
HAL Id: hal-02986555
https://hal.science/hal-02986555v2

Submitted on 1 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comp-O: an OWL-S Extension for Composite Service
Description

Grégory Alary, Nathalie Jane Hernandez, Jean-Paul Arcangeli, Sylvie
Trouilhet, Jean-Michel Bruel

To cite this version:
Grégory Alary, Nathalie Jane Hernandez, Jean-Paul Arcangeli, Sylvie Trouilhet, Jean-Michel Bruel.
Comp-O: an OWL-S Extension for Composite Service Description. 22nd International Conference,
EKAW 2020, Sep 2020, Bolzano, Italy. p. 171-182, �10.1007/978-3-030-61244-3_12�. �hal-02986555v2�

https://hal.science/hal-02986555v2
https://hal.archives-ouvertes.fr

Comp-O: an OWL-S Extension for Composite
Service Description

G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

Institut de Recherche en Informatique de Toulouse
University of Toulouse, France

Abstract Component-based software engineering is a paradigm that fosters
software flexibility and emphasizes composability and reuse of software compo-
nents. These are runtime units that provide services and, in turn, may require
other services to operate. Assembling components consists in binding compo-
nents’ required services to provided ones to deliver composite services with added
value. Building a composite service is a challenging task as it requires identify-
ing components and services that are compatible, binding them to implement
the service, and describe it for discovery. For that, the vocabulary used to de-
scribe component-based services (i.e., services offered by components or assem-
blies) must support the description of required services, and descriptions must
be combinable in order to automatically generate composite service descriptions.

State of the art shows that considering ontologies when describing services
improves their discoverability and invocability. However, existing solutions are
limited to the description and composition of provided services.

In this paper, we consider ontologies to describe component-based services
implemented by component assemblies. First, existing service ontologies are
studied and compared to the requirements that an ontology for component-based
services must satisfy. Then follows a presentation of an extension of OWL-S
called Comp-O to describe component-based services. Finally, through a proof-
of-concept, we demonstrate how the developer is assisted when assembling com-
ponents to build a composite service and how composite service descriptions are
automatically generated by combining component unit descriptions.

1 Introduction

Component-based software engineering consists in designing software as assem-
blies of reusable and versatile software components. Software components are
building blocks that implement and provide services. As they exhibit the ser-
vices they require at the same level as the services they provide, components
are easily composable [1,2]. In order to make a component fully operational,
i.e., actually provide its services, each of its required services must be realized
by (bound to) a service that is provided by another component. Composing
components, that is to say building assemblies of components, means binding
services based on their abstract specifications (e.g., signatures, pre- and post-
conditions). Composition leads to complex composite services with added value
which behavior depends on the components that are involved in the assembly.

2 G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

Building services by means of software components promotes flexibility: the
behavior of a service can be modified by replacing a component by another one
in the assembly.

To improve discoverability by third parties, component-based services must
be semantically described. When they result from composition, their semantics
depend on the ones of the components. The semantics of the services provided by
a component depends on the semantics of the services required by this compo-
nent. Since these required services are abstracted, the actual semantics depend
on the semantics of the provided services they are bound to. In a way, the se-
mantics of a composite service is distributed among the components. Therefore,
it must be synthesized from the semantics of the components that compose the
assembly.

The problem is to describe the services provided by components that have
required services, both to enable assistance to the service developer when she/he
assembles components and to combine such descriptions to automatically gen-
erate composite service descriptions. We propose to describe component-based
services with ontologies in order to leverage the semantics of such knowledge rep-
resentations regarding two issues : (i) support a detailed description of composite
services; (ii) support the composition of services and produce a description of a
composite service depending on the components participating to the assembly.

State of the art shows that considering ontologies when describing services
improves their discoverability [3] and their composition [3][4]. Several ontologies
and approaches exploiting them have thus been proposed. However, existing
solutions mainly consider Web services and are not suited for component-based
services requiring specific services.

In this paper we propose Comp-O, an extension of the well-known OWL-S
ontology in order to consider specific characteristics of component-based services
and we demonstrate how the added semantics can be handled to automatically
build composite service descriptions.

The remainder of this paper is organized as follows. Section 2 briefly in-
troduces software components, component-based development, and component-
based services, then the characteristics of component-based services to describe
are exposed, and the related work is analyzed. In Section 3, the requirements
for a component-based service ontology are presented and tested against sev-
eral existing ontologies. Comp-O, an extension of OWL-S complying with the
requirements, is then presented and instantiated in Section 4. Section 5 proposes
an approach to assist the developer in the building of Comp-O composite services
and to generate their descriptions automatically. Last, Section 6 summarizes the
contribution and discusses some future works.

2 Component-based services

2.1 Components and component-based services

Component-based software engineering is a paradigm that emphasizes compos-
ability and reuse of software components. Software components [1,2] are loosely

Comp-O: an OWL-S Extension for Composite Service Description 3

coupled self-contained runtime units that provide services specified by inter-
faces. To operate, i.e., actually provide their services, they may require external
services. Fig. 1 shows the UML representation of a software component called
VoiceToTextConverter, where the provided services (here, the VoiceProcess ser-
vice) are pictured by a bullet and the required services (here, the TextProcess
service) by a socket. Unlike objects, software components bring the required ser-
vices at the same level as the provided ones. As a result, components are building
blocks that can be assembled by binding required to provided services if their
interfaces match, to deliver a composite service with added value.

Fig. 1: UML representation of the VoiceToTextConverter component

Flexibility is one of the main advantages of component-based development.
Components are versatile and reusable in different contexts. In an assembly, a
component is substitutable: it can be replaced at design or execution time by
another component that offers an “equivalent” functionality, this equivalence
being based on compatibility of the interfaces. Interfaces specify a contract of
use containing the type of the inputs and outputs, pre-conditions to satisfy when
invoking the service and guaranteed post-conditions.

We call component-based service a service that is provided by a software
component. If the latter requires external services, the component-based ser-
vice is implemented by an assembly, and its actual semantics depends on the
components that are involved in the assembly.

2.2 Illustrative examples

Fig. 2: The PrintText component-based service

4 G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

Fig. 2 represents the TextPrinter component that provides the component-
based service called PrintText. PrintText takes a Text as the only input: when
invoked, the input text is printed by a printer and there is no result in return.
Like a Web service, PrintText is ready to use since TextPrinter does not need
to be bound to any service as it has no required interface.

The VoiceProcess service provided by the VoiceToTextConverter component
is however not ready to use. To make it work, the TextProcess required service
must be bound to a component provided service that takes a text as input, e.g.,
PrintText of TextPrinter (assuming that PrintText matches TextProcess). Fig. 3
represents an assembly that implements a component-based composite service
that takes a voice record as input, converts it to a text, and prints it.

Fig. 3: Implementation of the VoiceProcess composite service

As components are replaceable, a TextTransformer component can be in-
serted between VoiceToTextConverter and TextPrinter (assuming the services
match), to translate the text before printing it. The result is shown in Fig. 4:
when invoked, the TextTransformer component demands the translation in French
of the input text then requires the PrintText service.

Fig. 4: Another implementation of the VoiceProcess composite service

Comp-O: an OWL-S Extension for Composite Service Description 5

2.3 Issues

In the previous section, two implementations of the VoiceProcess composite ser-
vice have been presented in Fig. 3 and Fig. 4: although its interface does not
change, the semantics vary from one implementation to another (print a speech,
print a speech after its translation into French, . . .). So, the true nature of a
component-based service depends on the components that compose the imple-
menting assembly and what these components actually do. Thus, to determine
this nature, it is necessary to introspect the different components. In a compo-
nent, how a service is delivered depends on the services the component requires,
the ordering of the requests and the internal operating process. Therefore, de-
scribing component-based services with interfaces only, i.e., as black boxes, is
not enough. Interfaces support matching but do not explicit the behavior. For
example, they do not specify that the PrintText service of the TextPrinter com-
ponent prints the text on paper or elsewhere. Maybe a human could guess this
information from the service name, but a machine certainly could not.

Thus, to support efficient service discovery and composition, component-
based services must be described semantically. The problem is to build the se-
mantic description of a component-based service by a combination of the ones of
the components’ services. Indeed, describing services provided by a component
with one or more required services is fundamental for our work. In addition,
these unit descriptions must be combinable. The next section presents existing
works related to these issues.

2.4 Related work

Descriptions including a semantic level help considering all potential character-
istics of a service and to state them in a way that improves interoperability as
the added semantic is meant to be understandable by humans and machines.

Semantic Web services are Web services whose functional and non-functional
semantics are described with ontologies [5]. Functional semantics of the service
is dedicated to describing its input and output parameters, as well as logic-based
description of preconditions and effects. Specific parameters can also be added
such as service provenance and quality of service. The description may also
include the process model expliciting how the service internally works in terms
of the relationship between data and control flow for its subservice interactions.

To represent such descriptions, several description languages differing in their
level of formalization have been proposed. OWL-S (Web Ontology Language for
Web Services, the successor of DAML-S) [6], WSML (Web Service Modeling
Language) [7], USDL (Unified Service Description Language) [8], Linked USDL
[9], as well as the microformat hRESTS [10] are languages that can be used to de-
fine Web services descriptions and include in these descriptions entities of OWL
ontologies. For our purposes, we are mainly concerned about general descrip-
tions of services and thus leave apart trading aspects covered by vocabularies,
such as USDL and Linked USDL. More recently ontologies such as SAREF [11],

6 G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

SOSA/SSN [12] covering services aspects have been proposed in the IoT do-
main. In the same vein, MSM [13] is a common model proposed to support the
publication and discovery over Web APIs, Web services, and sensors.

Based on these different languages, several service composition approaches
have been proposed. They rely on automated logic-based composition planning
or adaptive and hybrid semantic selection mechanisms exploiting strict and ap-
proximated relations [4].

However, all the previously cited vocabularies and composition approaches
are dedicated to Web services and do not consider the required component-based
service interface.

For component-based service, the composition requires finding and binding
the required and provided interfaces. Predefined assembly templates are usually
used for this matching. For example, [14] worked on a three-layer architecture
for automatic and dynamic software component composition. It is the second
layer, called “Change Management”, that uses pre-calculated plans to schedule
and automate a composition. In [15], the composition of software components is
made by an assembling engine that accepts four inputs: a set of components, an
application description, an assembling policy and an execution context. This so-
lution requires a specific manually generated description of the desired architec-
ture for the “application description” input. The application is statically defined
at design time. In [16], a constraint solving problem is created and resolved to
determine the adapted composition. The task of the developer is to define func-
tional objectives on component ports in order to later identify constraints. In
[17], the authors propose a semantic enhancement of software components with
their properties and functionality to support matching.

[18] aim to build descriptions of emergent applications dynamically. Our ob-
jective is not only to semantically extend the description possibilities but also
to be able to automatically generate these descriptions in order to reuse them.

In this paper, we propose to take advantage of existing works in the field of
semantic Web services in order to facilitate the description and composition of
component-based services.

3 Requirements and comparison with existing ontologies

The development of the requirements of our ontology is compliant with the NeOn
methodology [19]. Before developing it, we have specified the purposes and the
scope of the ontology, the uses and the final users, and the competency questions
the ontology should satisfy. We then have used the collection of competency
questions to compare and evaluate existing ontologies.

3.1 Purpose and scope

The motivation and final goal of this ontology is to offer a way to describe
component-based services, in particular the service offered and the required in-
terfaces that must be bound to make a service operational. Concomitantly, dur-
ing the development of a new service built with component-based services, the

Comp-O: an OWL-S Extension for Composite Service Description 7

description of each service can be used to automatically generate the description
of the composite service. We have identified two types of users : the service pub-
lishers and the service developers. A service publisher is an agent wishing to
publish the description component-based services or composite services that will
be invokable and bindable by clients. A service developer is an agent wishing
to bind one or more published services to build a more complex application. In
both cases, the services must be described as unambiguously as possible in order
to automatize the tasks.

3.2 Competency questions

These competency questions come from an analysis of the component-based soft-
ware engineering domain and several use cases [2,20] similar to the one presented
in 2.2. The use cases are not seen as an end per se, but as an instantiation of the
general domain of component-based software engineering. Therefore, the com-
petency questions presented in Table 1 represents the knowledge required for
a reusable ontology, with no regard for the application domain. The answers
are simplified for the sake of readability but should be represented thanks to
corresponding resources.

ID Competency questions Answers

CQ1 What are all the available services ? (s1, s2, s3); ()

CQ2 What are the types of the inputs of S1 ? (Boolean, Int); (String);

CQ3 What are the types of the outputs of S1 ? (ON/OFF Command, Int); (ON/OFF State); ()

CQ4 What are the preconditions of S1 ? (cond1; cond2); (cond1); ()

CQ5 What are the post-condtions of S1 ? (cond1; cond2); (cond1); ()

CQ6 What is the service offered by the service S3 ? Square root

CQ7 Does the service S1 invoke any services ? Yes; No

CQ8 What services are invoked by the service S1 ? (S2; S3); (S4); ()

CQ9 What is the internal orchestration of the service S1 ? (invokeS2, invokeS3); (invokeS2); ()

CQ10 Is the service S1 a component-based service ? Yes; No

CQ11 What are the required interfaces of the service S2 ? (perform1, perform2); ()

CQ12 What are the types of the inputs of the service required by the required interface perform1 ? (ON/OFF Command); (Int); ()

CQ13 What are the types of the outputs of the service required by the required interface perform1 ? (Boolean); (String);

CQ14 What are the post-conditions of the service required by the required interface perform1 ? (cond1, cond2); (cond1); ()

CQ15 What are the preconditions of the service required by the required interface perform1 ? (cond2); ()

CQ16 Is the service S1 already bound with any other services ? Yes; No

Table 1: Competency questions

In CQ6, the notion of service binding is only relevant for component-based
services as it means that the service S1 invokes another service through one of
its required interfaces.

CQ9 is capital for the generation of composite service descriptions as the
behavior of the internal orchestration will help deducing the operational aspects
of the service. The expected answer in an ordered list of operations executed by
the service such as invocations, variables operations and returns.

3.3 Comparison with existing ontologies

As recommended by NeOn, reusable ontologies that are compliant with parts of
the requirements have been integrated in our design process. Therefore, we have

8 G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

used the competency questions developed in 3.2 to compare and analyze which
ontologies satisfy which part of the requirements. We compared six ontologies
relevant to our requirements: SAREF [11], SOSA/SSN [12], MSM [13], OWL-S
[6] (formerly DAML-S), WSML [7] and HRests [10]. Comp-O is also added to
show that it covers all the competency questions.

For each competency question, the absence of star means that the corre-
sponding ontology does not satisfy at all the question, one star means that the
question is partially covered and two stars that the question is totally satisfied.

Competency Question SAREF SSN/SOSA MSM OWL-S WSML HRests Comp-O

CQ1 ** ** ** ** ** ** **

CQ2 ** * ** ** ** ** **

CQ3 ** * ** ** ** ** **

CQ4 - - - ** ** - **

CQ5 - - - ** ** - **

CQ6 - - - ** ** - **

CQ7 - * - ** - - **

CQ8 - * - ** - - **

CQ9 - - - ** - - **

CQ10 - - - - - - **

CQ11 - - - - - - **

CQ12 - - - - - - **

CQ13 - - - - - - **

CQ14 - - - - - - **

CQ15 - - - - - - **

CQ16 - * - * - - **

Table 2: Comparison between the competency questions and the ontologies

All the studied ontologies totally cover the questions CQ1, CQ2 and CQ3
as they all provide a way to type a resource as a service and to define the types
of its inputs and outputs.

OWL-S totally satisfies the questions CQ4, CQ5, CQ7, CQ8 and CQ9.
The preconditions and post-conditions can be described in the profile of the
services. The invocations of other services and the internal orchestrations are
described in the services’ process. Finally, the service offered can be semantically
described using the pre-conditions and post-conditions. However, WSML only
covers the questions CQ4, CQ5 and CQ7 as services described with WSML
are described as black boxes, without information about their internal workings.
Though, SOSA/SSN only partially satisfies the questions CQ7 and CQ8 as the
invocation of a service by another should be described by using the observes and
detects property. However, by using these predicates, the semantics are differ-
ent since the service S2 is not invoked by S1 per se but is self invoked when
a new observation is detected, as SOSA/SSN is used to describe sensors and
observations and is not dedicated to services.

Finally, SOSA/SSN and OWL-S partially cover the question CQ16 as they
both provide a mechanism to describe the invocation or actuation of a service by
another but is not specific enough to describe the binding of an interface with a
service. The semantics offered by SOSA/SSN and OWL-S are slightly similar to
the one required by CQ16 but the binding of interfaces is a mechanism specific

Comp-O: an OWL-S Extension for Composite Service Description 9

to component-based services where SOSA/SSN and OWL-S are used to describe
Web services.

Based on the comparison with the competency questions, we conclude that
OWL-S is the ontology that covers the best our requirements. This observation
motivated us to develop Comp-O as an extension for OWL-S in order to reuse
most of the ontology and its semantics.

4 Comp-O, an OWL-S extension for component-based
services

Comp-O, the ontology we propose, is a minimal ontology extending OWL-S that
helps to efficiently describe component-based services. The ontology is available
at https://gregoryalary.github.io/comp-o. All the namespaces used in this
paper are given in Table 3. In this section, we present the key concepts of OWL-
S, an overview of Comp-O, its concepts and predicates and an example of a
component-based service description using this ontology.

Prefix Namespace

service http://www.daml.org/services/owl-s/1.2/Service.owl#

profile http://www.daml.org/services/owl-s/1.2/Profile.owl#

process http://www.daml.org/services/owl-s/1.2/Process.owl#

comp-o https://gregoryalary.github.io/comp-o##

Table 3: Namespace prefixes used in this paper

4.1 Key concepts of OWL-S

As explained in [6], the description of a service with OWL-S is split in three
parts, the service profile presents what the service does, the service grounding
how to access it and the service model how to use it. We focus on the service
profile as the purpose of our work is on the behavior of component-based services,
theirs internal orchestrations and their interfaces.

A service:ServiceProfile presents the parameter of the service (the process:Inputs
and the process:Outputs), the process:Precondition and the process:Results (the
outputs and the effects). The profile describes the service as a black-box as the
description is dedicated to its contract and not to its behavior with the clients
and nor its orchestration.

To describe the internal orchestration of a service, a process:CompositeProcess
can be linked to the process resource which is defined in a service profile. A
composite process is used to describe the choreography of messages between the
client and the service but also to the invocation of others services. As explained
in [6], ”any composite process can be considered a tree whose nonterminal nodes
are labeled with control constructs, each of which has children specified using
components. The leaves of the tree are invocations of other processes, indicated
as instances of class process:Perform (an invocation of another service)”. Based
on this definition, we defined in Comp-O a new control construct used to describe

https://gregoryalary.github.io/comp-o
http://www.daml.org/services/owl-s/1.2/Service.owl
http://www.daml.org/services/owl-s/1.2/Profile.owl
http://www.daml.org/services/owl-s/1.2/Process.owl
https://gregoryalary.github.io/comp-o#

10 G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

the required interfaces of component-based services. This is detailed in the next
sections.

4.2 Comp-O

An overview of Comp-O is presented in Fig. 5. The ontology defines three new
concepts, and one object property.

Fig. 5: Architecture of Comp-O

Basically, this ontology defines a new class specialisating process:Perform,
RequiredPerform used to describe the required interfaces of a component-based
service. This control construct, instead of referencing another process like the
OWL-S process:Perform control construct, references a service contract repre-
sented by a service profile that does not reference any process (a black-box).

4.3 Concept and predicates

Component-based service The first and main concept is the concept of Com-
ponentBasedService. A Component-based service is a service that can have no
or several RequiredPerform (a required interface) in its process, and that is not
operational until all its required perform are replaced with an actual perform
referencing another process.

comp-o:ComponentService ⊑ service:Service (1)

Required perform A Required perform is a sub concept of the Perform control
construct. A required perform describes a required interface and hence cannot
reference a service through the process:process predicate but has to reference a
service interface through a the requiredPerformContract predicate.

comp-o:RequiredPerform ⊑ process:Perform (2)

Service contract The last defined concept in this ontology is the concept of
Service contract. A ServiceContract is a ServiceProfile that does not specify an
implementation through the has process predicate. Practically, this concept is
used to define the types of the inputs and outputs and the pre/post-conditions
specified by a required interface, it describes a service contract.

comp-o:ServiceContract ⊑ profile:Profile (3)

Comp-O: an OWL-S Extension for Composite Service Description 11

Required perform contract Finally, the requiredPerformContract predicate
is used to link a RequiredPerform with the ServiceContract it requires.

⪖ 1comp-o:requiredPerformContract ⊑ comp-o:RequiredPerform (4)

⊤ ⊑ ∀comp-o:requiredPerformContract · comp-o:ServiceContract (5)

4.4 Use case and instantiation

In order to further describe the semantic of Comp-O, this section contains the
descriptions of the component-based services presented in 2.2. We focus on the
most original and key services that highlight the different uses of Comp-O.

A component-based service without any required interface can be described
as a Web service. Therefore, to describe the TextPrinter service, one does not
need to use Comp-O at all but can rely solely on OWL-S. Obviously, component-
based services describes with Comp-O can still be bound with traditional OWL-S
services like TextPrinter.

Describing the required interface of a component-based service As ex-
plained in the section 4.3, to describe the required interface of a component-based
service with the Comp-O ontology, one must use the compo-owl-s:RequiredPerform
concept. The compo-owl-s:RequiredPerform concept is a special Perform that
does not reference a concrete service but a service contract specifying the type
of the inputs and outputs and the preconditions and post-conditions.
Therefore, to describe the VoiceToTextConverter, instead of referencing another
service with a Perform as presented in Listing 1.1, we can now use the compo-
owl-s:RequiredPerform as shown in Listing 1.2.

:voice -to-text -converter -perform
rdf:type process:Perform ;
process:process :the -other -process;

Listing 1.1: Invocation of another process with OWL-S

:voice -to-text -converter -req -interface
rdf:type comp -o:RequiredPerform ;
comp -o:requiredPerformContract :text -input -contract ;
process:hasDataFrom # ...

:text -input -contract
rdf:type comp -o:ServiceContract ;
profile:hasInput [

rdf:type process:Input ;
process:parameterType "[...]# Text" .

] ;

Listing 1.2: Description of the VoiceToTextConverter required interface with
Comp-O

Also, to describe a service with several required interfaces, the mechanism
is the same as the one used to describe VoiceToTextConverter. A process can
contain an unlimited number of compo-owl-s:RequiredPerform.

12 G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

5 Using Comp-O to build composite services and
automatically generate theirs descriptions

This section focuses on how, using Comp-O, the developer can be assisted when
assembling components to build a composite service and how service descriptions
can be automatically generated by combining component unit descriptions. Our
solution has been implemented and tested against several key use cases, ranging
from very simple to complex assemblies.

5.1 Assisted building of composite services

To assist the developer in the building of Comp-O composite services, we propose
a multi-step approach synthesized in Fig. 6.

In a first step, a list of the available component-based services is presented.
To do so, all that is needed is to retrieve the set of resources typed by the
service:Service class.

Then, the service developer must choose the “root” service, i.e., the service to
implement. Comp-O helps to determine whether the component that provides
the chosen service has any required interface. As explained in Section 4.3, a
component has a required interface if one of the control construct of the process
of the service it provides is a comp-o:RequiredPerform, thus this property can be
comprehensively checked considering all the control constructs defined in OWL-S
using the SPARQL request of Listing 1.3.

ASK {
<service > service:presents/profile:has_process/process:composedOf /(

process:then|process:else|process:whileProcess|process:untilProcess|
process:components)*/(owl -list:rest*)/owl -list:first+ ?instruction .

?instruction a comp -o:RequiredPerform
}

Listing 1.3: SPARQL request to determine whether a service requires to be bound
to another service to run

If the component providing the chosen service does not require any service,
it can be described as an OWL-S service, which description is available and
publishable as it is. Contrariwise, if the component has one or more required
service, the latter must be bound to external component-based services.

If so, to ease the binding decisions, it is possible to determine if a provided
service is compatible with a required one, i.e., if the two services match. This
requires to check if the types of the inputs and outputs, the preconditions and
the post-conditions match. The strategy used to determine whether there is a
match depends on the application domain; it is not specified in our solution but
several propositions have been made (see e.g., [3], [21] and [22]).

Finally, when a required service is bound and if the provider also has one or
more required services, this step must be repeated for these services until the
assembly is closed, i.e., all the required interfaces in the assembly are bound.

At this point, an assembly is available and the description of the composite
service can be generated.

Comp-O: an OWL-S Extension for Composite Service Description 13

Fig. 6: Building of a Comp-O assembly

5.2 Automatic generation of Comp-O composite service descriptions

As explained in Section 1, semantic description of services eases discovery and
composability. An important feature of Comp-O is its use for the automatic
generation of composite service descriptions. We propose an algorithm that im-
plements the generation of a composite service description from an assembly.
The first step consists in replacing every comp-o:RequiredPerform by a pro-
cess:Perform referencing the process associated in the assembly, using the pro-
cess:process predicate instead of referencing a comp-o:ServiceContract via the
comp-o:requiredPerformContract predicate.

The process of a component-based service can reference as variables the in-
puts and outputs of a comp-o:ServiceContract it requires. For each service, the
second step is therefore to replace the references to these variables by references
to the equivalent variable of the associated service. This step can be easily ac-
complished by processing all the process:fromProcess predicates having as object
a resource of the type comp-o:ServiceContract.

These two steps being completed, all the component-based services are now
described as services with OWL-S given that their required interfaces are bound
with other services.

5.3 Proof of concept

To ensure and show that the solution for building composite services and generat-
ing their descriptions based on Comp-O works, we have developed a proof of con-
cept (POC) that implements it. It is available online at https://github.com/
gregoryalary/comp-o-poc. It proposes a command line interface that helps the
user to build the composition plan and outputs the OWL-S description of the
assembly. This POC has been used to test the proposed approach against twelve
key component-based services that have been chosen for their representativity of
the recurrent topologies encountered in component-based software engineering.
The description of these services also are available online and are not described
in this paper due to space limitation.

https://github.com/gregoryalary/comp-o-poc
https://github.com/gregoryalary/comp-o-poc

14 G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

6 Conclusion and perspectives

This paper has introduced Comp-O, an extension of OWL-S for component-
based services, which are services provided by software components. Comp-O has
been developed following the principles of the Neon methodology. One of them
is the reuse of ontologies that partially meet the requirements. As OWL-S is the
most compliant with our requirements, we have proposed to extend it: Comp-O
supports the description of required services and a combination of descriptions in
order to automatically generate the description of composite services. Beyond the
semantic description of services for publication purposes and to facilitate their
discovery, Comp-O helps the developer of component-based services: at design
time, based on Comp-O, the matching between required and provided interfaces
can be controlled and the services (so, the components) that are available for
the composition may be proposed. In addition, supplying the description of the
composite services under construction gives the engineer useful feedback.

Using a proof-of-concept prototype, we have demonstrated the ability to
assist the service developer and to automatically generate composite descriptions
from component unit descriptions that have required services.

Now, we plan to use Comp-O in an ongoing project carried out in our team,
which aims to make user-oriented services emerge at runtime in ambient envi-
ronments. There, an intelligent engine builds on the fly composite services from
software components that are present at the time in the environment, without
having been required by the user. As a consequence, composite services that
emerge must be described to inform the user who can accept, modify or reject
them. Then, a user-intelligible description is required for a sound understanding
of the service, that could be computed from the Comp-O automatically gener-
ated description.

7 Acknowledgment

This work is part of the AILP (Assistance InteLligente et proactive en environ-
nement Professionnel) project, which is supported by the French region Occitanie
and the operational program FEDER-FSE Midi-Pyrénées et Garonne.

References

1. OMG. Unified Modeling Language (OMG UML) Version 2.5.1, chapter 11.6.3.1
Components semantics. 2017.

2. I. Sommerville. Component-based software engineering. In Software Engineering,
chapter 16, pages 464–489. Pearson Education, 10th edition, 2016.

3. M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein. Semantic Web
Service Search: a Brief Survey. KI-Künstliche Intelligenz, 30(2):139–147, 2016.

4. K. Kurniawan, F.J. Ekaputra, and P.R. Aryan. Semantic Service Description and
Compositions: A Systematic Literature Review. In 2nd Int. Conf. on Informatics
and Computational Sciences (ICICoS), pages 1–6, 2018.

Comp-O: an OWL-S Extension for Composite Service Description 15

5. M. Klusch. Semantic Web Service Description. In CASCOM: Intelligent service
coordination in the semantic Web, pages 31–57. Springer, 2008.

6. OWL-S: Semantic Markup for Web Services, 2004.
https://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

7. J. De Bruijn, H. Lausen, A. Polleres, and D. Fensel. The web service modeling lan-
guage wsml: an overview. In Europ. Semantic Web Conf., pages 590–604. Springer,
2006.

8. Srividya Kona, Ajay Bansal, Luke Simon, Ajay Mallya, and Gopal Gupta. Usdl:
a service-semantics description language for automatic service discovery and com-
position. International Journal of Web Services Research (IJWSR), 6(1):20–48,
2009.

9. Carlos Pedrinaci, Jorge Cardoso, and Torsten Leidig. Linked usdl: a vocabulary
for web-scale service trading. In European Semantic Web Conference, pages 68–82.
Springer, 2014.

10. Jacek Kopeckỳ, Karthik Gomadam, and Tomas Vitvar. hrests: An html microfor-
mat for describing restful web services. In 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology, volume 1, pages
619–625. IEEE, 2008.

11. Jasper Roes Laura Daniele, Frank den Hartog. Created in Close Interaction with
the Industry: The Smart Appliances REFerence (SAREF) Ontology. 2015.

12. Simon J D Cox Maxime Lefrançois Kerry Taylor Danh Le Phuoc Joshua Lieberman
Raúl Garćıa-Castro Rob Atkinson Armin Haller, Krzysztof Janowicz and Claus
Stadler. The SOSA/SSN Ontology: A Joint W3C and OGC Standard Specifying
the Semantics of Sensors, Observations, Actuation, and Sampling. 2018.

13. MSM: Minimal Service Model (LOV), 2017.
14. Daniel Sykes, Jeff Magee, and Jeff Kramer. FlashMob: Distributed Adaptive Self-

Assembly. In Proc. of the 6th Int. Symp. on Software Engineering for Adaptive
and Self-Managing Systems, pages 100–109, 2011.

15. Guillaume Grondin, Noury Bouraqadi, and Laurent Vercouter. MaDcAr: An Ab-
stract Model for Dynamic and Automatic (Re-)Assembling of Component-Based
Applications. In Component-Based Software Engineering, number 4063 in LNCS,
pages 360–367. Springer-Verlag, 2006.

16. Nicolas Desnos, Marianne Huchard, Christelle Urtado, and Sylvain Vauttier. Au-
tomated and Unanticipated Flexible Component Substitution. In Proc. of 10th
Int. Symp. on Component-Based Software Engineering, 2007.

17. J. M. Gomez, S. Han, I. Toma, B. Sapkota, and A. Garcia-Crespo. A Semantically-
enhanced Component-based Architecture for Software Composition. In Int. Multi-
Conf. on Computing in the Global Information Technology (ICCGI’06), pages 43–
47, Aug 2006.

18. Maroun Koussäıfi, Sylvie Trouilhet, Jean-Paul Arcangeli, and Jean-Michel Bruel.
Ambient intelligence users in the loop: Towards a model-driven approach. In Soft-
ware Technologies: Applications and Foundations, pages 558–572. Springer, 2018.

19. Maŕıa del Carmen Suárez de Figueroa Baonza. NeOn methodology for building
ontology networks: specification, sheduling and reuse. PhD thesis, 2010.

20. M. Koussaifi. User-oriented Description of Emerging Services in Ambient Systems.
In Int. Conf. on Service-Oriented Computing, PhD Symposium (ICSOC 2019),
number 12019 in LNCS. Springer, 2019.

21. Matthias Klusch, Benedikt Friesb, and Katia Sycara. Owls-mx: A hybrid semantic
web service matchmaker for owl-s services. 2009.

22. G. Fenza, V. Loia, and S. Senatore. A hybrid approach to semantic web services
matchmaking. Int. J. Approx. Reason., 48:808–828, 2008.

	Comp-O: an OWL-S Extension for Composite Service Description

