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We consider two types of nonlinear fast diffusion equations in R N :

(1) External drift type equation with general external potential. It is a natural extension of the harmonic potential case, which has been studied in many papers. In this paper we can prove the large time asymptotic behavior to the stationary state by using entropy methods.

(2) Mean-field type equation with the convolution term. The stationary solution is the minimizer of the free energy functional, which has direct relation with reverse Hardy-Littlewood-Sobolev inequalities. In this paper, we prove that for some special cases, it also exists large time asymptotic behavior to the stationary state.

INTRODUCTION

Asymptotic rates of convergence for the solutions of diffusion equations have been studied in many papers, such as linear diffusion equation(Keller-Segel type, see [START_REF] Hoffmann | Keller-Segel-Type Models and Kinetic Equations for Interacting Particles: Long-Time Asymptotic Analysis[END_REF]), porous medium type equation(see [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF]). In this paper, we mainly study the asymptotic behavior of two different types of non-linear fast diffusion equations in R N , and we denote

V λ (x) := 1 λ |x| λ (λ > 0), N N + λ < q < 1
and

q # :=    N -2 -λ N -2 , N ≥ 3 0, N = 1, 2 : 
1. Fast diffusion equation with external drift n t = ∆(n q ) + ∇(n∇V λ ), n(0, .) = n 0 > 0.

(1)

Obviously, this equation is mass conserved. Set R N n(x) d x = m > 0. Notice that the stationary solution N h of ( 1) is of the form

N h = 1 -q q (h + V λ ) 1 q-1 .
here h(m) > 0 is uniquely determined by the equation

R N N h d x = m.
(

) 2 
From now on, we always suppose that n satisfies the following assumption if not specially mentioned.

(H1) There exist constants 0 < h 1 < h 2 , such that

N h 2 (x) ≤ n 0 (x) ≤ N h 1 (x), ∀x ∈ R d
According to the maximum principle, N h 2 ≤ n(t , .) ≤ N h 1 for any t > 0, see page 8-10 from [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] for more details. We will also denote h * which is uniquely determined by

R N N h * d x = R N n 0 d x

Mean-field type fast diffusion equation

We consider the equation

ρ t = ∆(ρ q ) + ∇(ρ∇V λ * ρ), ρ(0, .) = ρ 0 > 0. (3) 
For this equation, we always suppose that N N +λ < q < 1. Notice that the stationary solution ρ ∞ satisfies q 1q ρ q-1

∞ = V λ * ρ ∞ +C
for some constant C > 0. In this paper, we focus on the normalized mass case

R N ρ(t , x) d x = R N ρ ∞ d x = 1
we mention here equation [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] with other mass can be treated similarly. Notice that for i = 1, ...N ,

d d t R N x i ρ d x = R N R N ρ(x)|x -y| λ-2 (x i -y i )ρ(y) d y d x = 0
from the result of [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF], we can assume that ρ ∞ is radially symmetric and non-increasing, so

R N x i ρ 0 d x = R N
x i ρ ∞ d x = 0 moreover, we also assume that (H2) There exist two stationary solutions (possibly with different mass) ρ 1 , ρ 2 such that

ρ 2 (x) ≤ ρ 0 (x) ≤ ρ 1 (x), ∀x ∈ R d .
When λ = 2, we know from [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF] that after modulo translations, ρ ∞ has the form

q 1 -q ρ q-1 ∞ = 1 2 |x| 2 +C (4) 
by the theory of Beta function, C satisfies

C 1 1-q -N 2 = (2π) N 2 1 -q q 1 q-1 Γ 1 1-q -N 2 Γ 1
1-q and we will show the large time asymptotic to the stationary solution ρ ∞ . For λ = 2, the form of ρ ∞ is much more complicated so it's hard to analyze it. From the result of [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF], when q ∈ ( N N +λ , 1), the stationary solution ρ ∞ satisfies ρ ∞ = ρ * + M * δ 0 for some M * ∈ [0, 1) and ρ * ∈ L 1 + ∩ L q (R N ) is radically symmetric and supported on R N , and δ 0 denotes the Dirac measure at the point 0. When q( N N +λ , 1) near N N +λ , in a recent preprint [START_REF] Carrillo | Fast Diffusion leads to partial mass concentration in Keller-Segel type stationary solutions[END_REF] the authors proved that M * > 0 with λ = 4, N ≥ 6, but when q > 2N 2N +λ , it is proved in [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF] that the Dirac mass does not appear in ρ ∞ . In this paper, we mainly consider the case λ > 2 and suppose that 2N 2N +λ < q < 1 without more explication. We will try to analyze the exact result about ρ ∞ and also show the similar asymptotic behavior if q is close enough to 1.

1.1. Main tools and results. For equation [START_REF] Barthe | Modified Logarithmic Sobolev Inequalities on R[END_REF], we consider the free energy

F [n] := - 1 1 -q R N n q d x + R N V λ n d x ( 5 
)
the relative entropy

F [n|N h ] := F [n] -F [N h ]
and the relative Fisher information with respect to N h * defined as

I [n] := R N n ∇ q q -1 n q-1 + V λ 2 d x = q 2 (1 -q) 2 R N n|∇(n q-1 -N q-1 h * )| 2 d x ( 6 
)
we will prove in Section 2 that under the constraints n(x) > 0, R N n(x) d x = m, F is bounded from below, and N h * is the unique minimizer , which is

F [n] -F [N h * ] ≥ 0. If n solves (1), we obtain that d d t F [n] = -I [n]
see Proposition 2 of [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] for more details.

For equation (3), the free energy becomes

F[ρ] = - 1 1 -q R N ρ q d x + 1 2λ I λ [ρ] (7) 
the relative entropy

F[ρ|ρ ∞ ] := F[ρ] -F[ρ ∞ ] where I λ [ρ] = R N R N |x -y| λ ρ(x)ρ(y) d x d y
notice that because N N +λ < q < 1, the free energy of F [ρ ∞ ] is finite. Moreover, we define the relative Fisher information

I[ρ] := R N ρ q 1 -q ∇ρ q-1 -∇V λ * ρ 2 d x ( 8 
)
our analysis is based on the Theorem below.

Theorem 1.1. ( [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF], Reverse Hardy-Littlewood-Sobolev inequality) Let N ≥ 1, λ > 0, q ∈ (0, 1), define

α := 2N -q(2N + λ) N (1 -q) then the inequality R N R N |x -y| λ ρ(x)ρ(y) d x d y ≥ C N ,λ,q R N ρ(x) d x α R N ρ(x) q d x 2-α q (9)
holds for any nonnegative function ρ ∈ L 1 ∩ L q (R N ) and for some positive constant C N ,λ,q if and only if q > N N +λ , or equivalently α < 1. Moreover, the optimal function of the inequality is the global minimizer of F[ρ]. The optimal function is radially symmetric, non-increasing and supported on R N , and it is unique up to translation.

Because q > N N +λ , from the results of [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF], the free energy F[ρ] is bounded from below under the mass constraint, and energy minimizers of F are the optimal functions of (9). Moreover, ρ ∞ is the unique minimizer up to translation, and

I[ρ] = - d d t F[ρ].
Our goal is to show that Theorem 1.2. Suppose that the solution n of the equation [START_REF] Barthe | Modified Logarithmic Sobolev Inequalities on R[END_REF] with initial data n 0 satisfying (H1), q ∈ N N +λ , 1 and F [n 0 ] < ∞. Then for λ ≥ 2, there exist constants κ, µ > 0, such that for any t > 0,

R N N q-2 h * (n(t , .) -N h * ) 2 d x ≤ κe -µt .
For λ ∈ (0, 2), if we assume in addition q ∈ N +2 N +2+λ , 1 , then there exist constants κ, µ > 0, such that for any t > 0,

R N N q-2 h * (n(t , .) -N h * ) 2 d x ≤ κ(1 + t ) -µ .
For equation (3) we have similar results when λ = 2. Theorem 1.3. For λ = 2, suppose that the solution ρ of the equation [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] with initial data ρ 0 that satisfies (H2) and F[ρ 0 ] < ∞. Then for all q ∈ N N +2 , 1 , there exist constants τ, γ > 0, such that for any t > 0,

R N ρ q-2 ∞ (ρ(t , .) -ρ ∞ ) 2 d x ≤ τe -2γt .
For general λ > 2, we have the similar result when q is near 1.

Theorem 1.4. Suppose that λ > 2, and the solution ρ of the equation (3) with initial data ρ 0 that satisfies (H2) and F[ρ 0 ] < ∞. Then there exists a constant q N ,λ ∈ ( 2N 2N +λ , 1), such that for any q ∈ (q N ,λ , 1) , there exist constants τ, γ > 0 such that for any t > 0,

F[ρ|ρ ∞ ] ≤ τe -2γt F[ρ 0 |ρ ∞ ] in particular if λ ∈ (2, 4], we have R N ρ q-2 ∞ (ρ(t , .) -ρ ∞ ) 2 d x ≤ τe -2γt .

Remark 1.5. We remark here that for equation (1) if we assume further that (H1')There exists a constant h

* ∈ [h 1 , h 2 ], such that p(x) := n 0 (x) -N h * (x) ∈ L 1 (R d ).
Then we can extend the Theorem 1.2 to the case q ∈ (0, 1) when N = 1 or 2, and q ∈ (0, 1)\{ N -2-λ N -2 } when N ≥ 3 with the similar method, including the pseudo-Barenblatt solutions case that q ∈ (0, N -2-λ N -2 ) when N ≥ 3. The readers are invited to check [START_REF] Vázquez | Smoothing and decay estimates for nonlinear diffusion equations: equations of porous medium type[END_REF][START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] for more information. 1.2. Background. The nonlinear fast diffusion equations have caught many attentions, see [START_REF] Vázquez | Smoothing and decay estimates for nonlinear diffusion equations: equations of porous medium type[END_REF] for a more precise introduction. And studying the asymptotic rates of convergence to the stationary states is an important theme. For the equation ( 1), the harmonic potential case that λ = 2 has been studied by [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF]. The result is based on the spectral method of the linearized equation, and the optimal rate of the convergence can be directly deduced by the spectral gap, which is the optimal constant of Hardy-Poincaré inequality. See [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF] for more details. The meanfield equation ( 3) is more complicated, since mean field potential W λ = V λ * ρ depends on the regular part ρ, and for more general λ, there is no explicit form of ρ ∞ for the estimate. This equation behaves different with different choice of λ and q. Recall the functional energy

F[ρ] = - 1 1 -q R N ρ q d x + R N R N V λ (x -y)ρ(x)ρ(y) d x d y
if we take the mass-preserving dilations

ρ λ (x) = β N ρ(βx) so F[ρ] = - β N (q-1) 1 -q R N ρ q d x + β -λ R N R N V λ (x -y)ρ(x)ρ(y) d x d y
and one observes different types of behavior depending on the relation between the parameters N , q and λ. The energy functional is homogeneous if attraction and repulsion are in balance, so that the two terms of the energy scale with the same power, that is, q = q * with q * = 1 -λ N this motivates the definition of three different regimes: the diffusion-dominated regime q > q * , the fair-competition regime q = q * , and the attraction-dominated regime 0 < q < q * . We refer to [START_REF] Hoffmann | Keller-Segel-Type Models and Kinetic Equations for Interacting Particles: Long-Time Asymptotic Analysis[END_REF] for a complete summary of existing works. The fair-competition case has been studied in several papers such as [START_REF] Calvez | Equilibria of homogeneous functionals in the fair-competition regime[END_REF][START_REF] Calvez | Uniqueness of stationary states for singular Keller-Segel type models[END_REF].

In our paper we consider the case q > N N +λ > 1 -λ N = q * , which correspond to the diffusiondominated regime. In the diffusion dominated regime, several results have been done for the case -N < λ < 0 and q > 1, the logarithmic case λ = 0, q > 1 in two dimensions [START_REF] Carrillo | Ground states for diffusion dominated free energies with logarithmic interaction[END_REF], and the Newtonian case λ = 2 -N in [START_REF] Blanchet | Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions[END_REF][START_REF] Kim | The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle[END_REF]. For our case λ > 0, q > N N +λ , the existence and uniqueness of ρ ∞ has been given in [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF], we remark here that the asymptotic behavior of the case λ > 0, q > N N +λ is to our knowledge new.

As we introduced above, the free energy and the related Fisher information are key tools, but we need the propositions about the bound and the minimizers of the free energy. For q < 1, the reverse Hardy-Littlewood-Sobolev inequalities in [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF][START_REF] Dou | Reversed Hardy-Littewood-Sobolev inequality[END_REF][START_REF] Ngô | Sharp reversed Hardy-Littlewood-Sobolev inequality on R n[END_REF] provide the sufficient conditions. Intersted readers can check [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF] for more information.

1.3. Sketch of the proof. In this paper, the proof for the paper is to use linearization around equilibrium plus nonlinear stability, roughly speaking, for a mass conserving equation

∂ t f = L f with equilibrium f ∞ , we linearize the operator L = L 1 + L 2 (where L 1 is linear) around equilib- rium g = f -f ∞ , which is ∂ t g = L 1 g + L 2 g
then we first prove the convergence for the linearized eqution

∂ t g = L 1 g
then we use the nonlinear stability to prove that the convergence results still holds for the nonlinear equation when the initial data f 0 is close to equilibrium

f 0 -f ∞ X ≤
for some space X and some > 0 small, then we use a (weak) global convergence to prove that, for any f 0 ∈ X , we can find a time t 0 > 0 such that

f (t ) -f ∞ X ≤ , ∀t ≥ t 0
the global convergence can be very weak, in this paper we use

lim t →∞ f (t ) -f ∞ X = 0
which can be proved by the entropy method, gathering the two things we complete the proof of the asymptotic behavior for the full nonlinear problem . Such method can improve convergence rate and get better rate of convergence at large time. It's largely used in the asymptotic behavior of many nonlinear equations, see [START_REF] Carrapatoso | Landau Equation for Very Soft and Coulomb Potentials Near Maxwellians[END_REF][START_REF] Hérau | Regularization Estimates and Cauchy Theory for Inhomogeneous Boltzmann Equation for Hard Potentials Without Cut-Off[END_REF] for its use in Boltzmann and Landau equation for example.

1.4. Plan of the paper. Sections 2-4 are devoted to the fast diffusion with external drift. In Section 2, we give the results about the free energy and the comparison principle. In Section 3, we prove the result about the convergence without rate and the convergence with rate in Section 4.

Sections 5 -7 are about the mean-field equation with convolution term. Section 5 is about some basic properties about the linearized equation. The case that λ = 2 is simple, we prove the result about large time asymptotic behavior in Section 6, and in Section 7, we deal with more general λ > 2.

1.5. Notations. We will denote

h k (x) := x k-1 -1 k -1 M (x) :=    1 1 + |x| λ-2 , λ = 2 1, λ = 2 (10)
and S N denotes the area of unit N-dimension sphere.
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EXTERNAL DRIFT TYPE EQUATION: SOME PREPARATIONS

2.1. The free energy and its minimizer. We first prove the basic propositions about the free energy F [n] defined in [START_REF] Bonforte | Global positivity estimates and Harnack inequalities for the fast diffusion equation[END_REF], and the existence of the minimizers of F [n] under the condition

R N n(x) d x = m. Proposition 2.1. The free energy F [n] satisfies
(1)For h ≥ 0, the free energy F [N h ] is increasing by h, which means that it is decreasing by the mass m.

(2)For any n > 0,

R N n(x) d x = m, we have F [n] ≥ F [N h ],
and equality fits if and only if n = N h . Here h is decided by the equation [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF]. In particular, F [n] is bounded from below.

Proof. (1)Remind that

N h = 1 -q q 1 q-1 • (h + V λ ) 1 q-1 so F [N h ] = 1 q -1 R N N q h d x + R N V λ N h d x = 1 -q q 1 q-1 • - 1 q R N (h + V λ ) q q-1 d x + R N V λ (h + V λ ) 1 q-1 d x which means that d d h F [N h ] = 1 -q q 1 q-1 • - 1 q -1 R N (h + V λ ) 1 q-1 d x + 1 q -1 R N V λ (h + V λ ) 2-q q-1 d x = 1 -q q 1 q-1 • 1 1 -q R N h(h + V λ ) 2-q q-1 d x ≥ 0.
(2)Notice that

F [n] -F [N h ] = 1 1 -q R N q N q-1 h (n -N h ) -(n q -N q h ) d x
and from the inequality qb q-1 (ab) -(a qb q ) ≥ 0 for any a, b ≥ 0, we get the result.

Comparison principle.

Before proving the main theorem, we still need that Lemma 2.2. For any two non-negative solutions n 1 and n 2 of equation (1), defined on a time interval [0, T ] with initial data in L 1 (R d ), and any two times t 1 and t 2 such that 0 ≤ t 1 ≤ t 2 ≤ T , we have

R d |n 1 (t 2 ) -n 2 (t 2 )|d x ≤ R d |n 1 (t 1 ) -n 2 (t 1 )|d x
and even stronger

R d |n 1 (t 2 ) -n 2 (t 2 )| + d x ≤ R d |n 1 (t 1 ) -n 2 (t 1 )| + d x.
The lemma implies

Lemma 2.3. (Comparison principle) For any two non-negative solutions n 1 and n 2 of equation

(1) on [0, T ), T > 0, with initial data satisfying n 0,1 ≤ n 0,2 almost everywhere, n 0,2 ∈ L 1 l oc (R d ), then we have n 1 (t ) ≤ n 2 (t ) for almost every t ∈ [0, T ).

The proof can be found in [START_REF] Herrero | The Cauchy problem for u t = ∆(u m ) when 0 < m < 1[END_REF][START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Bonforte | Global positivity estimates and Harnack inequalities for the fast diffusion equation[END_REF].

EXTERNAL DRIFT TYPE EQUATION: CONVERGENCE WITHOUT RATE

In this section we mainly prove convergence without rate, which will allow us to assume that |h 1h * | and |h 2h * | is arbitrarily small. Define relative entropy by

F [n|N h * ] = R N φ(n) -φ(N h * ) -φ (n)(n -N h * ) d x, φ(x) := x q q -1 define w := n N h * then we have w t = 1 N h * n t = 1 N h * ∇(qn q-1 ∇n + n∇V λ ) = 1 N h * ∇(q(N h * w) q-1 ∇(N h * w) + N h * w∇V λ ) = 1 N h * ∇ N h * w q w q-2 N q-1 h * ∇w + q w q-1 N q-2 h * ∇N h * + q 1 -q ∇(N q-1 h * ) = 1 N h * ∇ N h * w q q -1 N q-1 h * ∇(w q-1 ) + q q -1 w q-1 ∇(N q-1 h * ) + q 1 -q ∇(N q-1 h * ) = 1 N h * ∇ N h * w∇ q q -1 N q-1 h * (w q-1 -1) (11) 
recall that in the third line we use that

∇V λ = q 1 -q ∇(N q-1 h *
) by homogeneity of φ the relative entropy we rewrite that

F [n|N h * ] = R N φ(w) -φ(1) -φ (1)(w -1) d x, w = n N h *
so we define the relative entropy

F [w] = 1 1 -q R N (w -1) - 1 q (w q -1) N q h * d x
and the relative Fisher information

I [w] = q (1 -q) 2 R N ∇ (w q-1 -1)N q-1 h * 2 w N h * d x
it's easily seen that

F [w] = 1 q F [n|N h * ], I [w] = 1 q I [n|N h * ] and d d t F [w(t )] = -I [w(t )]
we omit the regularity here, see Proposition 2 in [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] for more details. Define

W 0 := inf x∈R N N h 2 (x) N h * (x) = h * h 2 1 1-q < 1, W 1 := inf x∈R N N h 1 (x) N h * (x) = h * h 1 1 1-q > 1
with such notations, we can rewrite the assumptions as follows: (H1')n 0 is a non-negative function in L 1 l oc (R d ) and there exist positive constants

h 1 < h 2 such that 0 < W 0 ≤ N h 2 (x) N h * (x) ≤ w(x) ≤ N h 1 (x) N h * (x) ≤ W 1 ≤ ∞, ∀x ∈ R d Lemma 3.1. (Uniform C k regularity) Let q ∈ (0, 1) and w ∈ L ∞ l oc ((0, T ) × R d
) be a solution of the nonlinear equation. Then for any k ∈ N and t 0 ∈ (0, T ),

sup t ≥t 0 w(t ) C k (R d ) < +∞. Proof. See [3] Theorem 4.
Lemma 3.2. If q ∈ (0, 1), w satisfies (H1') above, then we have

1 2 W q-2 1 R N |w -1| 2 N q h * d x ≤ F [w] ≤ 1 2 W q-2 0 R N |w -1| 2 N q h * d x
Proof. For some a > 0 to be fixed later, we define

φ a (w) := 1 1 -q (w -1) - 1 q (w q -1) -a(w -1) 2
we compute

φ a (w) = 1 q -1 [1 -w q-1 ] -2a(w -1), φ a (w) = w q-2 -2a.
Note here φ a (1) = φ a (1) = 0, recall that 0

< W 0 < 1 < W 1 and w ∈ [W 0 ,W 1 ]. So let a = W q-2 1 /2, then φ a (w) > 0, w ∈ (W 0 ,W 1 ),
which implies φ a (w) ≥ 0, w ∈ (W 0 ,W 1 ), so the lower bound is proved after multiplying N q h * and integrating over R d . Similarly taking

a = W q-2 0
/2 we can prove the upper bound.

Corollary 3.3. If w 0 satisfies (H1'), then the free energy F [w(t )] is finite for all t ≥ 0.

Proof. By Lemma 3.2, we have

2 W q-2 0 F [w] ≤ 2 W q-2 0 F [w 0 ] ≤ R N |w -1| 2 N q-2 h * d x ≤ R N |w -1||N h 2 -N h 1 |N q-2 h * d x
and it is easily seen that

|N h 2 -N h 1 | ≤ C * (1 + |x|) - λ(2-q) 1-q
for some constant C * > 0. So the proof is concluded since w -1 is integrable and

|N h 2 -N h 1 |N q-2 h * is bounded.
Lemma 3.4. Let q ∈ (0, 1). If w is a solution and w 0 satisfying (H1'), then

lim t →∞ w(t , x) = 1, ∀x ∈ R d .
Proof. Let w τ (t , x) = w(t +τ, x). Since the functions are uniformly C 1 continuous, we have there exists a sequence τ n → ∞ such that w τ n converges to a function w ∞ uniformly in every compact set. By interior regularity of the solutions, the derivatives also converge everywhere. Since

w(x) ≥ W 0 we have w ∞ ≥ W 0 > 0. Since F [w] is finite, we compute F [w(τ n )] -F [w(τ n + 1)] = 1 0 I [w(t + τ n )]d t by Fatou's Lemma we have 1 0 I [w ∞ ]d t ≤ lim n→∞ 1 0 I [w(t + τ n )]d t = lim n→∞ F [w(τ n )] -F [w(τ n + 1)] = 0 which is 1 0 R N ∇ (w p-1 ∞ (t , x) -1)N q-1 h * (x) 2 w ∞ (t , x)N h * (x) d xd t = 0 since w ∞ ≥ W 0 , this implies that w ∞ is constant.
By the conservation of mass, we deduce w ∞ = 1. Since the limit is unique, the whole w(t ) converges to 1 as t → ∞.

Corollary 3.5. Let q ∈ (0, 1). If w is a solution of (11) and w 0 satisfying (H1'), then

lim t →∞ w(t ) -1 L ∞ = 0.
Proof. First we compute

|w(t , x) -1| = |n(t , x) -N h * | • |N -1 h * | ≤ |N h 1 -N h 0 | • |N -1 h * | ≤ C (1 + |x|) -λ 1-q ∈ L p ,
for some constant C > 0 and some p large. By dominated convergence theorem, we have

lim t →∞ w(t ) -1 L p = 0.
by the inequality in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Nirenberg | On elliptic partial differential equations[END_REF] 

f L ∞ ≤ f q C 1 f 1-q L p
for q = p p+N , we deduce the result.

EXTERNAL DRIFT TYPE EQUATION: CONVERGENCE WITH RATE

In this section we prove the convergence with rate around steady state, together with the convergence without rate in the former section we are able to give the convergence rate for the equation [START_REF] Barthe | Modified Logarithmic Sobolev Inequalities on R[END_REF]. The fact that w(t ) converges uniformly to 1 as t → ∞ allows us to improve the lower and upper bounds W 0 and W 1 for the function w(t), at the price of waiting some time. For any > 0 there exists a time t 0 = t 0 ( ) such that

1 -≤ w(t , x) ≤ 1 + , ∀(t , x) ∈ (t 0 , ∞) × R N . define the function M 1 (x) := ∆(N q-1 h * )M + ∇M • ∇(N q-1 h * ) ( 12 
) remind that q 1 -q N q-1 h * (x) = h * + V λ (x) so M 1 (x) :=          1 -q q • N |x| 2λ-4 + (λ + N -2)|x| λ-2 (1 + |x| λ-2 ) 2 , λ = 2 N (1 -q) q , λ = 2 (13)
it is easily seen that for any x ∈ R N ,

|M 1 (x)| ≤ 1 -q q max{N , λ + N -2}, Lemma 4.1.
For any smooth function α(x) and the functions M (x), M 1 (x) defined above, we have

R N |∇(α(w)N q-1 h * )| 2 N h * M d x = R N |α (w)| 2 |∇w| 2 N 2q-1 h * M d x + 1 1 -q R N α 2 (w)∇|(N q-1 h * )| 2 N h * M d x - R N α 2 (w)N q h * M 1 d x.
Proof. We have

R N |∇(α(w)N q-1 h * )| 2 N h * M d x = R N |N q-1 h * ∇α(w) + α(w)∇(N q-1 h * )| 2 N h * M d x = R N |α (w)| 2 |∇w| 2 N 2q-1 h * M d x + R N α 2 (w)|∇(N q-1 h * )| 2 N h * M d x + R N ∇(α 2 (w))N q h * M ∇(N q-1 h * ) d x = R N |α (w)| 2 |∇w| 2 N 2q-1 h * M d x + R N α 2 (w)|∇(N q-1 h * )| 2 N h * M d x - R N α 2 (w)∇(N q h * )∇(N q-1 h * )M d x - R N α 2 (w)N q h * ∆(N q-1 h * )M d x - R N α 2 (w)N q h * ∇M • ∇(N q-1 h * ) d x = R N |α (w)| 2 |∇w| 2 N 2q-1 h * M d x + 1 1 -q R N α 2 (w)|∇(N q-1 h * )| 2 N h * M d x - R N α 2 (w)N q h * M 1 d x
where in the third line we use that

∇(N q h * ) = q q -1 N h * ∇(N q-1 h * ).
Next, we define two functionals

Φ 1 [ f ] := 1 2 R N | f | 2 N 2-q h * d x ( 14 
)
and

Φ 2 [ f ] := q R N |∇ f | 2 N h * M d x ( 15 
)
Lemma 4.2. (Hardy-Poincaré inequality) Define q * = N -2-λ N -2 . For any 1 ≤ N ≤ 2, q ∈ (0, 1) or N ≥ 3, q ∈ (0, 1), q = q * and any suitable function f satisfies

R N f N 2-q h * d x = 0 we have Φ 1 [ f ] ≤ C q,N ,λ Φ 2 [ f ] for some constant C q,N ,λ > 0. Since 1 C λ (1 + |x| 2 )(1 + |x| λ-2 ) ≤ 1 + |x| λ ≤ C λ (1 + |x| 2 )(1 + |x| λ-2
), for some C λ > 0 so this is just the classical Hardy-Poincaré inequality, see for example [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF] for the full proof. Lemma 4.3. Let w be the solution to the equation [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF] and denote η := (w -1)N q-1 h * . There exist constants β 1 , β 2 > 0, such that

Φ 2 [η] ≤ β 1 I 1 [w] + β 2 Φ 1 [η].
with

I 1 [w] := q R N |∇(h q (w)N q-1 h * )| 2 N h * M w d x here β 2 can be arbitrarily small if t large. Proof. Let α 0 = W 2(2-q) 0 , α 1 = W 2(2-q) 1 . Since |h 2 /h m | is non-decreasing, we have α 0 ≤ h 2 (W 0 ) h q (W 0 ) 2 ≤ h 2 (w) h q (w) 2 ≤ h 2 (W 1 ) h q (W 1 ) 2 ≤ α 1 and α 0 ≤ h 2 (w) h q (w) 2 ≤ α 1 note that α 0 = α 0 (W 0 ) < 1 < α 1 = α 1 (W 1
) and both converges to 1 as W 0 ,W 1 → 1. By Lemma 4.1, take α(w) = h 2 (w) we have

Φ 1 [η] = q R N |∇(h 2 (w)N q-1 h * )| 2 N h * M d x =q R N |h 2 (w)| 2 |∇w| 2 N 2q-1 h * M d x + q 1 -q R N h 2 2 (w)|∇(N q-1 h * )| 2 N h * M d x -q R N h 2 2 (w)N q h * M 1 d x ≤qα 1 R N |h q (w)| 2 |∇w| 2 N 2q-1 h * M d x + α 1 q 1 -q R N h 2 q (w)|∇(N q-1 h * )| 2 N h * M d x -q R N h 2 2 (w)N q h * M 1 d x
and take α(w) = h q (w) in Lemma 4.1, we have

R N |h q (w)| 2 |∇w| 2 N 2q-1 h * M d x = R N |∇(h q (w)N q-1 h * )| 2 N h * M d x - 1 1 -q R N h 2 q (w)|∇(N q-1 h * )| 2 N h * M d x + R N h 2 q (w)N q h * M 1 d x so Φ 1 [η] ≤ qα 1 R N |∇(h q (w)N q-1 h * )| 2 N h * M d x + q R N (α 1 |h q (w)| 2 -|h 2 (w)| 2 )M 1 N q h * d x ≤ qα 1 R N |∇(h q (w)N q-1 h * )| 2 N h * M d x + q R N α 1 α 0 -1 |h 2 (w)| 2 |M 1 |N q h * d x next, since 0 < W 0 ≤ w, q R N |∇(h q (w)N q-1 h * )| 2 N h * M d x ≤ 1 W 0 I 1 [w] recall that η = (w -1)N q-1 h * , |M 1 | is uniformly bounded, so we have q R N α 1 α 0 -1 |h 2 (w)| 2 N q h * |M 1 | d x = q α 1 α 0 -1 R N |η| 2 N 2-q h * |M 1 | d x ≤ C q α 1 α 0 -1 F [η]
for some constant C > 0, since α 1 α 2 -1 → 0 as t → ∞, we finally we obtain the result.

Corollary 4.4. With the notations above, we have

F [w] ≤ γI 1 [w]
for some γ > 0.

Proof. By Lemma 4.3,

Φ 2 [η] ≤ β 1 I 1 [w] + β 2 Φ 1 [η].
and since

R N ηN 2-q h * d x = R N (w -1)N h * d x = R N n -N h * d x = 0 by Hardy Poincaré inequality Φ 1 [η] ≤ C q,N ,λ Φ 2 [η]
we have

Φ 1 [η] ≤ β 1 C q,N ,λ 1 -β 2 C q,N ,λ I 1 [w]
since we can pick β 2 small. So the theorem ends since

Φ 1 [η] ≥ W 0 2-q F [w]
from Lemma 3.2.

Corollary 4.5.

There exist constants K , β > 0, such that (i) For any λ ≥ 2, F [w] ≤ K e -βt for any t ≥ 0;

(ii) For any λ ∈ (0, 2) and N +2 N +2+λ < q < 1,

F [w] ≤ K (1 + t ) -β for any t ≥ 0. Proof. For λ ≥ 2, M (x) ≤ 1, so F [w] ≤ K I 1 [w] ≤ K I [w]
so the conclusion follows. For λ ∈ (0, 2), by Hölder inequality

F [w] ≤ γI 1 [w] ≤ K I [w] α I 2 [w] 1-α
for some α ∈ (0, 1) with

I 2 [w] = q R N |∇(h q (w)N q-1 h * )| 2 N h * (1 + |x| δ )w d x ( 16 
)
for some δ > 2 -λ. Recall that sup 16) is the same as

t ≥t 0 w(t ) C k (R N ) < +∞ so (
R N |N q-1 h * | 2 N h * (1 + |x| δ ) d x < +∞ which is equivalent to q > N +2 N +2+λ .
Theorem 1.2 can be directly deduced by Corollary 4.5 and Lemma 3.2.

MEAN-FIELD TYPE EQUATION: PRELIMINARIES

In this section, we give some basic properties of the equation [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF]. Remind that from now on we always suppose that λ ≥ 2 and q ∈ (q * (N , λ), 1), here

q * (N , λ) =        2N 2N + λ , λ > 2 N N + 2 , λ = 2
we first define the change of variable

ρ = ρ ∞ v = ρ ∞ (1 + g ) = ρ ∞ + j ( 17 
)
the existence of minimizers of the free energy is proved in [START_REF] Carrillo | Reverse Hardy-littlewoodsobolev inequalities[END_REF]. To continue our proof, we still need the following theorems, the proofs are similar as the fast diffusion equation with external drift (1) and thus omitted.

Lemma 5.1. (Comparison principle)

For any two non-negative solutions ρ 1 and ρ 2 of the equation (3) on [0, T ), T > 0, with initial data satisfying ρ 0,1 ≤ ρ 0,2 almost everywhere, ρ 0,2 ∈ L 1 l oc (R d ), then we have ρ 1 (t ) ≤ ρ 2 (t ) for almost every t ∈ [0, T ). Lemma 5.2. (Uniform C k regularity) Let q ∈ (q * (N , λ), 1) and u be a solution of equation [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF].

Then v = ρ ρ ∞ ∈ L ∞
l oc ((0, T ) × R N ) satisfies for any k ∈ N and any t 0 ∈ (0, T ), sup

t ≥t 0 v(t ) C k (R N ) < +∞.
We can also similarly define

W 0 := inf x∈R N ρ 2 (x) ρ * (x) , W 1 := inf x∈R N ρ 1 (x) ρ * (x) Lemma 5.3. If q ∈ (q * (N , λ), 1), 0 < W 0 ≤ v ≤ W 1 < +∞, then we have 1 2 W q-2 1 R N |v -1| 2 ρ q ∞ d x ≤ - 1 1 -q R N ρ q ∞ [v q -1 -q(v -1)] d x ≤ 1 2 W q-2 0 R N |v -1| 2 ρ q ∞ d x Lemma 5.4. Let q ∈ (q * (N , λ), 1). If ρ is a solution of (3) satisfying (H2), then for v = ρ ρ ∞ , lim t →∞ v(t ) -1 L ∞ = 0.
Remind that now q > q * (N , λ) > q # , all the lemmas can be proved as the simple case of fast diffusion equation. So from now on, we focus now on the convergence with rate. The fact that v(t ) converges uniformly to 1 as t → ∞ allows us to improve the lower and upper bounds W 0 and W 1 for the function v(t ), at the price of waiting some time. For any > 0 there exists a time

t 0 = t 0 ( ) such that 1 -≤ v(t , x) ≤ 1 + , ∀(t , x) ∈ (t 0 , ∞) × R d .
Recall that ρ is the solution of [START_REF] Barthe | Modified Logarithmic Sobolev Inequalities on R[END_REF].

Then v = ρ ρ ∞ satisfies v t = 1 ρ ∞ ρ t = 1 ρ ∞ ∇(qρ q-1 ∇ρ + ρ∇V λ * ρ) = 1 ρ ∞ ∇ q(ρ ∞ v) q-1 ∇(ρ ∞ v) + ρ ∞ v∇V λ * (ρ ∞ v) = 1 ρ ∞ ∇ ρ ∞ v q q -1 ρ q-1 ∞ ∇(v q-1 ) + q q -1 v q-1 ∇(ρ q-1 ∞ ) + ∇V λ * (ρ ∞ v) = 1 ρ ∞ ∇ ρ ∞ v∇ q q -1 ρ q-1 ∞ v q-1 + V λ * (ρ ∞ v) ( 18 
)
the associated free energy and Fisher information defined in ( 7), ( 8) become

F[v] := - 1 1 -q R N ρ q ∞ [v q -1 -q(v -1)] d x + 1 2 R N R N V λ (x -y)ρ ∞ (x)g (x)ρ ∞ (y)g (y) d x d y (19) we note here if v = 1, then F[v] = 0, in other words, F[v] = F[ρ|ρ ∞ ], then we define I[v] := R N ρ ∞ v q 1 -q ∇(ρ q-1 ∞ (v q-1 -1)) -∇V λ * (ρ ∞ g ) 2 d x ( 20 
)
we similarly define the function

N 1 (x) := ∆(ρ q-1 ∞ )M + ∇M • ∇(ρ q-1 ∞ ) (21) 
define three functionals Ψ 1 (g ), Ψ 2 (g ), Ψ 3 (g ) by

Ψ 1 (g ) := R N ρ q ∞ g 2 d x Ψ 2 (g ) := q 2 R N ρ ∞ |∇(ρ q-1 ∞ g )| 2 M d x and Ψ 3 (g ) := N i =1 R N x i g (x)ρ ∞ (x) d x 2
note that Ψ 1 (g ), Ψ 2 (g ) are actually the similar forms as ( 14), ( 15) from Section 4. Suppose also that W 0 ≤ v ≤ W 1 then we have Lemma 5.5. For some > 0 small, we have

R N ρ ∞ ∇ ρ q-1 ∞ (v q-1 -1) q -1 -∇(ρ q-1 ∞ (v -1)) 2 M d x ≤ Ψ 1 (g ) + Ψ 2 (g ) ( 22 
)
and > 0 can be arbitrarily small if W 0 , W 1 is close enough to 1.

Proof. We first show that there exists a constant Θ(N , λ) > 0, such that for any x ∈ R N , |N 1 (x)| ≤ Θ. The case that λ = 2 is simple. From (4), we have

N 1 (x) = ∆(ρ ∞ (x) q-1 ) = 1 -q 2q ∆(|x| 2 ) = N (1 -q) q < 2 for λ > 2, notice that q 1 -q N 1 (x) = ∆V λ * ρ ∞ (x) • M (x) + ∇(V λ * ρ ∞ )(x)∇M (x) remind that [∇M (x)] i = (2 -λ)x i |x| λ-4 (1 + |x| λ ) 2 using R N ρ ∞ d x = 1, we have |∆V λ * ρ ∞ (x) • M (x)| ≤ ∆V λ (x)M (x) = (λ + N -2)|x| λ-2 1 + |x| λ-2 ≤ λ + N -2 and |∇(V λ * ρ ∞ )(x)∇M (x)| ≤ (λ -2)|x| 2λ-4
(1

+ |x| λ-2 ) 2 ≤ λ -2 so |N 1 (x)| ≤ (1 -q)(2λ + N -4) q < λ(2λ + N -4)
2N next, by Lemma 4.1, for any function β we have

R N ρ ∞ ∇ ρ q-1 ∞ β(v) 2 M d x = R N |β (v)| 2 |∇v| 2 ρ 2q-1 ∞ M d x + 1 1 -q R N |β(v)| 2 |∇(ρ q-1 ∞ )| 2 ρ ∞ M d x - R N |β(v)| 2 ρ q ∞ N 1 d x take β = h q (v) -h 2 (v) and β = h 2 (v) separately, and recall that h k (v) := v k-1 -1 k-1 , we have R N ρ ∞ ∇ ρ q-1 ∞ h q (v) -h 2 (v) 2 M d x ≤ R N |h q (v) -h 2 (v)| 2 |∇v| 2 ρ 2q-1 ∞ M d x + 1 1 -q R N |h q (v) -h 2 (v)| 2 |∇(ρ q-1 ∞ )| 2 ρ ∞ M d x - R N |h q (v) -h 2 (v)| 2 ρ q ∞ N 1 d x ≤ R N |h 2 (v)| 2 |∇v| 2 ρ 2q-1 ∞ M d x + 1 1 -q R N |h 2 (v)| 2 |∇(ρ q-1 ∞ )| 2 ρ ∞ M d x - R N |h q (v) -h 2 (v)| 2 ρ q ∞ N 1 d x ≤ R N ρ ∞ ∇ ρ q-1 ∞ h 2 (v) 2 M d x + R N |h 2 (v)| 2 ρ q ∞ |N 1 | d x ≤ Ψ 1 (g ) + Ψ 2 (g )
the lemma is thus proved.

MEAN-FIELD TYPE EQUATION: ANALYSIS OF λ = 2

We first study the quadratic forms associated with the expansion of the F and I around ρ ∞ . For a smooth perturbation

g of ρ ∞ such that R N g ρ ∞ (x) d x = 0, define Q 1 [g ] : = lim ε→0 2 ε 2 (F[ρ ∞ (1 + εg )] -F[ρ ∞ ]) = q R N ρ q ∞ g 2 d x + R N R N V λ (x -y)ρ ∞ (x)g (x)ρ ∞ (y)g (y) d x d y (23) and Q 2 [g ] := lim ε→0 1 ε 2 I[ρ ∞ (1 + εg )] = R N ρ ∞ q∇(ρ q-1 ∞ g ) -∇V λ * (ρ ∞ g )) 2 d x (24)
in this section, we focus on the case λ = 2, N N +2 < q < 1 and prove the result about large time asymptotic behavior of equation (3).

6.1. The coercivity result. We first prove that Lemma 6.1.

When λ = 2, for Q 1 [g ] and Q 2 [g ] we have Q 1 [g ] = Ψ 1 (g ) -Ψ 3 (g ) and Q 2 [g ] = Ψ 2 (g ) + 3Ψ 3 (g ). Proof. Recall that ρ = ρ ∞ v = ρ ∞ (1 + g ) = ρ ∞ + j we have R N g ρ ∞ d x = 0. For λ = 2, it's easily seen that R N R N V λ (x -y)ρ ∞ (x)g (x)ρ ∞ (y)g (y) d x d y = 1 2 R N R N |x -y| 2 g ρ ∞ (x)g ρ ∞ (y) d x d y = -Ψ 3 (g ) so the Q 1 term follows. For the Q 2 [g ] term Q 2 [g ] := R N ρ ∞ q∇(ρ q-1 ∞ g ) -∇V λ * (g ρ ∞ ) 2 d x =q 2 R N ρ ∞ |∇(ρ q-1 ∞ g )| 2 d x -2q R N ρ ∞ ∇(ρ q-1 ∞ g ) • ∇V λ * (g ρ ∞ ) d x + R N ρ ∞ |∇V λ * (g ρ ∞ )| 2 d x
for the second term, by integration by parts

-2q R N ρ ∞ ∇(ρ q-1 ∞ g ) • ∇V λ * (g ρ ∞ ) d x = 2q R N ρ q-1 ∞ g ∇ρ ∞ • ∇V λ * (g ρ ∞ ) d x + 2q R N ρ q ∞ g ∆V λ * (g ρ ∞ ) d x recall that ∇(ρ q-1 ∞ ) = 1 -q q ∇V λ , ρ ∞ ∇(ρ q-1 ∞ ) = (q -1)ρ q-1 ∞ ∇ρ ∞ we have 2q R N ρ q-1 ∞ g ∇ρ ∞ • ∇V λ * (g ρ ∞ ) d x =2 R N q q -1 g ρ ∞ ∇(ρ q-1 ∞ ) • ∇V λ * (g ρ ∞ ) d x = -2 R N g ρ ∞ ∇V λ • ∇V λ * (g ρ ∞ ) d x and we compute - R N g ρ ∞ ∇V λ • ∇V λ * (g ρ ∞ ) d x = - N i =1 R N R N g (x)ρ ∞ (x)g (y)ρ ∞ (y)x i (x i -y i ) d y d x = N i =1 R N R N g (x)ρ ∞ (x)g (y)ρ ∞ (y)x i y i d y d x = N i =1 R N x i g (x)ρ ∞ (x) d x 2 since the mass of g ρ ∞ is 0, we have 2q R N ρ q ∞ g ∆V λ * (g ρ ∞ ) d x = 0
for the third term we have

R N ρ ∞ |∇V λ * (g ρ ∞ )| 2 d x = R N ρ ∞ N i =1 R N (x i -y i )g (y)ρ ∞ (y) d y 2 d x = N i =1 R N x i g (x)ρ ∞ (x) d x 2
we conclude by gathering all the terms.

Large time asymptotic behavior (proof of Theorem 1.3).

Corollary 6.2. For λ = 2, q ∈ ( N N +2 , 1), there exists γ > 0, such that for v(t ) as the solution of [START_REF] Kim | The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle[END_REF],

F[v] ≤ γI[v]. Proof. Recall ρ = ρ ∞ v = ρ ∞ (1 + g ) = ρ ∞ + j
we prove by talking on the relationship between Q 1 and F and the relationship between Q 2 and I. by Lemma 3.2 above we have

q 2 W q-2 1 R N |v -1| 2 ρ q ∞ d x ≤ - 1 1 -q R N ρ q ∞ [v q -1 -q(v -1)] d x ≤ q 2 W q-2 0 R N |v -1| 2 ρ q ∞ d x which implies F[v] ≤ 2Ψ 1 (g ) - 1 2 Ψ 3 (g ) since |a + b| 2 ≤ 2|a| 2 + 2|b| 2
we have

Q 2 [g ] ≤ 2I[v] + 2q 2 R N ρ ∞ ∇ ρ q-1 ∞ (v q-1 -1) q -1 -∇(ρ q-1 ∞ (v -1)) 2 d x and since R N (g ρ q-1 ∞ )ρ 2-q ∞ d x = R N g ρ ∞ d x = 0 so we use the Hardy-Poincaré inequality ([3], Appendix A, Theorem 1) on g ρ q-1 ∞ to have Ψ 2 (g ) ≥ C q,N ,2 Ψ 1 (g ) here C q,N ,2 = (N -4 -q(N -2)) 2 8q(1 -q)
then by Lemma 5.5 we have

I[v] ≥ 1 2 Q 2 [g ] -Ψ 2 (g ) -Ψ 1 (g ) ≥ 1 4 Ψ 2 [g ] ≥ C q,N ,2 4 Ψ 1 [g ] ≥ C q,N ,2 8 F[v]
if we take > 0 small enough.

Theorem 1.3 is the direct result by using Grönwall inequality.

7. MEAN-FIELD TYPE EQUATION: ANALYSIS OF GENERAL λ > 2

In this section, we consider the general case λ > 2. We will prove that for q close enough to 1, there exists the large time asymptotic behavior, which finishes the proof of Theorem 1.4.

Some important propositions of the stationary solution. Remind that the stationary ρ

∞ satisfies q 1 -q ρ q-1 ∞ = 1 λ |x| λ * ρ ∞ +C (25) 
Now we prove some properties with respect to the estimate of ρ ∞ .

Lemma 7.1. (i) R N |x| λ ρ ∞ d x is uniformly bounded for q ∈ ( 2N 2N +λ , 1). (ii) lim q→1 - C (q)(1 -q) = 1.
Proof. For the proof of part (i), we just need to consider the case when q → 1 -. We first recall the theory of Gamma function and Beta function. Remind that

B (p, q) := ∞ 0 x p-1 (1 + x) p+q d x, Γ(s) := ∞ 0 x s-1 e -x d x (26) 
and B (p, q) = Γ(p)Γ(q) Γ(p + q) by mean-value theorem, we have

f (x + h) = f (x) + h • 1 0 ∇ f (x + t h)d t = f (x) + ∇ f (x) • h + 1 0 1 0 t h • ∇ 2 f (x + t sh) • hd sd t and 1 0 1 0 t h •∇ 2 f (x +t sh)•hd sd t = 1 0 t 0 h •∇ 2 f (x +wh)•hd wd t = 1 0 (1-w)h •∇ 2 f (x +wh)•hd w notice that ∇V λ (x) = x|x| λ-2 , [∇ 2 V λ (x)] i j = |x| λ-2 δ i j + (λ -2)x i x j |x| λ-4 , i , j = 1, ...N it is easily seen that |∇ 2 V λ (x)| ≤ κ(N , λ)|x| λ-2 I N
for some constant κ(N , λ) > 0, where I N is the N × N identity matrix. Set y = -h, we then compute

R N 1 λ |x -y| λ ρ ∞ (y)d y = R N 1 λ |x| λ ρ ∞ (y)d y - R N x • y|x| λ-2 ρ ∞ (y)d y + R N ρ ∞ (y) 1 0 (1 -w)y • ∇ 2 V λ (x -w y) • yd wd y recall that R N ρ ∞ (y)d y = 1, R N y i ρ ∞ (y)d y = 0, i = 1, 2, ..., N so we deduce 0 ≤ 1 λ |x| λ * ρ ∞ - 1 λ |x| λ ≤ κ R N ρ ∞ (y)|y| 2 (|x| λ-2 + |y| λ-2 )d y ≤ C 0 (N , λ)|x| λ-2 +C 1 (N , λ) (27)
with

C 0 ≤ κ R N ρ ∞ (y)|y| 2 d y, C 1 ≤ κ R N ρ ∞ (y)|y| λ d y. in particular, 1 λ |x| λ +C ≤ q 1 -q ρ q-1 ∞ = 1 λ |x| λ * ρ ∞ +C ≤ 1 λ |x| λ +C +C 0 |x| λ-2 +C 1 (28) which implies ρ ∞ < 1 -q q 1 q-1 |x| λ λ +C 1 q-1 (29) from R N ρ ∞ d x = 1, we have 1 -q q 1 q-1 (λC ) N λ C 1 q-1 R N (1 + |x| λ ) 1 q-1 d x > 1 by (26) we have R N (1 + |x| λ ) 1 q-1 d x = S N λ B N λ , 1 1 -q - N λ so C 1 1-q -N λ < S N λ N λ -1 Γ N λ 1 -q q 1 q-1 Γ 1 1-q -N λ Γ 1 1-q ∼ S N e λ N λ -1 Γ N λ 1 1 -q 1 1-q -N λ
here we use the facts that as q → 1 -, lim

q→1 - q 1 1-q = 1 e , Γ 1 1-q -N λ Γ 1 1-q ∼ (1 -q)
N λ so we conclude lim

q→1 - C (1 -q) ≤ 1. ( 30 
)
On the other hand, remind that ρ ∞ satisfies ∆(ρ

q ∞ ) + ∇(ρ ∞ ∇V λ * ρ ∞ ) = 0, so R N |x| 2 ∆(ρ q ∞ ) d x + R N |x| 2 ∇(ρ ∞ ∇V λ * ρ ∞ ) d x = 0 we compute R N |x| 2 ∇(ρ ∞ ∇V λ * ρ ∞ ) d x = - R N R N 2x • (x -y)|x -y| λ-2 ρ ∞ (x)ρ ∞ (y) d y d x = - R N R N 2y • (y -x)|x -y| λ-2 ρ ∞ (x)ρ ∞ (y) d y d x = - R N R N |x -y| λ ρ ∞ (x)ρ ∞ (y) d y d x
where we change x and y in the second equality. So after integrating by parts,

2N R N ρ q ∞ d x = R N R N |x -y| λ ρ ∞ (x)ρ ∞ (y) d x d y (31)
multiply (25) by ρ ∞ and integrate, we have

q 1 -q R N ρ q ∞ d x = 1 λ R N R N |x -y| λ ρ ∞ (x)ρ ∞ (y) d x d y +C (32) 
from ( 31).(32),

R N R N |x -y| λ ρ ∞ (x)ρ ∞ (y) d x d y = C (1 -q)2N λ qλ -2N (1 -q) 2N
recall ρ ∞ is radially symmetric, non-increasing, by rearrangement inequality

R N R N |x -y| λ ρ ∞ (x)ρ ∞ (y) d x d y ≥ R N |x| λ ρ ∞ d x so R N |x| λ ρ ∞ d
x is uniformly bounded, and the part (i) of the lemma is proved. By Hölder inequality we deduce that

C 1 ,C 0 ≤ ζ(N , λ)
that does not depend on q, so by ( 28)

ρ ∞ > 1 -q q 1 q-1 |x| λ λ +C 0 |x| λ-2 +C 1 +C 1 q-1
notice that there exists C 2 (N , λ) > 0 that does not depend on q, such that for any x ∈ R N .

C 0 |x| λ-2 ≤ |x| λ λ +C 2 define C 3 (N , λ) := C +C 1 (N , λ) +C 2 (N , λ). Then ρ ∞ > 1 -q q 1 q-1 2|x| λ λ +C 3 1 q-1 set x = C 3 λ 2 1
λ y, by a similar calculation and (26)

1 -q q 1 q-1 C 3 λ 2 N λ C 1 q-1 3 S N λ B N λ , 1 1 -q - N λ < 1 which implies C 1 1-q -N λ 3 > 1 -q q 1 q-1 λ 2 N λ S N λ Γ N λ Γ 1 1-q -N λ Γ 1 1-q ∼ (1 -q) 1 q-1 + N λ λ 2 N λ S N λe Γ N λ as q → 1 -. So we have lim q→1 - C 3 (1 -q) ≥ 1 since C 0 ,C 1 ,C 2 do not depend on q, lim q→1 - C (1 -q) ≥ 1. ( 33 
)
and the part (ii) is directly deduced from (30),(33).

Lemma 7.2.

There exists a constant Λ(N , λ) > 0, such that for all q ∈ ( 2N 2N +λ , 1)

R N R N |x -y| 2λ ρ 2-q ∞ (x)ρ 2-q ∞ (y) d x d y ≤ Λ, R N R N |x -y| 2λ-2 ρ ∞ (x)ρ 2-q ∞ (y) d x d y ≤ Λ. (34)
Proof. We only need to prove the case that q → 1 -. Notice that |x -y| p ≤ 2 p-1 (|x| p + |y| p ) for p ≥ 1 so we need to compute

R N |x| 2λ ρ 2-q ∞ d x R N ρ 2-q ∞ d x, R N |x| 2λ-2 ρ ∞ d x R N ρ 2-q ∞ d x + R N |x| 2λ-2 ρ 2-q ∞ d x
after interpolation, we only need to estimate the integrals

R N |x| 2λ-2 ρ ∞ d x, R N ρ 2-q ∞ d x, R N |x| 2λ ρ 2-q ∞ d x, first, from (35), for any x ∈ R N , q 1 -q ρ q-1 ∞ ≥ C so as q → 1 -, ρ 1-q ∞ ≤ q C (1 -q) → 1 which is R N ρ 2-q ∞ d x R N ρ ∞ d x = 1, R N |x| 2λ ρ 2-q ∞ d x R N |x| 2λ ρ ∞ d x so after interpolation, we only need to estimate R N |x| 2λ ρ ∞ d x. Remind that 1 -q q 1 q-1 2|x| λ λ +C 3 1 q-1 < ρ ∞ < 1 -q q 1 q-1 |x| λ λ +C 1 q-1
similarly as the computation above, for q close enough to 1, by using C ∼

1 1-q and C 1 ,C 2 ≤ ζ(N , λ), we have R N |x| λ λ +C 1 q-1 d x R N 2|x| λ λ +C 3 1 q-1 d x = 2 N λ • R N |x| λ λ +C 1 q-1 d x R N |x| λ λ +C 3 1 q-1 d x = 2 N λ • C +C 1 +C 2 C 1 1-q -N λ ∼ 2 N λ e C 1 +C 2 recall that R N ρ ∞ d x = 1, we have 1 -q q 1 q-1 R N |x| λ λ +C 1 q-1 d x 2 N λ e C 1 +C 2
so from (29), we obtain that as q → 1,

R N |x| 2λ ρ ∞ d x < 1 -q q 1 q-1 R N |x| 2λ |x| λ λ +C 1 q-1 d x = (C λ) 2 • Γ(2 + N λ )Γ( 1 1-q -2 -N λ ) Γ( N λ )Γ( 1 1-q -N λ ) • 1 -q q 1 q-1 R N |x| λ λ +C 1 q-1 d x ∼ (C (1 -q)) 2 λ 2 Γ(2 + N λ ) Γ( N λ ) • 1 -q q 1 q-1 R N |x| λ λ +C 1 q-1 d x λ 2 Γ(2 + N λ ) Γ( N λ ) 2 N λ e C 1 +C 2 .
so the proof is thus finished.

Remark 7.3. For the special case λ = 4, we have that after translation,

q 1 -q ρ q-1 ∞ = 1 4 |x| 4 + 3a 2 |x| 2 +C (35) here a satisfies R N (|x| 2 -a)ρ ∞ d x = 0, which is ∞ 0 (x N +1 -ax N -1 ) 1 4 x 4 + 3a 2 x 2 +C 1 q-1 d x = 0
so we can prove the case λ = 4 directly. for any q ∈ ( 2N 2N +λ , 1), there exists a constant C q,N ,λ > 0, such that for all h that satisfies

R N ρ 2-q ∞ h d x = 0, we have R N ρ ∞ |∇h| 2 M d x ≥ C q,N ,λ R N ρ 2-q ∞ h 2 d x.
Moreover, there exists a constant Ω(N , λ) > 0, such that for any q ∈ ( 2N 2N +λ , 1), C q,N ,λ (1q) ≥ Ω(N , λ).

(

) 36 
This lemma is inspired from [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] Appendix A, where the authors proved the similar result for the case λ = 2.

Theorem 7.5. ([3] Appendix A, Hardy-Poincaré inequality

) Let V D (x) = D + 1 -q 2q |x| 2 -1 1-q , d µ = V 2-q D d x, d ν = V D d x
Let N ≥ 1 and D > 0. If q ∈ (max N -4 N -2 , 0 , 1), then there exists a constant A q,N which does not depend on D such that for all smooth function g we have

A q,N R N |g -ḡ | 2 d µ ≤ R N |∇g | 2 d ν, ḡ = R N g d µ where A q,N = (N q -2q -N + 4) 2 8q(1 -q)
is optimal.

Let q tends to 1 we have

lim q→1 - (1 -q)A q,N = 1 2 . 
Before proving the lemma 7. Proof. (Proof of Lemma 7.4) The existence of C (q, N , λ) can be deduced as Lemma 4.2, so we mainly focus on the behavior of C (q, N , λ) as q → 1 -. The proof is the same as the Hardy-Poincaré inequality, we omit some details and focus on the asymptotic behavior. We only prove for the case N = 1, and for the proof of general N , we should prove the results in radical functions plus the Poincaré inequality on the unit sphere

| f -f (0)| 2 d µ ≤ A +∞ 0 | f | 2 d ν is finite if
S N -1 |u -û| 2 d θ ≤ 1 N -1 S N -1 |∇ θ u| 2 d θ with û = S N -1
ud θ the full proof for general N can also be found in [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] Appendix A. Define R(x) := q 1q ρ q-1 ∞ -

1 λ |x| λ -C
we only need to prove that C q,1,λ q 1q ∞ 0 |h(r )-h| 2 1 λ r λ + R(r ) +C 

C q,1,λ q 1 -q ∞ 0 |h(w) -h| 2 1 λ w λ + R(C 1 λ w) C + 1 - 2-q 1-q d w ≤ ∞ 0 |h (w)| 2 1 λ w λ + R(C 1 λ w) C + 1 -1 1-q 1 C 2-λ λ + w λ-2 d w
when q is close enough to 1, we have C ≥ 1, and since λ > 2 1

1

+ w λ-2 ≤ 1 C 2-λ
λ + w λ-2 so it is enough to prove that

C q,1,λ q 1 -q ∞ 0 |h(w) -h| 2 1 λ w λ + R(C 1 λ w) C + 1 - 2-q 1-q d w ≤ ∞ 0 |h (w)| 2 1 λ w λ + R(C 1 λ w) C + 1 -1 1-q M (w)d w remind |R(w)| ≤ max{C 0 (λ),C 1 (λ)} • (w λ-2 + 1)
where C 0 ,C 1 do not depend on q, choose a(λ) := max{2λ, 1 + max{C 0 (λ),C 1 (λ)}} then for all w ≥ 0, 1 a(λ)

(1 + w 2 )(1 + w λ-2 ) ≤ 1 λ w λ + R(C 1 λ w) C + 1 ≤ a(λ)(1 + w 2 )(1 + w λ-2 )
we only need to prove that a(λ)qC q,1,λ

1 -q ∞ 0 |h(w) -h| 2 1 λ w λ + R(C 1 λ w) C + 1 -1 1-q (1 + w 2 ) -1 d w ≤ ∞ 0 |h (w)| 2 1 λ w λ + R(C 1 λ w) C + 1 - 2-q 1-q
M (w)d w by Lemma 7.6, we have that C q,1,λ q 1q ≥ 1 4a(λ)K with

K = max r >0 r 0 1 λ w λ + R(C 1 λ w) C + 1 2-q 1-q (1 + w 2 ) -1 d w ∞ r 1 λ w λ + R(C 1 λ w) C + 1 - 2-q 1-q d w
it's easily seen that

K ∼ max r >0 r 0 w λ(2-q) 1-q -2 d w ∞ r w - λ(2-q)
1-q d w = O((1q) 2 ) so lim q→1 - C q,1,λ (1q) ≥ λ 2 4a(λ) which finishes the proof of the lemma.

7.3. The main result (proof of Theorem1.4). We first prove that Lemma 7.7. For any λ > 2, there exists q N ,λ ∈ ( 2N 2N +λ , 1), such that for any q ∈ (q N ,λ , 1) and v(t ) as the solution of [START_REF] Kim | The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle[END_REF], there exists γ > 0, such that

F[v] ≤ γI[v]. Proof. Recall ρ = ρ ∞ v = ρ ∞ (1 + g ) = ρ ∞ + j by Cauchy-Schwarz inequality, R N |x -y| λ j (y) d y ≤ R N |x -y| 2λ ρ 2-q ∞ (y) d y 1 2 R N ρ q-2 ∞ j 2 d y 1 2
still by Cauchy-Schwarz inequality and Lemma 7.2 we have

R N R N |x -y| λ j (x) j (y) d x d y ≤ R N ρ q-2 ∞ j 2 d x 1 2 R N ρ 2-q ∞ (x) R N |x -y| λ j (y) d y 2 d x 1 2 ≤ R N R N |x -y| 2λ ρ 2-q ∞ (x)ρ 2-q ∞ (y) d x d y 1 2 R N ρ q-2
∞ j 2 d y so together with Lemma 5.3,

F[v] ≤ 1 2 W q-2 0 + Λ R N ρ q-2 ∞ j 2 d x. ( 37 
)
Similarly still by Cauchy-Schwarz inequality

|∇V λ * j |(x) = R N |x -y| λ-2 (x -y) j (y) d y ≤ R N |x -y| 2λ-2 ρ 2-q ∞ (y) d y 1 2 R N ρ q-2 ∞ j 2 d y 1 2
so we have

R N ρ ∞ ∇V λ * j 2 d x ≤ R N R N |x -y| 2λ-2 ρ ∞ (x)ρ 2-q ∞ (y) d x d y R N ρ q-2
∞ j 2 d y so by Lemma 7.2,

R N ρ ∞ ∇V λ * j 2 d x ≤ Λ R N ρ q-2 ∞ j 2 d x (38) since |a + b| 2 ≤ 2|a| 2 + 2|b| 2
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  where n is the density of the absolute continuous part of ν, moreover when it is finite we have B ≤ A ≤ 4B

-|h 1 1-q 1 1

 11 (r )| 2 1 λ r λ + R(r ) +C -+ r λ-2 d rset r λ = C w λ , the former inequality becomes

choose ∈ (0, 1 8 q 2 ) small enough, so that satisfies (36) of Lemma 5.4. Together with (38), we have

and by Lemma 7.4,

where

16Λ(N , λ) , 2N 2N + λ recall that Ω, Λ are defined in (34),(36). Then for any q ∈ (q(N , λ), 1), C q,N ,λ ≥ 16Λ. Finally by using (37), we have

the lemma is thus proved.

The first part of Theorem 1.4 can be directly deduced by using Grönwall inequality. For λ ∈ [2, 4], we conclude the proof of the second part by using Theorem 7.8. ([19], Theorem 2.4) For any smooth f satisfies