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New families of double hypergeometric series for

constants involving 1 π

Introduction and motivation

The 17 hypergeometric series for 1 π introduced by Ramanujan are among the most celebrated out of the myriad of groundbreaking mathematical results discovered by Ramanujan. Within the many new areas of research that are still directly inspired by the 1 π series that Ramanujan discovered over 100 years ago, of particular note are the techniques introduced by Guillera for constructing Ramanujan-like hypergeometric series for 1 π 2 ; see [START_REF] Almkvist | Ramanujan-like series for 1/π 2 and string theory[END_REF][START_REF] Guillera | About a new kind of Ramanujan-type series[END_REF][START_REF] Guillera | Generators of some Ramanujan formulas[END_REF][START_REF] Guillera | A matrix form of Ramanujan-type series for 1/π, Gems in experimental mathematics[END_REF][START_REF] Guillera | A new Ramanujan-like series for 1/π 2[END_REF][START_REF] Guillera | Series de Ramanujan: Generalizaciones y Conjeturas, Thesis[END_REF][START_REF] Guillera | Some binomial series obtained by the WZ-method[END_REF]. This is a main source of inspiration behind our article, in which we make use of recent developments in Fourier-Legendre (FL) theory to formulate a powerful method for constructing families of rational double hypergeometric series for expressions containing 1 π 2 as a factor, especially the constant ζ (3) π 2 , letting

ζ(s) = ∞ n=1 1 n s = p prime 1 - 1 p s -1
1 denote the Riemann zeta function. We adopt the standard definition of the term double hypergeometric series, which traces back to the 1889 article [START_REF] Horn | Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen[END_REF] of Jacob Horn [START_REF] Carlson | The need for a new classification of double hypergeometric series[END_REF], in which this expression is defined as a double power series m,n≥0 a m,n x m y n such that the quotients a m+1,n am,n and a m,n+1 am,n are both rational functions in m and n. In this article, we show how the integration methods introduced in the recent article [START_REF] Campbell | On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions[END_REF] may be applied to transform double hypergeometric sums that cannot be evaluated with elementary or previously known methods into strikingly simple expressions that provide us with evaluations involving 1 π 2 for the original double series. We prove, via the main FL-based technique from [START_REF] Campbell | On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions[END_REF], and often in conjunction with Bonnet's recursion formula, many new double series transformation formulas that may be successfully applied to evaluate infinite families of Guillera-inspired double series for expressions involving 1 π 2 . The families of rational double hypergeometric series that we introduce for constants containing 1 π 2 as a factor are of interest for a variety of reasons. These double sums, despite having very simple summands, are, as suggested above, quite intractable: These series cannot be evaluated by state-of-the-art computer algebra systems, and are such that the single sums that we obtain by summing over a fixed index also have no known symbolic evaluation, and it appears that the existing literature on double hypergeometric transforms does not apply to the infinite families of double hypergeometric series under consideration in our article, which cannot be expressed with classical families of double hypergeometric sums, as in with Appell functions, Humbert series, etc. The techniques from FL theory that we apply in this article give us an efficient way of symbolically computing many different kinds of families of double hypergeometric series involving products of binomial coefficients.

A motivating example

Let us highlight the especially elegant formula

14ζ(3) π 2 = m,n≥0 1 16 m+n 2m m 2 2n n 2 m + n + 1 (1) 
introduced in this article, in which we construct infinite families of generalizations of the closed-form evaluation in [START_REF] Adamchik | A certain series associated with Catalan's constant[END_REF]. The techniques that we introduce in this article are especially useful for the construction of new families of rational approximations to ζ(3) π 2 , and hence our preliminary discussions on the evaluation in (1) as a motivating example. However, the main purpose of our article is to introduce new rational hypergeometric series for constants involving 1 π 2 more generally, as in the series

16 √ 2 ln(2) π 2 = m,n≥0 1 4 2m+3n 2m m 2 2n n 4n 2n m + n + 1 (2) 
that is introduced via the main technique in this article. Summing with respect to either of the indices involved in the double sums that we introduce produces expressions with no symbolic form involving elementary functions or "established" special functions such as the Riemann zeta function. In particular, if we take the summand in [START_REF] Adamchik | A certain series associated with Catalan's constant[END_REF] and sum over m ∈ N 0 , we obtain

1 16 n 2n n 2 n + 1 • 3 F 2 1 2 , 1 2 , n + 1 1, n + 2 1 .
As Adamchik describes in [START_REF] Adamchik | A certain series associated with Catalan's constant[END_REF], there is a rich mathematical history associated with hypergeometric expressions of the form

S(r) = ∞ k=0 1 16 k 2k k 2 k + r = 1 r 3 F 2 1 2 , 1 2 , r 1, r + 1 1 , (3) 
which were of considerable interest to Ramanujan [START_REF] Adamchik | A certain series associated with Catalan's constant[END_REF]. Generalizations of such families of hypergeometric series were also explored in [START_REF] Borwein | Moments of Ramanujan's generalized elliptic integrals and extensions of Catalan's constant[END_REF]. However, the 3 F 2 (1) series in (3) does not admit any closed-form evaluation, despite Ramanujan's identity whereby

S(r) = 16 r πr 2 2r r 2 r-1 k=0 1 16 k 2k k 2
in the case whereby r ∈ N. From the generating function for the sequence of squared central binomial coefficients, we obtain the important moment formula

S(r) = 2 π 1 0 z r-1 K(z) dz. (4) 
The moments of Ramanujan's generalizations of K and E were recently applied in [START_REF] Borwein | Moments of Ramanujan's generalized elliptic integrals and extensions of Catalan's constant[END_REF] to prove some hypergeometric identities, and to evaluate some 3 F 2 (1) series. However, the evaluation of series involving expressions as in (4) so as to form new double series evaluations seems to be a new area of research. State-of-the-art computer algebra systems cannot evaluate the series introduced in this paper, and elementary methods of series evaluation, as in with the manipulation of generating functions and the like, also cannot be applied to evaluate the series that we introduce.

In consideration of the amount of interest in 3 F 2 (1) series of the form indicated in (3), as well as the study of the moments of elliptic-like integrals, more generally, this motivates researching summations involving these kinds of expressions. We again examine the summand of the series in (1), noting its symmetry, i.e., its forming a symmetric function. As noted above, the problem of evaluating the series m,n≥0

1 16 m+n 2m m 2 2n n 2 m + n + 1 = ? (5) 
is equivalent to the problem of evaluating the following series: 

Of course, by the symmetry of the summand in [START_REF] Campbell | On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions[END_REF], we obtain the same series as in (6) by summing over either of the indices of the above double sum. However, it is unclear as to what kinds of known results on the hypergeometric S-function defined in (3) could be applied successfully to evaluate the difficult double sum in [START_REF] Campbell | On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions[END_REF]. Moreover, it appears that it is not possible to use Wallis-type integral formulas for central binomial coefficients to evaluate this sum. The key idea behind our proof for ( 1) is given by using the main method from [START_REF] Campbell | On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions[END_REF] in conjunction with the moment formula for shifted FL polynomials.

Preliminaries

We refer the interested reader to the background material on FL theory in [START_REF] Campbell | On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions[END_REF]; for the time being, we only present basic material on FL expansions that directly pertains to our present article's main methods.

It is often convenient to define the Legendre polynomial P n (x) with the following binomial expansion:

P n (x) = 1 2 n n k=0 n k 2 (x -1) n-k (x + 1) k .
The FL polynomials form a fundamentally important family of orthogonal polynomials. The orthogonality relations for this family are as below:

1

-1 P n (x)P m (x) dx = 2 2n + 1 δ m,n . (7) 
The FL expansion of a suitable function g is as below:

g(x) = ∞ n=0 2n + 1 2 1 -1 g(t)P n (t) dt P n (x). Writing A n = 2n+1 2 1
-1 g(t)P n (t) dt as in [START_REF] Levrie | Using Fourier-Legendre expansions to derive series for 1 π and 1 π 2[END_REF], from the recurrence relation whereby

(2n + 1)xP n (x) = (n + 1)P n+1 (x) + nP n-1 (x), (8) 
with P 0 (x) = 1 and P 1 (x) = x, we can show that the FL expansion for x•g(x) is given as

x • g(x) = ∞ n=0 2n + 1 4n + 1 A 2n + 2n + 2 4n + 5 A 2n+2 P 2n+1 (x), (9) 
in the case whereby g is continuous on

[-1, 1] [16]
. The recursion in ( 8) is often referred to as Bonnet's recursion formula. We later make use of the corresponding recursion for shifted FL polynomials [START_REF] Cantarini | On the interplay between hypergeometric series, Fourier-Legendre expansions and Euler sums[END_REF]. From [START_REF] Carlson | The need for a new classification of double hypergeometric series[END_REF], we find that the family of shifted FL polynomials, i.e., polynomials of the form P n (2x -1), form an orthogonal family on [0, 1]. Of particular importance in this article is the moment formula for shifted FL polynomials, as in the identity

1 0 x n P m (2x -1) dx = Γ 2 (n + 1) Γ(n -m + 1)Γ(n + m + 2) , (10) 
for which we refer the reader to standard references on integrals involving FL polynomials, as in [START_REF] Prudnikov | Integrals and series[END_REF]. We may re-express this moment formula as

a -a (x + a) α-1 P ν x a dx = (2a) α Γ α, α α + ν + 1, α -ν
for a > 0 and (α) > 0, as in [18, p. 195], and we refer the reader to [START_REF] Prudnikov | Integrals and series[END_REF] for generalizations and variants of [START_REF] Guillera | A matrix form of Ramanujan-type series for 1/π, Gems in experimental mathematics[END_REF].

As noted in [START_REF] Campbell | On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions[END_REF], from the generating function identity whereby

1 √ 1 -2xz + z 2 = ∞ n=0 P n (x)z n ,
we obtain the very important shifted FL expansion whereby

K √ k = n≥0 2 2n + 1 P n (2k -1), letting K(x) = π 2 2 F 1 1 2 , 1 2 
1
x 2 denote the complete elliptic integral of the first kind. We may also define the complete elliptic integral E of the second

kind so that E(x) = π 2 2 F 1 1 2 , -1 2 1
x 2 , and we present to the reader the following shifted FL-expansion:

E √ x = -4 • n≥0 P n (2x -1) 1 (2n -1)(2n + 1)(2n + 3)
.

The key idea behind the integration methods explored in [START_REF] Campbell | On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions[END_REF] comes down to the evaluation of the integrals

1 0 K √ x g(x) dx and 1 0 E √ x g(x) dx (11) 
for a suitable input function g that allows us to substitute the Maclaurin and shifted FL series for K ( √ x) and E ( √ x) into the integrands in [START_REF] Guillera | A new Ramanujan-like series for 1/π 2[END_REF] and integrate term-by-term, perhaps after a change of variable. As suggested above, in this present article, we further explore this idea by applying it along with the moment formula in [START_REF] Guillera | A matrix form of Ramanujan-type series for 1/π, Gems in experimental mathematics[END_REF] in the case whereby we let g(x) be written as a power series. Actually applying this idea turns out to give us a powerful tool for constructing double series transforms that allow us to construct new families of series for constants such as ζ (3) π 2 . We offer a full proof for our motivating example in (1) after we prove a much more powerful result, as in the transformation formula given as Theorem 2.1 below.

Transformation methods based on the work of Campbell, D'Aurizio, and Sondow

The study of hypergeometric transforms forms an important aspect about the field of classical analysis. There is much mathematical literature on transformation identities for double hypergeometric series [START_REF] Carlson | The need for a new classification of double hypergeometric series[END_REF][START_REF] Kim | On a new class of summation formulae involving the Laguerre polynomial[END_REF][START_REF] Manako | A connection formula between double hypergeometric series Ψ 2 and Φ 3 , Integral Transforms Spec[END_REF][START_REF] Rathie | On a new class of summation formulas involving the generalized hypergeometric 2 F 2 polynomial[END_REF][START_REF] Singal | A transformation formula for double hypergeometric series[END_REF][START_REF] Van Der Jeugt | Transformation and summation formulas for double hypergeometric series[END_REF], but it seems that previously known results in this area cannot be applied to prove the results that we introduce. More generally, were it not for the techniques applied in this article, it would otherwise not be at all clear as to how the sums we introduce could be evaluated through the use of previously known summation methods.

Theorem 2.1. Let (f n : n ∈ N 0 ) be such that the function g(x) given by the ordinary generating function for this sequence is well-defined on (0, 1), and such that that the integral

1 0 K( √ x)g(x) dx (12) 
is well-defined and is such that the following holds: If we replace g(x) in the above integrand with the series ∞ n=0 f n x n , and replace K( √ x) by either its Maclaurin series or its shifted FL series, summing over m ∈ N 0 , and if the operators

1 0 • dx, ∞ n=0
•, and ∞ m=0 • commute in either case and are such that the following series are convergent, then

π 2 • m,n≥0 1 16 
m 2m m 2 m + n + 1 • f n (13) equals 2 m,n≥0 1 2m + 1 (n!) 2 (n -m)!(n + m + 1)! • f n . (14) 
Proof. Let f and g be as above, satisfying the above conditions. Starting with the integral in [START_REF] Guillera | Series de Ramanujan: Generalizaciones y Conjeturas, Thesis[END_REF], let us rewrite this expression as

1 0 ∞ n=0 f n x n K( √ x) dx. ( 15 
)
We replace the factor K( √ x) with its Maclaurin series:

π 2 1 0 ∞ n=0 f n x n ∞ m=0 1 16 m 2m m 2 x m dx.
So, under the commutativity assumptions of the above theorem, we obtain the series in [START_REF] Guillera | Some binomial series obtained by the WZ-method[END_REF]. Now, rewrite (15) by replacing K( √ x) with the shifted FL series for this expression, so as to obtain:

2 1 0 ∞ n=0 ∞ m=0 f n 2m + 1 x n P m (2x -1) dx. ( 16 
)
From the moment formula for shifted FL polynomials, as in (10) above, together with the commutativity assumptions given above, we may rewrite [START_REF] Levrie | Using Fourier-Legendre expansions to derive series for 1 π and 1 π 2[END_REF] to yield the expression in [START_REF] Horn | Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen[END_REF].

As an application of the above theorem, we apply this identity to prove the motivating example from [START_REF] Adamchik | A certain series associated with Catalan's constant[END_REF]. Letting f n = 1 16 n 2n n 2 for n ∈ N 0 , and writing g(x) in place of the power series expansion ∞ n=0 x n f n , from the above theorem, we obtain that

π 2 • m,n≥0 1 
16
m+n 2m m 2 2n n 2 n + m + 1 (17) must equal 2 • m,n≥0 1 16 
n 2n n 2 2m + 1 (n!) 2 (n -m)!(n + m + 1)! .
We may evaluate the finite sum

w n=0 1 16 
n 2n n 2 2m + 1 (n!) 2 (n -m)!(n + m + 1)! as 1 16 w (2w + 1) 2 2w w 2 (2m + 1) 3 (w!) 2 (w -m)!(w + m + 1)! ,
as may be verified inductively. So, this gives us that the identity whereby

4 π(2m + 1) 3 = ∞ n=0 1 16 n 2n n 2 2m + 1 (n!) 2 (n -m)!(n + m + 1)!
holds for m ∈ N 0 . So, we can see that the expression in [START_REF] Manako | A connection formula between double hypergeometric series Ψ 2 and Φ 3 , Integral Transforms Spec[END_REF] 

must be equal to 8 π • ∞ m=0 1 (2m + 1) 3 = 7ζ(3) π ,
giving us the desired result. We are interested in mimicking the above proof technique, but with the use of variants and generalizations of the integrand factor K ( √ x), as we later explore.

New results.

The above theorem, on its own, is powerful enough to be able to provide 1 π 2 evaluations for both of the infinite families of rational hypergeometric series suggested below. However, actually applying this theorem to prove these evaluations requires some work, as we discuss below. 

- 7ζ(3) + 2 π 2 = m,n≥0 1 
(m + n + 1)(2n -3) , • • • 7ζ(3) + 6 π 2 = m,n≥0 1 
16 m+n 2m m 2 2n n 2 (m + n + 1)(2n -1) 2 , 189ζ(3) + 194 108π 2 = m,n≥0 1 16 m+n 2m m 2 2n n 2 (m + n + 1)(2n -3) 2 , • • •
We offer a detailed explanation as to how the first out of the above series for ζ (3) π 2 may be obtained from Theorem 2.1; the remaining members of the infinite families of evaluations indicated above may be proved in essentially the same way. How can we find more explicit identities for m,n≥0 for arbitrary z ∈ Z >0 ?

Example 1. Via a direct application of the above theorem, by letting

f n = 1 16 n 2n n 2 2n -1 , (18) 
we have that

π 2 • m,n≥0 1 16 m+n 2m m 2 2n n 2 (m + n + 1)(2n -1) , (19) 
may be rewritten as

2 • ∞ m=0 ∞ n=m f n • (n!) 2 (2m + 1)(n -m)!(m + n + 1)! .
We claim that the inner sum

∞ n=m f n • (n!) 2 (2m + 1)(n -m)!(m + n + 1)! may be evaluated as 8 π • 1 (2m-1)(2m+1) 3 (2m+3) .
To show this, we may evaluate the finite sum

w n=m 1 16 n 2n n 2 (2n -1)(2m + 1) (n!) 2 (n -m)!(m + n + 1)!
in closed form as follows, as may be verified inductively:

- ((w + 1)!) 2 2w+2 w+1 2 4 2w+1 (w -m + 1)!(m + w + 2)! × (m -w -1)(m + w + 2) (4m 2 + 4m + 4w + 3) (2m + 1) 3 (4m 2 + 4m -3) (2w + 1)
.

So, we have shown that the expression in (19) equals

16 π • m≥0 1 (2m -1)(2m + 1) 3 (2m + 3) ,
and by applying partial fraction decomposition to the above summand, we obtain the desired closed form.

Further applications of the above hypergeometric transform.

From the infinite families of series for ζ(3) π 2 displayed above, we are curious as to how the series transformation method given by Theorem 2.1 may be applied more generally. What kinds of series for constants involving 1 π 2 can we determine more generally using this result? Adopting notation from Theorem 2.1, if we define f n with more general products of binomial coefficients, compared to [START_REF] Prudnikov | Integrals and series[END_REF], then this leads us toward interesting and more difficult evaluations, as we consider below.

Example 2. We claim that the evaluation 

16 √ 2 ln(2) π 2 = m,n≥0 1 
(2m + 1) • (n!) 2 (n -m)!(n + m + 1)! .
We claim that the inner sum

∞ n=0 1 2 6n 2n n 4n 2n 2m + 1 • (n!) 2 (n -m)!(n + m + 1)! may be evaluated as 8 √ 2 π • 1 (2m+1)(4m+1)(4m+3)
. This is easily seen to be true by evaluating the partial sum

w n=0 1 2 6n 2n n 4n 2n 2m + 1 • (n!) 2 (n -m)!(n + m + 1)! as 4 √ π • 1 4 w • Γ 2w + 5 2 (2m + 1)(4m + 1)(4m + 3)Γ(1 -m + w)Γ(2 + m + w) ,
as may be shown inductively.

Example 3. The above transformation theorem also may be used to give us new rational series for constants involving 1 π 2 that involve non-central binomial coefficients. For example, a direct application of this theorem gives us that 18 √ 3 ln 27 16

π 2 = m,n≥0 1 16 m 1 27 n 2m m 2 2n n 3n n m + n + 1 ,
as may be proved in much the same way as above.

2.3 Applying the shifted FL expansion for the complete elliptic integral of the second kind.

Many of the main results from [START_REF] Campbell | On the interplay among hypergeometric functions, complete elliptic integrals, and Fourier-Legendre expansions[END_REF] are based on the use of integrals of the latter form indicated in [START_REF] Guillera | A new Ramanujan-like series for 1/π 2[END_REF]. So, it is natural to construct an analogue of Theorem 2.1 as applied to integrals as in [START_REF] Guillera | Series de Ramanujan: Generalizaciones y Conjeturas, Thesis[END_REF] below, subject to the conditions specified below.

Theorem 2.2. Let the sequence (f n : n ∈ N 0 ) satisfy the following conditions. We let g(x) denote the ordinary generating function for this sequence, and we suppose that g is well-defined on (0, 1), and is such that that the integral

1 0 E( √ x)g(x) dx (20) 
is well-defined and is such that the following holds: If we replace g(x) in the above integrand with the series ∞ n=0 f n x n , and replace E( √ x) by either its Maclaurin series or its shifted FL series, summing over m ∈ N 0 , and if the operators

1 0 • dx, ∞ n=0
•, and ∞ m=0 • commute in either case and are such that the following series are convergent, then the expression

- π 2 m,n≥0 1 16 
m 2m m 2 (2m -1)(m + n + 1) • f n (21) must equal -4 m,n≥0 1 (2m -1)(2m + 1)(2m + 3) (n!) 2 (n -m)!(n + m + 1)! • f n . (22) 
Proof. Working under the assumptions of the above theorem, we rewrite the integral in (20) as

1 0 ∞ n=0 x n f (n) E √ x dx, (23) 
and by expanding the factor E ( √ x) with its Maclaurin series, we obtain that (23) equals [START_REF] Van Der Jeugt | Transformation and summation formulas for double hypergeometric series[END_REF], by moving the integration operator into the summand of the double series that we obtain. Replacing the integrand factor E ( √ x) with its shifted FL-expansion in (23), we obtain the expression in [START_REF] Wang | Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients[END_REF], again under the assumption that we may move the 1 0 • dx operator inside the double sum that we obtain.

Through a direct application of the above theorem, we obtain the infinite families of series for constants involving 1 π 2 indicated below, as may be verified. 

7ζ(3) + 6 2π 2 = m,n≥0 1 

• • •

We may also apply Theorem 2.2 to obtain rational double hypergeometric series for constants involving expressions as in

√ 2 ln(2) π 2
, as suggested below: (m + n + 1)(2m -1) .

16 √ 2(-1 -8 ln(2)) 15π 2 = m,n≥0 1 

Applications of Bonnet's recursion formula

How can we generalize the transformation methods given in Theorem 2.1 and Theorem 2.2 so as to be applicable to more general integrals of the form

1 0 e(x)g(x) dx (24) 
for an elliptic-type expression e(x)? For example, let us consider making use of the following Maclaurin series:

π 4 ∞ m=0 x m+1 2m m 2 16 m (m + 1) = E √ x -K √ x + x K √ x . (25) 
To mimic our proofs of Theorem 2.1 and Theorem 2.2, we need to compute the shifted FL expansion for the right-hand side of the above equality. To determine this expansion, we make use of Bonnet's recursion formula. We remark that: In general, we obtain much more complicated coefficients in the shifted FL-expansions for expressions such as

E( √ x) -K( √ x) x , (26) 
i.e., expressions involving negative powers of x times elliptic-type integral expressions. For example, we have that

1 0 E ( √ x) -K ( √ x) x P n (2x -1) dx = 4(-1) n O n+1 - 2 2n + 1 + (-1) n+1 π,
where O n = n-1 k=0 (-1) k 2k+1 . These more complicated kinds of FL expansions make it difficult to apply analogues of the transformation identities as in Theorem 2.1 and Theorem 2.2 in the case whereby we use the Maclaurin/FL series for expressions involving negative powers of x and elliptic-type functions, as in (26). On the other hand, using a direct analogue of Theorems 2.1 and 2.2 based on the identity in (25) together with an application of Bonnet's recursion formula to give us the shifted FL identity whereby

E √ x -K √ x + xK √ x = 4 • ∞ m=0 (2m + 1) (2m -1) 2 (2m + 3) 2 P m (2x -1)
we may obtain the infinite families of double series for constants involving

1 π 2 indicated below: 7ζ(3) -26 4π 2 = m,n≥0 1 16 
m+n 2m m 2 2n n 2 (m + 1)(m + n + 2)(2n -1) 189ζ(3) -958 324π 2 = m,n≥0 1 16 
m+n 2m m 2 2n n 2 (m + 1)(m + n + 2)(2n -3) • • • 78 -21ζ(3) 8π 2 = m,n≥0 1 
m+n 2m m 2 2n n 2 (m + 1)(m + n + 2)(2n -1) 2 1682 -315ζ(3) 648π 2 = m,n≥0 1 16 m+n 2m m 2 2n n 2 (m + 1)(m + n + 2)(2n -3) 2 • • • 16 
Again applying our main technique in the case whereby we set the elliptictype factor e(x) in the integrand in (24) to be equal to e

(x) = E ( √ x) - K ( √ x) + xK ( √ x)
we may obtain families of rational double hypergeometric series for constants involving 1 π 2 , with non-central binomial coefficients involved in the summand, as below: 3.1 The generating function for squares of Catalan numbers.

From the Maclaurin series for K and E, we obtain the following identity:

∞ m=0 1 16 m 2m m 2 x m+1 (m + 1) 2 = 16 E ( √ x) π - 8K ( √ x) π + 8x K ( √ x) π -4.
Through a direct application of Bonnet's recursion formula, we may express the right-hand side of the above identity with the shifted FL-expansion given as below:

128 π • ∞ m=0 P m (2x -1) (2m -1) 2 (2m + 1)(2m + 3) 2 -4.
Mimicking our proofs for Theorems 2.1 and 2.2, and exploiting the above shifted FL-expansion, we can show, for sequences (f n : n ∈ N 0 ) satisfying the appropriate analogues of the conditions in Theorems 2.1 and 2.2, that the identity whereby We strongly encourage the pursuit of new research areas based on these kinds of applications of the techniques introduced in this article. Consider extending the double series transformation formulas given in this article by, say, introducing a parameter into the definition for the input sequence (f (n) : n ∈ N 0 ). For example, in Theorem 2.1, if we let f (n) = f α (n) = 1 n+α for a suitable parameter α, this allows us to transform a family of Ramanujan-like series for 1 π introduced in [START_REF] Campbell | Ramanujan-like series for 1 π involving harmonic numbers[END_REF] and later evaluated explicitly in [START_REF] Wang | Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients[END_REF].

2 (

 2 m + n + 1)(2n -2z + 1) 2

16 m+n 2m m 2 2n n 2 ( 2 ( 2 - 2 (

 2222 m + n + 1)(2m -1)(2n -2m -1)(m + n + 1)(2n -1) 2m -1)(m + n + 1)(2n -3) 2

16 m

 16 27 n (m + 1)(m + n + 2) .

2 (m + 1 ) 2 2 .

 2122 2 (2m -1) 2 (2m + 1)(2m + 3) 2 (n -m)!(n + m + 1)!• f n holds. This may be used to prove that (m + n + 2) , which is particularly interesting, providing an especially elegant rational double hypergeometric series for a closed form involving the constants 1 π , We obtain the infinite generalizations of the above evaluation suggested below.

2 ( 2 (m + 1 ) 2 2 (m + 1 ) 2 2 1246 2 (m + 1 ) 2 2 m + z 1 x m+z 1 +z 2 , 2 (m + z 1 ) 2 x m+z 1 +z 2 , 2 (

 22122122212222122 m + 1) 2 (m + n + 2)(2n -(m + n + 2)(2n -3) (m + n + 2)(2n -1) (m + n + 2)(2n -3) 2 • • •4 New areas to exploreWe may greatly generalize the above results, through the use of Bonnet's recursion formula, by mimicking the above techniques and by letting the elliptic-type integral function e(x) in (24) be equal to power series expansions as below, letting z 1 ∈ Z >0 and z 2 ∈ Z ≥0 : 2m -2z 1 + 1) 2 x m+z 2 .

  [START_REF] Levrie | Using Fourier-Legendre expansions to derive series for 1 π and 1 π 2[END_REF] 

						m+n	2m	2 2n	2
							m (m + n + 1)(2n -1) n	,
	-	63ζ(3) + 14 18π 2	=	m,n≥0	16 1	m+n	m 2m	n 2 2n	2

  [START_REF] Campbell | Ramanujan-like series for 1 π involving harmonic numbers[END_REF] 

						2m+3n 2m	2 2n	4n
						m	n	2n
						m + n + 1
	may be proved through a direct application of Theorem 2.1, in much the same
	as in with the steps that we had taken in Example 1 to obtain the rational
	ζ(3) π 2 series in Example 1. That is, by setting f n = 1 4	3n 2n n	4n 2n in Theorem
	2.1, this theorem gives us that
		π 2	•	m,n≥0	1 4	2m+3n 2m m m + n + 1 2 2n 4n n 2n
	must be equal to				
	2 •	m,n≥0	2 1	6n 2n n	4n 2n
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