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DyClee-C: a clustering algorithm for qualitative data based diagnosis

Sensors are multiplying on machines, networks and living things. Reasoning and extracting knowledge from this huge amount of data is among nowadays challenges. In databased diagnostic applications, large amounts of data are often available but a key issue is that data remain unlabelled because labelling would require too much time and imply prohibitive costs. The different situations, e.g. normal or faulty, must hence be learned from the data. Clustering methods, also qualified as unsupervised classification methods, can then be used to create groups of samples according to some similarity criterion. The different groups can supposedly be associated to different situations.

Numerous algorithms have been developed in recent years for clustering numeric data but these methods are not applicable to qualitative (categorical) data. However, in many application domains, qualitative features are key to properly describe the different situations. This paper presents DyClee-C, an extension of the numeric feature based DyClee algorithm to qualitative data. DyClee-C is applied to two data sets: a soybean data set to diagnose the disease soybean plants and a breast cancer data set to assess the current diagnosis in terms of recurrence events and prognose possible relapse.

INTRODUCTION

In the digital age, the amount of data that is recorded by organizations and companies is enormous. If this data is to have added value, it must be possible to extract relevant information automatically. This is why data mining methods appear to be crucial. Among them, clustering methods have an essential role to play. Indeed, data often remains unlabelled because labelling would require too much time and imply prohibitive costs. In diagnostic applications, the different situations, e.g. normal or faulty, must hence be learned from the data. Clustering methods, also qualified as unsupervised classification methods, can then be used to create groups of samples according to some similarity criterion. The different groups can supposedly be associated to different situations.

In the field of clustering, many unsupervised learning algorithms exist. Among the most well-known, we find K-Means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], [START_REF] John | Algorithm as 136: A k-means clustering algorithm[END_REF], DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] and hierarchical ascending classification (HAC) [START_REF] Gabor | Hierarchical clustering via joint between-within distances: Extending ward's minimum variance method[END_REF]. These algorithms use a numeric distance criterion such as the classical Euclidean distance or the Manhattan distance for high dimensional data sets to determine sample sim-ilarity and closest clusters. For this reason, most algorithms are not applicable to qualitative data, that is nominal or ordinal. However, qualitative features are key to properly describe the different situations in many application domains.

As a matter of fact, the metrics quoted above do not make possible to calculate a distance between two samples described by qualitative features. Some algorithms have been developed to overcome this problem, such as K-modes [START_REF] Huang | Extensions to the k-means algorithm for clustering large data sets with categorical values[END_REF], ROCK [START_REF] Guha | Rock: A robust clustering algorithm for categorical attributes[END_REF] or SQUEEZER [START_REF] He | Squeezer: an efficient algorithm for clustering categorical data[END_REF]. All these algorithms use their own notion of similarity to create clusters.

In this paper, an extension of the DyClee numeric clustering algorithm is proposed [START_REF] Barbosa Roa | Dyclee: Dynamic clustering for tracking evolving environments[END_REF], [START_REF] Andrea | A data-based approach for dynamic classification of functional scenarios oriented to industrial process plants[END_REF], [START_REF] Barbosa | A data-based dynamic classification technique: A two-stage density approach[END_REF]. The method, named DyClee-C, applies to qualitative data. It must be considered as a building block of the mixed numeric/qualitative DyClee version that is under construction. After the presentation of DyClee-C, DyClee-C is applied to two data sets: a soybean data set to diagnose the disease soybean plants and a breast cancer data set to assess the current diagnosis in terms of recurrence events and prognose possible relapse.

The paper is organized as follows. Section 2 presents the basic principles and the different steps of the DyClee algorithm. The qualitative extension DyClee-C is introduced in section 3. The tests on the soybean and breast cancer data sets are presented in section 4. Finally, section 5 provides conclusions and perspectives of this work2 .

THE DYCLEE ALGORITHM

The Dynamic Clustering algorithm for tracking Evolving Environments (DyClee) is an unsupervised learning method. DyClee implements a distance and density based algorithm that features several properties like handling non convex, multi-density clustering with outlier rejection, and it achieves full dynamicity. All these properties are not generally found together in the same algorithm and DyClee hence pushes forward the state of the art in this respect. The first step qualified as distance-based step operates at the rate of the data stream and creates micro-clusters putting together data samples that are close in the sense of the L1-norm. Micro-clusters are stored in the form of summarized representations including statistical and temporal information. The second step qualified as density-based step uses a density-based approach applied to the micro-clusters to create the final clusters. A cluster is defined as a set of connected micro-clusters where every in-side micro-cluster presents high density and every boundary micro-cluster exhibits either medium or high density. Figure 1 illustrates how the DyClee algorithm works. DyClee only handles numeric data sets making use of the KD-Tree algorithm for grouping the micro-cluster at the begining of the density-based step. However, the KD-tree does not process qualitative data. A KD-Tree is a spacepartitioning data structure for organizing points in a kdimensional space [START_REF] Maneewongvatana | It's okay to be skinny, if your friends are fat[END_REF]. KD-Trees are a useful data structure for several applications, such as nearest neighbor search. The work presented in this paper aims to propose a dynamic clustering approach able to manage qualitative data and capture large data dimensions. For this purpose, an alternative to the KD-Tree is proposed and integrated with the DyClee method, thus leading to DyClee-C.

QUALITATIVE EXTENSION DYCLEE-C

The extension to qualitative data relies mainly on the removal of micro-clusters and on an alternative solution to KD-Tree for finding neighbors. Indeed, in DyClee, the hypercubes (i.e the micro-clusters) make it possible to represent a similar population. Centers of micro-clusters (µC) can be calculated by averaging, for each attribute, all the samples present in the µC. In the case of qualitative data, we decided to experiment an algorithm that does not make use of the micro-cluster concept. In consequence, the distance-based step of DyClee, during which the samples are assigned to the µCs, is removed and the density-based step directly deals with the samples. In DyClee, clusters are formed by searching in each group found by the KD-Tree, sub-regions of dense and semi-dense microclusters. In the DyClee-C extension, they are formed from the results of the Locality Sensitive Hashing (LSH) [START_REF] Indyk | Approximate nearest neighbors: towards removing the curse of dimensionality[END_REF] algorithm, [START_REF] Leskovec | Mining of massive datasets[END_REF], [START_REF] Gionis | Similarity search in high dimensions via hashing[END_REF]. This method is used in several applications such as clustering, searching for nearest neighbors in large dimensions and the detection of similar images.

The following sections detail the principles of the LSH algorithm, how the clusters are formed and they present several parameters of the method allowing to refine the clustering results.

Locality Sensitive Hashing algorithm

The LSH algorithm is an appropriate alternative to the KD-Tree since, on the one hand, this algorithm is able to process numerical and qualitative data, on the other hand this algorithm is a solution to the problem of the curse of dimensionality [START_REF] Jerome H Friedman | On bias, variance, 0/1-loss, and the curse-of-dimensionality[END_REF], [START_REF] Rust | Using randomization to break the curse of dimensionality[END_REF], [START_REF] Verleysen | The curse of dimensionality in data mining and time series prediction[END_REF]. LSH makes it possible to reduce the dimensionality of large data sets. LSH refers to a family of hash functions that associate samples in buckets: similar samples (in the sense of a matching measure of similarity) are assigned to the same bucket while dissimilar samples are assigned to different bucket. Figure 2 illustrates this method: classic hash functions assign each sample to a different bucket while the hash functions belonging to the family of hash functions of the LSH assign close samples to the same bucket. The intuition behind this family of hash functions is that the probability that two samples share the same bucket is related to the distance that separates these two samples. The greater the distance, the lower the probability that the two samples share the same bucket [START_REF] Indyk | Approximate nearest neighbors: towards removing the curse of dimensionality[END_REF]. Definition 3.1 gives the conditions for two samples to share the same bucket. Definition 3.1. A family of hash functions is called (d1, d2, p1, p2) -sensitive for all x and y ∈ S, where S is a set of samples if the two following conditions are fulfilled:

• d(x,y) ≤ d1 ⇒ Pr h∈H [h(x) = h(y)] ≥ p1 • d(x,y) ≥ d2 ⇒ Pr h∈H [h(x) = h(y)] ≤ p2
where d(., .) is the distance between two samples with values between 0 and 1, h(.) is the result of the hash function h applied to a sample. p1 and p2 are probability thresholds for two samples to share the same bucket, with values between 0 and 1. To find sample's neighbors, all samples that share the same basket as some sample at least once on the t hash tables are considered neighbors. This technique is used to find groups in DyClee-C. Figure 3 illustrates the search for nearest neighbors for a sample. The neighbors of the sample q (noted q for query point) are all samples that share the same bucket as the q point at least once. Here, the neighbors of q are the red and yellow dots.

Identification of clusters with DyClee-C

In DyClee, clusters are created from groups of micro-clusters found by the KD-Tree. Let M = {µC1, ..., µCz, ..., µC k }, the set of micro-clusters found with µCz the z-th micro-cluster and k the number of micro-clusters. D = {D1, ..., Dz, ..., D k } is the set of densities corresponding to micro-clusters with Dz the density of the z-th micro-cluster. G = {G1, ..., Gz, ..., G l } is the set of micro-cluster groups detected by the KD-Tree, Gz is the z-th micro-cluster group and l is the number of micro-cluster groups. Note that the number of microclusters k is generally much bigger than the number of groups of micro-clusters l. For each group, the densest micro-cluster subregions are searched. A cluster is created if a micro-cluster is dense and if its neighbors are dense or semi-dense inside a group. If a micro-cluster is outlier, all the samples in this micro-cluster are considered noise.

DyClee offers two approaches to find clusters: the global approach and the local approach.

In the global approach, a micro-cluster µCz is said to be dense if Dz is greater than or equal to the two global density thresholds which are the median and average density of all micro-clusters D. A micro-cluster µCz is semi-dense if Dz is greater than or equal to one of the two global density thresholds. Finally, a micro-cluster µCz is said to be outlier if Dz is less than or equal to the two global density thresholds. In the case of DyClee-C, as explained previously, the concept of micro-cluster no longer exists. The notion of density of a micro-cluster Dz is replaced by the number of neighbors of each categorial sample. The neighbor of a sample is spotted by a connection. Let O = {O1, ..., Oz, ..., On }, the set of samples with Oz, the z-th sample of O and n the number of samples. C = {CO1, ..., COz, ..., COn } is the set of connections of all samples with COz, the number of connections of Oz. CG = {CG1, ..., CGz, ..., C Gl } is the set of samples connections for all groups of samples found by the LSH algorithm, with CGz the number of connections of samples in the group z and l the number of groups of qualitative samples found.

As part of the qualitative global approach, a sample Oz is dense if COz is greater than or equal to the global density thresholds which are then the median and average of the number of connections of each sample. Oz is semi-dense if COz is greater than or equal to the global density thresholds. Finally, If the sample is semi-dense, the sample is added to the cluster but his neighbors are not sought. This approach allows for a cluster with a dense center and semidense cluster edges. A cluster is created when no new neighbor is detected. The operation continues with a new sample. Algorithm stops when all the samples have been analyzed (lines 4 to 24). Clusters.add(cluster) 

In DyClee-C, the principle of creating clusters by local approach is unchanged but instead of comparing a sample's connections to the median and the average of the connections of all samples O, COz is compared to the connection thresholds calculated from the median and the average of the connections of samples in the CGz group. The conditions for a sample to be dense, semi-dense and outlier are given by inequalities (4). The pseudo code associated with the local approach is given by Algorithm 2. 

To illustrate this approach, the example of Figure 6 is used. The density thresholds change in relation to the overall approach. Each group has its own density thresholds. Group 1 composed of G1 = {1, 2, 3, 4, 5, 5, 6, 7, 8} has for median(DG1) = 2 and average(DG1) = 2,25 and group 2 composed of G2 = {9, 10, 11, 12, 12, 13, 14} has for median(DG2) = 2.5 and average(DG2) = 2.75. The Cl1 cluster remains unchanged from the overall approach. Concerning the Cl2 cluster, samples 9 and 11 are added to sample 14 and are also considered outliers because CO9 and CO11 are less than median(DG2) and average(DG2). The Cl2 cluster is therefore composed of Cl2 = {10, 12, 13}. Figure 6 illustrates the clusters found by applying the local approach.

The methods for generating clusters in DyClee-C have been detailed in the previous section. Several parameters allow the user to improve clustering results by adding some knowledge to the data. These parameters are detailed below.

Settings of Dyclee-C

The final clusters are found using one of the two approaches described in the previous section. These results can be refined O ← samples that are not in Clusters 25: end while Figure 6. Clusters found by applying the local approach with optional parameters. In this section, three parameters are described. The first is called U nclassed accepted, the second is called minimum samples and the last parameter presented is called n clusters. These parameters are tuned in function of the problem encountered and evaluated with cluster validity methods [START_REF] Liu | Understanding of internal clustering validation measures[END_REF] like those they are presented in section 4. In Dy-Clee, clusters are composed of dense (center) and semi-dense (edge of the cluster) micro-clusters. Outliers are considered unrepresentative and their samples are rejected (considered noise). Depending on the context, it may be interesting not to consider outliers but, on the contrary, to assign all the data to a cluster. When the parameter U nclassed accepted is activated, all the samples must be assigned to a cluster, i.e. there is no outlier rejection.

The second parameter is called minimum samples and allows you to set the minimum number of samples that a cluster must contain to be considered as a final cluster. Indeed, depending on the application, small clusters may not be representative. In the case where a nominal situation has to be analysed, small clusters can represent abnormal situations. These clusters are no longer considered as final clusters and the samples assigned to them are marked as noise. The equation (5) allows you to set the size that clusters must have to be considered as final clusters.

|Clz| ∨ l i=0 |Cli| |Cl| (5)
with |Clz| the size of the cluster z to be evaluated and |Cl| is the number of cluster groups.

The use of the parameter is illustrated in Figure 7 with three clusters Cl = {Cl1, Cl2, Cl3}. Cluster 1 is given by Cl1 = {1, 2, 3, 4, 5, 6, 7, 8}, cluster 2 by Cl2 = {9, 10, 11, 12, 13, 14} and the third by Cl3 = {15, 16, 17}. To be considered as final clusters, all Cl clusters must have a size greater than the threshold defined in the equation ( 6):

T hreshold = |Cl1| + |Cl2| + |Cl3| |Cl| = 8 + 6 + 3 3 = 5, 67 (6) 
The Cl1 and Cl2 clusters are larger than 5.67 (respectively 8 and 6) and are therefore considered final clusters. On the other hand, since the Cl3 cluster has a size equal to 3, the samples that compose it (15, 16 and 17) are considered as noise (in the Figure 7 in grey). The last parameter is called n clusters and allows you to consider the most important n clusters as final clusters. Samples belonging to the remaining clusters are assigned to the final n clusters. Let be A = {A1, ..., Ai, ..., Am}, all the qualitative attributes of the set of samples O, with m the number of attributes. c = {c1, ..., cz, ..., c l } is the set of cluster centers Cl with cz the cluster center Clz. A cz center is defined by cz = {cz1, ..., czi, ..., czm} with czi, the i-th component of the z center. The terms of an attribute Ai are noted M od(Ai) = {mi1, ..., mij, ..., mip} with mij, the j-th term of the attribute Ai and p, the number of terms of the attribute Ai. The frequency of a modality mij is noted f r(mij). The i component of the cz center is defined as the most frequent modality of the Ai attribute (see equation [START_REF] Gionis | Similarity search in high dimensions via hashing[END_REF]. czi = max(f r(mi1, ..., f r(mij), ..., f r(mip)).

(

When the n clusters parameter is active, the distance between samples not in the final n clusters is calculated and samples are assigned to the nearest center. Figure 8 The section 4 presents the different tests performed on the DyClee-C.

EVALUATION

DyClee-C was tested on well-known UCI Machine Learning data sets in the clustering domain like Zoo, Congressional Voting Records, Soybean and Breast Cancer. The two latter data sets have been selected to be reported in this paper because they correspond to a diagnosis problem. As they have a large number of dimensions, it allows to test how DyClee-C handles data sets with many qualitative attributes. DyClee-C was compared to the K-modes clustering algorithm [START_REF] Huang | Extensions to the k-means algorithm for clustering large data sets with categorical values[END_REF]. Note that an initialization method for the centers of clusters that is not present in the Huang paper is also tested. Indeed, this new method was introduced by [3] 11 years after the original paper. Training phases have been realized on a part of the data sets to find correct combinations of parameters. To evaluate clusters, three validity measures are used: the purity, recall and the precision. Purity is the ratio between the sum of the number of elements correctly assigned in each class i (noted T Pi) and the number of samples in the data set. This measure is described in the equation [START_REF] Guha | Rock: A robust clustering algorithm for categorical attributes[END_REF] where T P i is the real positive rate of the i th class, k is the number of classes and N is the number of samples in the data set.

P urity = k i=0 T Pi N (8) 
The recall corresponds to the ratio between the number of elements correctly assigned to the i th class and the number of elements belonging to the i th class (noted T Pi + F Ni). This measure is described in the equation [START_REF] John | Algorithm as 136: A k-means clustering algorithm[END_REF] with Ri, the recall of the i th class, T Pi, the real positive rate in the i th class and F Ni class, the false negative rate in the i th class. A false negative is a result where the model incorrectly predicts the negative class.

Ri = T Pi T Pi + F Ni (9)
The last measure is the precision which corresponds to the ratio between the number of elements correctly assigned to the i th class and the number of elements assigned to the i th class (noted T Pi + F Pi). This measure is described in the equation [START_REF] He | Squeezer: an efficient algorithm for clustering categorical data[END_REF], with Pi, the accuracy of the i th , T Pi class, the true positive rate for the i th and F Pi class, the false positive rate for the i th class. A false positive is a result where the model incorrectly predicts the positive class.

Pi = T Pi T Pi + F Pi (10)

Soybean data set

The first data set is the "Soybean" [START_REF] Ryszard | UCI machine learning repository[END_REF]. This data set consists of 47 soybean plants with 35 qualitative attributes and 4 classes. Attributes correspond to the characteristics of the plant (size of the seed, leaves,...). The classes correspond to diseases specific to soybean plants. Two tests with two different settings were performed on this data set. The first one was done with the parameter U nclassed accepted enabled. The parameter of K-Modes corresponding to the number of clusters is k clusters = 4. Original classes of the "Soybean" data set, results of DyClee-C and K-Modes algorithms with both initializations [START_REF] Huang | Extensions to the k-means algorithm for clustering large data sets with categorical values[END_REF], [START_REF] Cao | A new initialization method for categorical data clustering[END_REF]) are shown in Table 1. Results in Table 1 show that classes C2 and C3 were perfectly detected by both algorithms tested. However, the C1 and C4 clusters were poorly formed by DyClee-C while K-Modes found the right classes. The reason behind the DyClee-C misclassification is that DyClee-C do not compute the distance between every samples. Indeed, the Locality Sensitive Hashing consider as nearest neighbors samples that share the same bucket at least once (section 3.1). As K-Modes method measures the dissimilarity between the whole data set, the Huang's algorithm is more precise. Moreover, K-Modes method needs the number of clusters as a parameter. As an unsupervised clustering algorithm, this kind of information is normally not known in advance. Purity, recall and precision measures for DyClee-C and K-Modes algorithms are shown in Table 2.

C
As K-Modes method found correct classes, purity, recall and precision measures corresponding are equal to 100%. The second test highlights outliers and their influence on DyClee-C's results. Parameters enabled for this test Table 3 represents the classes of the "Soybean" data set and the clusters found by DyClee-C when the outliers detected by the parameter minimum samples are not taken into account. The results show that in this configuration, all classes were found by DyClee-C. The three validity measures associated to this result are equal to 100%.

Breast Cancer data set

The second data set is the "Breast Cancer" [START_REF] Tan | UCI machine learning reposi-tory[END_REF]. This data set consists of 286 instances and 9 qualitative attributes and 2 classes. An instance corresponds to a patient and each attribute is an information about the patient and his pathology (age, which breast has the tumor, the degree of the malignancy,...). Some attributes have missing values and are represented by a "?" in the data set. These special values are considered as a modality for the test. Classes are instances which have a no recurrence events and recurrence events. Parameters enabled of DyClee-C for this test are U nclassed accepted and n clusters = 2. The parameter of K-Modes corresponding to the number of clusters is k clusters = 2. Original classes of the "Breast Cancer" data set, results of DyClee-C and K-Modes (with both initializations) are shown in Table 4 While purity score is slightly higher for DyClee-C than K-Modes, the method presented in this paper is clearly better for recall and precision score than the Huang's algorithm.

CONCLUSIONS AND PERSPECTIVES

In this article, an extension of DyClee, a dynamic clustering algorithm for numeric data, is presented. This extension, called DyClee-C, allows one to apply the basic concepts of Dy-Clee to qualitative data. The KD-Tree has been replaced by the LSH algorithm, which makes it possible to form groups of qualitative samples with large dimensions. The two approaches, global and local density, to generate clusters have been modified to capture qualitative data. The concept of micro-cluster density is replaced by the number of neighbours of a sample, i.e. its connections. Thus, a sample with a certain number of connections is more dense than a sample with few connections. Three parameters have been adapted in order to refine the clusters obtained. The first one allows one to identify and reject outliers, the second one only keeps clusters with a size larger than the average cluster size and the last one allows one to consider the most important n clusters as final clusters.

For the tests, DyClee-C has been compared to the K-Modes algorithm on two well-known data sets with several qualitative features. The Breast Cancer data set shows that DyClee-C is able to detect classes even if the samples have missing modalities. The Soybean data sets illustrates the capacity of DyClee-C to detect outliers. The obtained results are promising and show that clustering can be used for diagnosis purposes even for data bases with qualitative features. In the tests, evaluation is achieved by comparing the clustering results to the ground truth clusters, which is obviously improper. Indeed, unsupervised classification algorithms are used when labels are not known. Subsequently, further evaluation is planned to be carried out with the agnostic evaluation criterion proposed in [START_REF] Ducharlet | A multi-phase iterative approach for anomaly detection and its agnostic evaluation[END_REF]. Also, a mixed version of DyClee to manage both numerical and qualitative data is under development.
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 1 Figure 1. Overview of DyClee
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 2 Figure 2. Assignment of samples with hash functions with the LSH

Figure 3 .

 3 Figure 3. Searching neighbors with the LSH algorithm

  These conditions are represented by the inequalities (1), where median(D1, ..., D k ) and average(D1, ..., D k ) correspond respectively to the median and average density of micro-clusters in M . µCzdense ⇔ Dz ≥ median(D1, ..., D k ) ∧Dz ≥ average(D1, ..., D k ) µCzsemi -dense ⇔ Dz ≥ median(D1, ..., D k ) ∨Dz ≥ average(D1, ..., D k ) µCzoutlier ⇔ Dz < median(D1, ..., D k ) ∧Dz < average(D1, ..., D k ) (1)

  Oz is outlier if COz is less than the global density thresholds. These conditions are represented by the inequalities[START_REF] Andrea | A data-based approach for dynamic classification of functional scenarios oriented to industrial process plants[END_REF], where median(CO1, ..., C Ok ) and average(CO1, ..., C Ok ) correspond respectively to the median and mean of the set of connections of C. Ozdense ⇔ COz ≥ median(CO1, ..., C Ok ) ∧COz ≥ average(CO1, ..., C Ok ) Ozsemi -dense ⇔ COz ≥ median(CO1, ..., C Ok ) ∨COz ≥ average(CO1, ..., C Ok ) Ozoutlier ⇔ COz < median(CO1, ..., C Ok ) ∧COz < average(CO1, ..., C Ok ) (2) Algorithm 1 implements the creation of clusters with the global approach of DyClee-C. From line 1 to 3, the density thresholds median(CO1, ..., C Ok ) and average(CO1, ..., C Ok ) are calculated from the set of connections of all the samples of C. When a dense sample is detected, his neighbors are searched for and analyzed. If these are dense neighbors of neighbors are sought.

O

  ← samples that are not in Clusters 25: end while To illustrate the global approach, two groups found by the LSH, are shown in Figure 4. The first qualitative group is made up of eight samples G1 = {1, 2, 3, 4, 5, 6, 7, 8} and the second is composed of six samples G2 = {9, 10, 11, 12, 13, 14}. The set C = {5, 3, 1, 3, 2, 1, 2, 1, 2, 5, 2, 3, 3, 1} corresponds to the connections of all samples. The overall density thresholds, i.e. the median and the mean of the connections present in C, are respectively equal to median(CO1, ..., C Ok ) = 2 and average(CO1, ..., C Ok ) = 2.43. A cluster is composed of dense samples in the center and semi-dense samples at the cluster boundaries.

Figure 4 .

 4 Figure 4. Example of groups of qualitative samples detected by the LSH algorithm
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 5 Figure 5. Clusters found by applying the global approach

  Ozdense ⇔ COz ≥ median(CGz) ∧COz ≥ average(CGz) Ozsemi -dense ⇔ COz ≥ median(CGz) ∨COz ≥ average(CGz) Ozoutlier ⇔ COz < median(CGz) ∧COz < average(CGz)

Figure 7 .

 7 Figure 7. Left: parameter minimum samples disabled. Right: parameter minimum samples enabled

  takes the example of Figure 7. In this example, the two most important clusters are considered as final clusters (Cl1 and Cl2). Samples 15, 16 and 17 of Cl3 are reassigned to the nearest clusters. Samples 15 and 17 are therefore assigned to the Cl1 cluster and sample 16 to the Cl2 cluster.

Figure 8 .

 8 Figure 8. Left: parameter n clusters disabled. Right: parameter n clusters enabled with n = 2

  Algorithm 1 DyClee-C global approach Require: Set of samples O, set of connexions of samples C

	5:	toAnalyze = []
	6:	cluster = []
	7:	toAnalyze ← O.pop()
	8:	while toAnalyze not empty do
	9:	for i ∈ toAnalyze do
	10:	if i → Dense then
	11:	N eighbors ← LSH.query(i)
	12:	for neighbor ∈ N eighbors do
	13:	if (neighbor is Dense ∧ neighbor / ∈ cluster)
		then
	14:	cluster.add(neighbor)
	15:	toAnalyze.add(neighbor)
	16:	else if (neighbor is Semi -dense ∧ neighbor
		/ ∈ cluster) then
	17:	cluster.add(neighbor)
	18:	end if
	19:	end for
	20:	end if
	21:	end for
	22:	end while
	23:	

1: Oz → Dense such that COz ≥ median(CO1, ..., C Ok ) ∧ COz ≥ average(CO1, ..., C Ok ) 2: Oz → Semi -dense such that COz ≥ median(CO1, ..., C Ok ) ∨ COz ≥ average(CO1, ..., C Ok ) 3: Clusters = [] 4: while O not empty do

  Algorithm 2 DyClee-C local approach Require: Set of samples O, set of connexions of samples C, Set of groups of samples CG 1: Oz → Dense such that COz ≥ median(CGz) ∧ COz ≥ average(CGz) 2: Oz → Semi -dense such that COz ≥ median(CGz) ∨

		COz ≥ average(CGz)
	3: Clusters = []
	4: while O not empty do
	5:	toAnalyze = []
	6:	cluster = []
	7:	toAnalyze ← O.pop()
	8:	while toAnalyze not empty do
	9:	for i ∈ toAnalyze do
	10:	if i → Dense then
	11:	N eighbors ← LSH.query(i)
	12:	for neighbor ∈ N eighbors do
	13:	if (neighbor is Dense ∧ neighbor / ∈ cluster)
		then
	14:	cluster.add(neighbor)
	15:	toAnalyze.add(neighbor)
	16:	else if (neighbor is Semi -dense ∧ neighbor
		/ ∈ cluster) then
	17:	cluster.add(neighbor)
	18:	end if
	19:	end for
	20:	end if
	21:	end for
	22:	end while
	23:	

Clusters.add(cluster)

24:

Table 1 .

 1 Clusters found by DyClee-C and K-Modes for the Soybean data set

		1	C 2	C 3	C 4
	Soybean	17	10	10	10
	DyClee-C	26	10	10	1
	K-Modes (Huang)	16	14	10	7
	K-Modes (Cao)	17	10	10	10

Table 2 .

 2 table Purity, recall and precision scores of DyClee-C and K-Modes algorithm for the Soybean data set are U nclassed accepted and minimum samples. The latter makes it possible to eliminate samples belonging to clusters with a size smaller than the average cluster size.

		Purity	Recall	Precision
	DyClee-C	70%	77%	85%
	K-Modes (Huang)	78%	55%	52%
	K-Modes (Cao)	100%	100%	100%
		C 1	C 2	C 3	C 4
	Soybean	10	9	9	6
	Result	10	9	9	6

Table 3 .

 3 table Clusters found by DyClee-C for the Soybean data set with outliers removed

Table 4 .

 4 . table Clusters found by DyClee-C and K-Modes for the Breast Cancer data setDyClee-C have detected better groups than the K-Modes algorithm. Few samples have been misclassified by DyClee-C while they are more samples in the wrong class with the K-Modes algorithm. Purity, recall and precision measures for DyClee-C and K-Modes algorithms are shown in Table5.

		C 1	C 2
	Breast Cancer	201	85
	DyClee-C	207	79
	K-Modes (Huang)	149	137
	K-Modes (Cao)	183	103

Table 5 .

 5 table Purity, recall and precision scores of DyClee-C and K-Modes algorithm for the Breast Cancer data set
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