 , µ2(j) ≤ N and
k∑

i=1

σiωji 6= 0 .

By (1.27) and Proposition 2.2 (with d = 2, 3) we deduce the bound (3.17) for some β > 0.
The resonant Hamiltonians Zk in (3.19) have the form (3.5). One can check by an explicit
computation that equation (3.18) is verified. �

We shall use the Hamiltonians χ
(1)
k given by Lemma 3.6 to generate a symplectic change

of coordinates.

Lemma 3.7. Let us define

(3.22) χ(1) :=

2n−3∑

k=n

χ
(1)
k .

There is s0 = s0(d, r) such that for any δ > 0, for any N ≥ 1 and any s ≥ s0, if
ε0 .s,δ N

−δ, then the problem

(3.23)

{
∂τZ(τ) = Xχ(1)(Z(τ))

Z(0) = U =
[
u
ū

]
, u ∈ Bs(0, ε0)

has a unique solution Z(τ) = Φτ
χ(1)(u) belonging to Ck([−1, 1];Hs(Td)) for any k ∈ N.

Moreover the map Φτ
χ(1) : Bs(0, ε0) → Hs(Td) is symplectic. The flow map Φτ

χ(1) and its

inverse Φ−τ
χ(1) satisfy

sup
τ∈[0,1]

‖Φ±τ
χ(1)(u)− u‖Hs .s,δ N

δ‖u‖n−1
Hs ,

sup
τ∈[0,1]

‖dΦ±τ
χ(1)(u)[·]‖L(Hs ;Hs) ≤ 2 .

Proof. By estimate (3.17) and Lemma 3.5 we have that the vector field Xχ(1) is a bounded

operator on Hs(Td). Hence the flow Φτ
χ(1) is well-posed by standard theory of Banach

space ODE. The estimates of the map and its differential follow by using the equation in
(3.23), the fact that χ(1) is multilinear and the smallness condition on ε0. Finally the map
is symplectic since it is generated by a Hamiltonian vector field. �

We now study how changes the Hamiltonian H in (1.24) under the map Φτ
χ(1) .
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Lemma 3.8. (The new Hamiltonian 1). There is s0 = s0(d, r) such that for any
N ≥ 1, δ > 0 and any s ≥ s0, if ε0 .s,δ N

−δ then we have that

(3.24) H ◦ Φχ(1) = Z2 +

2n−3∑

k=n

Zk + K̃>N +

r−1∑

k=2n−2

K̃k +Rr

where
• Φχ(1) := (Φτ

χ(1))|τ=1 is the flow map given by Lemma 3.7;

• the resonant Hamiltonians Zk are defined in (3.19);

• K̃k are in Lk with coefficients (K̃k)σ,j satisfying

(3.25) |(K̃k)σ,j | .δ N δµ3(j)
βµ1(j)

−qd , k = 2n− 2, . . . , r − 1 ,

with qd = 3− d for d = 2, 3;

• the Hamiltonian K̃>N and the remainder Rr satisfy

‖XK̃>N (u)‖Hs .s,δ N
−1‖u‖2Hs ,(3.26)

‖XRr (u)‖Hs .s,δ N
δ‖u‖r−1

Hs , ∀u ∈ Bs(0, 2ε0) .(3.27)

Proof. Fix δ > 0 and ε0N
δ small enough. We apply Lemma 3.7 with δ  δ′ to be chosen

small enough with respect to δ we have fixed (which ensures us that the smallness condition

ε0N
δ′ .s,δ′ 1 of Lemma 3.7 is fulfilled). Let Φτ

χ(1) be the flow at time τ of the Hamiltonian

χ(1).We note that

∂τH ◦ Φτ
χ(1) = dH(z)[Xχ(1) (z)]|z=Φτ

χ(1)

(1.22),(1.23)
= {χ(1),H} ◦Φτ

χ(1) .

Then, for L ≥ 2, we get the Lie series expansion

H ◦ Φχ(1) = H + {χ(1),H}+
L∑

p=2

1

p!
adp

χ(1)

[
H
]
+

1

L!

∫ 1

0
(1− τ)LadL+1

χ(1)

[
H
]
◦ Φτ

χ(1)dτ

where adp
χ(1) is defined recursively as

(3.28) adχ(1) [H] := {χ(1),H} , adp
χ(1) [H] :=

{
χ(1), adp−1

χ(1) [H]
}
, p ≥ 2 .

Recalling the Taylor expansion of the Hamiltonian H in (1.24) we obtain

H ◦ Φχ(1) = Z2 +

2n−3∑

k=n

(
Hk + {χ(1)

k , Z2}
)
+

r−1∑

k=2n−2

Hk

+

L∑

p=2

1

p!
adp

χ(1) [Z2] +

r−1∑

j=n

L∑

p=1

1

p!
adp

χ(1) [Hj ](3.29)

+
1

L!

∫ 1

0
(1− τ)LadL+1

χ(1) [Z2 +
r−1∑

j=n

Hj] ◦ Φτχ(1)dτ(3.30)

+Rr ◦ Φχ(1) .(3.31)
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We study each summand separately. First of all, by definition of χ
(1)
k (see (3.18) in Lemma

3.6), we deduce that

(3.32)

2n−3∑

k=n

(
Hk + {χ(1)

k , Z2}
)
=

2n−3∑

k=n

Zk + K̃>N , K̃>N :=

2n−3∑

k=n

H>N
k .

One can check, using Lemma 3.5 (see (3.15)), that K̃>N satisfies (3.26). Consider now the

term in (3.29). By definition of χ(1) (see (3.18) and (3.22)), we get, for p = 2, . . . , L,

adp
χ(1) [Z2] = adp−1

χ(1)

[
{χ(1), Z2}

] (3.32)
= adp−1

χ(1)

[ 2n−3∑

k=n

(Zk −H≤N
k )

]
.

Therefore, by Lemma 3.5-(ii) and recalling (3.28), we get

(3.29) =

L(2n−3)+r−1−2L∑

k=2n−2

K̃k

where K̃k are k-homogeneous Hamiltonians in Lk. In particular, by (3.16) and (3.17) (with
δ  δ′), we have

|(K̃k)σ,j | .δ′ NLδ′µ3(j)
βµ1(j)

−qd

for some β > 0 depending only on d, n. This implies the estimates (3.25) taking Lδ′ ≤ δ,
where L will be fixed later. Then formula (3.24) follows by setting

(3.33) Rr :=

L(2n−3)+r−1−2L∑

k=r

K̃k + (3.30) + (3.31) .

The estimate (3.27) holds true for X
K̃k

with k = r, . . . , L(2n − 3) + r − 1− 2L, thanks to

(3.25) and Lemma 3.5. It remains to study the terms appearing in (3.30), (3.31). We start
with the remainder in (3.31). We note that

XRr◦Φ(u) = (dΦχ(1))−1(u)
[
XRr(Φχ(1)(u))

]
.

We obtain the estimate (3.27) on the vector field XRr◦Φ by using (1.28) and Lemma 3.7.
In order to estimate the term in (3.30) we reason as follows. First notice that

adL+1
χ(1) [Z2 +Hj]

(3.32)
= adL

χ(1)

[ 2n−3∑

k=n

(Zk −H≤N
k )

]
+ adL+1

χ(1) [Hj] := Qj

with j = n, . . . , r − 1. Using Lemma 3.5 we deduce that

‖XQj (u)‖Hs .δ′ N
(L+1)δ′‖u‖(Ln+n−2L)−1

Hs .

We choose L = 9 which implies Ln + n − 2L ≥ r since r ≤ 4n. Notice also that all the
summand in (3.30) are of the form

∫ 1

0
(1− τ)LQj ◦ Φτχ(1)dτ .

Then we can estimates their vector fields by reasoning as done for the Hamiltonian Rr ◦
Φχ(1) . This concludes the proof. �
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Remark 3.9. (Case d = 3). We remark that Theorem 2 for d = 3 follows by Lemmata

3.6, 3.7, 3.8, by setting τ (1) := Φχ(1) and recalling that (see (3.1)) Md,n = 2n− 2 for d = 3.

Step 2 if d = 2. This step is performed only in the case d = 2. Consider the Hamiltonian

in (3.24). Our aim is to reduce in Birkhoff normal form all the Hamiltonians K̃k of homo-
geneity k = 2n− 2 . . . ,M2,n− 1 where M2,n is given in (3.1). We follow the same strategy
adopted in the previous step.

Lemma 3.10. (Homological equation 2). Let N ≥ 1, δ > 0 and consider the Hamil-

tonian in (3.24). There exist multilinear Hamiltonians χ
(2)
k , k = 2n − 2, . . . ,M2,n − 1 in

the class Lk, with coefficients satisfying

(3.34) |(χ(2)
k )σ,j | .δ N δµ3(j)

β ,

for some β > 0, such that

(3.35) {χ(2)
k , Z2}+ K̃k = Zk + K̃>N

k , k = 2n− 2, . . . ,M2,n − 1 ,

where K̃k are given in Lemma 3.8 and Zk is the resonant Hamiltonian defined as

(3.36) Zk := (K̃≤N
k )res , k = 2n − 2, . . . ,M2,n − 1 .

Moreover Zk belongs to Lk and has coefficients satisfying (3.5).

Proof. Recalling Definitions 3.1, 3.3, we write

K̃k = Zk +
(
K̃≤N
k − Zk

)
+ K̃>N

k ,

with Zk as in (3.36), and we define

(3.37) χ
(2)
k := (adZ2)

−1
[
K̃≤N
k − Zk

]
, k = 2n − 2, . . . ,M2,n − 1 .

The Hamiltonians χ
(2)
k have the form (3.9) with coefficients

(3.38) (χ
(2)
k )σ,j := (K̃k)σ,j

(
i
k∑

i=1

σiωji

)−1

for indices σ ∈ {−1,+1}k, j ∈ (Zd)k such that

k∑

i=1

σiji = 0 , µ2(j) ≤ N and

k∑

i=1

σiωji 6= 0 .

Recalling that we are in the case d = 2, by (3.25) and Proposition 2.2 we deduce (3.34).
The resonant Hamiltonians Zk in (3.36) have the form (3.5). The (3.35) follows by an
explicit computation. �

Lemma 3.11. Let us define

(3.39) χ(2) :=

M2,n−1∑

k=2n−2

χ
(2)
k .
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There is s0 = s0(d, r) such that for any δ > 0, for any N ≥ 1 and any s ≥ s0, if
ε0 .s,δ N

−δ, then the problem
{
∂τZ(τ) = Xχ(2)(Z(τ))

Z(0) = U =
[
u
ū

]
, u ∈ Bs(0, ε0)

has a unique solution Z(τ) = Φτ
χ(2)(u) belonging to Ck([−1, 1];Hs(Td)) for any k ∈ N.

Moreover the map Φτ
χ(2) : Bs(0, ε0) → Hs(Td) is symplectic. The flow map Φτ

χ(2), and its

inverse Φ−τ
χ(2), satisfy

sup
τ∈[0,1]

‖Φ±τ
χ(2)(u)− u‖Hs .s,δ N

δ‖u‖n−1
Hs ,

sup
τ∈[0,1]

‖dΦ±τ
χ(2)(u)[·]‖L(Hs ;Hs) ≤ 2 .

Proof. It follows reasoning as in the proof of Lemma 3.7. �

We have the following.

Lemma 3.12. (The new Hamiltonian 2). There is s0 = s0(d, r) such that for any
N ≥ 1, δ > 0 and any s ≥ s0, if ε0 .s,δ N

−δ then we have that H ◦ Φχ(1) ◦ Φχ(2) has the

form (3.4) and satisfies items (i), (ii), (iii) of Theorem 2.

Proof. We fix δ > 0 and we apply Lemmata 3.8, 3.10 with δ  δ′ with δ′ to be chosen
small enough with respect to δ fixed here. Reasoning as in the previous step we have (recall
(3.1), (3.28) and (3.24))

H◦Φχ(1) ◦Φχ(2) = Z2 +

2n−3∑

k=n

Zk +

M2,d−1∑

k=2n−2

(
K̃k + {χ(2)

k , Z2}
)
+

r−1∑

k=M2,n

K̃k(3.40)

+ K̃>N ◦ Φχ(2)(3.41)

+

L∑

p=2

1

p!
adp

χ(2) [Z2] +

L∑

p=1

1

p!
adp

χ(2)

[ 2n−3∑

k=n

Zk +

r−1∑

k=2n−2

K̃k

]
(3.42)

+Rr ◦ Φχ(2) +
1

L!

∫ 1

0
(1− τ)LadL+1

χ(2) [Z2] ◦Φτχ(2)dτ(3.43)

+
1

L!

∫ 1

0
(1− τ)LadL+1

χ(2)

[ 2n−3∑

k=n

Zk +

r−1∑

k=2n−2

K̃k

]
◦Φτ

χ(2)dτ ,(3.44)

where Φτ
χ(2) , τ ∈ [0, 1], is the flow at time τ of the Hamiltonian χ(2). We study each

summand separately. First of all, thanks to (3.35), we deduce that

(3.45)

M2,n−1∑

k=2n−2

(
K̃k + {χ(2)

k , Z2}
)
=

M2,n−1∑

k=2n−2

Zk + K̃>N
+ , K̃>N

+ :=

M2,n−1∑

k=2n−2

K̃>N
k .
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One can check, using Lemma 3.5, that K̃>N
+ satisfies

(3.46) ‖X
K̃>N

+
‖Hs .s,δ N

−1+δ′‖u‖2n−3
Hs .

Consider now the terms in (3.42). First of all notice that we have

adp
χ(2) [Z2]

(3.45)
=

M2,n−1∑

k=2n−2

adp−1

χ(2)

[
Zk − K̃≤N

k

]
, p = 2, . . . , L .

The Hamiltonian above has a homogeneity at least of degree 4n−6 which actually is larger
or equal to M2,n (see (3.1)). The terms with lowest homogeneity in the sum (3.42) have

degree exactly M2,n and come from the term adχ(2)

[∑2n−3
k=n Zk

]
recalling that (see Remark

3.4) if n is odd then Zn ≡ 0. Then, by (3.34), (3.25) and Lemma 3.5-(ii), we get

(3.42) =

L(M2,n−1)+r−1−2L∑

k=M2,n

K̃+
k

where K̃+
k are k-homogeneous Hamiltonians of the form (3.6) with coefficients satisfying

(3.47) |(K̃+
k )σ,j | .δ′ N (L+1)δ′µ3(j)

β ,

for some β > 0. By the discussion above, using formulæ (3.40)-(3.44), we obtain that the
Hamiltonian H ◦Φχ(1) ◦Φχ(2) has the form (3.4) with (recall (3.19), (3.36), (3.41), (3.45))

Z≤N
k := Zk , Kk := K̃k + K̃+

k , k =M2,n, . . . , r − 1 ,(3.48)

K>N := K̃>N ◦ Φχ(2) + K̃>N
+(3.49)

and with remainder R̃r defined as

(3.50) R̃r :=

L(M2,n−1)+r−1−2L∑

k=r

K̃+
k + (3.43) + (3.44) .

Recalling (3.19), (3.36) and the estimates (1.27), (3.25) we have that Z≤N
k in (3.48) satisfies

the condition of item (i) of Theorem 2. Similarly Kk in (3.48) satisfies (3.6) thanks to (3.25)
and (3.47) as long as δ′ is sufficiently small. The remainder K>N in (3.49) satisfies the
bound (3.7) using (3.46), (3.26) and Lemma 3.5-(i). It remains to show that the remainder

defined in (3.50) satisfies the estimate (3.8). The claim follows for the terms K̃+
k for

k = r, . . . , L(M2,n − 1) + r − 1 − 2L by using (3.47) and Lemma 3.5. For the remainder
in (3.43), (3.44) one can reason following almost word by word the proof of the estimate
of the vector field of Rr in (3.33) in the previous step. In this case we choose L + 1 = 8
which implies L+ 1 ≥ (r + n)/(2n − 4). �

Theorem 2 follows by Lemmata 3.8, 3.12 setting τ (1) := Φχ(1) ◦ Φχ(2) . The bound (3.3)
follows by Lemmata 3.7 and 3.11.
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4. The modified energy step

In this section we construct a modified energy which is an approximate constant of mo-
tion for the Hamiltonian system of H ◦τ (1) in (3.4), when d = 2, 3, and for the Hamiltonian
H in (1.24) when d ≥ 4. For compactness we shall write, for s ∈ R,

(4.1) Ns(u) := ‖u‖2Hs =
∑

j∈Z2

〈j〉2s|uj |2 ,

for u ∈ Hs(T2;C). For d ≥ 2 and n ∈ N we define (recall (3.1))

(4.2) M̃d,n :=

{
Md,n + n− 1 n odd

Md,n + n− 2 n even.

Proposition 4.1. There exists β = β(d, n) > 0 such that for any δ > 0, any N ≥ N1 > 1
and any s ≥ s̃0, for some s̃0 = s̃0(β) > 0, if ε0 .s,δ N

−δ, there are multilinear maps Ek,

k =Md,n, . . . , M̃d,n − 1, in the class Lk such that the following holds:
• the coefficients (Ek)σ,j satisfies

(4.3) |(Ek)σ,j | .s,δ N δNκd
1 µ3(j)

βµ1(j)
2s ,

for σ ∈ {−1, 1}k, j ∈ (Zd)k, k =Md,n, . . . , M̃d,n − 1, where

(4.4) κd := 0 if d = 2 , κd := 1 if d = 3 , κd := d− 4 if d ≥ 4 .

• for any u ∈ Bs(0, 2ε0) setting

(4.5) E(u) :=

M̃d,n−1∑

k=Md,n

Ek(u) .

one has

(4.6)
|{Ns + E,H ◦ τ (1)}| .s,δ Nκd

1 N δ
(
‖u‖M̃d,n

Hs +N−1‖u‖Md,n+n−2
Hs

)

+N−sd+δ
1 ‖u‖Md,n

Hs +N−sd+δ‖u‖nHs ,

where

(4.7) sd := 1 , for d = 2, 3 , and sd := 3 , for d ≥ 4 .

We need the following technical lemma.

Lemma 4.2. (Energy estimate). Let N ≥ 1, 0 ≤ δ < 1, p ∈ N, p ≥ 3. Consider the

Hamiltonians Ns in (4.1), Gp ∈ Lp and write Gp = G
(+1)
p +G

(−1)
p (recall Definition 3.3).

Assume also that the coefficients of Gp satisfy

(4.8) |(G(η)
p )σ,j | ≤ CN δµ3(j)

βµ1(j)
−q , ∀σ ∈ {−1,+1}p , j ∈ Z

d , η ∈ {−1,+1},

for some β > 0, C > 0 and q ≥ 0. We have that the Hamiltonian Q
(η)
p := {Ns, G

(η)
p },

η ∈ {−1, 1}, belongs to the class Lp and has coefficients satisfying

(4.9) |(Q(η)
p )σ,j | .s CN δµ3(j)

β+2µ1(j)
2sµ1(j)

−q−α , α :=

{
1 , if η = −1

0 , if η = +1 .
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Proof. Using formulæ (4.1), (1.23), (3.9) and recalling Def. 3.3 we have that the Hamil-

tonian {Ns, G
(η)
p } has coefficients

(Q(η)
p )σ,j = (G(η)

p )σ,j i
( p∑

i=1

σi〈ji〉2s
)

for any σ ∈ {−1,+1}p, j ∈ (Zd)p satisfying

p∑

i=1

σiji = 0 , σiσk = η , µ1(j) = |ji| , µ2(j) = |jk| ,

for some i, k = 1, . . . , p. Then the bound (4.9) follows by the fact that

|〈ji〉2s + η〈jk〉2s| .s
{
µ1(j)

2s−1µ3(j) if η = −1

µ1(j)
2s if η = +1 .

and using the assumption (4.8). �

Proof of Proposition 4.1. Case d = 2, 3. Consider the Hamiltonians Kk in (3.6) for

k = Md,n, . . . , M̃n,d − 1 where M̃n,d is defined in (4.2). Recalling Definition 3.3 we set

Ek := E
(+1)
k + E

(−1)
k , where

(4.10) E
(+1)
k := (adZ2)

−1{Ns,K
(+1)
k } , E

(−1)
k := (adZ2)

−1{Ns,K
(−1,≤N1)
k } ,

for k = Md,n, . . . , M̃d,n − 1. It is easy to note that Ek ∈ Lk. Moreover, using the bounds
on the coefficients (Kk)σ,j in (3.6) and Proposition 2.2 (with δ therein possibly smaller
than the one fixed here), one can check that the coefficients (Ek)σ,j satisfy the (4.3). Using
(4.10) we notice that

(4.11) {Ns,Kk}+ {Ek, Z2} = {Ns,K
(−1,>N1)
k } , k =Md,n, . . . , M̃d,n − 1 .

Combining Lemmata 3.5 and 4.2 we deduce

(4.12) |{Ns,K
(−1,>N1)
k }(u)| .s,δ N−1+δ

1 ‖u‖kHs ,

for s large enough with respect to β. We define the energy E as in (4.5). We are now in
position to prove the estimate (4.6).
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Using the expansions (3.4) and (4.5) we get

{Ns + E,H ◦ τ (1)} = {Ns, Z2 +

Md,n−1∑

k=n

Z≤N
k }(4.13)

+ {Ns,K
>N}+ {Ns, R̃r}(4.14)

+

M̃d,n−1∑

k=Md,n

(
{Ns,Kk}+ {Ek, Z2}

)
(4.15)

+ {E,
Md,n−1∑

k=n

Z≤N
k }+ {E,

r−1∑

k=Md,n

Kk + R̃r}(4.16)

+ {E,K>N}.(4.17)

We study each summand separately. First of all note that, by item (i) in Theorem 2 and
Proposition 2.2 we deduce that the right hand side of (4.13) vanishes. Consider now the
term in (4.14). Using the bounds (3.7), (3.8) and recalling (1.23) one can check that, for
ε0N

δ .s,δ 1,

(4.18) |(4.14)| .s,δ N−1+δ‖u‖nHs +N δ‖u‖rHs .

By (4.11) and (4.12) we deduce that

(4.19) |(4.15)| .s,δ N−1+δ
1 ‖u‖Md,n

Hs .

By (4.3), (3.4)-(3.8), Lemma 3.5 (recall also (4.2)) we get

|(4.16)| .s,δ Nκd
1 N δ(‖u‖M̃d,n

Hs + ‖u‖rHs) ,

|(4.17)| .s,δ Nκd
1 N−1+δ‖u‖Md,n+n−2

Hs .

The discussion above implies the bound (4.6) using that r ≥ M̃d,n. This concludes the
proof in the case d = 2, 3.

Case d ≥ 4. In this case we consider the Hamiltonian H in (1.24). Recalling Definition
3.3 we set

Ek := E
(+1)
k + E

(−1)
k

where

(4.20) E
(+1)
k := (adZ2)

−1{Ns,Hk}(+1) , E
(−1)
k := (adZ2)

−1{Ns,H
(−1,≤N1)
k } ,

for k =Md,n, . . . , M̃d,n−1. Notice that the energies E
(+1)
k , E

(−1)
k are in Lk with coefficients

(E
(+1)
k )σ,j =

( k∑

i=1

σi〈ji〉2s
)( k∑

i=1

σiωji
)−1

(H
(+1)
k )σ,j , σ ∈ {−1,+1}k , j ∈ (Zd)k ,

and

(E
(−1)
k )σ,j =

( k∑

i=1

σi〈ji〉2s
)( k∑

i=1

σiωji
)−1

(H
(−1)
k )σ,j , µ2(j) ≤ N1 ,
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with σ ∈ {−1,+1}k, j ∈ (Zd)k. Using Proposition 2.2 and reasoning as in the proof of

Lemma 4.2 one can check that estimate (4.3) on the coefficients of E
(+1)
k and E

(−1)
k holds

true with κd as in (4.4). Equation (4.20) implies

(4.21) {Ns,Hk}+ {Ek, Z2} = {Ns,H
(−1,>N1)
k } , k =Md,n, . . . , M̃d,n − 1 .

Recall that the coefficients of the Hamiltonian Hk satisfy the bound (1.27). Therefore,
combining Lemmata 4.2 and 3.5, we deduce

(4.22) |{Ns,H
(−1,>N1)
k }(u)| .s,δ N−3

1 ‖u‖kHs ,

for s large enough with respect to β. Recalling (1.24) we have

{Ns + E,H} = {Ns, Z2}+ {Ns, Rr}+ {E,
r−1∑

k=Md,n

Hk +Rr}

+

M̃d,n−1∑

k=Md,n

(
{Ns,Kk}+ {Ek, Z2}

)
.

One can obtain the bound (4.6) by reasoning as in the case d = 2, 3, using (4.22), (1.28) and

recalling that M̃d,n =Md,n + n− 2 (see (4.2)) when d ≥ 4. This concludes the proof. �

5. Proof of Theorem 1

In this section we show how to combine the results of Theorem 2 and Proposition 4.1 in
order to prove Theorem 1.
Consider ψ0 and ψ1 satisfying (1.4) and let ψ(t, y), y ∈ Tdν , be the unique solution of (1.1)
with initial conditions (ψ0, ψ1) defined for t ∈ [0, T ] for some T > 0. By rescaling the
space variable y and passing to the complex variable in (1.17) we consider the function
u(t, x), x ∈ Td solving the equation (1.18). We recall that (1.18) can be written in the
Hamiltonian form

(5.1) ∂tu = i∂ūH(u) ,

where H is the Hamiltonian function in (1.20) (see also (1.24)). We have that Theorem 1
is a consequence of the following Lemma.

Lemma 5.1. (Main bootstrap) There exists s0 = s0(n, d) such that for any δ > 0,
s ≥ s0, there exists ε0 = ε0(δ, s) such that the following holds. Let u(t, x) be a solution
of (5.1) with t ∈ [0, T ), T > 0 and initial condition u(0, x) = u0(x) ∈ Hs(Td). For any
ε ∈ (0, ε0) if

(5.2) ‖u0‖Hs ≤ ε , sup
t∈[0,T )

‖u(t)‖Hs ≤ 2ε , T ≤ ε−a+δ ,

with a = a(d, n) in (1.6), then we have the improved bound supt∈[0,T ) ‖u(t)‖Hs ≤ 3
2ε .

In order to prove Lemma 5.1 we first need a preliminary result.
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Lemma 5.2. (Equivalence of the energy norm) Let δ > 0, N ≥ N1 ≥ 1. Let
u(t, x) as in (5.2) with s ≫ 1 large enough. Then, for any 0 < c0 < 1, there exists
C = C(δ, s, d, n, c0) > 0 such that, if we have the smallness condition

(5.3) εCN δNκd
1 ≤ 1 ,

the following holds true. Define

(5.4) z := τ (0)(u) , u = τ (1)(z) , Es(z) := (Ns + E)(z)

where τ (σ), σ = 0, 1, are the maps given by Theorem 2 and Ns is in (4.1), E is given by
Proposition 4.1. We have

(5.5) 1/(1 + c0)‖z‖Hs ≤ ‖u‖Hs ≤ (1 + c0)‖z‖Hs , ∀t ∈ [0, T ] ;

(5.6) 1/(1 + 12c0)Es(z) ≤ ‖u‖2Hs ≤ (1 + 12c0)Es(z) , ∀t ∈ [0, T ] .

Proof. Thanks to (5.3) we have that Theorem 2 and Proposition 4.1 apply. Consider the

function z = τ (0)(u). By estimate (3.3) we have

‖z‖Hs ≤ ‖u‖Hs + C̃N δ‖u‖2Hs

(5.3)
≤ ‖u‖Hs(1 + c0) ,

where C̃ is some constant depending on s and δ. The latter inequality follows by taking C
in (5.3) large enough. Reasoning similarly and using the bound (3.3) on τ (1) one gets the
(5.5). Let us check the (5.6). First notice that, by (4.3), (4.5) and Lemma 3.5,

(5.7) |E(z)| ≤ C̃‖z‖Md,n

Hs N δNκd
1 ,

for some C̃ > 0 depending on s and δ. Then, recalling (5.4), we get

|Es(z)| ≤ ‖z‖2Hs(1 + C̃‖z‖Md,n−2
Hs N δNκd

1 )
(5.5),(5.3)

≤ ‖u‖2Hs(1 + c0)
3 ,

where we used that Md,n − 2 ≥ 1. This implies the first inequality in (5.6). On the other
hand, using (5.5), (5.7) and (5.2), we have

‖u‖2Hs ≤ (1 + c0)
2Es(z) + (1 + c0)

Md,n+2C̃N δNκd
1 εMd,n−2‖u‖2Hs .

Then, since Md,n > 2 (see (3.1)), taking C in (5.3) large enough we obtain the second
inequality in (5.6). �

Proof of Lemma 5.1. Assume the (5.2). We study how the Sobolev norm ‖u(t)‖Hs

evolves for t ∈ [0, T ] by inspecting the equivalent energy norm Es(z) defined in (5.4).
Notice that

∂tEs(z) = −{Es,H ◦ τ (1)}(z) .
Therefore, for any t ∈ [0, T ], we have that

∣∣∣∣
∫ T

0
∂tEs(z) dt

∣∣∣∣
(4.6),(5.2)
.s,δ TNκd

1 N δ
(
εM̃d,n +N−1εMd,n+n−2

)

+ TN−sd+δ
1 εMd,n + TN−sd+δεn .

We now fix

N1 := ε−α , N := ε−γ ,
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with 0 < α ≤ γ to be chosen properly. Hence we have

∣∣∣∣
∫ T

0
∂tEs(z) dt

∣∣∣∣ .s,δ ε
2T
(
εMd,n−2+αsd−δα + εM̃n,d−2−ακd−δγ

)
(5.8)

+ ε2T
(
εn−2+γsd−δγ + εMn,d+n−4+γ−ακd−δγ

)
.(5.9)

We choose α > 0 such that

(5.10) Md,n − 2 + αsd = M̃n,d − 2− ακd ,

i.e.

(5.11) α :=
M̃n,d −Md,n

sd + κd

(4.2),(4.7),(4.4)
=

{
n−1
d−1 if n odd

n−2
d−1 if n even .

We shall choose γ > 0 is such a way the terms in (5.9) are negligible with respect to the
terms in (5.8). In particular we set (recall (5.11))

(5.12) γ ≥ max
{
Md,n − 4− n+

M̃d,n −Md,n

sd + κd
sd, 2− n+ M̃d,n −Md,n

}
.

Therefore estimates (5.8)-(5.9) become

∣∣∣∣
∫ T

0
∂tEs(z) dt

∣∣∣∣ .s,δ ε
2Tεa(ε−δα + ε−δγ)

where a is defined in (1.6) and appears thanks to definitions (3.1), (4.2), (4.4), (4.7) and
(5.11). Moreover we define

δ′ := 2δmax{α, γ} ,
with α, γ given in (5.11) and (5.12). Notice that, since δ > 0 is arbitrary small, then δ′

can be chosen arbitrary small. Since ε can be chosen arbitrarily small with respect to s
and δ, with this choices we get

∣∣∣∣
∫ T

0
∂tEs(z) dt

∣∣∣∣ ≤ ε2/4

as long as T ≤ ε−a+δ′ . Then, using the equivalence of norms (5.6) and choosing c0 > 0
small enough, we have

‖u(t)‖2Hs ≤ (1 + 12c0)E0(z(t))

≤ (1 + 12c0)
[
Es(z(0)) +

∣∣∣∣
∫ T

0
∂tEs(z) dt

∣∣∣∣
]

≤ (1 + 12c0)
2ε2 + (1 + 12c0)ε

2/4 ≤ ε23/2 ,

for times T ≤ ε−a+δ′ . This implies the thesis. �
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