
HAL Id: hal-02986873
https://hal.science/hal-02986873

Preprint submitted on 3 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conjugate Gradient Solvers with High Accuracy and
Bit-wise Reproducibility between CPU and GPU using

Ozaki Scheme
Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita, Roman Iakymchuk

To cite this version:
Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita, Roman Iakymchuk. Conjugate Gradient Solvers
with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki Scheme. 2020.
�hal-02986873�

https://hal.science/hal-02986873
https://hal.archives-ouvertes.fr

Conjugate Gradient Solvers with High Accuracy and Bit-wise
Reproducibility between CPU and GPU using Ozaki scheme

Daichi Mukunoki
daichi.mukunoki@riken.jp

RIKEN Center for Computational Science
Kobe, Hyogo

Katsuhisa Ozaki
ozaki@sic.shibaura-it.ac.jp

Shibaura Institute of Technology
Saitama, Japan

Takeshi Ogita
ogita@lab.twcu.ac.jp

Tokyo Woman’s Christian University
Tokyo, Japan

Roman Iakymchuk
roman.iakymchuk@sorbonne-universite.fr

Sorbonne University
Paris, France

Fraunhofer ITWM
Kaiserslautern, Germany

ABSTRACT
On Krylov subspace methods such as the Conjugate Gradient (CG),
the number of iterations until convergence may increase due to
the loss of computation accuracy caused by rounding errors in
floating-point computations. Besides, as the order of operations
is non-deterministic on parallel computations, the result and the
behavior of the convergence may be non-identical in different en-
vironments, even for the same input. This paper presents a new
approach for the CG method with high accuracy as well as bit-level
reproducibility of computed solutions on many-core processors,
including both x86 CPUs and NVIDIA GPUs. In our proposed ap-
proach, accurate and reproducible operations are installed into all
the inner-product based operations such as matrix-vector multi-
plication and dot-product, which are the main sources that may
disturb reproducibility in the CG method. The accurate and repro-
ducible operations are performed using the Ozaki scheme, which
is the error-free transformation for dot-product that can ensure
the correct-rounding. As this method can be built upon vendor-
provided linear algebra libraries such as Intel Math Kernel Library
and NVIDIA cuBLAS/ cuSparse, it reduces the development cost. In
this paper, showing some examples with the non-identical conver-
gences and computed solutions on different platforms, we demon-
strate the applicability and the effectiveness of the proposed ap-
proach as well as its performance on both CPUs and GPUs. Besides,
we compare against an existing accurate and reproducible CG im-
plementation based on the Exact BLAS (ExBLAS) on CPUs.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/xxx

KEYWORDS
Accuracy, reproducibility, Conjugate Gradient, heterogeneous com-
puting, CPU, GPU

ACM Reference Format:
Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita, and Roman Iakymchuk.
2020. Conjugate Gradient Solvers with High Accuracy and Bit-wise Re-
producibility between CPU and GPU using Ozaki scheme. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 10 pages.
https://doi.org/xxx

1 INTRODUCTION
Floating-point computations with finite-precision involve rounding-
errors at each operation, and their accumulation may result in
the inaccuracy of the computation. At the same time, as floating-
point computations are non-associative, hence the result is non-
deterministic (i.e., non-reproducible) if the order of the computation
is not identical, and it can be different at the rounding-error-level
even for the same input. As the scale of the computation grows
toward Exascale computing, and the rounding-error accumulation
becomes large, those issues may become more serious. Besides, the
recent trend in introducing low-precision hardware increases the
magnitude of rounding-errors.

The reproducibility issue used to be out of focus until now. How-
ever, in addition to the previously mentioned background of increas-
ing rounding error, with the advent of various processors such as
GPUs and its heterogeneous use, the importance has become more
clear and needed. In fact, recent high-performance computing envi-
ronments contain many factors to vary the order of computations,
which impact the reproducibility of the computational result. For
example, those factors include parallel computation with different
degrees of parallelism (change of the number of threads, processes,
etc.), atomic operation on many-core architectures, the use or non-
use of fused multiply-add (FMA) operation, and the introduction
of auto-tuning and dynamic load balancing techniques. The repro-
ducibility issuemay disturb software debugging and cause problems
for scientific activities that rely on the reproducibility of results.
Besides, when a code is ported to a new system, and the results are
different, it can be a problem from the viewpoint of reliability and

https://doi.org/xxx
https://doi.org/xxx

Conference’17, July 2017, Washington, DC, USA Mukunoki, et al.

quality-control if it is not possible to distinguish whether it is a bug
or just a rounding error issue.

This paper focuses on the reproducibility issue of the Conjugate
Gradient (CG) method, which is a Krylov subspace method and is
often used for solving iteratively large sparse linear systems. The
CG method is a well-known example of computations that can be
easily affected by rounding-errors. The number of iterations until
convergencemay increase due to the loss of computational accuracy.
A particularly sensitive part of the CG methods is the computation
of residual. Besides, the computation result and the convergence
behavior may be non-identical in different computational environ-
ments, even for the same input owing to rounding-errors.

In this study, we present an accurate and reproducible imple-
mentation of the unpreconditioned CG method on x86 CPUs and
NVIDIA GPUs. In our method, while all variables, including the
coefficient matrix and all vectors, are stored on FP64 (IEEE binary64,
a.k.a. double-precision), all the inner-product operations (includ-
ing matrix-vector multiplications) are performed using the Ozaki
scheme [17]. The scheme delivers the correctly-rounded computa-
tion at each inner-product operation aswell as bit-level reproducibil-
ity among different computational environments, even between
CPUs and GPUs. Here, the correctly-rounded computation means
that for the inner-product of two vectors stored on a working-
precision, the result on the working-precision is computed with
one rounding at the end. At first, we show some examples where
the standard FP64 implementation of CG results in non-identical
results among different CPUs and GPUs. Then, we demonstrate the
applicability and the effectiveness of our implementations, in terms
of the accuracy and reproducibility, and the performance on both
CPUs and GPUs. Furthermore, we compare the performance of our
proposed method against an existing accurate and reproducible CG
implementation based on the Exact BLAS (ExBLAS)1 [9, 10], which
also performs correctly-rounded operations for inner-products as
with our implementations.

The main contribution of this study is to show the adaptation
of the Ozaki scheme to the CG method and discuss the behavior
in terms of both performance and numerical results. The Ozaki
scheme has been adopted for an accurate and reproducible BLAS,
OzBLAS2 [13], and one of its greatest advantages is that it can
be built upon standard BLAS implementations such as Intel Math
Kernel Library (MKL)3 and NVIDIA cuBLAS4: a good performance
can be expected with low development cost. In fact, our proposed
method can achieve comparable or better performance than the
ExBLAS-based approach in many cases. Moreover, as far as we
know, this study is the first to develop a CG solver that ensures
reproducibility among CPUs and GPUs. We note that our imple-
mentations are currently unpreconditioned solvers, but that our
proposed approach can be used to construct preconditioned solvers.

The remaining of this paper is organized as follows. Section 2
introduces related work. Section 3 describes our methodology based
on the Ozaki scheme. Section 4 presents our implementations on
CPUs and GPUs. Section 5 presents the numerical experiments.

1https://github.com/riakymch/exblas
2http://www.math.twcu.ac.jp/ogita/post-k/results.html
3https://software.intel.com/en-us/mkl
4https://developer.nvidia.com/cublas

Section 6 presents a discussion on another way for reproducibility.
Finally, the conclusion is presented in Section 7.

2 RELATEDWORK
In the first place, accuracy and reproducibility issues are different
ones that have different motivations and natures. However, since
both are originated from the same cause (rounding-errors), we
can see some common solutions and challenges for both. We note
that, while reproducibility itself does not take part in the accuracy
issue, improving accuracymay contribute to relaxing themagnitude
of the reproducibility issue. Here, we introduce several examples
in Basic Linear Algebra Subprograms (BLAS) and linear algebra
computations.

If only reproducibility (onworking-precision operations) is needed,
a brute force approach is to fix the order of the computation. Al-
though this approach can be costly on parallel computing, some
vendors adopt this approach. For instance, Intel’s Conditional Nu-
merical Reproducible (CNR) mode [23] provides reproducibility
on Intel MKL. NVIDIA cuBLAS also ensure the identical result if
the computation is performed on the same number of cores except
some routine implemented with atomic operations; but, it offers
an alternative without atomic. However, their reproducibility is
ensured only within each library (and under several restrictions),
and thus both above cannot be a solution for the reproducibility
between CPUs and GPUs.

A solution to provide full reproducibility on any environment
is to perform the computation with the correctly-rounded opera-
tion. It can contribute to enhancing the accuracy as well. This ap-
proach has been implemented in ExBLAS [3], RARE-BLAS [2], and
OzBLAS. The OzBLAS is based on the Ozaki scheme, which is the
error-free transformation for dot-product/ matrix-multiplication,
and this study also utilizes the same scheme. This scheme enables
one not only to return the correctly-rounded result but also to ad-
just the accuracy with a certain granularity, and reproducibility
is ensured even at tunable accuracy. Moreover, unlike the other
approaches, it has a great advantage that it can be built upon stan-
dard BLAS implementations: a good performance can be expected
with low development cost. On the other hand, ReproBLAS5 [5] de-
livers reproducibility without correctly-rounded operations. Their
approach – that originates from the works by Rump, Ogita, and
Oishi [19, 20, 22] – cuts (rounds) some lower bits that may cause
rounding-errors and compute them using multiple bins to compen-
sate for the accuracy.

The above ExBLAS approach has been extended to CG meth-
ods [8, 9]. They implemented the CG solver with the Jacobi precon-
ditioner on distributed environments using the pure MPI as well
as MPI + OpenMP tasks. To our knowledge, this work is the only
example that addressed the reproducibility of computed solutions
of CG methods. The other implementations do not provide sparse
operations as of now. Although the ExBLAS based CG method has
not supported GPUs yet, this study compares it with our proposed
method on CPUs.

Apart from the above, there are many studies and software de-
veloped for improving the computation accuracy. Although most of
them are mainly intended for improving accuracy, those can also be

5https://bebop.cs.berkeley.edu/reproblas/

Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki scheme Conference’17, July 2017, Washington, DC, USA

Algorithm 1 The inner product: 𝑟 = 𝒙𝑇𝒚 (𝒙,𝒚 ∈ F𝑛) with the
Ozaki scheme.
1: function (𝑟 = Ozaki_DOT(𝑛, 𝒙,𝒚))
2: 𝒙split [1 : 𝑠𝑥] = Split(𝒙, 𝑛) // Algorithm 2
3: 𝒚split [1 : 𝑠𝑦] = Split(𝒚, 𝑛) // Algorithm 2
4: 𝑟 = 0
5: for 𝑞 = 1 : 𝑠𝑦 do
6: for 𝑝 = 1 : 𝑠𝑥 do
7: 𝑟 = 𝑟 + fl((𝒙split [𝑝])𝑇𝒚split [𝑞]) // DOT
8: end for
9: end for
10: end function

Algorithm 2 Splitting of a vector 𝒙 ∈ F𝑛 in the Ozaki scheme,
where u denotes the unit round-off of IEEE 754 (u = 2−53 for FP64).
Lines 9 and 10 are computations of 𝒙𝑖 and 𝒙split [𝑗]𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

1: function (𝒙split [1 : 𝑠𝑥] = Split(𝒙, 𝑛))
2: 𝜌 = ceil((log2(u−1) + log2(𝑛))/2)
3: ` = max1≤𝑖≤𝑛 (|𝒙𝑖 |)
4: 𝑗 = 0
5: while ` ≠ 0 do
6: 𝑗 = 𝑗 + 1
7: 𝜏 = ceil(log2(`))
8: 𝜎 = 2(𝜌+𝜏)
9: 𝒙split [𝑗]𝑖 = fl((𝒙𝑖 + 𝜎) − 𝜎)
10: 𝒙𝑖 = fl(𝒙𝑖 − 𝒙split [𝑗]𝑖)
11: ` = max1≤𝑖≤𝑛 (|𝒙𝑖 |)
12: end while
13: 𝑠𝑥 = 𝑗

14: end function

used for the purpose of relaxing the reproducibility issue. In partic-
ular, the work of the ExBLAS based CG methods, which were pre-
viously mentioned, demonstrates some examples that can achieve
reproducibility just through an accurate computation method (with
only floating-point expansions and the FMA instruction). The other
examples of accurate linear algebra computations include below.
MPLAPACK [16] provides high-precision BLAS and Linear Algebra
PACKage (LAPACK) routines. The high-precision operation is per-
formed using existing high-precision arithmetic libraries such as the
GNUMultiple Precision Floating-Point Reliable Library (MPFR)6 [6]
and QD7 [7]. XBLAS8 [12] provides computations with two-fold
precision against the data precision. Also, some studies have imple-
mented CG solvers using IEEE 754 high-precision or an alternative
arithmetic format. For example, NAS Parallel Benchmark (including
CG) with IEEE 754 binary128 and Posit [1], as well as quadruple-
precision CG [15] on GPUs using the double-double arithmetic.

3 METHODOLOGY
3.1 Ozaki scheme
The Ozaki scheme is the error-free transformation of dot-product /
matrix-multiplication. This subsection presents a brief overview of
the scheme. For further details of the Ozaki scheme, we refer to the
original paper [17].

Here, we explain the case of a dot-product, but this scheme can
be naturally extended to any dot-product-based operations such
as matrix-vector multiplication and matrix-matrix multiplication.
Algorithm 1 shows the whole procedure of the Ozaki scheme for
the dot-product of two vectors 𝒙 ∈ F𝑛 and 𝒚 ∈ F𝑛 , where F be
the set of floating-point numbers (in this study, FP64). Briefly, this
method consists of the following three steps:
(1) Element-wise splitting of the input vectors into several split

vectors
(2) Computation of the all-to-all products of those split vectors
(3) Element-wise summation (reduction) of the above inner prod-

uct results.
This method can be understood as an extension of high-precision
arithmetic with multiple components (e.g., double-double arith-
metic [7]) into vector-level. Specifically, first, the input vectors are
element-wisely split into the summation of several vectors using
Algorithm 2 as

𝒙 =

𝑠𝑥∑
𝑝=1

𝒙split
(𝑝) , 𝒙split

(𝑝) ∈ F𝑛 (1)

𝒚 =

𝑠𝑦∑
𝑞=1

𝒚split
(𝑞) , 𝒚split

(𝑞) ∈ F𝑛 (2)

We note that the number of split vectors (𝑠𝑥 and 𝑠𝑦) to achieve the
correctly-rounded result depends on the length of the input vectors
and the range of the absolute values in the input vectors. Then, it
computes the summation of the all-to-all inner products of the split
vectors as

𝒙𝑇𝒚 =

𝑠𝑥∑
𝑝=1

𝑠𝑦∑
𝑞=1

(
𝒙split

(𝑝)
)𝑇

𝒚split
(𝑞) (3)

Let fl(·) denote a computation performed with floating-point arith-
metic. Algorithm 2 performs the splitting to meet the following
two properties for two vectors:

(1) If 𝒙split (𝑝) 𝑖 and 𝒚split
(𝑞)

𝑗
are non-zero elements,���𝒙split (𝑝) 𝑖 ��� ≥ ���𝒙split (𝑝+1) 𝑖 ��� and ���𝒚split (𝑞) 𝑗 ��� ≥ ���𝒚split (𝑞+1) 𝑗 ���.

(2)
(
𝒙split

(𝑝)
)𝑇

𝒚split
(𝑞) = fl

((
𝒙split

(𝑝)
)𝑇

𝒚split
(𝑞)

)
,

1 ≤ 𝑝 ≤ 𝑠𝑥 , 1 ≤ 𝑞 ≤ 𝑠𝑦 .
The former means that the accuracy of the final result can be con-
trolled by omitting some lower split vectors. The key point is that
the later: the inner products of the split vectors can be computed
with the standard floating-point arithmetic: for FP64 data, theDDOT

6https://www.mpfr.org
7https://www.davidhbailey.com/dhbsoftware/
8https://www.netlib.org/xblas/

Conference’17, July 2017, Washington, DC, USA Mukunoki, et al.

Algorithm 3 CG method solving 𝑨𝒙 = 𝒃 (Note: here, subscript ‘𝑖’
means the number of iterations, unlike Algorithm 2).
1: 𝒑0 = 𝒓0 = 𝒃 −𝑨𝒙0 // SpMV
2: 𝜌0 = 𝒓0𝑇 𝒓0 // DOT
3: 𝑖 = 0
4: while 1 do
5: 𝒒𝑖 = 𝑨𝒑𝑖 // SpMV
6: 𝛼𝑖 = 𝜌𝑖/𝒑𝑖𝑇 𝒒𝑖 // DOT
7: 𝒙𝑖+1 = 𝒙𝑖 + 𝛼𝑖𝒑𝑖 // AXPY
8: 𝒓𝑖+1 = 𝒓𝑖 − 𝛼𝑖𝒒𝑖 // AXPY
9: if | |𝒓𝑖+1 | |/| |𝒃 | | < 𝜖 then // NRM2
10: break
11: end if
12: 𝜌𝑖+1 = 𝒓𝑖+1𝑇 𝒓𝑖+1 // DOT
13: 𝛽𝑖 = 𝜌𝑖+1/𝜌𝑖
14: 𝜌𝑖 = 𝜌𝑖+1
15: 𝒑𝑖+1 = 𝒓𝑖+1 + 𝛽𝑖𝒑𝑖 // SCAL & AXPY
16: 𝑖 = 𝑖 + 1
17: end while

routine provided in BLAS such as MKL and cuBLAS can be used9.

Since fl

((
𝒙split

(𝑝)
)𝑇

𝒚split
(𝑞)

)
has no round-off error, that is

error-free. Even if it is computed with a non-reproducible operation,
the result becomes reproducible.

Step 1: Splitting

Step 2: Multiplication (GEMM)

Step 3: Reductionx
xsplit

(1)
xsplit

(2)
xsplit

(3)
xsplit

(4)

y
ysplit

(1)
ysplit

(2)
ysplit

(3)
ysplit

(4)

Figure 1: Dot-product with Ozaki scheme (when the number
of split vectors is 4).

After that, the accurate and reproducible result is obtained by
the summation of the all-to-all inner products of the split vectors.
The summation can be computed by a correctly-rounded method
such as NearSum [21]. Although it is also possible to compute using
working-precision floating-point operations, the following points
must care:
• The summation must be computed using a reproducible way.
Since the summation is element-wise, fixing the computational
order is not difficult and not costly.

• log2 in Algorithm 2 must be computed by some reproducible
way on different platforms because the accuracy is not stan-
dardized in IEEE and may differ on different platforms (e.g., the

9The computation can be computed using a dense matrix-multiplication as we mention
later in Section 4. However, it must be implemented based on the standard floating-
point inner product. The use of the divide-and-conquer approach, such as Strassen’s
algorithm is not suitable.

accuracy is different between x86 and NVIDIA GPUs). How-
ever, this is not a concern when using a correctly-rounded
summation.
In this study, we use a correctly-rounded summation, Near-

Sum, to observe the result obtained by completely eliminating the
rounding-error introduced in inner products.

3.2 Installation of reproducibility to the CG
method

The CG method solves 𝑨𝒙 = 𝒃 where 𝑨 is a symmetric positive
definite matrix. Algorithm 3 shows the typical algorithm and corre-
sponding BLAS routines for each linear algebra operation. Among
them, the factor that may disturb the reproducibility of computed
solutions on many-core processors is the operations that consist
of inner-product operations: sparse matrix-vector multiplication
(SpMV), dot-product (DOT), and 2-norm (NRM2). In this study,
those operations are computed using the Ozaki scheme. SpMV
and DOT achieve the correctly-rounded results. The NRM2 is im-
plemented using DOT as 𝑟 =

√
DOT(𝒙, 𝒙), and the square root is

performed on the standard FP64 operation.
In addition, we need to take care of the consistency for the use

or non-use of the FMA operation on AXPY. In our implementation,
FMA is explicitly used when it can be applied. Besides, we need
to take care of the use of fast and less accurate computations for
mathematical functions (e.g., -fp-model fast on ICC). Hence, we
disable any less accurate options.

4 IMPLEMENTATION
We implement the following two versions for both CPUs and GPUs:
• FP64: the standard implementation on FP64
• FP64Oz-CR: the accurate and reproducible FP64 implementa-
tion using the Ozaki scheme

Below describes the details of the implementations.

4.1 FP64
All computations are implemented using the standard FP64 arith-
metic and the standard FP64 BLAS routines. Each linear algebra
operation is performed through the corresponding BLAS routine
shown in Algorithm 3, and those computations are performed using
Intel MKL on CPUs and NVIDIA cuSparse (for SpMV) and cuBLAS
(for the others) on GPUs. On the SpMV routines, the symmetri-
cal structure of matrices is not taken into account (i.e., symmetric
matrices are given to the computation after expanded to general ma-
trices). The coefficient sparse matrix is stored using the Compressed
Sparse Row (CSR) format, which is one of the common formats.
We note that the choice of the sparse format does not affect the
performance discussion in this study as this study aims to see the
relative difference. On the GPU implementations, whereas the BLAS
routines are performed on GPUs, the scalar value computations are
performed on CPUs.

4.2 FP64Oz-CR
The Ozaki scheme is installed into DOT, NRM2, and CSRMV in the
FP64 implementation formerly mentioned. In the Ozaki scheme, the
internal computations are performed using MKL on CPUs as well

Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki scheme Conference’17, July 2017, Washington, DC, USA

Table 1: Test matrices (the size is 𝑛 × 𝑛 with 𝑛𝑛𝑧 non-zero elements, sorted in ascending order by 𝑛𝑛𝑧/𝑛).

Matrix 𝑛 𝑛𝑛𝑧 𝑛𝑛𝑧/𝑛 kind
1 tmt_sym 5,080,961 726,713 7.0 electromagnetics problem
2 gridgena 48,962 512,084 10.5 optimization problem
3 cfd1 1,825,580 70,656 25.8 computational fluid dynamics problem
4 cbuckle 13,681 676,515 49.4 structural problem
5 BenElechi1 245,874 13,150,496 53.5 2D/3D problem
6 gyro_k 17,361 1,021,159 58.8 duplicate model reduction problem
7 pdb1HYS 36,417 4,344,765 119.3 weighted undirected graph
8 nd24k 72,000 28,715,634 398.8 2D/3D problem

as cuSparse and cuBLAS on CPUs. The splitting and summation
portions are parallelized using OpenMP on CPUs and CUDA on
GPUs. In Algorithm 2, to perform lines 9 and 10 correctly, the order
of expression evaluation must be honored by using the compiler
option “-fprotect-parens" on CPUs and the intrinsics for arith-
metic on GPUs. 2𝜏 at lines 7–8 is computed using NextPowTwo [18].
AXPY is implemented using FMA (with the intrinsic) by ourselves
because whether FMA is used or not is unknown.

In addition, we employed several techniques for speedup.
(1) For SpMV, as the coefficient matrix is not changed during the

iterations, the splitting of the matrix is needed only once before
the iteration starts. It contributes to increasing the performance
as the splitting becomes the major cost in the Ozaki scheme on
memory-bound operations.

(2) The inner products of the split vectors can be performed using
a dense matrix-multiplication (GEMM) by combining multiple
split vectors into a matrix, as shown in Figure 1. This strategy
contributes to the speedup of memory-bound operations in the
Ozaki scheme by reducing memory access. The same idea can
be applied to SpMV: the computation can be performed using
a sparse matrix - dense matrix multiplication routine (SpMM),
which is available on MKL as mkl_dcsrmm and cuSparse as
cusparseDcsrmm. However, on CPUs, we do not use this idea
because the performance degraded with mkl_dcsrmm10.

(3) In SpMV, we use asymmetric-splitting [18]. 𝜎 at line 8 in Algo-
rithm 2 determines how many bits are stored on each element
in the split matrices/vectors, and smaller 𝜎 increases the num-
ber of bits that can be held. 𝜎 is determined not to cause an
overflow in the computation of the product of the split matrices
and vectors but chosen to be as small as possible in the powers
of 2. We can bias the 𝜎 to reduce the number of split data on
either the matrix or vector by increasing 𝜎 on a side and de-
creasing 𝜎 on another side with the same amount. If SpMM is
used in the computation, the reduction of the number of split
matrices increases a chance to a speedup in general. Our GPU
implementation decreases the 𝜎 on the matrix side with the
minimum number that decreases the number of split matrices
on the GPU implementation. On the other hand, the CPU im-
plementation, which does not use SpMM in the computation,
decreases the 𝜎 on the matrix side with the maximum number
that does not change the number of split matrices. This strategy

10This routine has already been deprecated in the latest MKL, and the use of Inspector-
executor Sparse BLAS interface is recommended instead. However, our implementation
does not support it yet.

increases the chance to reduce the number of split vectors. The
optimal 𝜎 is determined in a trial-and-error way by performing
the matrix splitting with the 𝜎 reduced step by step. As this
determination is performed once before starting the iterations
of the CG method, the cost is not high.

5 EVALUATION
We conducted evaluations using the following platforms:

• CPU1: Intel Xeon Gold 6126 (Skylake, 2.60–3.70 GHz, 12 cores)
× 2 sockets, DDR4-2666 192 GB (255.9 GB/s), MKL 19.0.5, ICC
19.0.5.281, 1 thread/core is assigned, “numactl --localalloc"
is used for the execution, on the Cygnus supercomputer in Uni-
versity of Tsukuba.

• CPU2: Intel Xeon Phi 7250 (Knights Landing, 1.40–1.60 GHz, 68
cores), MCDRAM 16GB (490 GB/s) + DDR4-2400 115.2 GB/s, MKL
19.0.5, ICC 19.0.5.281, 1 thread/core is assigned (64 cores are used
for the computation11), memory-mode: flat, clustering-mode:
quadrant, KMP_AFFINITY=scatter, “numactl --preferred 1"
is used for the execution (MCDRAM preferred), on the Oakforest
PACS system operated by JCAHPC.

• GPU1: NVIDIA Tesla V100-PCIE-32GB (Volta, 1.370 GHz, 80
SMs, 2560 FP64 cores), HBM2 32GB 898.0 GB/s, CUDA 10.2, nvcc
V10.2.89, on the Cygnus supercomputer in University of Tsukuba.

• GPU2: NVIDIA Tesla P100-PCIE-16GB (Pascal, 1.189–1.328 GHz,
56 SMs, 1792 FP64 cores), HBM2 16GB 720 GB/s, CUDA 10.2,
nvcc V10.2.89.

The codes are compiled using the following options: for CPUs,
“-fp-model source -fprotect-parens -qopenmp" with “-xCORE-
AVX2 -mtune=skylake-avx512" on CPU1 and “-xMIC-AVX512" on
CPU2, for GPUs, “-O3 -gencode arch=compute_60, code=sm_XX"
(XX=70 for Tesla V100 and XX=60 for Tesla P100). Any fast and less
accurate computation options are disabled.

We collected eight symmetric positive definite matrices from
the SuiteSparse Matrix Collection [4] as shown in Table 1. Those
matrices were chosen to be large enough to be computed on GPUs
and used in different applications. The right-hand side vector 𝒃
and the initial solution 𝒙0 were set as 𝒃 = 𝒙0 = (1, 1, ..., 1)𝑇 . The
iteration is terminated when | |𝒓𝑖 | |/| |𝒃 | | ≤ 10−16. Hereinafter, the
residual plots show | |𝒓𝑖 | |/| |𝒃 | |.

11The CPU has 68 cores but only 64 cores from the core number 2 were used to avoid
OS jitter.

Conference’17, July 2017, Washington, DC, USA Mukunoki, et al.

Table 2: (a) Relative true residual and (b) the number of iterations on different platforms. Note: in all cases, the true residualwas
computed on the correctly-rounded operations using the Ozaki scheme. FP64Oz-CR got the identical result on all platforms.

(a) Relative true residual (| |𝒃 −𝑨𝒙𝑖 | |/| |𝒃 | |)
Matrix FP64 FP64Oz

CPU1 CPU2 GPU1 GPU2 -CR
1 tmt_sym 3.30E-07 3.29E-07 3.29E-07 3.30E-07 3.29E-07
2 gridgena 1.11E-10 1.10E-10 1.09E-10 1.09E-10 1.08E-10
3 cfd1 1.48E-10 1.48E-10 1.50E-10 1.50E-10 1.48E-10
4 cbuckle 8.97E-12 9.01E-12 8.85E-12 8.85E-12 9.08E-12
5 BenElechi1 7.66E-07 8.37E-07 8.50E-07 1.04E-06 6.68E-07
6 gyro_k 4.00E-07 3.77E-07 4.70E-07 4.70E-07 4.30E-07
7 pdb1HYS 4.27E-04 4.35E-04 4.36E-04 4.36E-04 3.82E-04
8 nd24k 2.09E-08 2.10E-08 2.09E-08 2.09E-08 2.10E-08

(b) The number of iterations to | |𝒓𝑖 | |/| |𝒃 | | ≤ 10−16
FP64 FP64Oz

CPU1 CPU2 GPU1 GPU2 -CR
1 7859 7831 7828 7825 7793
2 2400 2413 2368 2368 2393
3 3279 3277 3278 3278 3279
4 23834 23856 23515 23515 23724
5 73327 72701 73515 71302 65161
6 60387 60247 59341 59341 46641
7 11378 11788 11775 11775 8214
8 15461 15445 15438 15438 12837

Table 3: The number of split matrices required to achieve correct-rounding, the total execution time until convergence, and
the execution time overhead (FP64Oz-CR/FP64) on CPUs. † corresponds to the expected overhead of FP64Oz-CR.

Matrix # of CPU1 CPU2
split FP64 FP64Oz-CR Overhead FP64 FP64Oz-CR Overhead

mats† (secs) (secs) (times) (secs) (secs) (times)
1 tmt_sym 4 6.85E+00 1.81E+02 26.4 6.12E+00 2.53E+02 41.4
2 gridgena 3 6.12E-01 5.17E+00 8.4 9.93E-01 1.14E+01 11.5
3 cfd1 4 1.02E+00 1.17E+01 11.4 1.66E+00 2.07E+01 12.5
4 cbuckle 7 3.60E+00 4.63E+01 12.9 9.17E+00 1.08E+02 11.8
5 BenElechi1 4 7.97E+01 1.44E+03 18.0 6.04E+01 1.19E+03 19.7
6 gyro_k 7 9.85E+00 1.30E+02 13.2 2.44E+01 2.52E+02 10.3
7 pdb1HYS 4 4.24E+00 5.06E+01 11.9 7.72E+00 6.31E+01 8.2
8 nd24k 4 3.57E+01 4.86E+02 13.6 2.49E+01 3.09E+02 12.4

Table 4: The number of split matrices required to achieve correct-rounding, the total execution time until convergence, and
the execution time overhead (FP64Oz-CR/FP64) on GPUs. † corresponds to the expected overhead of FP64Oz-CR.

Matrix # of GPU1 GPU2
split FP64 FP64Oz-CR Overhead FP64 FP64Oz-CR Overhead

mats† (secs) (secs) (times) (secs) (secs) (times)
1 tmt_sym 3 2.47E+00 4.32E+01 17.4 3.29E+00 7.12E+01 21.6
2 gridgena 2 2.44E-01 3.04E+00 12.4 2.88E-01 3.50E+00 12.2
3 cfd1 3 4.46E-01 5.16E+00 11.6 5.30E-01 7.41E+00 14.0
4 cbuckle 6 2.90E+00 2.93E+01 10.1 3.58E+00 3.88E+01 10.8
5 BenElechi1 3 2.73E+01 3.47E+02 12.7 3.59E+01 5.96E+02 16.6
6 gyro_k 6 7.10E+00 5.60E+01 7.9 8.29E+00 7.66E+01 9.2
7 pdb1HYS 3 1.99E+00 1.20E+01 6.0 2.34E+00 1.64E+01 7.0
8 nd24k 3 8.60E+00 4.82E+01 5.6 1.13E+01 7.11E+01 6.3

5.1 Reproducibility, convergence, and accuracy
Table 2 shows the relative true residual (| |𝒃 − 𝑨𝒙𝑖 | |/| |𝒃 | |) when
| |𝒓𝑖 | |/| |𝒃 | | ≤ 10−16 and the number of iterations on four platforms.
In most cases, the results (both the solution and the number of
iterations) of FP64 are non-identical among different platforms.
However, the results of FP64Oz-CR on four platforms became iden-
tical: that is, reproducibility was ensured by the Ozaki scheme. We
can also see that some cases converge with fewer iterations by
FP64Oz-CR with accurate computation when compared with FP64
implementations.

Figure 2 shows the residual plots for every 10 iterations on four
platforms. Solid lines show the relative residual | |𝒓𝑖 | |/| |𝒃 | | and dot-
ted lines show the relative true residual | |𝒃 − 𝑨𝒙𝑖 | |/| |𝒃 | |12. We can
see some significant differences in the convergence plots among
five cases, but in all cases, the solution converges to a similar value
on the same order (but most of them are non-identical as shown in
Table 2). In terms of the residual 𝒓𝑖 , FP64Oz-CR often converged

12Here, unlike Table 2, the true residual was computed using the standard FP64 opera-
tion, but it does not cause visible difference in the plot.

Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki scheme Conference’17, July 2017, Washington, DC, USA

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 0 1000 2000 3000 4000 5000 6000 7000 8000

re
s
id

u
a

l

iter

(1) tmt_sym

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz−CR

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

 0 500 1000 1500 2000 2500

re
s
id

u
a

l

iter

(2) gridgena

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz−CR

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 0 500 1000 1500 2000 2500 3000 3500

re
s
id

u
a

l

iter

(3) cfd1

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz−CR

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 0 5000 10000 15000 20000 25000

re
s
id

u
a

l
iter

(4) cbuckle

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz−CR

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 0 10000 20000 30000 40000 50000 60000 70000 80000

re
s
id

u
a

l

iter

(5) BenElechi1

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz−CR

10
−15

10
−10

10
−5

10
0

10
5

 0 10000 20000 30000 40000 50000 60000 70000

re
s
id

u
a

l

iter

(6) gyro_k

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz−CR

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 0 2000 4000 6000 8000 10000 12000

re
s
id

u
a

l

iter

(7) pdb1HYS

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz−CR

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 0 2000 4000 6000 8000 10000 12000 14000 16000

re
s
id

u
a

l

iter

(8) nd24k

FP64(CPU1)
FP64(CPU2)
FP64(GPU1)
FP64(GPU2)
FP64Oz−CR

Figure 2: Convergence plots (at every 10 iterations). The results of FP64Oz-CR on four platforms are shown with one line as
they are identical. Solid lines show the relative residual | |𝒓𝑖 | |/| |𝒃 | | and dotted lines show the relative true residual | |𝒃−𝑨𝒙𝑖 | |/| |𝒃 | |.

with fewer iterations than FP64, but in those cases, the stopping
criterion of 10−16 was too small.

5.2 Performance (overhead)
Before showing the experimental results, we discuss the expected
performance. When SpMV with the Ozaki scheme is computed
using SpMM (i.e., our GPU implementation. The CPU implemen-
tation currently does not use it.), the execution time overhead of
FP64Oz-CR against FP64 per iteration can be roughly estimated.

Ideally, the overhead becomes close to 𝑑 times if the matrix is dense
enough, where 𝑑 is the number of split matrices – it can be obtained
by performing the splitting of the coefficient matrix once. When
SpMV is computed using SpMM, it requires 4𝑑 times execution time
overhead against the standard floating-point operation in terms of
the memory access to the matrix (we assume that the cost to the
vector can be ignored as it is small enough when compared with
the matrix). The 3/4 of the 4𝑑 times overhead arises in the splitting
(the accesses to vector 𝒙 at lines 9 and 10 in Algorithm 3), but it

Conference’17, July 2017, Washington, DC, USA Mukunoki, et al.

(a) “tmt_sym" (𝑛𝑛𝑧/𝑛 = 7.0)

 0

 0.5

 1

 1.5

 2

 2.5

F
P

6
4

F
P

6
4
O

z−
d
2

F
P

6
4
O

z−
d
3

F
P

6
4
O

z−
C

R

s
e
c

"tmt_sym" on Xeon Gold 6126 x2
Exec. time (100 iter.)

Other
SplitMat
SplitVec

NearSum
AXPY/SCAL
DOT/NRM2

SpMV/SpMM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

F
P

6
4

F
P

6
4
O

z−
d
2

F
P

6
4
O

z−
d
3

F
P

6
4
O

z−
C

R

s
e
c

"tmt_sym" on Tesla V100
Exec. time (100 iter.)

Other
SplitMat
SplitVec

NearSum
AXPY/SCAL
DOT/NRM2

SpMV/SpMM

(b) “nd24k" (𝑛𝑛𝑧/𝑛 = 398.8)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

F
P

6
4

F
P

6
4
O

z−
d
2

F
P

6
4
O

z−
d
3

F
P

6
4
O

z−
C

R

s
e
c

"nd24k" on Xeon Gold 6126 x2
Exec. time (100 iter.)

Other
SplitMat
SplitVec

NearSum
AXPY/SCAL
DOT/NRM2

SpMV/SpMM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

F
P

6
4

F
P

6
4
O

z−
d
2

F
P

6
4
O

z−
d
3

F
P

6
4
O

z−
C

R

s
e
c

"nd24k" on Tesla V100
Exec. time (100 iter.)

Other
SplitMat
SplitVec

NearSum
AXPY/SCAL
DOT/NRM2

SpMV/SpMM

Figure 3: Execution time breakdown of FP64, FP64Oz-d𝑛, and FP64Oz-CR for 100 iterations on CPU1 and GPU1. FP64Oz-d𝑛
shows the result of FP64Oz-CR executed with a specified 𝑑 (the number of split matrices/vectors).

is eliminated on CG methods since the splitting is performed only
once before iterations. In CG methods, the SpMV cost is usually
dominant as matrix-vector multiplication is an O(𝑛2) operation,
whereas the others are O(𝑛). Therefore, only the 𝑑 times overhead
appears. However, if the matrix is highly sparse, as SpMV closes
to O(𝑛) and or the execution efficiency becomes low owing to the
frequent random memory access, the other operations cost than
SpMV becomes non-negligible, and the overhead becomes non-
predictable. As DOT requires 4𝑑 times overhead assuming cache
hits all split vectors, the cost for DOT (and NRM2) may become
dominant instead of SpMV. Moreover, the number of 𝑑 is unpre-
dictable in CG methods because the vectors are updated during the
iterations. Besides, as 𝑑 becomes large, the chance to cache-miss
increases.

Tables 3 and 4 show the number of split matrices required to
achieve correct-rounding (𝑑), the execution time until convergence,
and the execution time overhead (times) of FP64Oz-CR against
FP64 on CPUs and GPUs, accordingly. Note that the required num-
ber of splits becomes minus-one on GPUs when compared with
that on CPUs as we used the asymmetric-splitting technique as
described in Section 4. The FP64 implementations, which are the
baselines for the comparison, can be seen as the ideal performance
as they are constructed on vendor implemented routines. As the
CPU implementation does not use SpMM, we consider that the
GPU implementation shows more desirable results. The number
of split matrices can be understood as the expected overhead, as
we explained before. When compared with them, approximately
1.3 – 7.2 times additional overhead was observed on GPUs, and we
can see the tendency that the smaller 𝑛𝑛𝑧/𝑛 it has, the greater the
overhead takes, following the previous discussion.

Figure 3 shows the breakdown of the execution time of 100
iterations on the tmt_sym and nd24k matrices on CPU1 and GPU1.
Both matrices have the smallest and biggest sparsities, respectively.

tmt_sym shows a high cost for level-1 BLAS operations, while nd24k
shows a high cost for SpMV (SpMM). FP64Oz-d𝑛 shows the result
executed with a specified 𝑑 (the number of split matrices/vectors).
When 𝑑 is specified, the asymmetric-splitting technique is not used:
only when FP64Oz-CR, the matrix splitting cost (SplitMat) includes
the tuning cost for the optimal asymmetric-splitting. However, it is
not so large within 100 iterations.

5.3 Comparison with the ExBLAS-based CG
Iakymchuk et al. has already proposed accurate and reproducible
CG solvers [8, 9] based on the ExBLAS approach [10]. These CG
solvers are parallelized with the flatMPI as well asMPI and OpenMP
tasks but support only CPUs. We evaluate their performance and
compare it against the proposed method. As with the proposed
method, the ExBLAS-based implementation installs correct-rounding
in all dot-product operations in CG through the ExBLAS scheme.
The ExBLAS approach efficiently combines the Kulisch long ac-
cumulator [11] and floating-point expansions (FPEs). While long
accumulator is robust and designed for severe (ill-conditioned)
cases, keeping every bit of information until the final rounding,
FPEs are unevaluated sums (arrays of FP64) to target a limited range
of numbers, e.g., not severe dynamic ranges and/ or condition num-
bers. Hence, ExBLAS aims to use as much as possible FPEs due to
their speed and only occasionally long accumulators. For instance,
long accumulators are used when the accuracy of FPEs is not suffi-
cient or at the final rounding to FP64. One clear advantage of the
ExBLAS-based implementation against our proposed approach is
the low memory consumption: it uses 2097 bits for a long accu-
mulator and 192-512 bits for an FPE per MPI process, while our
proposed method consumes a large amount of memory for storing
split matrices (i.e., in proportion to the number of split data 𝑑).

Conjugate Gradient Solvers with High Accuracy and Bit-wise Reproducibility between CPU and GPU using Ozaki scheme Conference’17, July 2017, Washington, DC, USA

Table 5: The results of the ExBLAS-based implementation (FP64Ex-CR): the number of iterations, the execution time, and the
overhead against FP64 shown in Table 3.

Matrix Num. CPU1 CPU2
Iter. Time Overhead Time Overhead

(secs) (times) (secs) (times)
1 tmt_sym 7812 3.37E+02 49.3 5.48E+02 89.4
2 gridgena 2467 7.97E+00 13.0 1.37E+01 13.8
3 cfd1 3278 1.59E+01 15.6 2.81E+01 17.0
4 cbuckle 23828 3.24E+01 9.0 5.95E+01 6.5
5 BenElechi1 73838 1.28E+03 16.1 2.49E+03 41.2
6 gyro_k 60103 9.74E+01 9.9 1.82E+02 7.5
7 pdb1HYS 11839 3.77E+01 8.9 9.61E+01 12.5
8 nd24k 15415 1.66E+02 4.7 5.49E+02 22.1

The ExBLAS-based implementations have two versions: the MPI-
OpenMP hybrid parallel [8] and the flat MPI version [9]. However,
the flat MPI version was faster than the hybrid version on both
CPU1 andCPU2. Therefore, the following evaluationwas conducted
using the flat MPI version.We have conducted the experiments with
the same conditions as the other evaluations except for the follow-
ing points: The code13 was compiled using GCC 8.3.1 on CPU1 and
GCC 7.5.0 on CPU2 with -mavx -fabi-version=0 -fopenmp. On
both CPUs, we executed the code by mapping one MPI process per
core. The ExBLAS-based implementation supports preconditioning,
but it was disabled in this evaluation.

Table 5 shows the results obtained by the ExBLAS-based imple-
mentation (FP64Ex-CR) on CPU1 and CPU2.We note that the results
of FP64Oz-CR and FP64Ex-CR may differ because the implementa-
tions of the CG algorithm itself are different and the strategies for
reproducibility are clearly not the same. Despite that, the obtained
solutions and the number of iterations do not have a significant
difference. Since both FP64Oz-CR and FP64Ex-CR take different
strategies for accurate and reproducible computations, their over-
head compared to the baseline FP64-based implementation depends
on the matrix at hand and the processors. The FP64Ex-CR achieved
better (lower) overhead on 5 out of 8 matrices on CPU1. On the
other hand, the proposed method FP64Oz-CR performs better on
6 out of 8 matrices on CPU2. Even though FP64Ex-CR does not
support GPUs, the best performance of FP64Oz-CR is on GPUs,
where the potential of FP64Oz-CR flourishes with the use of SpMM
and the reduction of the number of split matrices.

6 REPRODUCIBILITY WITHOUT
CORRECTLY-ROUNDED OPERATIONS,
AND ACCURATE COMPUTATION FOR
REPRODUCIBILITY

In this study, we installed reproducibility by correctly-rounded
operations, but the Ozaki scheme can adjust the accuracy at a
certain granularity and still ensure reproducibility (as we described
in Section 3.1, the summation and log2 must care for ensuring
reproducibility). The accuracy can be adjusted by the number of
splittings, and reducing it improves the performance, as shown
in Figure 3.
13https://github.com/riakymch/ReproCG

Figure 4 demonstrates an example as the convergence of ‘gyro_k’
with FP64, FP64Oz-CR, and FP64Oz-𝑑 with a specified number of
split data 𝑑 . This matrix requires 6 split matrices (𝑑 = 6) to achieve
the correctly-rounded operation, but actually, 𝑑 = 3 is enough to
achieve higher accuracy than FP64. However, there is currently no
light and easy way to determine the optimal number in advance
(i.e., the number needed to achieve double-precision accuracy at
least or to get the solution at the shortest time). There is a risk to be
unconverged or take a lot of iterations by using inadequate choice.
To find out the optimal number, we have to try it once. Nevertheless,
this approach can be useful when we aim to reproduce the results
obtained on one system, together with the necessary split number,
on another system.

On the other hand, reproducibility may also be achieved sim-
ply by using accurate (not necessarily reproducible) computation
methods. Accurate computations can increase the possibility of
the reproducibility, i.e., the number of bits that can be reproduced,
through reducing rounding errors. However, how much accuracy
is needed to ensure, for example, bit-level reproducibility is a prob-
lem (input) dependent. Iakymchuk et al. [8, 9] demonstrated to
achieve reproducibility only with an accurate computation method
(only with FPE, i.e., the ExBLAS scheme without long accumulator)
by focusing on certain problems. It contributes to improving the
performance more than the ExBLAS approach.

7 CONCLUSION
This paper presented an accurate and reproducible implementation
of the CG method on CPUs and GPUs. The accurate and repro-
ducible operations were introduced into all the inner-product-based
operations in the CG method through the Ozaki scheme, which
performs the correctly-rounded operation. We conducted numeri-
cal experiments on different platforms, including CPUs and GPUs.
While the implementations using existing vendor libraries might
return non-identical results, our implementations always returned
a bit-level identical result. The cost of the Ozaki scheme depends
on the problem, but our implementations achieve comparable or
better performance than an existing work based on the ExBLAS
approach in many cases. Also, our proposed approach has an advan-
tage due its low development cost as it relies on vendor-provided
BLAS implementations. Moreover, we demonstrated some cases
that accurate computation through the Ozaki scheme improved

Conference’17, July 2017, Washington, DC, USA Mukunoki, et al.

10
−15

10
−10

10
−5

10
0

10
5

 0 10000 20000 30000 40000 50000 60000 70000 80000

re
s
id

u
a
l

iter

(6) gyro_k

FP64
FP64Oz−d2
FP64Oz−d3
FP64Oz−d4
FP64Oz−d5

FP64Oz−CR

Figure 4: Convergence plot for the gyro_k matrix (at every
10 iterations) on CPU1. Solid lines show the relative residual
| |𝒓𝑖 | |/| |𝒃 | | and dotted lines show the relative true residual | |𝒃−
𝑨𝒙𝑖 | |/| |𝒃 | |.

the convergence, even though it did not contribute to reducing the
total execution time to get the solution. The source code of our
implementations is available together with OzBLAS14.

As future work, we can adopt the mixed-precision approach to
our proposed method. While this study used FP64 for the com-
putation, the Ozaki scheme can also be built upon low-precision
operations such as FP32 and the mixed-precision operation of FP32
and FP16 on Tensor Cores available on NVIDIA GPUs, as we have
shown in [14]. That is, for example on dot-product, instead of us-
ing DGEMM for the computation as we did in this study, one can
use SGEMM or Tensor Core GEMM (gemmEx) to compute FP64
input/ output. It may contribute to improving the performance on
hardware with a limited FP64 support.

ACKNOWLEDGMENT
This research was partially supported by the Japan Society for
the Promotion of Science (JSPS) KAKENHI Grant #19K20286 and
the EU H2020 research, innovation programme under the Marie
Skłodowska-Curie grant agreement via the Robust project No. 842528.
This research used computational resources of the Cygnus super-
computer provided by Multidisciplinary Cooperative Research Pro-
gram in Center for Computational Sciences, University of Tsukuba,
and the Oakforest-PACS system operated by Joint Center for Ad-
vanced High Performance Computing (JCAHPC).

REFERENCES
[1] S. W. D. Chien, I. B. Peng, and S. Markidis. 2019. Posit NPB: Assessing the

Precision Improvement in HPC Scientific Applications. (to appear).
[2] C. Chohra, P. Langlois, and D. Parello. 2016. Reproducible, Accurately Rounded

and Efficient BLAS. In 22nd International European Conference on Parallel and
Distributed Computing (Euro-Par 2016). 609–620.

[3] Sylvain Collange, David Defour, Stef Graillat, and Roman Iakymchuk. 2015.
Numerical Reproducibility for the Parallel Reduction on Multi- and Many-Core
Architectures. Parallel Computing 49 (2015), 83–97. https://doi.org/10.1016/j.
parco.2015.09.001

[4] T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection.
ACM Trans. Math. Software 38, 1 (2011), 1:1–1:25.

[5] J. Demmel, P. Ahrens, and H. D. Nguyen. 2016. Efficient Reproducible Floating Point
Summation and BLAS. Technical Report UCB/EECS-2016-121. EECS Department,
University of California, Berkeley.

14http://www.math.twcu.ac.jp/ogita/post-k/results.html

[6] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. 2007. MPFR: A
Multiple-precision Binary Floating-point Library with Correct Rounding. ACM
Trans. Math. Software 33, 2 (2007), 13:1–13:15.

[7] Y. Hida, X. S. Li, andD. H. Bailey. 2007. Library for Double-Double and Quad-Double
Arithmetic. Technical Report. NERSC Division, Lawrence Berkeley National
Laboratory.

[8] R. Iakymchuk, M. Barreda, S. Graillat, J. I. Aliaga, and E. S. Quintana-Ortí. 2020.
Reproducibility of Parallel Preconditioned Conjugate Gradient in Hybrid Pro-
gramming Environments. IJHPCA (2020). Available OnlineFirst 17 June 2020.
https://doi.org/10.1177/1094342020932650.

[9] R. Iakymchuk, M. Barreda, M. Wiesenberger, J. I. Aliaga, and E. S. Quintana-Ortí.
2020. Reproducibility strategies for parallel Preconditioned Conjugate Gradient. J.
Comput. Appl. Math. 371 (2020), 112697. https://doi.org/10.1016/j.cam.2019.112697

[10] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat. 2015. ExBLAS: Repro-
ducible and Accurate BLAS Library. In Proc. Numerical Reproducibility at Exascale
(NRE2015) at SC’15.

[11] U. W. Kulisch. 2013. Computer arithmetic and validity (2nd ed.). de Gruyter
Studies in Mathematics, Vol. 33. Walter de Gruyter & Co., Berlin. xxii+434 pages.
Theory, implementation, and applications.

[12] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, A.
Kapur, M. C. Martin, T. Tung, and D. J. Yoo. 2000. Design, Implementation and
Testing of Extended and Mixed Precision BLAS. ACM Trans. Math. Software 28, 2
(2000), 152–205.

[13] D. Mukunoki, T. Ogita, and K. Ozaki. 2020. Reproducible BLAS Routines with Tun-
able Accuracy Using Ozaki Scheme for Many-core Architectures. In Proc. 13th In-
ternational Conference on Parallel Processing and Applied Mathematics (PPAM2019),
Lecture Notes in Computer Science, Vol. 12043. Springer Berlin Heidelberg, 516–527.
https://doi.org/10.1007/978-3-030-43229-4_44

[14] D. Mukunoki, K. Ozaki, T. Ogita, and T. Imamura. 2020. DGEMM using Tensor
Cores, and Its Accurate and Reproducible Versions. In ISC High Performance 2020,
Lecture Notes in Computer Science, Vol. 12151. Springer International Publishing,
230–248. https://doi.org/10.1007/978-3-030-50743-5_12

[15] D. Mukunoki and D. Takahashi. 2014. Using Quadruple Precision Arithmetic to
Accelerate Krylov Subspace Methods on GPUs. In 10th International Conference
on Parallel Processing and Applied Mathematics (PPAM2013). 632–642.

[16] M. Nakata. [n.d.]. The MPACK; Multiple precision arithmetic BLAS (MBLAS)
and LAPACK (MLAPACK). http://mplapack.sourceforge.net.

[17] K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump. 2012. Error-free transformations
of matrix multiplication by using fast routines of matrix multiplication and its
applications. Numer. Algorithms 59, 1 (2012), 95–118.

[18] K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump. 2013. Generalization of error-free
transformation for matrix multiplication and its application. Nonlinear Theory
and Its Applications, IEICE 4 (2013), 2–11.

[19] S. M. Rump, T. Ogita, and S. Oishi. 2008. Accurate Floating-Point Summation
Part I: Faithful Rounding. SIAM J. Sci. Comput. 31, 1 (2008), 189–224. https:
//doi.org/10.1137/050645671

[20] S. M. Rump, T. Ogita, and S. Oishi. 2008. Accurate floating-point summation part
II: Sign, K-fold faithful and rounding to nearest. SIAM J. Sci. Comput. 31, 2 (2008),
1269–1302.

[21] S. M. Rump, T. Ogita, and S. Oishi. 2009. Accurate Floating-Point Summation
Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM Journal on Scientific
Computing 31, 2 (2009), 1269–1302.

[22] S. M. Rump, T. Ogita, and S. Oishi. 2010. Fast high precision summation. Nonlinear
Theory and Its Applications, IEICE 1, 1 (2010), 2–24.

[23] R. Todd. 2012. Introduction to Conditional Numerical Reproducibility
(CNR). https://software.intel.com/en-us/articles/introduction-to-the-conditional-
numerical-reproducibility-cnr.

https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1177/1094342020932650
https://doi.org/10.1016/j.cam.2019.112697
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1007/978-3-030-50743-5_12
http://mplapack.sourceforge.net
https://doi.org/10.1137/050645671
https://doi.org/10.1137/050645671

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Ozaki scheme
	3.2 Installation of reproducibility to the CG method

	4 Implementation
	4.1 FP64
	4.2 FP64Oz-CR

	5 Evaluation
	5.1 Reproducibility, convergence, and accuracy
	5.2 Performance (overhead)
	5.3 Comparison with the ExBLAS-based CG

	6 Reproducibility without correctly-rounded operations, and accurate computation for reproducibility
	7 Conclusion
	References

