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1Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard,
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We investigate the dissipative mechanisms exhibited by creased material sheets when subjected
to mechanical loading, which comes in the form of plasticity and relaxation phenomena within the
creases. After demonstrating that plasticity mostly affects the rest angle of the creases, we devise a
mapping between this quantity and the macroscopic state of the system that allows us to track its
reference configuration along an arbitrary loading path, resulting in a powerful monitoring and design
tool for crease-based metamaterials. Furthermore, we show that complex relaxation phenomena, in
particular memory effects, can give rise to a non-monotonic response at the crease level, possibly
relating to the similar behavior reported for crumpled sheets. We describe our observations through
a classical double-logarithmic time evolution and obtain a constitutive behavior compatible with
that of the underlying material. Thus the lever effect provided by the crease allows magnified access
to the material’s rheology.

Systematically creasing a thin material sheet can pro-
duce a variety of bulk metamaterials, that can be natu-
rally divided into disordered, or crumpled, and ordered,
origami-like, structures. On the origami side, carefully
picking among the infinite number of possible crease pat-
terns allows designing a wide range of physical properties
and shapes [1–5]. An archetypal example is the negative
apparent Poisson ratio exhibited by the Miura-ori pat-
terns [6–9]. This unnatural behavior is explained through
the rigid-face model, where each fold is described as two
rigid panels and a hinge setting an angle between them.
This description results in tight kinetic constraints on ex-
tended foldings, and only a small number of degrees of
freedom usually account for all possible geometric defor-
mations [6]. This simple model is functional regardless of
the scale of the system, from micro-robots [10] to space
engineering [11].
In crumpled systems, the situation is more complex, as
single elastic excitations such as developable cones and
ridges [12, 13] act as crease precursors. However, once the
system has been prepared, a random network of crease-
like, plastified objects competes with the elasticity of the
sheet to produce a soft elastic solid, though in this case,
self-contact plays a major role [14, 15].

Thus, for many material foldings, the modeling must
take into account the properties of the material itself [16].
Indeed, for origami structures hidden degrees of free-
dom [17, 18] appear that combine the elastic deformation
of the faces and the mechanical response of the creases.
The former is understood as a classic deformation of thin
sheets with boundary conditions imposed by the creases.
The latter is usually described as an elastic hinge, with
a response that is proportional to the departure of the
crease angle from a rest configuration [19, 20]. The range
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of reachable configurations for such a model is much
broader: it allows, for instance, the passage between sta-
ble states in bistable origamis [21–23]. Notably, compar-
ing the elasticity of the crease and the flexural rigidity
of the faces gives rise to a characteristic length-scale [24]
that relates to the spatial extension of the crease [25, 26].

While this approach is enough to explain the elas-
tic behavior of folded structures, it fails to capture
the complete quantitative picture. For intermediate de-
formations, both origamis [21, 27, 28] and crumpled
sheets [29, 30] exhibit hysteresis and relaxation. These
phenomena drastically limit the experimental domain of
validity for simple elastic models: they induce a tem-
poral evolution of the system and a change of reference
state during the experiment. Worse, producing precise
and reproducible experiments is severely challenging due
to induced memory effects. Nevertheless, the ability to
produce a crease within a sheet relies on these very ef-
fects [28, 31, 32], which are, in turn, unavoidable. It is
thus of crucial interest to disentangle the respective roles
of elasticity and dissipative phenomena to understand the
macroscopic mechanical behavior of real-world foldings.

In this paper, we build on the foundations laid by the
purely elastic decription of a single fold [24, 25] and ex-
tend this framework to take into account the plasticity
of the material through the modification of its reference
state. This approach produces a mapping of the load-
deformation curve to the rest angle of the crease, allowing
to read the latter from macroscopic observations on the
fly. The corresponding predictions are then compared
to experimental measurements of single folds produced
from polymeric and steel thin sheets with remarkable
success. Finally, we thouroughly investigate the tempo-
ral evolution of the single polymeric fold under stress. A
constant macroscopic strain imposes a stress relaxation
that is well described by a double logarithm. Such a de-
scription, based on the aging of glassy polymers [33, 34]
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and already observed in various complex systems [30, 35],
allows capturing subsequent memory effects under com-
plex loading paths, and their dependence upon various
parameters.

FIG. 1. Schematics of the experimental setup used to probe
the mechanical response F (l) of a creased sheet. One end of
the fold is clamped to a rigid wall, and the other one is fixed
to a loading device. The instantaneous shape θ(S) along the
curvilinear coordinate S is recovered from direct imaging of
the fold [24, 25]. Notice the mirror symmetry of the system
with respect to S = 0. The crease here is not a cusp point
but a smooth continuous crease

.

I. MAPPING THE INTRINSIC PARAMETERS
OF A CREASE

The experimental system displayed in Fig. 1 is similar
to the one used in [24, 25]. We base our analysis on the
elastic description of a single fold presented in Ref. [25].
For completeness, we briefly detail this model. Consider
a thin sheet of thickness e and size 2L × W decorated
with a single crease across its width W . The folded sam-
ple is clamped at both ends located at an imposed spacing
of l ≤ 2L while the corresponding external load F (l) is
recorded (or vice-versa). The absolute reference config-
uration of the free-standing fold prior to the mechanical
testing is described by a tent-like shape θ0(S) that is well
parametrized by

θ0(S) =
Ψ0 − π

2
tanh

(
S

S0

)
, (1)

with Ψ0 the crease rest angle and S0 its characteristic
size. The latter two intrinsic parameters determine the
internal state of the fold unambiguously. Recall that the
reference configuration of the clamped crease is different
from the free-standing one as it is characterized by a size
Sc given by

Sc '
S0

2
log

4L

S0
. (2)

and a crease rest angle Ψc = ψ(Sc) ' Ψ0. In the de-
formed configuration, we assume a local elastic energy
density of the fold given by

Eloc(S) =
BW

2
[θ′(S)− θ′0(S)]

2
, (3)

where primes denote derivative with respect to S and B
is the bending stiffness of the unfolded sheet. The equi-
librium configuration of the fold is retrieved by minimiz-
ing its total energy elastic energy minus the work of the
external force F . The minimization yields the following
pre-strained elastica

θ′′(s)− θ′′0 (s)− α sin θ(s) = 0, (4)

with α =
FL2

BW
the dimensionless load and s =

S

L
the

dimensionless curvilinear coordinate. In addition, the
boundary conditions at the clamped edges impose

θ(0) = θ(1) = 0, (5)

where the mirror symmetry of the fold at s = 0 was used
(see Fig. 1).
Now, we exploit the elastic description of the fold to
obtain the force-displacement curve. With that goal
in mind, we solve numerically the differential equation
Eq. (4) with the boundary conditions (5) using a stan-
dard shooting method. Solving for a prescribed range
of values of α yields a load-displacement curve for the
clamped fold. To this purpose, we define the typical de-
formations in the parallel and normal directions to the
applied load by

εx = l
2L =

∫ 1

0
cos θ(s) ds, (6)

εy = h
L = −

∫ 1

0
sin θ(s) ds. (7)

Here, ε
(c)
x (Ψ0) < εx < 1 and 0 < εy < ε

(c)
y (Ψ0), where

ε
(c)
x and ε

(c)
y are limiting strains for which self-contact

between the two faces of the fold occurs.
Eq. (1) shows that the absolute reference state is de-

scribed using two internal parameters Ψ0 and s0 = S0/L
only. Therefore, one can systematically map their respec-
tive effects on the load-displacement curve, as shown in
Fig. 2. We notice that for a fixed value of s0, each couple
(α, εx) corresponds to a unique value of Ψ0: the rest an-
gle is thus traceable through the values of the load α and
the corresponding deformation εx. However, a degener-
acy still exists if one considers both parameters Ψ0 and
s0. Nevertheless, there exists a separation of scales be-
tween variations due to each parameter: Fig. 2(b) shows
that a small shift in the curve of the mechanical response
necessitates an order of magnitude variation in s0 (as long
as s0 � 1). In contrast, a small variation of the angle
Ψ0 induces a substantially larger effect. In the following,
we build on this feature to lift this degeneracy by using a
direct experimental estimation of the characteristic size
S0 and determining Ψ0 from the force-deformation curve.

Interestingly, the computation also allows us to access
the dimensionless moment of the crease [25]

m = θ′(sc)− θ′0(sc) '
1

2sc
(Ψ−Ψ0). (8)

Here, sc = Sc/L, Ψ = π + 2θ(sc) and BW/2L is used
as the scaling factor of the moment. In Fig. 3, we com-
pare the moment m to a macroscopic moment, evaluated
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FIG. 2. (a) Mapping of the load-deformation curve for folds
with intrinsic parameters s0 = 9.2 × 10−3 and Ψ0 ranging
from 36° to 92°. (b) Mapping of the load-displacement curve
for folds with intrinsic rest angle Ψ0 = 90° and three differ-
ent crease sizes. Notice that these mappings exclude unphys-
ical self-intersecting state of the fold, that is the condition

ε
(c)
x (Ψ0) < εx < 1 is always satisfied.

by multiplying the dimensionless load to the normalized
height of the fold, and used as an approximation for the
crease mechanical response in the case of highly stretched
creases in [24]. Our model not only confirms that αεy is
a good approximation of the moment at the crease for
high strain but also takes into account both the correc-
tion coming from the spatial extension of the crease and
the bending of the faces for low and negative loads. We
argue that the mapping procedure proposed here from
the direct results of the loading test is well suited to char-
acterize the crease mechanics.

Another relevant property, observed in Fig. 4, is the
quasi-affine relationship between the stress m and the
load α when the strain εx is maintained constant. As a
consequence, during the relaxation of the force both the
easy to record force F and the local stress at the crease
follow the same evolution. While the study in Sec. III
on the temporal evolution of the crease only focuses on
F , our models and conclusions also apply to its local
mechanics.

The present pre-strained elastica model was shown to

FIG. 3. Mapping of the normalized crease moment with re-
spect to the macroscopic moment imposed on a fold with a
crease size s0 = 9.2× 10−3 and a rest angle Ψ0 ranging from
36° to 92°. For high stretching, the moment of the crease is
close to the one estimated macroscopically.

FIG. 4. Normalized moment m(α) of a crease with a charac-
teristic size s0 = 9.2× 10−3 and a rest angle Ψ0 ranging from
36° to 92°for different fixed strains εx.

be relevant for studying the mechanical response of a fold
in the elastic regime, namely as long as deformations
remain small enough or when the crease was annealed
beforehand [25]. Otherwise, the plastic behavior of the
material within the crease comes into play. In the follow-
ing, we postulate that the material’s plasticity consists in
modifying the absolute reference state of the fold through
the intrinsic parameters Ψ0 and S0. This hypothesis al-
lows us to extend our model beyond the elastic regime.

However, the dominant plastic contribution comes
from variations of the rest angle Ψ0 (see Fig. 2) which
yields a powerful tool, the aforementioned mapping, that
allows us to predict the full state of the fold and pro-
vide local information on the system at any time during
deformation using the macroscopic observables l and F .
To test this idea in the plastic regime, we systematically
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compare in Sec. II the prediction of the rest angle to
experimental observations of Ψ0.

II. PLASTIC RESPONSE OF A CREASE

For the current experiments, we used rectangular my-
lar (PET) sheets of length 159 mm, width 30 mm, and
thickness 500 µm. The sheet was manually pre-creased at
its half-length and put under a heavy weight for 30 min-
utes. Then, the fold was freely let to relax for 10 min-
utes. Before performing the experiment, we took a high-
resolution photo of the free-standing fold to measure its
characteristic size Sinit0 and rest angle Ψinit

0 . These pa-
rameters were extracted by interpolating the shape of the
fold using Eq. (1). Then, a simple stretching test probed
its mechanical response, as presented in Fig. 1 using two
different protocols.

In a first experiment (Protocol A), we clamped the fold
in a compressed state (F < 0) and stretched it at a speed
of 50 mm.s−1 until the elastic limit was crossed, and a
given target force was reached. Here, we chose 4 N as
a maximum load to make sure the material was stressed
well above its plastic threshold. Then, the fold was un-
clamped, and a photo of the final state was taken imme-

diately to extract the rest angle Ψfinal
0 and the charac-

teristic size Sfinal0 . In a second experiment (Protocol B),
we followed the same procedure except that the fold was
compressed back to a target negative force, in our case

−1.5 N, before unclamping it and measuring again Ψfinal
0

and Sfinal. For the 500 µm mylar sheets we used, we

found sinit0 ' 9.2×10−3 and sfinal0 . 1.1×10−2 amount-
ing to a 20% variation of the dimensionless characteristic
size throughout the whole experiment. Fig. 2(b) shows
that for a fold prepared with s0 . 10−2, the main effect
on the load-displacement curve comes from variations of
the rest angle Ψ0. Guided by this result, we neglect in
the following the measured variations of the characteris-

tic size and assume s0 = sinit0 = sfinal0 ' 10−2.

The comparison between the raw output of the exper-
iments, i.e. the load-displacement curves, and the theo-
retical results of the pre-strained elastica requires a nor-
malization factor proportional to the bending rigidity of
the material, B. For that purpose, we use the experimen-
tal results within the elastic regime, which corresponds to
an applied force F . 0. Then B is set as a fitting param-
eter for the load-displacement curve while the internal
parameters of the fold are given by Ψinit

0 and s0. The ex-
perimental load-deformation curve is well-reproduced by
the elastic model with B = 44.2mJ , which corresponds
to a Young modulus E ≈ 3.5 GPa and a Poisson ratio
ν = 0.4, consistent with tabulated values. Using the fold
as a ’bendometer’ for thin sheets is indeed very accu-
rate compared to other flexural tests. For example, as
opposed to an unfolded sheet submitted to the same ex-
perimental test, the advantage of using the mechanical
response of a fold for measuring B is that it does not
experience a buckling threshold and allows for a broader
range of accessible deformations.

During the whole loading test, we assume that our
system is instantaneously in a quasi-static elastic equi-
librium state. As a result, the deformation of the fold
always follows Eqs. (4,5). With these considerations, the
plasticity of the system only translates into corrections
of the rest angle Ψ0 (recall that the characteristic length
s0 is kept constant). After appropriate normalization
of the applied force using the measured value of B, we
interpolate the crease rest angle Ψ0 for each experimen-
tal situation using the mapping of the normalized (εx,α)
phase space shown in Fig. 2(a). The results are shown in
Fig. 5 for each experimental protocol. Moreover, the ac-
tual angle Ψ of the crease in the deformed configuration
is a direct output of such mapping.

The interpolation of the experimental mechanical re-
sponse using the mapping procedure shows two different
regimes (see Fig. 5). At small deformations where the
fold responds elastically, the rest angle of the fold Ψ0

is constant (≈ Ψinit
0 ). When the deformation is large

enough, local stresses within the creased region exceed
the yield stress inducing a plastic response of the mate-
rial. This behavior translates in the reference configura-
tion of the crease through a variation of the rest angle
Ψ0, which increases with εx. In protocol A, the mea-

sured final rest angle Ψfinal
0 differs notably from predic-

tions which, a posteriori, is an expected result. Indeed,
in addition to plastic behavior, high stresses induce a re-
laxation process of the crease whose amplitude is propor-
tional to the imposed load [27]. The few seconds between
unclamping the fold and image capture are enough to
change the rest angle significantly. Protocol B addresses
this issue by bringing back the fold in a compressed state
where local stresses within the creased region are below
the yield stress. In this case, our interpolation procedure

correctly recovers the final rest angle of the crease Ψfinal
0 .

To verify the robustness of the mapping procedure with
a different material, we reproduced the second experi-
ment (protocol B) with a fold created from a thin rolled
steel sheet of length 201 mm, width 12.5 mm, and thick-
ness 100 µm, with s0 = 1.03 × 10−2. For a Poisson
ratio of 0.33, the fit of the force-displacement curve in
the elastic regime gives a Young modulus of 197 GPa,
close to typical values found for this material. Moreover,
the modification of the rest angle from Ψinit

0 = 102° to

Ψfinal
0 = 115° is, once again, enough to completely de-

scribe the change of the force-displacement curve in the
elastic regime due to plastic deformations.

Recall that the predictions of both instantaneous in-
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FIG. 5. Mechanical response from a fold made from a mylar sheet using two different protocols (see text). The top (bottom)
row shows the experimental results of protocol A (B). Arrows in figures follow the chronology of the loading test. Black circles
in the first column show the corresponding experimental force-displacement data. The second column shows the mapping of
the folded state throughout the whole mechanical testing of (solid curve) the rest angle Ψ0 in the reference state and (dashed

curve) the actual angle of the crease Ψ in the loaded configuration. Ψinit
0 and Ψfinal

0 are respectively the measured rest angles
of the corresponding freely standing folds before and after the mechanical test. We use these angle values in the left column
to highlight deviations of the experimental mechanical response from a pure elastic behavior (orange and blue dashed curves).
Finally, the legends are common to both rows.

trinsic parameters of the fold and the bending rigidity of
the sheet result from only the interpolation of the load-
displacement curve and the initial rest angle Ψinit

0 . As
a result, the agreement between experiments and pre-
dictions is comforting regarding the validity of the pre-
strained elastica model. For both experiments, the rest
angle constantly evolves above the plasticity threshold,
even when the crease is brought back to low-stress con-
figurations. When the plasticity threshold is crossed, the
viscous-like behavior of the material responsible for the
relaxation of the fold [27] creates inertia in the system
and makes it difficult to reach a constant rest angle over
an amount of time comparable to that of the experiment.
In Section III, we focus on the complete temporal evolu-
tion of the fold. We will, in particular, use the property
of the system displayed in Fig. 4 that allows us to only
focus on macroscopically measured quantities, while the
mapping will make the link to the internal state param-
eters of the fold.

III. AGING PROPERTIES OF A CREASE

Previous experiments on a single fold reported tempo-
ral evolution of their shapes characterized by a simple
logarithmic aging law. This behavior was observed in
freely standing folds [27, 32] and shown to persist when
the fold underwent mechanical sollicitation [27]. Recent
studies on crumpled polymeric sheets [30, 35] witnessed
similar relaxation phenomena. By analogy with glassy
systems [36–38], this behavior was modeled by assum-
ing a specific distribution of microscopic timescales that
produces a logarithmic temporal response of the macro-
scopic observable [34]. For crumpled sheets, both crease
network [39] and friction [40] induced by self-contact of
the different parts of the sheet participate in the statis-
tical distribution of timescales, on top of those present
in the material itself. To discriminate the impact of each
contribution, we concentrate in the following on the tem-
poral behavior of a single mylar fold.

Using the experimental setup of Fig. 1 again, we per-
form relaxation experiments under imposed global strain
εx. Here, the displacement l is fixed at values above the
elastic range, while the load F is recorded. The main dif-
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ficulty with such experiments lies in their reproducibility,
as the mechanical response of this seemingly simple sys-
tem is history-dependent while the study of aging prop-
erties requires using the same fold for each series of ex-
periments. To address this problem, we first laid the fold
after each mechanical testings under a heavy weight for
30 minutes. The procedure aims to ‘reset’ the initial state
of the crease. Then, we leave the fold freely relaxing for a
small timelapse. This transition alleviates the temporal
dependence at the beginning of each experiment [27].

FIG. 6. (a) Protocol for studying relaxation of a fold: the dis-
placement l(t) is prescribed while the instantaneous response
F (t) is recorded. The chosen protocol defines three relaxation
phases starting at t = ti corresponding to applied forces Fi

(i = I, II, III). Here, FI = 4 N, FII = −0.6 N and FIII = 5
N. The corresponding displacements are lI = l(tI) = 137.2
mm, lII = 89.8 mm and lIII = 138.1 mm. (b) Relaxation
of the force during the three relaxation phases compared to
the double-logarithmic behavior given by Eq. (9) (solid lines).
Here, ∆t = t− ti and ∆F = F (t)− Fi.

A typical experiment is divided into at least three re-
laxation phases, I, II and III (see Fig. 6(a)). Each re-
laxation experiment follows the same protocol: we mono-
tonically vary the gap distance l(t) until the force reaches
an extremal value Fi at a time ti (i = I, II, III). Then,
the gap distance is kept fixed, and the temporal evolution
of the force F (t) is recorded. For each series of experi-
ments on the same fold, the prescribed l(t) for relaxation

phases I and II is kept identical, while phase III may
change between different experimental runs by varying
the extremal force FIII > 0. This protocol serves two
goals: to check the reproducibility of the results and to
prepare the system in the same state before the last re-
laxation phase.

The aging behavior of the fold has been characterised
by a single logarithmic time evolution [27]. However,
such description fails to capture the complete, nonmono-
tonic temporal evolution encountered in our experiment.
To this purpose, we interpolate the force signals for the
different relaxation phases using a double-logarithmic
function given by [30]

∆F

Fi
= A1 log

(
1 +

∆t

τ1

)
+A2 log

(
1 +

∆t

τ2

)
, (9)

where ∆t = t− ti and ∆F = F (t)− Fi with Fi = F (ti).
Eq. (9) involves two relaxation rates (A1, A2) and two
time scales τ1 < τ2. Fig. 6(b) shows that the double-
logarithmic interpolation describes well experimental re-
sults in the different relaxation phases. In phase I,
we found A1 = −0.091 ± 0.002, A2 = 0.048 ± 0.002,
τ1 = 0.9 ± 0.07 s and τ2 = 83 ± 9 s. In phase II,
the force signal exhibits a simple logarithmic decay with
A1 = −0.016±0.0007, A2 = 0 and τ1 = 4.4±1.6 s. For all
experiments, the fitting parameters in phase I and II are
found to be consistently constant. This two-phase prepa-
ration thus achieves both objectives: the sample is left
in a compressed state before phase III with reproducible
response and a controlled short-term history. Since we
use the same sample for all the experiments, our ‘reset’
procedure of the initial state also succeeds in limiting the
impact of the long-time history.

In phase III, we varied the value of the extremal force
FIII and looked at its effect on the relaxation of the fold.
The results are shown in Fig. 7. For every experiment
we found τ1 � τ2, which is consistent with relaxation in
phase I and indicates that Eq. (9) describes effectively
two separate phenomena. Both τ1 and τ2 are found to
decrease with FIII , while the absolute amplitude of each
logarithmic term increases with FIII . These observations
point to a repartition of multiple time scales shortened
by the increase of the local stress. Surprisingly, the long-
time relaxation rate Atot = A1 +A2 ≈ −0.046 is constant
regardless of the imposed macroscopic stress. This result
is consistent with the long time relaxation behavior re-
ported in [27].

One notices that the relaxation rates Atot are very
similar for phases I (Atot ≈ −0.043) and III (Atot ≈
−0.046) showing that while the preparation of the fold
is very different, the qualitative behavior of the long
time relaxation is robust. To test this feature, we per-
formed 405 relaxation experiments by modifying the ex-
perimental system in several ways. The changes include
varying the fabrication process of the crease, the num-
ber of relaxation cycles in a single experiment, the value
of the extremal force Fi for each relaxation, the times-
pan of the relaxation, the dimensions of the fold (length,
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FIG. 7. Influence of the extremal force FIII on the parameters
of the double-logarithmic interpolation of phase III relaxation
for the same fold in different experiments. (a) Evolution with
FIII of the relaxation rates A1, A2 and their sum Atot =
A1 + A2. The solid line shows the mean < Atot >= −0.046.
(b) Semi-Log plot of the time scales τ1 and τ2 as function of
FIII .

width, and thickness) and the ambient temperature (from
5°C to 45°C) using a controlled bath. The correspond-
ing amplitudes for all relaxation rates are gathered in
Fig. 8. As expected, the normalized relaxation rate at
long times Atot varies depending on the preparation and
on the experimental conditions. However, some gen-
eral trends are common to all relaxations. For instance,
the amplitude Atot is always negative and remains of
the same order of magnitude for all experiments, with
typically Atot = −0.047 ± 0.018 for stretched folds and
Atot = −0.021± 0.015 for compressed ones. Therefore, if
one considers Atot as the main characteristic relaxation
rate, these results are consistent with previous work on
similar material [27, 30, 35].

To contrast the relaxation behavior obtained for
mylar with another material, we recorded the evolu-
tion of the force for a steel fold in a single phase of
relaxation with an extremal force FI = 8 N. The data
we obtained are neatly fitted by a single logarithm
∆F
Fi

= Atot log
(
1 + ∆t

τ

)
, with τ = 1.8 s and Atot = 0.008.

The significantly lower amplitude of relaxation observed
in steel originates in the different microscopic structures
of these materials.

FIG. 8. Effects of the experimental conditions on the relax-
ation rate Atot (see text). Each point in the left column corre-
sponds to different experimental conditions. For convenience,
the data is shown as a function of the extremal force at the
beginning of the relaxation process, and colors label different
material thicknesses e. The mean (black point) and standard
deviation of all data points are also shown. The top (bottom)
row corresponds to folds under tension (compression). The
right column shows the histogram of Atot.

The double-logarithmic aging hints at the presence of
multiple time-scales in a folded structure. This feature
was shown in crumpled sheets [30] using a specific ex-
periment devised to create non-monotonic relaxation: a
crumpled mylar sheet is put under heavy weight for a
given duration, before slightly easing the compression
and measuring the relaxation of the external load. Draw-
ing inspiration from this work, we modified our initial
protocol by adding a new step during phase III of the
mechanical test. Fig. 9(a) shows a fold that is let to relax
during a waiting time tw before instantaneously decreas-
ing the imposed displacement by δl∗ which in turn lowers
the force by an amount δF∗. Fig. 9(b) shows that the fol-
lowing relaxation indeed displays a non-monotonic evo-
lution of the force, similar to the one found in crumpled
sheets [30].

A systematic study of the effect of the waiting time tw
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FIG. 9. (a) Modified protocol during the relaxation phase III
to obtain non-monotonic relaxation. After a waiting time tw
(here tw = 100 s), a jump in displacement is imposed to lower
the force by an amount δF∗ (here δF∗ = 1 N). (b) Non-
monotonous relaxation of the force signal for t > t∗. The
relative force F (t)−F (t∗) increases up to a maximum δFp at
a peak time t−t∗ = tp before decreasing again. The black line
is a fit by the double-logarithm in Eq. (9) with A1 = 0.008,
A2 = −0.11, τ1 = 1.9 s and τ2 = 156 s.

on the relaxation is shown in Fig. 10. As expected, the
time tp at the peak of the relaxation increases with tw.
However, the observed weakly nonlinear scaling tp ∝ t1.2w
does not coincide with the linear behavior tp ∝ tw ob-
served in crumpled sheets [30] nor with a naive dimen-
sional analysis. This nonlinear behavior hints for the
existence of a characteristic time scale whose origin is
still unclear. However, we expect that this relationship
depends on the specific rheology of the material, which
induces complex long term memory effects and thus a dis-
tribution of time scales. Interestingly, Fig. 10(b) shows
that the amplitude of the force anomaly grows with the
logarithm of the waiting time, pointing towards a collec-
tion of activated mechanisms.

FIG. 10. (a) The peak time tp as functions of the waiting time
tw for relaxation experiment shown in Fig. 9. The dashed
line shows a scaling behavior tp ∝ t1.2w . (b) Amplitude of the
maximum relative force δFp as function of the waiting time.

IV. CONCLUSION

Our study has heavily relied on experiments to identify
and thoroughly characterize the two dominant sources
of irreversibility that arise during the mechanical solic-
itation of material creased sheets: plasticity and slow
relaxation. We have shown that an elastic model intro-
duced earlier for the fold can be refined to capture the
plastic flow of the system fully: when the crease is local-
ized, this flow only amounts to a change the crease refer-
ence angle, while the rest of the system remains elastic.
This approach provides a powerful relationship between
macroscopic mechanical observables, that can easily be
measured, and the microscopic state of the crease, in par-
ticular its rest angle. The relevance of this approach is
emphasized by the demonstrated shallowness of the elas-
tic regime in the fold, and by the fact that it holds for
a wide range of materials including polymers and even
some metallic alloys. Furthermore, within our testing
configuration and due to the strong lever effect involved,
the fold acts as a ’bendometer’, as the formalism we de-
veloped allows for precise measurement of the bending
modulus of the underlying material.

Despite complex memory effects, we drew inspiration
from glassy systems [38] to rationalize the temporal be-
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havior of the observed mechanical response, invoking a
distribution of time-scales within the material to explain
the slow relaxation and contingent non-monotonicity of
the constraints for a given deformation path. In this
respect, these results are specific to materials with non-
trivial rheology, in particular glassy materials [34]. How-
ever, the qualitative agreement between the temporal re-
sponses of a single fold we observe and that of a crumpled
polymeric sheet [30] questions the role of the collective
phenomena in the latter results. The crease itself magni-
fies the material response and already introduces at the
individual level the complexity the authors observe in
the extended system. Still, the high number of creases
in crumpled sheets might smoothen the mechanical evo-
lution of the system, leading to less memory dependent
single logarithmic relaxations.

Finally, our study demonstrates the predictive power
of a continuous description in the single crease problem,
as embodied by our pre-strained elastica model, and be-
yond. Indeed, it can be generalized to more complex, ex-
tended patterns to infer very strong constraints on their
equilibrium configuration, and to gain insight into their
mechanical response, including plasticity and aging. Our
study thus lays the foundations of a universal approach to
the mechanics of a class of systems encompassing struc-
tured origamis and crumpled material sheets.
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