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An alluvial river builds its own bed with the sediment it transports; its shape thus depends not
only on its water discharge, but also on the sediment supply. Here, we investigate the influence of
the latter in laboratory experiments. We find that, as their natural counterpart, laboratory rivers
widen to accommodate an increase of sediment supply. By tracking individual particles as they
travel downstream, we show that, at equilibrium, the river shapes its channel so that the intensity
of sediment transport follows a Boltzmann distribution. This mechanism selects a well-defined width
over which the river transports sediment, while the sediment remains virtually idle on its banks.
For lack of a comprehensive theory, we represent this behaviour with a single-parameter, empirical
model which accords with our observations.

I. INTRODUCTION

The bed of an alluvial river is made of mobile sediment,
such as sand or gravel [1]. Its shape results from the
action of water on this granular bed: the flow entrains
superficial grains and deposit them further downstream,
thus deforming the channel that confines it. With time,
this coupling selects the size and shape of the river.

The width of a river typically scales with its water dis-
charge. Specifically, it follows the empirical law of Lacey:
it is proportional to the square root of the discharge [2].
At leading order, this relationship indicates that the river
bed is near the threshold of motion [3]. Indeed, if we as-
sume that each grain of the bed surface is steady, but
about to move, the river’s cross section should form a co-
sine of prescribed dimensions [4]. Laboratory analogues
of rivers conform to this theory, for both turbulent and
laminar flows [5, 6].

Most rivers, however, carry some sediment, and their
bed is therefore above the threshold of motion [7, 8].
These so-called “active” rivers are generally wider, shal-
lower, and steeper than predicted by the threshold the-
ory, and destabilise into braids beyond a critical sedi-
ment load [9, 10]. Although water discharge is the prime
control on their size, sediment discharge also affects the
shape of an alluvial river [11, 12].

Yet, the role of sediment transport in alluvial rivers
remains obscure. Its investigation has proven challeng-
ing in the laboratory, because most experiments generate
braids, as a result of the unhindered growth of bedforms
[13, 14]. Some experimenters prevent this instability by
adding cohesive sediment [14], or by growing riparian
vegetation [15]. How necessary these ingredients are,
however, remains a matter of debate [16]. Reitz et al.
[17] and Delorme et al. [18] produced active rivers with
moderate sediment supply, but focused on the alluvial
fan they deposit, rather than on their internal dynamics.
Ikeda et al. [19] also maintained an active single channel
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in the laboratory by splitting it into halves with a vertical
wall, but they did not measure the sediment discharge.

To investigate sediment transport per se, it is easier to
confine the flow in a canal or a pipe [20–24]. This con-
figuration, usually referred to as a “flume” experiment,
typically provides a relation between the intensity of the
sediment flux and the shear the fluid exerts on the bed,
τ . It is customary to express this relationship in terms
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FIG. 1. Experimental setup. (a) Laboratory river, with a
top-view camera and inclined laser sheet. Qw and Qs denote
the flow and the sediment discharges, respectively. (b) Close
view on the river bed. White dashed lines materialize banks.
A few grain trajectories are plotted in pink.
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of the Shields parameter, defined as the ratio of the fluid
force to the weight of a grain [25]:

θ =
τ

(ρs − ρf )gds
. (1)

When the fluid force overcomes the weight of the grain,
the Shields parameter exceeds its threshold value θt, and
bedload transport starts. It then increases linearly with
the excess stress (at least for moderate transport):

qs = q0 (θ − θt) , (2)

where q0 and θt depend on the fluid and sediment prop-
erties.

At moderate shear stress, the particles move by rolling,
sliding, and bouncing, while gravity maintains them close
to the bed surface. The layer of entrained grains, or
“bedload layer”, is only a few grain-diameters thick [26].
When the shear stress becomes more intense, grains can
be suspended in the bulk of the flow [24], where they
can diffuse across the stream [27]. Here, we focus on
bedload transport. In laboratory flumes that transport
sediment as bedload, the travelling grains collide with
the rough sediment bed underneath [28, 29]. Particle
tracking shows that these collisions turn their trajecto-
ries into random walks across the stream. Collectively,
bedload particles thus diffuse from areas where their pop-
ulation is dense towards less crowded ones [30] —much
like suspended particles.

For the bed to reach equilibrium, another flux must
oppose this diffusive flux. Gravity, which pulls the mov-
ing grains towards the channel’s center, plays this role in
laboratory flumes [31] and most likely in natural rivers
[32]. The balance between gravity and diffusion then sets
the bed’s shape and, surprisingly, its downstream slope.
This statistical equilibrium takes the form of a Boltz-
mann distribution, according to which the sediment flux
qs decreases exponentially with the bed elevation h [31]:

qs
〈q〉g

= exp

(
−h− 〈h〉a

λB

)
, (3)

where 〈·〉a and 〈·〉g are the arithmetic and geometric
means respectively, and λB is the length that measures
the relative importance of diffusion and gravity. To our
knowledge, the latter was measured only once experi-
mentally, for plastic grains entrained by a viscous fluid
flowing in a flume (λB = 0.12 ± 0.02 ds, where ds is the
grain size) [31].

The same mechanism likely occurs in laboratory rivers
which, unlike confined flumes, can adjust their width. If
so, it should account for the entire shape, too. To test
this hypothesis, we generate single-thread rivers of which
we vary the sediment discharge (section II). We then mea-
sure the bed elevation and the cross-stream profile of the
sediment flux by tracking individual grains (sections III
and IV). Finally, we observe that this distribution se-
lects the width of a river, which increases with sediment
discharge (section VI).
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FIG. 2. Evolution of the sediment discharge in a laboratory
river. Blue dots: sediment discharge measured with particle
tracking (10 min average). Dashed line: exponential relax-
ation with 45-min time constant (fitted to data). Sediment
supply is 0.6±0.1 g/min.

II. EXPERIMENTAL SETUP

To generate our laboratory rivers, we use an inclined
plane (90 × 190 cm), covered with a 5 cm-thick layer of
plastic grains [31, Supplemental material] (Fig. 1). All
grains have the same density and size (density ρs =
1490 g/L; median diameter ds = 0.82 ± 0.19 mm), but
they come in a variety of colors. We will use the latters
to track the travelling grains and measure the sediment
flux (Sec. IV).

At the beginning of an experiment, we level the sedi-
ment bed with a rake, and carve a straight channel into
it, from the inlet to the outlet. The initial slope of the
sediment bed is about 10−3, but we cannot accurately
fix this value. We then inject a mixture of glycerol and
water (density ρf = 1160 ± 5 g/L, viscosity ν = 10 cP).
A tank placed above the experimental setup delivers a
constant discharge Qw in the range 0.1–3 L/min. We
measure the density of the fluid every hour, and infer
its viscosity from this measurement. During a run, we
regularly add water to the mixture to compensate for its
evaporation. The Reynolds number of the river remains
close to 10; the flow is therefore laminar.

We also feed the river with sediment using an indus-
trial feeder (Gericke GLD 87), the screw of which pushes
grains into the funnel that guides them towards the in-
let. The rotation speed of the screw controls the sediment
discharge in the range 0.2–20 g/min. Grains then settle
down and concentrate near the bed, as they begin their
travel downstream.

During the first hour of a run, the flow spreads over the
entire bed, and forms an almost uniform sheet of fluid.
Over the next few hours, though, the flow carves a chan-
nel, usually along the one we have incised initially. Dur-
ing this transient, the river continuously entrains more
grains than it deposits, and thus erodes its bed. As a re-
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sult, the sediment discharge in the channel is larger than
the one we impose at the inlet (Fig. 2). Gradually, the
sediment flux returns to steady state, until it eventually
matches the input Qs.

At equilibrium, the flow forms a straight, single-thread
channel, a few centimetres wide (Fig. 1b). This equilib-
rium is dynamical: grains are constantly dislodged from
the bed, while new ones get deposited by the flow. On
average, the sediment discharge is constant, and the river
bed does not change much. Moving grains, however, in-
dicate that the bed remains above the threshold of en-
trainment, in contrast with rivers that are not fed with
sediment [5].

At the beginning of each experiment, we set the slope
of the frame. However, the layer of sediment is thick
enough for the river to later adjust its own slope. The
slope is thus chosen by the system, and not a control
parameter. If the frame’s slope is too steep, the river
incises a gorge into the sediment bed, until it reaches
its equilibrium slope. Conversely, if the frame’s slope is
too shallow, the river deposits its load near the inlet,
where the sediment accumulates into an alluvial fan [18].
To hasten the transient, we adjust the frame’s slope to
match equilibrium. This procedure largely relies on the
experimenter’s intuition.

Beyond a sediment supply of about 1.5 g/min, the river
destabilises into a braid of intertwined, active channels.
This instability, which tightly bounds the sediment sup-
ply in our experiments, might explain why active single-
thread rivers are so sparse in the literature [6, 34]. Its
origin remains debated [35, 36], and this question would
require a dedicated investigation.

Overall, the equilibrium shape of our single-thread
rivers depends on two inputs, the fluid and the sediment
discharges. To investigate the influence of the latter on
the river’s shape, we perform a series of experimental
runs with the same fluid discharge (about 1 L/min), but
for different values of the sediment supply (Tab. I).

Run Sediment Fluid Tracking Number of

label supply input duration trajectories

[g min−1] [L min−1] [min] longer than 4 ds

1 0 1.00 - -

2 0.78 0.99 72 15 332

3 0.42 1.00 144 10 538

4 0.22 0.87 177 8 177

5 1.04 0.98 108 29 696

TABLE I. Experimental parameters.

III. CROSS SECTION

After the river has reached steady state, we measure its
cross section with an inclined laser sheet projected onto
its bed (Fig. 1). We first locate the laser line, whose
position is shifted by the fluid. Then, we stop the fluid
and sediment inputs, and let the fluid drain out of the
channel. The travelling grains settle down within a few
seconds, and the bed’s surface appears to freeze. After
the fluid has drained out, we detect the location of the
laser line on the bare surface of the bed. The combination
of the two laser lines, with and without fluid, provide us
with the bed elevation and the flow depth D within an
accuracy δD = 0.5 mm, which is slightly less than a grain
diameter (see addendum for details).

Figure 3 shows the cross section of three laboratory
rivers. For a vanishing sediment supply, the river’s cross
section looks rounded (Fig. 3a). This feature accords
with the observations of Seizilles et al. [5], who inter-
preted them in terms of the threshold theory. According
to this theory, a river that transport no sediment main-
tains its bed at the threshold of motion. Its cross section
should then be [5]:

D(y) = D0 cos

(
yS0

L

)
, (4)

where D0 is the maximum depth of the river, S0 its down-
stream slope. L is a characteristic length depending on
the properties of the sediment and the fluid. It reads:

L =
θt
µt

(ρs − ρf )ds
ρf

, (5)

where µt is the friction coefficient of the grains, and θt
is their threshold Shields number. The threshold theory
prescribes not only the river’s shape, but also its down-
stream slope, which depends on the fluid discharge Qw:

S0 =

(
4gµ3

tL
4

9νQw

)1/3

. (6)

Likewise, the depth of the threshold river depends on its
fluid discharge through

D0 =
µtL

S0
. (7)

In the absence of sediment supply, our experimental
river accords with this threshold theory, without fitting
any parameter (Fig. 3a, dashed line with L = 0.06 ds
and S0 = 0.0046).

More intriguingly, when the sediment supply increases,
the river widens and shallows (Fig. 3c and 3e). A sedi-
ment supply of 1 g/min, for instance, doubles the aspect
ratio of the river. The flat cross section of these active
laboratory rivers resembles that of a natural river—more
so than the rounded shape of Fig. 3a [7]. As they adjust
to the sediment supply, our laboratory rivers thus adopt
a more realistic shape.
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FIG. 3. Bed elevation and sediment-flux profile for runs 1, 4 and 5 (sediment supply increases from left to right). (a) River bed
in the absence of sediment supply. Dashed line: cosine shape predicted by the threshold theory for L = 0.06 ds and S = 0.0046
(equation (4)). (c) & (e): River beds with sediment supply. Dashed line: theory of section VI. (b), (d) & (f): Experimental
sediment-flux profiles. Dashed line: empirical model of section VI. Brown arrows in (c) and purple arrows in (d) illustrate
gravity and diffusion sediment fluxes, respectively. Data are available as supplemental material [33].

When setting up a new experimental run, we need to
manually adjust the inclination of the frame to match
the expected slope of the river. As the sediment input
increases, we need to steepen the frame more and more.
This observation suggests that the equilibrium slope of
our rivers increases with sediment discharge, in accor-
dance with previous measurements [18, 37]. Unfortu-
nately, the river slope, of the order of 0.005 in our ex-
periments, induces a change of bed elevation of the order
of 5 mm per meter of river, a value far below the detection
range of our experimental setup.

In the next section, instead, we focus on the mechanism
by which a river adjusts its cross section.

IV. SEDIMENT-FLUX PROFILE

Based on previous observations in confined canals [31],
we suspect that the balance between bedload diffusion
and gravity sets the shape of our rivers. To test this hy-
pothesis, we first need to measure the local sediment flux
qs. To do so, we track individual grains entrained by the
flow using the method described in Abramian et al. [31].
With the top-view camera, we first record a 1 hour-long
movie of the grains travelling over the bed surface (50 fps,
see movie as Supplemental material [33]). We then track
independently the motion of the blue, red and orange
grains, based on their color (Fig. 4a), and reconstruct
their trajectories (Tab. I, Fig. 1b).

For each run, and for each grain color, we then cal-
culate the cross-stream profile of the sediment flux. To
account for the proportion of each color in the sediment,
we normalize each profile so that its integral matches the
sediment input Qs.

The three independent measurements are consistent
(Fig. 4b), with a variability of less than about 15% (Fig.
4b). The uncertainty about their average depends on
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FIG. 4. (a) Histogram of pixel hue in a single frame for run 3.
(b) Sediment-flux profile for different grain colors (red, blue,
orange). Dashed black line: average.

the number of trajectories, but remains below 5% [31,
supplemental material].

Repeating this procedure with different experimental
runs, we find that the shape of the sediment-flux profile
varies with Qs (Fig. 3d and 3f). Its maximum, always
near the center of the channel, increases with the to-
tal sediment discharge, meaning that bedload transport
intensifies. For a high sediment discharge, it is almost
uniform in the center of the channel, where the bed is
virtually flat (Fig. 3f). Bedload transport then quickly
vanishes near the banks.
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FIG. 5. Boltzmann distribution in our rivers. Colors corre-
spond to runs (Tab. I). Black line shows equation (3 without
fitting parameter (λB = 0.12 ds after [31]).

Equation (2) provides an estimate for the Shields pa-
rameter in our rivers, based on the sediment flux. We
find that the latter exceeds its threshold value by less
than 0.3 θt, indicating that our rivers stay well within
the linear regime of the transport law. In other words,
our experimental rivers select their shape such that the
shear stress remains close to its critical value—another
instance of self-organized criticality, at least in the loose
sense of a system that spontaneously approaches its crit-
ical point [38].

V. BOLTZMANN EQUILIBRIUM

In our laboratory rivers, like in a flume, the sediment-
flux profile and the bed’s shape adjust to the sediment
discharge. Following Abramian et al. [31], we now test
whether this adjustement brings the sediment flux to
the Boltzmann equilibrium, as expressed by equation
(3). To do so, we plot the bed elevation with respect
to its own arithmetic mean 〈h〉a, as a function of the
sediment flux, divided by its geometric mean 〈qs〉g (Fig.
5b). We find that, regardless of the sediment discharge,
the data points gather around the same line in the semi-
logarithmic space. The profiles being symmetric, they
trace this line twice for each river. The slope of each line
is comparable to the one measured in a confined flume
[31] (black dashed line, Fig. 5b).

This observation shows that, in a laminar river, sedi-
ment transport converges to the same statistical equilib-
rium as in a confined flume. This equilibrium sets both
the cross section of the bed, and the sediment-flux pro-
file. In addition, laboratory rivers adjust their width.
We interpret this adjustment as follows: as Parker [7]
first noted, gravity pulls the travelling grains towards
the center of the channel, and thus tends to widen the
river. Bedload diffusion counters this widening by push-
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FIG. 6. Model of an active river (section VI). (a) Cross sec-
tion. Blue: river flow. Brown: sediment bed. (b) Sediment-
flux profile.

ing grains towards the banks, where transport is weaker.
The resulting balance sets the equilibrium shape of the
river.

Despite its simplicity, however, the mathematics of this
coupling remains elusive. Most of the difficulty lies in the
fluid flow, of which the lubrication approximation pro-
vides only a poor representation [36, 37]. Below, instead,
we propose a semi-empirical model that, hopefully, de-
lineates the problem.

VI. RIVER BED MODEL

Figure 5 shows that our laboratory rivers adjust their
shape so that diffusion and gravity can balance each
other. We now wish to relate this grain-scale mecha-
nism to the morphology of the river: its width, its aspect
ratio, and its slope.

Boltzmann statistics provides a relation between the
sediment flux and the river depth. In addition, the sed-
iment flux is related to the flow-induced shear stress
through the transport law. To close this system of equa-
tions, we need an additional relation : the momentum
balance that yields the flow-induced force that moves the
grains. In other words, we need to compute the flow in
the river. This is not an easy task, though: as we do not
know the shape of the river a priori, we need to solve a
two-dimensional, free-boundary problem.

The simplest way to bypass this problem is to invoke
the lubrication approximation [37, Ch. 4]. In this frame-
work, one assumes that the shear stress τ is simply pro-
portional to the flow depth:

τ = ρgDS . (8)

Supplemented with Boltzmann statistics and the trans-
port law, this expression yields a first-order, ordinary
differential equation for the flow depth. This equation
reproduces qualitatively our experimental observations
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—for example the fact that a river widens as it trans-
ports more sediment [37, Ch. 4]. However, it overesti-
mates the increase of the width by a factor of more than
3. We suspect that this discrepancy results from the lu-
brication approximation. Indeed, it can only provide a
rough estimate of the shear stress, and therefore of the
Shields parameter θ. Since the river is near the threshold
(θ ≈ θt), the transport law (2) amplifies the slightest er-
ror on the shear stress into a major change of the river’s
shape. [37, Ch. 4].

For lack of a better theory, we propose here a simpler,
semi-empirical model which eschews the complete calcu-
lation of the fluid flow. Inspired by the cross sections
of figure 3, and by previous work [7, 39], we decompose
the cross section of a river into three parts: the central
part, which we assume to be flat, and the two banks that
bound it (Fig. 6a). We consider the central part as an
active segment of width WT , where the river uniformly
transports sediment (Fig. 6b).

On this active segment, we replace the depth, the sed-
iment flux, or any other quantity f by its average f̄ ,
weighted by the local intensity of sediment transport:

f̄ =
1

Qs

∫ +∞

−∞
f qsdy . (9)

The limits of the above integral are infinite in principle,
but they reduce to the river’s width in practice. This av-
erage, devised with the Boltzmann equilibrium in mind,
differs from the ensemble means denoted with brackets in
section V. Whereas the latter gives equal weight to every
measurement point, the average of equation (9) winnows
the active section of the river from its steady parts, the
banks.

Finally, we assume that the banks are at the threshold
of motion, and therefore approximate their shape with
a cosine (restricted to a quarter of its period). These
banks, however, adjust their downstream slope to that of
the active segment. We also allow them to adjust their
size accordingly. In other words, we assume that each
bank is half a threshold river, with a slope that matches
that of the total river.

In the next section, we relate the parameters of this
model (the slope, width and depth of the river), to the
sediment and water discharges. To do so, we first es-
tablish an empirical relationship between the transport
width and the sediment discharge. Using the transport
law (2), we then estimate the slope of the river, and its
entire cross section.

A. Sediment transport

In the simple model sketched above, the sediment-flux
profile is a rectangle, of width WT and height q̄s, where q̄s
is the average intensity of sediment transport, defined by
equation (9) (Fig. 6b). To estimate the transport width,
we require the area of this rectangle to be the sediment
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FIG. 7. Average intensity and width of the sediment-flux pro-
files. (a) Active width of the channel WT as a function of the
sediment discharge. Blue points: experimental rivers. Dashed
line: equation (14) fitted to data. (b) Average sediment flux
q̄s as a function of sediment discharge. Blue points: exper-
imental rivers. Dashed line: equation (14) fitted to data.
(c) Average intensity of the profile as a function of the ac-
tive width of the channel. Blue points: experimental rivers.
Dashed line: equation (13) fitted to data.

discharge Qs, that is,

WT =
Qs
q̄s

. (10)

We also assume that WT vanishes with Qs, that is, in a
river exactly at threshold.

A convenient feature of the average defined by equation
(9) is that it is based on our most reliable measurement:
the sediment-flux profile. This makes quantities such as
q̄s and WT experimentally robust. We find that the sim-
plified sediment profile they define resemble the original
(Fig. 3d and 3f, dashed lines).

Following Seizilles et al. [5], we normalize the inten-
sity of sediment transport with θt/µtq0 , where q0 is
the prefactor of the transport law (equation (2)). For
our grains and fluid, q0 = 544 ± 48 grains/cm/s and
θt = 0.167 ± 0.003 [31]. Similarly, we define for later
convenience the characteristic sediment discharge Q∗s as
[18]:

Q∗s = ds
θtq0
µt

, (11)

Physically, Q∗s can be interpreted as the characteristic
discharge of grains across a segment of one grain size.
This quantity depends on the fluid and sediment proper-
ties only, which we did not vary in our experiments. It is
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9.5± 1.5 grains/s. Finally, in accordance with the above
choices, we normalize the width WT by the grain size ds.

We now plot WT and q̄s as functions of the sediment
discharge (Fig. 7a and 7b). As expected, these two quan-
tities increase with the sediment discharge of the river.
By fitting power laws on these observations, we find:

WT

ds
∝
(
Qs
Q∗s

)α
and

q̄sds
Q∗s
∝
(
Qs
Q∗s

)β
(12)

with α = 0.6 ± 0.1 and β = 0.4 ± 0.1. As the two expo-
nents are about 0.5, we expect the active width WT to be
proportional to the intensity of sediment transport q̄s. If
so, the rectangle that represents the sediment flux in our
model should preserve its aspect ratio as the sediment
discharge varies (Fig. 3d and 3f). To check this, we plot
the rectangle’s height as a function of its width, and find
that the linear relation

q̄sds
Q∗s

= cT
WT

ds
(13)

fits our data best for cT = (8.5 ± 0.9) · 10−3 (Fig. 7c).
We expect that the value of this parameter depends on
the water discharge, which we did not vary in our exper-
iments.

For simplicity, we now assume that the exponents α
and β are exactly 0.5, that is (dashed lines, Fig. 7a and
7b):

q̄sds
Q∗s

=

√
cT
Qs
Q∗s

and
WT

ds
=

√
1

cT

Qs
Q∗s

. (14)

This assumption enables us to estimate the active width
of a river, based on its sediment discharge Qs only. We
do not know the physical origin of this relation. In the
following, we use it as an empirical result and investigate
how it sets the river’s cross section.

B. Cross section and slope

Once we know the active width of a river, WT , and the
average intensity of sediment transport, q̄s, we can calcu-
late the average depth D̄ of the active segment based on
the transport law (2). We first invoke the shallow-water
approximation, which translates mathematically into the
shear stress being proportional to D̄. Expressed in terms
of the Shields parameter, this proportionality reads

θ̄ =
ρf D̄S

(ρs − ρf )ds
, (15)

Introducing this expression in equation (2) and replacing
q̄s with equation (14), we get the depth of the active
segment

D̄

D0
=
S0

S

(
1 +

1

µt

√
cT
Qs
Q∗s

)
, (16)

where S0 and D0 are the slope and the depth of the
threshold channel that conveys the same fluid discharge
(equations (6) and (7)). By definition, these quantities
do not depend on the sediment discharge. Instead, they
encapsulate the dependence of the river’s cross section
on the fluid discharge. In equation (16), however, the
actual slope S of the river is still unknown, and, most
likely, depends on the sediment supply. To calculate this
slope, we first write the fluid discharge as the sum of
the discharge associated to the active segment, with that
associated to the banks :

Qw = UD̄WT +

∫
banks

UDdy . (17)

To calculate the first term, we replace WT with equation
(14), D̄ with equation (16), and invoke the lubrication
approximation, according to which the vertical velocity
profile is that of a Poiseuille flow, namely,

U =
gD̄2S

3ν
. (18)

The error induced by the shallow-water approximation is
far less critical for the discharge than for the shear stress.

The second term is the contribution of the banks,
which are at the threshold of entrainment. Their shape
therefore obeys equation (4), where we replace the
threshold slope S0 by the slope S of the active segment,
that is, the slope of the river. The downstream slope
at the banks thus matches that of the active segment.
Following this assumption, we get:

D = DB cos

(
yS

L

)
, with DB =

S0D0

S
. (19)

Equation (19) sets the depth DB , and the width πL/S,
of the banks. Both are proportional to the inverse of the
slope and thus decrease with with the sediment discharge.
Finally, equation (19) allows us to calculate the contri-
bution of the banks to the water discharge in equation
(17), using the lubrication approximation again (equa-
tion (18)).

We finally combine equation (16), (17) and (19) to re-
late the river’s slope to its water and sediment discharges.
In the resulting expression, the slope S depends on Qs
and Qw implicitly:

(
S

S0

)3

=

1 +
3

4

dsS

L

√
1

cT

Qs
Q∗s

(
1 +

1

µt

√
cT
Qs
Q∗s

)3
 Qw
Q∗w

.

(20)
According to the above equation, the slope increases with
Qs, in agreement with our qualitative observation (Fig.
8a). Unfortunately, this slope is too small for us to mea-
sure it in our experiments. Nevertheless, Delorme et al.
[18] observed a trend that accords with equation (20),
although for different grains in a more viscous fluid.

Using equation (20), we can now determine the entire
cross section of our rivers. We find a good qualitative
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agreement between the empirical model and our experi-
mental profiles (Fig. 3c and 3e, dashed lines). In section
D, we quantitatively compare the river’s width and depth
to the present model. Before that, however, we detail how
the banks connect with the active segment.

C. Junction with the banks

The model exposed in the previous sections implicitly
assumes that the profile is discontinuous at the junction
between the banks and the active segment, with a gap
of amplitude δ = D̄ − DB (Fig. 6a). This unrealistic
feature results from our inability to evaluate the contin-
uous variation of the shear stress along the river bed. Of
course, there is no discontinuity in our experiments, but
the above definition of δ still holds. In practice, it cor-
responds to a gradual change of depth across the river,
of which the theoretical discontinuity is but a rough rep-
resentation. Using the above definition, equation (16)
reads:

D̄ = DB

(
1 +

δ

DB

)
(21)

with

δ

DB
=

1

µt

√
cT
Qs
Q∗s

. (22)

When the sediment discharge vanishes, the difference of
depth between the bank and the river’s center vanishes
as well (δ = 0). After equation (22), it increases with
Qs, and should reach about 1.5 ds at most in our experi-
ments (Fig. 8b, inset). Unfortunately, we cannot test this
equation directly in our experiment, because we cannot
measure the banks depth, DB , with decent accuracy. To
do so, one would need to fit a cosine to the banks—a pro-
cedure far too unreliable for our noisy profiles. Instead,
in the next section, we turn to the depth and width of
our laboratory rivers.

D. Comparison with experiments

Apart from their discontinuity at the banks, the ap-
proximate cross sections we propose look like those of
our laboratory rivers (Fig. 3c and 3e, dashed lines).

To confirm this impression, we compare the depth of
our experiments with their estimate. In our experiments,
the transport depth D̄ is indistinguishable from the bank
depth DB . The former, being averaged over the cross sec-
tion, is measured with a better precision than the latter.
It is therefore the measured value of D̄ that we compare
to the theoretical estimates provided by equations (19)
and (21) (Fig. 8b). We find that most data points lie
between DB and D̄. Within the uncertainty of our mea-
surements (about 5 ds, Sec. III), the experiments thus
conform to our semi-empirical theory.
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FIG. 8. Width and depth of laboratory rivers. (a) Slope as
a function of sediment discharge (equation (20)). (b) Depth
as a function of sediment discharge. Grey line: banks depth
DB (equation (19)). Pink line: transport depth D̄ (equation
(21)). Points: experiments. Inset: Discontinuity δ as a func-
tion of the sediment discharge (equation (22)). (c) Width as
a function of sediment discharge. Grey line: Total width pre-
dicted by the model of section VI. Grey points: experimental
width. Pink line: active width (equation (14)). Purple points:
experimental active widths.

We now turn our attention to the width of our exper-
imental rivers. The most intuitive way to measure this
quantity is to locate the points where the river depth
vanishes. In practice, however, this method is sensitive
to measurement noise. To reduce the latter, we prefer to
define the width W of a river as the ratio of its cross-
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section area to the transport depth D̄, such that:

W =
1

D̄

∫
Ddy (23)

(this width is distinct from the active width, WT , de-
fined in section VI A: it includes that of the banks). We
then rescale WT with respect to that of the threshold
channel, W0, and plot it as a function of the sediment
discharge (dashed grey line, Fig. 8c). This ratio is 1
for a vanishing sediment discharge, and increases with
sediment discharge, in accordance with our observations
(grey points, Fig. 8c). Within the range of sediment
discharge explored in our experiments, the width of the
river only increases by about 20%.

Equation (23) has the advantage of being linear with
respect to the depth profile. Returning to the model of
section VI A, this allows us to decompose the total width
of a river into the sum of the transport width and the
width of the banks (Fig. 8c), that is:

W = WT +
2L

S
. (24)

Based on this decomposition, we propose the following
interpretation of a river’s adjustment to sediment trans-
port. When a river transports more sediment, its ac-
tive segment widens, and shallows. The banks adjust
their depth to this shallowing, and, their aspect ratio be-
ing constant, also narrow as the sediment discharge in-
creases. As a result, the total width of the river depends
only weakly on the sediment discharge: the narrowing of
the banks counters the widening of the active part. Ac-
cordingly, the total width of our laboratory rivers barely
varies with their sediment discharge (Fig. 8c).

VII. CONCLUSION

At first order, active laboratory rivers adjust the shape
of their bed so that the flow-induced shear stress remains
close to the threshold of sediment transport. In nature,
the shear stress on the bed of a river seldom exceeds the
threshold by more than 10 %, suggesting that natural
rivers adjust their cross section in a similar fashion [40].

The cross section and the sediment flux of our labora-
tory rivers organize themselves into a Boltzmann distri-
bution of which only the partition function depends on
the sediment discharge. We interpret this observation as
the macroscopic signature of the balance between cross-
stream diffusion and gravity [31]. We believe that this
statistical equilibrium controls the shape of the river, but
we do not, at this point, understand how this happens.

Anyhow, we find that, in our experiments, a river
accommodates a larger sediment discharge by widening
its center, where transport occurs, while narrowing its
banks. These two adjustments counteract each other, re-
sulting in a weak variation of the total width of the river.

If this trend holds in the field, then the width of a river is
not a good proxy for its sediment discharge. We suggest
that the aspect ratio is a better one, because the shallow-
ing and the widening of the river conspire to amplify its
response to sediment transport. In our experiments, the
aspect ratio of the river increases by a factor 2.5 over the
range of sediment discharge we have investigated (Fig.
9).

Although the experiments presented here unambigu-
ously show that the river maintains the statistical equi-
librium of sediment transport, the process by which this
translates into its morphology still eludes us. How the
Boltzmann statistics sets the river’s cross section, and
therefore its aspect ratio, remains an open question. As
a first step, we propose here a simple model, based on
geometrical arguments, which reduces the problem to a
single empirical relation: the transport width is propor-
tional to the square root of the sediment discharge.

The discontinuous model we built upon this obser-
vation is at odds with the Boltzmann distribution of
the travelling grains, according to which the intensity of
sediment transport decreases continuously towards the
banks. If the two are to be reconciled, we will need to
estimate more accurately the shear stress the flow exerts
on the river bed. This could be improved by taking into
account two-dimensional effects in the flow—the purpose
of current research.
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ADDENDUM

To measure the cross section of our laboratory rivers,
we project a laser sheet on the bed’s surface, and infer
the shape of the latter based on its deviation. Doing
so in an active channel, and then in a drained-out one,
provides us with the two independent measurements we
need to calculate the elevations of the bed and of the
water surface.

Pictures from a camera placed above the channel show
the intersection of the laser sheet with the bed’s surface
(Canon 700 D). As we do not know the inclination φlaser
of the laser sheet accurately, we first calibrate this set-
ting by holding aluminium stairs in the field of view of
the camera (the shape of this machined piece is known
accurately: each step is 1.0 cm wide and 2.0 mm high,
Fig. 10a). After locating the laser sheet’s projection
onto each step (Fig. 10b, green line), we relate it to the
stairs’ elevation h. The coefficient of this linear relation
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FIG. 10. Calibration of the bed-elevation measurement. a:
Laser sheet on calibrated stairs. b: Laser line on the stairs
(green), and its numerically-found location (green line). c:
Linear relation between the height of a step and the corre-
sponding laser deviation (Eq. (25))
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FIG. 11. Measurement of bed elevation and water depth. a:
Side view of the laser sheet projected onto the river bed. Flow
from left to right. When the channel is bare, the laser line
is located on xlaser. When it is filled with fluid, the laser is
deviated to x′laser by the air-liquid interface. b: Location of
the laser line while the bed is filled with fluid (green line). c.
Location of the laser line on a bare bed (green line). d: Cross
section. Brown: sediment bed. Blue: fluid.

is the tangent of the laser angle:

h = tanφlaser xlaser . (25)

For the run of Fig. 10, we find φlaser = 27.54◦ ± 0.02◦.
We then remove the stairs to let the laser intersect

the channel’s bed. As the channel is filled with fluid,
refraction deviates the laser line to the position x′laser
(Fig. 11a and 11b). The laser line flickers as transported
grains cross it. To mitigate these fluctuations, we record
a short movie with the top-view camera, and average the
resulting images over a few seconds. We then locate the
laser line with image analysis (Fig. 11b, green line).

At this point, we still have only one measurement
(x′laser), and two unknown quantities (h and the water
depth). We thus switch off the flow and stop the sedi-
ment feeder. As a result, travelling grains settle within a
few seconds, while water slowly drains out of the channel.
Now, the laser line intersects the bare river bed at xlaser
(Fig. 11a and 11c), from which we calculate the bed el-
evation h using equation (25). In practice, we spatially
average the bed elevation by scanning the channel over
about one centimetre streamwise (the channel curves too
much to average the cross section over a longer distance).

Finally, the deviations of the laser line by the fluid,
x′laser - xlaser, allows us to compute the flow depth,

D =
xlaser − x′laser

1/ tanφlaser − 1/ tanφ′laser
, (26)

within an accuracy δD = 0.5 mm—slightly less than a
grain diameter. According to the the Snell-Descartes law,
the angle of refraction φ′laser of the laser line reads:

φ′laser =
π

2
− arcsin

(
1

n
sin
(π

2
− φlaser

))
, (27)

where n, the refractive index of the water-glycerol mix-
ture, is 1.41 at 20◦C. For run 4, equation (27) yields
φ′laser = 38.9◦.

The position of the flow surface appears noisier than
that of the bed (Fig. 11d). To reduce this uncertainty, we
average the position of the free surface over the channel
width, thus assuming it is horizontal (Fig. 3, main doc.).
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