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Uniform null controllability for a parabolic equations with

discontinuous diffusion coefficients*

Jérémi Dardé� Sylvain Ervedoza� Roberto Morales§

June 10, 2021

Abstract

In this article, we study the null-controllability of a heat equation in a domain composed of two media
of different constant conductivities. In particular, we are interested in the behavior of the system when
the conductivity of the medium on which the control does not act goes to infinity, corresponding at the
limit to a perfectly conductive medium. In that case, and under suitable geometric conditions, we obtain
a uniform null-controllability result. Our strategy is based on the analysis of the controllability of the
corresponding wave operators and the transmutation technique, which explains the geometric conditions.

Mathematics Subject Classification. 35K10, 35L10, 93B05, 93B07, 93B17.
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1 Introduction

Main results. Let Ω be a smooth (C 2) bounded domain in Rd (d ∈ N∗), Ω1 be a smooth strict subdomain
of Ω, and set Ω2 = Ω \ Ω1.

For σ1 > 0 and σ2 > 0, we introduce the conductivity σ = σ(x) given by

σ(x) =

{
σ1 if x ∈ Ω1,

σ2 if x ∈ Ω2,
(1.1)

and we consider the controlled heat equation
∂tyσ − div(σ∇yσ) = uσ1ω, in (0, T )× Ω,

yσ = 0, on (0, T )× ∂Ω,

yσ(0) = y0, in Ω.

(1.2)

Here, yσ denotes the state (for instance the temperature), and uσ denotes the control function, assumed to
be acting on a non-empty open subset ω of Ω.

The main objective of this paper is to analyze the uniform null controllability of (1.2) with respect to the
parameter σ, i.e., we are interested in the behavior of the controls (uσ)σ1,σ2>0 as a function of the diffusive
coefficient σ.
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The fact that the conductivity σ takes the form (1.1) means that the domain Ω is filled with a material
made of two media, one located in Ω1 and of conductivity σ1, the other one being located in Ω2 and of
conductivity σ2. Also note that, with Ω1 b Ω and Ω2 = Ω \Ω1, system (1.2) can alternatively be written as
a transmission problem as follows:

∂ty1,σ − σ1∆y1,σ = u1,σ1ω∩Ω1 , in (0, T )× Ω1,

∂ty2,σ − σ2∆y2,σ = u2,σ1ω∩Ω2
, in (0, T )× Ω2,

y1,σ = y2,σ, on (0, T )× ∂Ω1,

σ1∂νy1,σ = σ2∂νy2,σ, on (0, T )× ∂Ω1,

y2,σ = 0, on (0, T )× ∂Ω,

(y1,σ, y2,σ)(0) = (y0,1, y0,2), in Ω1 × Ω2,

(1.3)

with the correspondence yσ(t, x) = y1,σ(t, x)1Ω1(x) + y2,σ(t, x)1Ω2(x) for (t, x) ∈ (0, T ) × Ω. Hereafter, we
define ν to be the normal to ∂Ω1 oriented from Ω2 to Ω1.

In this setting, we ask what happens when one of this medium is highly conductive, that is

σ1 →∞, σ2 a fixed positive constant. (1.4)

Our goal is to analyze precisely the behavior of the null-controllability properties of (1.2) in the limit (1.4),
which, for a fixed σ of the form (1.1), is known when ∂Ω1∩∂Ω2 is smooth and does not intersect the boundary
(see [21, 22, 20]).

We will be able to give precise results only in the following geometrical situation, that we assume from
now on:

(A1) Ω1 b Ω, Ω2 = Ω \ Ω1,

(A2) There exists a point x0 ∈ Ω1 such that

(a) The domain Ω1 is star shaped with respect to x0.

(b) The set ω is such that ω ⊂ Ω2 and there exists ε > 0 such that

ω ⊃ {x ∈ Ω ; d(x,Γ0) 6 ε} where Γ0 = {x ∈ ∂Ω : (x− x0) · ν(x) > 0}. (1.5)

The above geometrical assumptions are illustrated in Figure 1.

Figure 1: Geometrical situation given by (A1) and (A2), where ω is represented by the grey region.

We point out that, under assumptions (A1) and (A2), the control is applied only in a subset of Ω2.
More precisely, in (1.3) we have that ω ∩ Ω1 = ∅ and therefore the second equation in (1.3) is controlled
directly by the action of the control, while the first one is being controlled indirectly, through the transmission
conditions. In other words, we can consider u1,σ to be the null function, so the control function will now be
denoted only uσ instead of (u1,σ, u2,σ) as in (1.3). (The case ω ⊂ Ω1 will be briefly discussed in Theorem 4.3.)

Our main result is the following one, whose proof is given in Section 3.
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Theorem 1.1. Let σ2 > 0 and assume (A1) and (A2).
For all T > 0, for all y0 ∈ L2(Ω) and for all σ1 > σ2, for σ as in (1.1), there exists a control uσ ∈

L2((0, T )× ω) such that the solution yσ of (1.2) satisfies

yσ(T ) = 0 in Ω. (1.6)

Moreover, the sequence of controls (uσ)σ1>σ2
is uniformly bounded, i.e. there exists a constant C =

C(Ω, ω, T, σ2) > 0 such that for all σ1 > σ2,

‖uσ‖L2((0,T )×ω) 6 C‖y0‖L2(Ω). (1.7)

Estimates (1.6) and (1.7) state the uniform null controllability of (1.2) with respect to σ1 > σ2, where
σ2 > 0 is a fixed constant.

It is then natural to ask what is the limit system of (1.2) obtained as σ1 →∞ and σ2 > 0 is fixed. This
can be guessed intuitively. Indeed, since σ1 → ∞, in the limit, the medium in Ω1 is perfectly conductive.
Therefore, its temperature y∗1 should be independent of the space variable. On the other hand, integrating
(1.2) on Ω1, we see that one should have:

d

dt

(∫
Ω1

y∗1(t, x) dx

)
= −

∫
∂Ω1

σ2∂νy
∗
2(t, x) dγ,

where y∗2 is the temperature in the medium in Ω2. Besides, according to (1.7), (uσ)σ1>σ2
converges to u∗ in

some sense that will be made precise in the next section.
We should thus expect, and this will be proved afterwards (see Theorem 2.2), that the limit system of

(1.2) in the limit (1.4) should be:

∂ty
∗
2 − σ2∆y∗2 = u∗1ω, in (0, T )× Ω2,

y∗2(t, x) = 0, on (0, T )× ∂Ω,
y∗2(t, x) = Y ∗(t), on (0, T )× ∂Ω1,
y∗1(t, x) = Y ∗(t), in (0, T )× Ω1,

∂tY
∗ +

σ2

|Ω1|

∫
∂Ω1

∂νy
∗
2(t) dγ = 0, in (0, T ),

y∗2(0, ·) = y0,2(·), in Ω2,
Y ∗(0) = Y0,

(1.8)

where the initial datum Y0 is given by

Y0 =
1

|Ω1|

∫
Ω1

y0,1 dx.

Remark 1.2. Note that, in fact the function y∗1 is now reduced to a function Y ∗ depending only on the time
variable, so that the system (1.8) can be thought as an equation on (Y ∗, y∗2) only, with for all t ∈ (0, T ),
Y ∗(t) ∈ R, and y∗2(t) ∈ L2(Ω2).

Passing to the limit σ1 → ∞ in Theorem 1.1, we will thus deduce the following controllability result for
(1.8), see Section 3.5 for its proof.

Corollary 1.3. Let σ2 > 0 and assume (A1) and (A2). Then for all T > 0 and for all (Y0, y0,2) ∈
R× L2(Ω2) there exists a control function u∗ ∈ L2((0, T )× ω) such that the solution y∗ of (1.8) satisfies

y∗2(T ) = 0 in Ω2, and Y ∗(T ) = 0. (1.9)

Moreover, there exists a constant C = C(Ω, ω, T, σ2) > 0 such that

‖u∗‖L2((0,T )×ω) 6 C‖(Y0, y0,2)‖R×L2(Ω2). (1.10)

In addition, for (Y0, y0,2) ∈ R × L2(Ω2), the sequence of controls (uσ)σ1>σ2 of minimal L2(0, T ;L2(ω))-
norm of (1.2) corresponding to an initial datum y0 = Y01Ω1

+ y0,21Ω2
weakly converges up to a subsequence

as σ1 → +∞ to a null control u∗ ∈ L2(0, T ;L2(ω)) for (1.8) with initial data (Y0, y0,2).
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To prove Theorem 1.1, we first remark that it is equivalent to prove a uniform observability result for the
adjoint heat equation (on which we perform the change of time t→ T − t as usual), that is the existence of
a time T > 0 and a constant C = C(Ω, ω, T, σ2) > 0 such that for all σ1 > σ2, the solution zσ of

∂tzσ − div(σ∇zσ) = 0, in (0, T )× Ω,

zσ = 0, on (0, T )× ∂Ω,

zσ(0) = z0, in Ω,

(1.11)

with z0 ∈ H1
0 (Ω) and σ as in (1.1) satisfies

‖zσ(T )‖L2(Ω) 6 C‖zσ‖L2((0,T )×ω). (1.12)

In fact, this uniform observability result will be deduced, using the transmutation technique borrowed from
[11], from a uniform observability result for the corresponding wave equation:

∂2
twσ − div(σ∇wσ) = 0, in (0, T )× Ω,

wσ = 0, on (0, T )× ∂Ω,

(wσ, ∂twσ)(0) = (w0, w1), in Ω,

(1.13)

with (w0, w1) ∈ H1
0 (Ω) × L2(Ω). This strategy is responsible for the geometric conditions (A1) and (A2),

since some geometric conditions are required for the controllability of the wave equation (1.13). This is of
course already the case when the velocity σ is smooth (this is the celebrated Geometric Control Conditions
of [2]) but when it is discontinuous as in (1.1), the situation is much more intricate and we refer to the recent
results [3], [4] and [16].

In fact, the uniform observability result we prove for (1.13) is the following one, see Section 3.1 for its
proof:

Theorem 1.4. Let σ2 > 0 and assume Assumptions (A1) and (A2).
Then for all T > 0 satisfying √

σ2T > 2 sup
Ω
{ |x− x0|},

there exists C > 0 such that for all (w0, w1) ∈ H1
0 (Ω)×L2(Ω) and for all σ1 > σ2, the solution wσ of (1.13)

with initial datum (w0, w1) ∈ H1
0 (Ω)× L2(Ω) and σ as in (1.1) verifies∫

Ω

(
σ|∇w0|2 + |w1|2

)
dx 6 C

∫ T

0

∫
Γ0

|∂νw|2 dγdt. (1.14)

The proof of Theorem 1.4 is based on a multiplier argument. This is where the geometric conditions (A1)
and (A2) appear naturally.

In fact, Theorem 1.4 has already been proved under Assumptions (A.1) and (A.2) in [24, Chapter 6]
except for the uniformity of the observability constant with respect to σ1. As this is a critical argument in
our proof, we will present the complete proof of Theorem 1.4 in Section 3.1 for completeness.

Remark 1.5. There are a priori several paths based on transmutation techniques to deduce Theorem 1.1
from Theorem 1.4. In particular, one could try to follow the approach in [26, 27], which would consist
in first deducing from Theorem 1.4 a uniform controllability result for the wave equation, and then use a
transmutation technique to deduce a uniform controllability result for the corresponding heat equation. This
is in principle possible, but in our case this would be delicate since the observability estimate (1.14) implies
the controllability of the corresponding wave equation with a control bounded by the norm of the initial datum
in L2(Ω)×H−1(Ω). However, if we want to keep track of the dependence of the constants in terms of σ, one
should be careful that the accurate norm used in H1

0 (Ω) is ‖
√
σ∇ · ‖L2(Ω) which depends on σ, and thus the

space H−1(Ω) should be endowed with the corresponding dual norm. To avoid these difficulties and follow the
dependence in σ more clearly, we have chosen to use the transmutation technique of [12, 11], and to avoid
the use of negative Sobolev spaces.
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Related references. Our investigations are part of the broad question of null-controllability for parabolic
equations. The pioneering results for this question are the articles [15] and [23], based on Carleman estimates
and which apply for conductivities σ ∈ W 1,∞(Ω). In our case, the conductivity given by (1.1) does not
belong to W 1,∞(Ω) and these results thus do not apply.

This regularity assumption on the conductivity was then studied in details. It was proved that, in 1d,
the heat equation (1.2) is still null-controllable for a conductivity σ ∈ BV (Ω), based on Russell’s method
(see e.g. [29]). The work [1] later improved this result, still in 1d, to the case σ ∈ L∞(Ω) using the theory of
quasiconformal maps, and the more recent work [25] proposed an alternative approach for rough coefficients,
still in the 1-dimensional case.

The multi-d heat equation was analysed later for piecewise C2 conductivities with a smooth surface of C0

discontinuity in [10] using Carleman estimates, when the control is supported in the region where the diffusion
coefficient is the lowest, under some geometric conditions which are less restrictive than our assumptions (A1)
and (A2). Later on, the case of BV coefficients in 1d was dealt with using the Fursikov-Imanuvilov approach
in [19]. The case of piecewise smooth coefficients with a smooth surface of discontinuity was then studied
under no geometric assumptions in the works [5, 6, 7, 21, 22, 20], and null-controllability of (1.2) was proved
in those cases.

Let us point out that, despite these numerous results, to our knowledge, the behavior of the controllability
of the models (1.2) for conductivities of the form (1.1) has not been studied so far in the limit σ1 →∞, even
in the 1d case.

Our approach is quite different from the ones based on Carleman estimates, as it relies on the observability
of the corresponding wave equation, inspired by the transmutation techniques developed in [12, 11], in a
somewhat dual version of the transmutation techniques in [26, 27]. There, the idea is to associate solutions of
the wave equations to solutions of the heat equation through a time kernel, see Section 3.2 for more details.

The advantage of this technique is that our problem then reduces to the study of the observability of the
corresponding wave operators, for which other techniques are available. Here, we shall follow the classical
multiplier approach, introduced in [18, 24], which allows to deal with conductivities of the form (1.1) under
appropriate geometric conditions, namely (A1) and (A2). These multiplier conditions are known to be very
robust with respect to the regularity of the coefficients, and we refer for instance to the recent work [9] dealing
with conductivities which are continuous and satisfy some suitable growth conditions in the direction of the
multiplier, and to the references therein.

In fact, for waves with discontinuous conductivities, observability properties can be derived from Carleman
estimates [3, 4] or microlocal analysis [16] under appropriate geometric conditions, but here again, keeping
track of how it depends on the conductivity coefficients is, to our knowledge, a challenging problem.

Let us also mention that, to our knowledge, properly speaking, the controllability of the limit system (1.8)
has not been dealt with in the literature, except in the 1d context in [17, Chapter 5] where this model has been
dealt with using the moment method, see also Section 4.1 for more comments. Still, the controllability result
obtained in [28] on a very close system indicates that the null controllability of the limit system (1.8) can be
proved directly by Carleman estimates without any geometric assumption.

Outline. The rest of the paper is organized as follows. Section 2 is dedicated to study the existence and
uniqueness results concerning problems (1.2), (1.8) and (1.13) and their dependence with respect to σ given
by (1.1) as well as some general cases. In Section 3, the proofs of Theorem 1.1 and Corollary 1.3 are given.
Finally, in Section 4 additional comments and open questions are presented.

2 Preliminaries

In this section, we provide several existence and uniqueness results for heat and wave equations with discon-
tinuous diffusion / velocity coefficients of the form (1.1). We also study the limit system (1.8) and show the
convergences of the solutions of (1.3) as σ1 goes to infinity towards those of (1.8).
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2.1 The heat equation for general conductivities σ

We recall the functional setting corresponding to the Cauchy problem for the parabolic equation
∂ty − div(σ∇y) = f, in (0, T )× Ω,

y = 0, on (0, T )× ∂Ω,

y(0) = y0, in Ω,

(2.1)

for a general conductivity σ satisfying

σ ∈ L∞(Ω) and there exists α > 0 such that σ(x) > α, a. e. in Ω. (2.2)

We start with the definition of the bilinear form

aσ(ya, yb) =

∫
Ω

σ∇ya · ∇yb dx, (2.3)

for ya and yb in H1
0 (Ω). From (2.2), it is clear that aσ defines a continuous bilinear form on H1

0 (Ω) which is
coercive on H1

0 (Ω).
This allows to define the operator Aσ : H1

0 (Ω)→ H−1(Ω) by the formula:

∀(ya, yb) ∈ (H1
0 (Ω))2, 〈Aσya, yb〉H−1(Ω),H1

0 (Ω) = aσ(ya, yb). (2.4)

As one easily checks using Lax-Milgram theorem and condition (2.2), this operator is a self-adjoint maximal
operator on H−1(Ω) with domain D(Aσ) = H1

0 (Ω).
Therefore, for f ∈ L1(0, T ;H−1(Ω)) and y0 ∈ H−1(Ω), as a consequence of Hille-Yosida theorem, inter-

preting equation (2.1) as the abstract equation

y′ +Aσy = f, in (0, T ), y(0) = y0, (2.5)

there exists a unique solution y of (2.1) in the class C0([0, T ];H−1(Ω)).
In fact, we could also have defined the operator Ãσ on the Hilbert space L2(Ω) with domain

D(Ãσ) = {y ∈ H1
0 (Ω) s.t. div (σ∇y) ∈ L2(Ω)}, (2.6)

and defined by
Ãσy = −div (σ∇y). (2.7)

Note that Aσ is the self-adjoint extension of Ãσ to H−1(Ω). The only difficulty when working with Ãσ is
that, without additional assumption on σ, its domain cannot be made more explicit than (2.6).

Still, one can check that Ãσ is a self-adjoint maximal operator on L2(Ω). Interpreting equation (2.1) as
the abstract equation

y′ + Ãσy = f, in (0, T ), y(0) = y0, (2.8)

Hille-Yosida Theorem then yields that for any y0 ∈ L2(Ω) and f ∈ L1(0, T ;L2(Ω)), the solution of (2.8)
belongs to C0([0, T ];L2(Ω)).

Besides, the following energy estimates can be derived: in D ′(0, T ),

d

dt

(
1

2

∫
Ω

|y(t)|2 dx
)

+

∫
Ω

σ|∇y(t)|2 dx =

∫
Ω

f(t)y(t) dx, (2.9)

and
d

dt

(∫
Ω

σ|∇y(t)|2 dx
)

+

∫
Ω

(
|∂ty(t)|2 + |div (σ∇y(t))|2

)
dx =

∫
Ω

|f(t)|2 dx. (2.10)

In particular, for all time T > 0, there exists a constant C independent of σ such that, if y0 ∈ L2(Ω) and
f ∈ L2(0, T ;L2(Ω)),∫ T

0

∫
Ω

t
(
|∂ty(t)|2 + |div (σ∇y(t))|2

)
dxdt 6 C

∫
Ω

|y0|2 dx+ C

∫ T

0

∫
Ω

|f |2 dxdt. (2.11)
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Let us finally indicate that the solution y of (2.8) can also be characterized as the unique element of
L2(0, T ;L2(Ω)) such that for all g ∈ L2(0, T ;L2(Ω)),∫ T

0

∫
Ω

yg dxdt =

∫ T

0

∫
Ω

fz dxdt+

∫
Ω

y0z(0) dx, (2.12)

where z is the solution of −z′ + Ãσz = g in (0, T ) and z(T ) = 0.

2.2 The case σ as in (1.1): additional regularity

In our present geometrical configuration, that is Ω1 b Ω and Ω2 = Ω \ Ω1 having smooth boundaries, and
with σ as in (1.1) with constant (σ1, σ2), the domain of Ãσ is slightly more explicit. Indeed, we have the
following regularity result:

Lemma 2.1. Let Ω be a smooth bounded domain of Rd, σ be as in (1.1), where Ω1 b Ω and Ω2 = Ω \ Ω1

have smooth boundaries. Then, for any f ∈ L2(Ω), the solution y ∈ H1
0 (Ω) of

−div (σ∇y) = f in Ω, y = 0 on ∂Ω,

is such that y1 = 1Ω1
y and y2 = 1Ω2

y satisfy:

y1 ∈ H2(Ω1) and y2 ∈ H2(Ω2), (2.13)

with
‖(y1, y2)‖H2(Ω1)×H2(Ω2) 6 C ‖f‖L2(Ω) , (2.14)

for a constant C > 0 depending on (σ1, σ2).

Proof. This result is folklore in the literature, so we only briefly sketch it. Of course, the only difficulty is
close to the interface ∂Ω1. The idea there is to work as in the proof of elliptic regularity close to the boundary
(see e.g. [13], page 317), that is:

� Flatten the interface by a change of variables,

� Multiply the equations by divided differences which are approximations of the second order derivatives
of the solution in the tangential variables, to deduce that the second order derivatives of the solution
in the tangential variables belong to L2(Ω),

� Recover estimates on the second order derivatives in the normal variables from the equation directly.

Details are left to the reader.

As a consequence, when σ is of the form (1.1), the domain of the operator Ãσ defined on the Hilbert
space L2(Ω) is given as follows:

D(Ãσ) = {y ∈ H1
0 (Ω) s.t. yj = 1Ωj

y ∈ H2(Ωj), j = 1, 2, with σ1∂νy1 = σ2∂νy2 on ∂Ω1}.

2.3 The limit system (1.8)

In this section, we focus on the analysis of the Cauchy problem for (1.8), in which for simplicity of notation,
we remove the ∗ superscript.

∂ty2 − σ2∆y2 = f2, in (0, T )× Ω2,
y2(t, x) = 0, on (0, T )× ∂Ω,
y2(t, x) = Y (t), on (0, T )× ∂Ω1,

∂tY +
1

|Ω1|

∫
∂Ω1

σ2∂νy2(t) dγ = F, in (0, T ),

y2(0, ·) = y0,2(·), in Ω2,
Y (0, ·) = Y0.

(2.15)
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As before, we can define the bilinear form

a∗,σ2
= ((Ya, y2,a), (Yb, y2,b)) =

∫
Ω2

σ2∇y2,a · ∇y2,b dx,

on the set V∗ = {(Y, y2) ∈ R×H1(Ω2), with (y2)|∂Ω = 0 and (y2)|∂Ω1
= Y }. We can thus define the operator

A∗,σ2
from V∗ to V ′∗ by

∀((Ya, y2,a), (Yb, y2,b)) ∈ V 2
∗ , 〈Aσ(Ya, y2,a), (Yb, y2,b)〉V ′∗ ,V∗ = aσ(y2,a, y2,b). (2.16)

As one easily checks using Lax-Milgram theorem and condition (2.2), this operator is a self-adjoint maximal
operator on V ′∗ with domain V∗.

As before, for (F, f2) ∈ L1(0, T ;V ′∗) and (Y0, y2,0) ∈ V ′∗ , as a consequence of Hille-Yosida theorem,
interpreting equation (2.15) as the abstract equation

(Y, y2)′ +A∗,σ2
(Y, y2) = (F, f2), in (0, T ), (Y, y2(0)) = (Y0, y2,0), (2.17)

there exists a unique solution (Y, y2) of (2.15) in the class C0([0, T ];V ′∗).
But the space V ′∗ is not easy to deal with, and we prefer to give a functional setting based on the usual

L2 space. We thus introduce the space
H∗ = R× L2(Ω2), (2.18)

which, endowed with the scalar product,(
(Y, y2), (Ỹ , ỹ2)

)
H∗

= |Ω1|Y Ỹ +

∫
Ω2

y2 ỹ2 dx.

is a Hilbert space. We then introduce the operator Ã∗,σ2
defined on H∗ with domain

D(Ã∗,σ2
) = {(Y, y2) ∈ V∗ s.t. y2 ∈ H2(Ω2)},

and defined for (Y, y2) ∈ D(Ã∗,σ2) by

Ã∗,σ2
( Y, y2) =

(
σ2

|Ω1|

∫
∂Ω2

∂νy2 dγ, −σ2∆y2

)
.

One can check that Ã∗,σ2
is a self-adjoint maximal operator on H∗. Interpreting equation (2.15) as the

abstract equation

(Y, y2)′ + Ã∗,σ2
(Y, y2) = (F, f2), in (0, T ), (Y, y2)(0) = (Y0, y2,0), (2.19)

Hille-Yosida Theorem then yields that for any (Y0, y2,0) ∈ H∗ and (F, f2) ∈ L1(0, T ;H∗), the solution of
(2.19) belongs to C0([0, T ];H∗).

Besides, the following energy estimates can be derived: in D ′(0, T ),

1

2

d

dt

(
|Ω1||Y (t)|2 +

∫
Ω2

|y2(t)|2 dx
)

+

∫
Ω2

σ2|∇y2(t)|2 dx = |Ω1|F (t)Y (t) +

∫
Ω

f2(t)y2(t) dx. (2.20)

Let us finally indicate that the solution (Y, y2) of (2.19) can be interpreted as the unique element of
L2(0, T ;H∗) such that for all (G, g2) ∈ L2(0, T ;H∗),

|Ω1|
∫ T

0

Y Gdt+

∫ T

0

∫
Ω

y2g2 dxdt = |Ω1|
∫ T

0

FZ dt+

∫ T

0

∫
Ω

f2z2 dxdt+ |Ω1|Y0Z(0)+

∫
Ω

y0,2z2(0) dx, (2.21)

where (Z, z2) is the solution of −(Z, z2)′ + Ãσ(Z, z2) = (G, g2) in (0, T ) and (Z, z2)(T ) = 0.
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2.4 A convergence result

In this section, we explain how to pass to the limit in systems (1.2) to derive equation (1.8).
In all this section, σ2 > 0 is fixed and σ1 > 1 is going to infinity. Since the conductivity σ in (1.1) is

characterized by (σ1, σ2), we will write the sequence of functions associated to the conductivity σ as (fσ)σ1>1.

Theorem 2.2. Let σ2 > 0 be fixed, T > 0, y0 ∈ L2(Ω), and let (fσ)σ1>1 be a sequence of L2(0, T ;L2(Ω)),
which weakly converges as σ1 →∞ to f∗ in L2(0, T ;L2(Ω)).

For σ1 > 1, let (yσ)σ1>1 be the solution of

∂ty1,σ − σ1∆y1,σ = f1,σ1Ω1
, in (0, T )× Ω1,

∂ty2,σ − σ2∆y2,σ = f2,σ1Ω2
, in (0, T )× Ω2,

y1,σ = y2,σ, on (0, T )× ∂Ω1,

σ1∂νy1,σ = σ2∂νy2,σ, on (0, T )× ∂Ω1,

y2,σ = 0, in (0, T )× ∂Ω,

(y1,σ, y2,σ)(0) = (y0,1, y0,2), in Ω1 × Ω2,

(2.22)

where y0,1 = y0|Ω1
and y0,2 = y0|Ω2

. Let us also define

Y0 =
1

|Ω1|

∫
Ω1

y0,1(x) dx, and (F ∗(t), f∗2 (t, x)) =

(
1

|Ω1|

∫
Ω1

f∗(t, x) dx, f∗|Ω2(t, x)

)
, (2.23)

a.e. in t ∈ (0, T ), x ∈ Ω2, and (Y ∗, y∗2) given by

∂ty
∗
2 − σ2∆y∗2 = f∗2 , in (0, T )× Ω2,

y∗2(t, x) = 0, on (0, T )× ∂Ω,
y∗2(t, x) = Y ∗(t), on (0, T )× ∂Ω1,

∂tY
∗ +

σ2

|Ω1|

∫
∂Ω1

∂νy2(t) dγ = F ∗, in (0, T ),

y∗2(0, ·) = y0,2(·), in Ω2,
Y ∗(0, ·) = Y0.

(2.24)

Then the sequence (yσ)σ1>1 weakly converges to y∗ = Y ∗1Ω1
+y∗21Ω2

as σ1 →∞ in L2(0, T ;H1
0 (Ω)), weakly-*

in L∞(0, T ;L2(Ω)), and strongly in C0
loc((0, T ];L2(Ω)).

Proof. First of all, as (fσ)σ1>1 weakly converges to f∗ in L2(0, T ;L2(Ω)) as σ1 →∞, the sequence is uniformly
bounded, which easily implies from (2.9) that (yσ)σ1>1 is bounded in L∞(0, T ;L2(Ω))∩L2(0, T ;H1

0 (Ω)) and
that ∫ T

0

∫
Ω1

σ1|∇y1,σ|2 dx 6 C.

Therefore as σ1 → +∞, the sequence (yσ)σ1>1 weakly converges, up to a subsequence, in L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H1

0 (Ω)) toward some y∗ such that ∇y∗ = 0 in Ω1, i.e. there exists a function Y ∗ ∈ L2(0, T ) such
that y∗1Ω1

= Y ∗ in (0, T )× Ω1.
Now, we will use the following

Lemma 2.3. Let (G, g2) ∈ L2(0, T )× L2(0, T ;L2(Ω2)) and let (Z, z2) be the solution of

− (Z, z2)′ + Ã∗,σ2
(Z, z2) = (G, g2) in (0, T ), (Z, z2)(T ) = (0, 0), (2.25)

where Ã∗,σ2 given in (2.17). Set then

g(t, x) = G(t)1Ω1
(x) + g2(t, x)1Ω2

(x), (t, x) ∈ (0, T )× Ω, (2.26)

and for σ1 > 1, introduce zσ the solution of

− z′σ + Ãσzσ = g, in (0, T ), zσ(T ) = 0, (2.27)
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for σ characterized by (σ1, σ2) as in (1.1).
Then, setting

z∗(t, x) = Z(t)1Ω1
(x) + z2(t, x)1Ω2

(x), (t, x) ∈ (0, T )× Ω, (2.28)

we have the following convergence result:

zσ −→
σ1→∞

z∗ strongly in L2(0, T ;L2(Ω)) (2.29)

zσ(0, ·) −→
σ1→∞

z∗(0, ·) strongly in L2(Ω). (2.30)

The proof of Lemma 2.3 will be given afterwards, and we first resume the proof of Theorem 2.2.
The basic idea is to identify the limit y∗ by looking at the weak formulations (2.12) satisfied by yσ and pass

to the limit in them. We thus take (G, g2) ∈ L2(0, T )×L2(0, T ;L2(Ω2)), and introduce zσ the corresponding
solution of (2.27) for σ characterized by (σ1, σ2) as in (1.1). Therefore, for all σ1 > 1, we get∫ T

0

∫
Ω

yσg dxdt =

∫ T

0

∫
Ω

fσzσ dxdt+

∫
Ω

y0zσ(0) dx.

Using the convergences (2.29) and (2.30), we can pass to the limit σ1 →∞ in these identities:∫ T

0

∫
Ω

y∗g dxdt =

∫ T

0

∫
Ω

f∗z∗ dxdt+

∫
Ω

y0z
∗(0) dx. (2.31)

where z∗ is given by (2.28).
We then use the facts that y∗|Ω1 = Y ∗ in (0, T )×Ω1, that g is constant in Ω1 equal to G, that z∗|Ω1 = Z

in (0, T )× Ω1, where Z depends only on the time variable, and that z∗(0) is constant, equal to Z(0) in Ω1.
Accordingly, we have∫ T

0

∫
Ω

y∗g dxdt =

∫ T

0

|Ω1|Y ∗(t)G(t) dt+

∫ T

0

∫
Ω2

y∗2g2 dxdt,∫ T

0

∫
Ω

f∗z∗ dxdt =

∫ T

0

(∫
Ω1

f∗ dx

)
Z dt+

∫ T

0

∫
Ω2

f∗z2 dxdt,∫
Ω

y0z
∗(0) dx =

(∫
Ω1

y0 dx

)
Z(0) +

∫
Ω2

y0z2(0, ·) dx.

Therefore, identity (2.31) can be rewritten as follows: for all (G, g2) ∈ L2(0, T )× L2(0, T ;L2(Ω2)), denoting
by (Z, z2) the solution of (2.25), we have

∫ T

0

|Ω1|Y ∗(t)G(t) dt+

∫ T

0

∫
Ω2

y∗2g2 dxdt =

∫ T

0

(∫
Ω1

f∗ dx

)
Z dt+

∫ T

0

∫
Ω2

f∗z2 dxdt

+

(∫
Ω1

y0 dx

)
Z(0) +

∫
Ω2

y0,2z2(0, ·) dx.

According to (2.21), this identity shows that (Y ∗, y∗2) is indeed the solution of (2.24). By uniqueness of the
solutions of (2.24), the whole sequence (yσ)σ1>1 weakly converges to y∗ = y∗11Ω1

+ y∗21Ω2
.

To finish the proof of Theorem 2.2, we only have to check the convergences in the mentioned functional
settings. The fact that the sequence (yσ)σ1>1 weakly converges to y∗ = y∗11Ω1 + y∗21Ω2 as σ1 → ∞ in
L2(0, T ;H1

0 (Ω)) has already been done. The weak-* convergence in L∞(0, T ;L2(Ω)) follows from the uniform
boundedness of (yσ)σ1>1 in L∞(0, T ;L2(Ω)).

To get the strong convergence of the sequence (yσ)σ1>1 in C0
loc((0, T ];L2(Ω)), we simply use the uni-

form bound given by (2.11), which gives that, for all τ0 ∈ (0, T ) the sequence (yσ)σ1>1 is bounded in
H1(τ0, T ;L2(Ω)). Therefore, since (yσ)σ1>1 is also bounded in L2(0, T ;H1

0 (Ω)) from (2.9), by Aubin-Lions’
theorem, the sequence (yσ)σ1>1 strongly converges in C0((τ0, T ];L2(Ω)) as σ1 → ∞. This concludes the
proof of Theorem 2.2 up to the proof of Lemma 2.3 done afterwards.
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Proof of Lemma 2.3. Let (G, g2) ∈ L2(0, T )× L2(0, T ;L2(Ω2)) and let (Z, z2) be the solution of (2.25).
Then define the function g in (0, T ) × Ω by formula (2.26), and introduce the solution zσ of (2.27).

According to (2.10) (applied to zσ(T − t), which satisfies (2.8)), we get that for all σ1 > 1,

zσ ∈ L2(0, T ;D(Ãσ)) ∩ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω))

with

sup
t∈[0,T ]

(∫
Ω

σ|∇zσ(t)|2 dx
)

+

∫ T

0

∫
Ω

(
|∂tzσ(t)|2 + |div (σ∇zσ(t))|2

)
dx dt 6

∫ T

0

∫
Ω

|g(t)|2 dxdt.

We now set z1,σ = zσ
∣∣
Ω1

and z2,σ = zσ
∣∣
Ω2

.
According to the above regularity and Lemma 2.1, we can integrate the equation of zσ on Ω1 and obtain

that in D ′(0, T ) (recall that ν is the normal oriented from Ω2 to Ω1),

− d

dt

(∫
Ω1

z1,σ(t, x) dx

)
+

∫
∂Ω1

σ1∂νz1,σ(t, x)dx =

∫
Ω1

g(t, x) dx.

Therefore, using the transmission conditions and the definition of g, we get

− d

dt

(∫
Ω1

z1,σ(t, x) dx

)
+

∫
∂Ω1

σ2∂νz2,σ(t, x)dx =

∫
Ω1

g(t, x) dx = |Ω1|G(t). (2.32)

Besides, (z1,σ)σ1>1 is bounded in L∞(0, T ;H1(Ω1)) ∩ H1(0, T ;L2(Ω1)) with ∇z1,σ going to 0 strongly
in L∞(0, T ;L2(Ω1)) ∩ L2(0, T ;H1(Ω1)) as σ1 → ∞, so that (z1,σ)σ1>1 weakly converges as σ1 → ∞ (up to
subsequence) to z∗1 in L2(0, T ;H1(Ω1)) ∩H1(0, T ;L2(Ω1)) satisfying ∇z∗1 = 0 in (0, T )× Ω1 and z∗1(T ) = 0.

Moreover, by (2.9)–(2.10), (z2,σ)σ1>1 is bounded in L∞(0, T ;H1(Ω2)) ∩H1(0, T ;L2(Ω2)). The sequence
(z2,σ)σ1>1 thus weakly converges to some z∗2 in L2(0, T ;H1(Ω2)) ∩ H1(0, T ;L2(Ω2)) as σ1 → ∞ satisfying
z∗2(T ) = 0. Besides, (div (σ2∇z2,σ))σ1>1 is bounded in L2(0, T ;L2(Ω2)) from (2.10), and thus (σ2∂νz2,σ)σ1>1

weakly converges as σ1 →∞ to σ2∂νz
∗
2 in L2(0, T ;L2(∂Ω1)). Furthermore, for all smooth ϕ ∈ D([0, T ]×Ω)

such that for all t ∈ [0, T ], ϕ(t)|∂Ω1
is constant,∫ T

0

∫
Ω2

gϕ dtdx−
∫ T

0

(∫
∂Ω1

σ2∂νz2,σdγ(x)

)
ϕ(t)|∂Ω1

dt+

∫ T

0

∫
∂Ω1

z2,σσ2∂νϕdγdt

= −
∫

Ω2

z2,σ(0, x)ϕ(0, x) dx−
∫ T

0

∫
Ω2

z2,σ(∂tϕ− σ2∆ϕ) dxdt,

and the above convergences easily give that for all smooth ϕ ∈ D([0, T ] × Ω) such that for all t ∈ [0, T ],
ϕ(t)|∂Ω1 is constant,∫ T

0

∫
Ω2

gϕ dxdt−
∫ T

0

(∫
∂Ω2

σ2∂νz
∗
2dγ

)
ϕ(t)|∂Ω1 dt+

∫ T

0

∫
∂Ω1

z∗2σ2∂νϕdγdt

= −
∫

Ω2

z∗2(0, x)ϕ(0, x) dx−
∫ T

0

∫
Ω2

z∗2(∂tϕ− σ2∆ϕ) dxdt. (2.33)

We can also pass to the limit in (2.32) and obtain that in D ′(0, T ),

− d

dt

(∫
Ω1

z∗1(t) dx

)
+

∫
∂Ω1

σ2∂νz
∗
2(t)dγ = |Ω1|G(t),

that is, since ∇z∗1 = 0,

− |Ω1|
dz∗1(t)

dt
+

∫
∂Ω1

σ2∂νz
∗
2(t)dx = |Ω1|G(t). (2.34)

Finally, the above convergences also allow to pass to the limit in the identity z1,σ(t, x) = z2,σ(t, x) on
(0, T )× ∂Ω1 as σ1 →∞, so that we also have

z∗1(t) = z∗2(t, x) on (0, T )× ∂Ω1. (2.35)
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According to (2.21), combining (2.33), (2.34) and (2.35), we obtain that (z∗1 , z
∗
2) coincide with the solution

(Z, z2) of −(Z, z2)′+ Ã∗,σ2(Z, z2) = (G, g2) in (0, T ) and (Z, z2)(T ) = 0. Since this solution is unique, (Z, z2)
is the unique possible weak limit of the sequence (z1,σ, z2,σ)σ1>1 as σ1 → ∞, hence the whole sequence is
weakly convergent in L2(0, T ;H1(Ω1)) ∩H1(0, T ;L2(Ω1)) × L2(0, T ;H2(Ω2)) ∩H1(0, T ;L2(Ω2)). Thus, by
Rellich’s compactness embedding theorem

(z1,σ, z2,σ) −→
σ1→∞

(Z, z2) strongly in L2(0, T ;L2(Ω1))× L2(0, T ;L2(Ω2)).

Similarly, the trace operator from H1((0, T )× Ω) to L2({0} × Ω) being compact,

(z1,σ(0, ·), z2,σ(0, ·)) −→
σ1→∞

(Z(0), z2(0, ·)) strongly in L2(Ω1)× L2(Ω2).

These convergences finish the proof of Lemma 2.3.

2.5 Well-posedness issues for wave equation with discontinuous velocities

Here, we recall some facts on the well-posedness of the wave equation
∂2
twσ − div(σ∇wσ) = 0, in (0, T )× Ω,

wσ = 0, on (0, T )× ∂Ω.

(wσ, ∂twσ)(0) = (w0, w1), in Ω,

(2.36)

for a general σ ∈ L∞(Ω) satisfying (2.2) and initial data (w0, w1) in H1
0 (Ω)× L2(Ω).

Note that, following the notation used in Section 2.1, (2.36) can be reformulated as

w′′σ + Ãσwσ = 0 in (0, T ), (wσ(0), w′σ(0)) = (w0, w1), (2.37)

with Ãσ defined in (2.6)–(2.7). As Ãσ is a positive self-adjoint operator, for (w0, w1) ∈ D(Ã
1/2
σ ) × L2(Ω),

there exists a unique solution wσ of (2.37) such that

wσ ∈ C0([0, T ];D(Ã1/2
σ )) ∩ C1([0, T ];L2(Ω)) = C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)).

Besides, if (w0, w1) ∈ D(Ãσ)×D(Ã
1/2
σ ), the solution wσ of (2.37) satisfies

wσ ∈ C0([0, T ];D(Ãσ)) ∩ C1([0, T ];D(Ã1/2
σ )) ∩ C2([0, T ];L2(Ω)).

Since we want to keep track of the dependences of the solutions with respect to the coefficient σ, we need to
be slightly more precise than that in the following study.

Namely, we introduce the energy of solutions of (2.36) given for t > 0 by

Eσ(t) =
1

2

∫
Ω

σ|∇wσ(t)|2 dx+
1

2

∫
Ω

|∂twσ(t)|2 dx. (2.38)

One classicaly checks that it is a preserved quantity, or in other words that for all (w0, w1) ∈ H1
0 (Ω)×L2(Ω),

and all t ∈ [0, T ],
Eσ(t) = Eσ(0). (2.39)

To conclude this section, let us also mention the following hidden regularity property (see [24, p. 371]):
when σ is C1 in a neighborhood Γ of a part of ∂Ω, the solutions wσ of (2.36) with initial data (w0, w1) ∈
H1

0 (Ω)× L2(Ω) satisfy σ∂νwσ ∈ L2(0, T ;L2(Γ)).
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3 Proofs of Theorem 1.1 and Corollary 1.3

In this section, we prove the main result of this article, i.e. Theorem 1.1 and its corollary, Corollary 1.3.
Roughly speaking, the plan of the proof of Theorem 1.1 can be described as follows:

1. We focus on the proof of the uniform observability inequality of the wave equation with respect to σ1,
i.e., we prove Theorem 1.4. This will be done using multiplier techniques.

2. We apply the transmutation method as in [11] to prove a uniform observability inequality for the heat
equation where the observation is given in a part of the boundary.

3. Using an auxiliary cut-off function and a Cacciopoli inequality, we replace the norm of the boundary
by the L2(0, T ;L2(ω)) norm in the previously obtained observability inequality.

For simplicity, the proof is divided into several steps that will be presented in different paragraphs. The proof
of Corollary 1.3 is then presented in the last paragraph of the section.

Notations and convention. In the following, the coefficient σ2 is assumed to be fixed to a positive constant.
The coefficient σ1 however is simply larger than σ2, and the constants are all independent of σ1.

3.1 Proof of Theorem 1.4: Uniform observability of the wave equation

In this step, we study uniform observability properties for the wave equation (1.13), that is to say, we will
prove the existence of a constant C = C(Ω,Γ0, T, σ2) independent of σ1 (> σ2) such that

Eσ(0) 6 C

∫ T

0

∫
Γ0

|∂νwσ|2dγdt, (3.1)

for all wσ solution of (1.13) and Eσ defined in (2.38). As said in the introduction, our proof follows the one
in [24, Chapter 6], keeping track of the dependence of the constants in terms of σ1.

By a usual density argument, it is sufficient to consider the case of initial conditions lying in D(Ãσ) ×
D(Ã

1/2
σ ), for which the solution wσ of (1.13) belongs to the space C0([0, T ];D(Ãσ)) ∩ C1([0, T ];D(Ã

1/2
σ )) ∩

C2([0, T ];L2(Ω)).
In order to simplify our notation, in this step we will ignore the dependence of wσ in σ, so we simply write

w instead of wσ, but all the constants appearing next will be independent of σ1. In addition, we suppose
without loss of generality that x0 = 0Rd .

Since for w ∈ D(Ãσ), Lemma 2.1 implies that we have (w1, w2) = (w|Ω1
, w|Ω2

) ∈ H2(Ω1)×H2(Ω2), it is
natural to consider the equation satisfied by w1 in (0, T )× Ω1 and by w2 in (0, T )× Ω2:

∂2
tw1 − σ1∆w1 = 0 in (0, T )× Ω1, (3.2)

∂2
tw2 − σ2∆w2 = 0 in (0, T )× Ω2. (3.3)

There, in view of the aforementioned regularity, we can develop the usual multiplier argument, which
consists in multiplying the equation (3.2) by x·∇w1+(d−1)w1/2 and the equation (3.3) by x·∇w2+(d−1)w2/2
and do integration by parts.

These classical computations yield, see e.g. [18, 24], for i ∈ {1, 2},

∫
Ωi

∂twi(t)

(
x · ∇wi(t) +

d− 1

2
wi

)∣∣∣∣T
0

dx+
1

2

∫ T

0

∫
Ωi

(|∂twi|2 + σi|∇wi|2)dxdt

+
1

2

∫ T

0

∫
∂Ωi

x · νi(σi|∇wi|2 − |∂twi|2)dγdt−
∫ T

0

∫
∂Ωi

σi∂νiwi

(
x · ∇wi +

d− 1

2
wi

)
dγdt = 0, (3.4)
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where νi denotes the outward normal to Ωi. Recalling that we chose ν = ν2 = −ν1 on ∂Ω1 ∩ ∂Ω2, summing
up the two above identities and using the boundary conditions, we get

2∑
i=1

∫
Ωi

∂twi(t)

(
x · ∇wi(t) +

d− 1

2
wi

)∣∣∣∣T
0

dx+
1

2

2∑
i=1

∫ T

0

∫
Ωi

(|∂twi|2 + σi|∇wi|2)dxdt

+
1

2

∫ T

0

∫
∂Ω1

x · ν((σ2|∇w2|2 − |∂tw2|2)− (σ1|∇w1|2 − |∂tw1|2))dγdt

+

∫ T

0

∫
∂Ω1

(
σ1∂νw1

(
x · ∇w1 +

d− 1

2
w1

)
− σ2∂νw2

(
x · ∇w2 +

d− 1

2
w2

))
dγdt

=
1

2

∫ T

0

∫
∂Ω

x · νσ2|∂νw2|2 dγdt,

(3.5)

where we have used that w2 = 0 on (0, T )× ∂Ω.
We now focus on the integrals over (0, T )× ∂Ω1. There, using the interface conditions

w1 = w2 and σ1∂νw1 = σ2∂νw2 on (0, T )× ∂Ω1,

we can write:

1

2

∫ T

0

∫
∂Ω1

x · ν((σ2|∇w2|2 − |∂tw2|2)− (σ1|∇w1|2 − |∂tw1|2))dγdt

+

∫ T

0

∫
∂Ω1

(
σ1∂νw1

(
x · ∇w1 +

d− 1

2
w1

)
− σ2∂νw2

(
x · ∇w2 +

d− 1

2
w2

))
dγdt

=
1

2

∫ T

0

∫
∂Ω1

x · ν(σ2|∇w2|2 − σ1|∇w1|2)dγdt+

∫ T

0

∫
∂Ω1

(σ2∂νw2 (x · (∇w1 −∇w2))) dγdt.

Next, we go further and recall that the interface condition w1 = w2 implies that

∇w1 = ν∂νw1 + τ, ∇w2 = ν∂νw2 + τ, on (0, T )× ∂Ω1,

where τ is a vector field tangential to ∂Ω1. In particular, with the identity σ1∂νw1 = σ2∂νw2 on (0, T )×∂Ω1,
we get

|∇w1|2 = |∂νw1|2 + |τ |2 =

(
σ2

σ1

)2

|∂νw2|2 + |τ |2 on (0, T )× ∂Ω1,

|∇w2|2 = |∂νw2|2 + |τ |2 on (0, T )× ∂Ω1,

x · ν(σ2|∇w2|2 − σ1|∇w1|2) = (∂νw2)2x · ν
(
σ2 −

σ2
2

σ1

)
+ |τ |2x · ν(σ2 − σ1), on (0, T )× ∂Ω1,

σ2∂νw2 (x · (∇w1 −∇w2)) = (∂νw2)2x · ν
(
σ2

2

σ1
− σ2

)
on (0, T )× ∂Ω1,

so that

1

2

∫ T

0

∫
∂Ω1

x · ν(σ2|∇w2|2 − σ1|∇w1|2)dγdt+

∫ T

0

∫
∂Ω1

(σ2∂νw2 (x · (∇w1 −∇w2))) dγdt.

>
∫ T

0

∫
∂Ω1

1

2
x · ν(σ2 − σ1)

(
|τ |2 + |∂νw2|2

σ2

σ1

)
dγdt > 0,

where the last inequality holds since

� Ω1 is star shaped with respect to 0, i.e. x · ν1 = −x · ν > 0 for all x ∈ ∂Ω1,

� σ1 > σ2.
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Estimate (3.5) then yields

∫
Ω

∂tw(t)

(
x · ∇w(t) +

d− 1

2
w

)∣∣∣∣T
0

dx+
1

2

∫ T

0

∫
Ω

(|∂tw|2 + σ|∇w|2) dxdt

=

∫
Ω

∂tw(t)

(
x · ∇w(t) +

d− 1

2
w

)∣∣∣∣T
0

dx+ TEσ(0) 6
σ2

2

∫ T

0

∫
Γ0

x · ν|∂νw2|2 dγdt, (3.6)

where we have used that the energy of the wave equation Eσ defined in (2.38) is independent of t ∈ [0, T ].
In order to conclude, let us recall that for w ∈ H1

0 (Ω),∫
Ω

∣∣∣∣x · ∇w +
d− 1

2
w

∣∣∣∣2 dx =

∫
Ω

(
|x · ∇w|2 +

(
d− 1

2

)2

|w|2 + (d− 1)x · ∇ww

)
dx

=

∫
Ω

(
|x · ∇w|2 +

(
d− 1

2

)2

|w|2 − d(d− 1)

2
|w|2

)
dx

6
∫

Ω

|x|2|∇w|2 dx 6
supΩ |x|2

σ2

∫
Ω

σ|∇w|2dx.

Therefore, for all t ∈ [0, T ],∣∣∣∣∫
Ω

∂tw(t)

(
x · ∇w(t) +

d− 1

2
w

)∣∣∣∣ dx 6

(
supΩ |x|√

σ2

)(
1

2

∫
Ω

|∂tw(t)|2 dx+
1

2

∫
Ω

σ|∇w(t)|2dx
)

6

(
supΩ |x|√

σ2

)
Eσ(0).

The estimate (3.6) then provides:

2

(
T − 2

supΩ |x|√
σ2

)
Eσ(0) 6 σ2

∫ T

0

∫
Γ0

x · ν|∂νw2|2 dγdt. (3.7)

This concludes the proof of Theorem 1.4.

3.2 Proof of Theorem 1.1, Step 2: From heat processes to waves

Our goal here is to prove the following result:

Proposition 3.1. Let σ2 > 0 and assume Assumptions (A1) and (A2).
For all T > 0, there exists a constant C = C(Ω,Γ0, T, σ2) > 0 such that for all σ1 > σ2, the solution zσ

of (1.11) with z0 ∈ H1
0 (Ω) satisfies

‖zσ(T )‖L2(Ω) 6 C‖∂νzσ‖L2((0,T )×Γ0). (3.8)

Proof. The argument here is based on [11, Section 3.1]. As explained there, according to [11, Proposition
3.2], setting

S ∈
(

supΩ |x|√
σ2

,
2√
3

supΩ |x|√
σ2

)
, (3.9)

we can construct a kernel K = K(t, s) solution of{
∂tK + ∂2

sK = 0, for (t, s) ∈ (0, T )× (−S, S),

K(0, s) = K(T, s) = 0, for s ∈ (−S, S),
(3.10)

and such that

K(t, 0) = 0, ∂sK(t, 0) = exp

(
−α

(
1

t
+

1

T − t

))
, in (0, T ),
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where

α = 4
supΩ |x|2

σ2
,

and for which we have the estimate:

|K(t, s)| 6 |s| exp

(
1

min{t, T − t}

(
2s2 − 2α

3

))
, (t, s) ∈ (0, T )× (−S, S). (3.11)

Now, let z0 ∈ H1
0 (Ω) and let zσ be the solution of (1.11). Then set

wσ(s, x) =

∫ T

0

K(t, s)zσ(t, x) dx, s ∈ (−S, S), x ∈ Ω. (3.12)

Easy computations show that wσ satisfies the wave equation
∂2
swσ − div(σ∇wσ) = 0, in (−S, S)× Ω,

wσ = 0, on (−S, S)× ∂Ω.

(wσ, ∂swσ)(0) = (0, w1
σ), in Ω,

(3.13)

with

w1
σ =

∫ T

0

exp

(
−α

(
1

t
+

1

T − t

))
zσ(t) dt. (3.14)

and

∂νwσ(s, x) =

∫ T

0

K(t, s)∂νzσ(t, x) dt, in (−S, S)× Γ0. (3.15)

Applying the uniform observability obtained in Theorem 1.4 to Wσ(τ) = wσ(τ−S) for τ ∈ (0, 2S), and using
that the energy is constant, easily leads to the existence of a constant C independent of σ1 > σ2 such that∥∥∥∥∥

∫ T

0

exp

(
−α

(
1

t
+

1

T − t

))
zσ(t) dt

∥∥∥∥∥
2

L2(Ω)

6 C

∫ S

−S

∫
Γ0

∣∣∣∣∣
∫ T

0

K(t, s)∂νzσ(t, x) dt

∣∣∣∣∣
2

dγds. (3.16)

On one hand, as, for all µ > 0, one has∫ T

0

exp

(
−α

(
1

t
+

1

T − t

))
exp(−µ t) dt > exp(−µT )

∫ 2T
3

T
3

exp

(
−α

(
1

t
+

1

T − t

))
dt

> exp(−µT )
T

3
exp

(
− 9α

2T

)
,

decomposing zσ(t) on the orthonormal basis formed by the eigenfunctions of the positive self-adjoint operator
Ãσ easily leads to

T 2

9
e−9α/T ‖zσ(T )‖2L2(Ω) 6

∥∥∥∥∥
∫ T

0

exp

(
−α

(
1

t
+

1

T − t

))
zσ(t) dt

∥∥∥∥∥
2

L2(Ω)

.

On the other hand, the right-hand side of (3.16) can be easily bounded as well since K is uniformly
bounded by S in (−S, S)× (0, T ) (recall (3.11)):

∫ S

−S

∫
Γ0

∣∣∣∣∣
∫ T

0

K(t, s)∂νzσ(t, x) dt

∣∣∣∣∣
2

dγds 6 2S3

∫ T

0

∫
Γ0

|∂νzσ(t, x)|2 dγdt.

Combining the last estimates, we easily deduce the observability inequality (3.8).
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3.3 Proof of Theorem 1.1, Step 3: A cut-off argument

Our goal now is to prove the following result:

Proposition 3.2. Let σ2 > 0 and assume Assumptions (A1) and (A2).
For all T > 0, there exists a constant C = C(Ω, ω, T, σ2) > 0 such that for all σ1 > σ2, the solution zσ of

(1.11) with z0 ∈ H1
0 (Ω) satisfies (1.12).

Proof. We first claim that Proposition 3.1 and a simple superposition argument implies that there exists a
constant C such that for any σ1 > σ2, for any z0 ∈ H1

0 (Ω) and f ∈ L2(0, T ;L2(Ω)), the solution zσ of
∂tzσ − div(σ∇zσ) = f, in (0, T )× Ω,

zσ = 0, on (0, T )× ∂Ω,

zσ(0) = z0, in Ω,

(3.17)

satisfies
‖zσ(T )‖L2(Ω) 6 C‖∂νzσ‖L2(0,T ;L2(Γ0)) + C ‖f‖L2(0,T ;L2(Ω)) . (3.18)

Indeed, to prove this estimate, write zσ = z0
σ + zfσ , where z0

σ is the solution of (1.11) and zfσ is the solution of
∂tz

f
σ − div(σ∇zfσ) = f, in (0, T )× Ω,

zfσ = 0, on (0, T )× ∂Ω,

zfσ(0) = 0, in Ω.

(3.19)

Using Proposition 3.1, we have

‖zσ(T )‖L2(Ω) 6
∥∥z0
σ(T )

∥∥
L2(Ω)

+
∥∥zfσ(T )

∥∥
L2(Ω)

6 C
∥∥∂νz0

σ

∥∥
L2(0,T ;L2(Γ0))

+
∥∥zfσ(T )

∥∥
L2(Ω)

6 C ‖∂νzσ‖L2(0,T ;L2(Γ0)) + C
∥∥∂νzfσ∥∥L2(0,T ;L2(Γ0))

+
∥∥zfσ(T )

∥∥
L2(Ω)

, (3.20)

where C is the uniform constant given in Proposition 3.1, and thus does not depend on σ1 > σ2. Then we
use the energy estimates (2.9)–(2.10)–(2.11) to deduce that there exists a constant C independent of σ1 > σ2

such that ∥∥zfσ(T )
∥∥
L2(Ω)

+
∥∥zfσ∥∥L2(0,T ;H1(Ω2))

+
∥∥∆zfσ

∥∥
L2(0,T ;L2(Ω2))

6 C ‖f‖L2(0,T ;L2(Ω)) .

Therefore we easily deduce that zfσ can be estimated in L2(0, T ;H2(O2)) for any neighborhood O2 of Γ0

included in Ω2 and its normal derivative on (0, T )× Γ0 can be estimated as follows:∥∥∂νzfσ∥∥L2(0,T ;L2(Γ0))
6 C ‖f‖L2(0,T ;L2(Ω)) ,

for some constant independent of σ1. Using then (3.20), we easily conclude the proof of (3.18).

The second step is to prove that taking

ω0 = {x ∈ Ω, d(x,Γ0) 6 ε/2},

for all T > 0, there exists a constant C such that for any σ1 > σ2, for any z0 ∈ H1
0 (Ω), the solution zσ of

(1.11) satisfies
‖zσ(T )‖L2(Ω) 6 C ‖zσ‖L2(0,T ;H1(ω0)) . (3.21)

In order to do that, we choose a cut-off function η ∈ C∞(Ω), equal to 1 in Ω \ ω0 and vanishing close to Γ0.
Applying then (3.18) to ηzσ, we get

‖ηzσ(T )‖L2(Ω) 6 C ‖zσ‖L2(0,T ;H1(ω0)) . (3.22)
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The function (1−η)zσ then satisfies the usual heat equation with Dirichlet boundary condition in (0, T )×Ω2,
with a source term bounded in L2(0, T ;L2(Ω2)) by ‖zσ‖L2(0,T ;H1(ω0)). Therefore, the usual observability
estimate for the heat equation yields

‖(1− η)zσ(T )‖L2(Ω2) 6 C ‖zσ‖L2(0,T ;H1(ω0)) , (3.23)

where the constant C does not depend on σ1.
Estimate (3.21) then follows immediately from (3.22) and (3.23).

The last step is to use Cacciopoli inequality to replace the norm L2(0, T ;H1(ω0)) in the right hand-side
of (3.21) by the L2(0, T ;L2(ω)) norm.

In fact, we start by using the observability inequality (3.21) between the times T/3 and 2T/3: we obtain,
for some C independent of σ1 > σ2 that

‖zσ(2T/3)‖L2(Ω) 6 C ‖zσ‖L2(T/3,2T/3;H1(ω0)) .

Since the L2(Ω) norm of zσ(t, ·) solution of (1.11) is decreasing, we deduce that

‖zσ(T )‖L2(Ω) 6 C ‖zσ‖L2(T/3,2T/3;H1(ω0)) . (3.24)

We then choose a function ρ ∈ C∞([0, T ]× Ω) such that
ρ(t, x) = 0, for (t, x) ∈ [0, T ]× (Ω \ ω),

ρ(t, x) = 1, for (t, x) ∈ [T/3, 2T/3]× ω0,

ρ(0, x) = ρ(T, x) = 0, for x ∈ Ω.

Multiplying the equation (1.11) of zσ by ρzσ, and using that ρ ≡ 0 in [0, T ]×Ω1, we easily get by integration
by parts that ∫ T

0

∫
Ω2

ρσ2|∇zσ|2 dxdt 6 C

∫ T

0

∫
Ω2

(|∂tρ|+ |∆ρ|σ2)|zσ|2 dxdt.

Bounding from below the left hand side and from above the right hand side, we easily deduce, with a constant
C independent of σ1, that ∫ 2T/3

T/3

∫
ω0

ρσ2|∇zσ|2 dxdt 6 C

∫ T

0

∫
ω

|zσ|2 dxdt. (3.25)

Combining estimates (3.24) and (3.25), we easily deduce the uniform observability estimates (1.12).

3.4 Proof of Theorem 1.1: Conclusion

Theorem 1.1 can now be simply deduced by the duality between the null controllability of (1.3) and the
observability inequality (1.12) for the adjoint equation (1.11), and we refer for instance to [31, Theorem
11.2.1].

The uniform observability estimate (1.12) for the adjoint equation (1.11) for σ of the form (1.1) with
σ1 > σ2, σ2 being fixed, see Proposition 3.2, thus directly implies Theorem 1.1 by duality.

3.5 Proof of Corollary 1.3

Let (Y0, y0,2) ∈ R × L2(Ω2), and introduce y0 = Y01Ω1
+ y0,21Ω2

. According to Theorem 1.1, for all σ as in
(1.1) with σ1 > σ2, σ2 being fixed, there exists a null-control uσ ∈ L2(0, T ;L2(ω)) such that the solution yσ of
(1.3) satisfies yσ(T ) = 0 and the controls (uσ)σ1>σ2 satisfy the uniform bound (1.7). Therefore, the sequence
(uσ)σ1>σ2

weakly converges up to a subsequence as σ1 →∞ in L2(0, T ;L2(ω)) to some u∗ ∈ L2(0, T ;L2(ω))
satisfying

‖u∗‖L2((0,T )×ω) 6 C ‖y0‖L2(Ω) 6 C ‖(Y0, y0,2)‖R×L2(Ω2) .

We can then pass to the limit in the equations (1.3) satisfied by yσ, and according to Theorem 2.2, the
sequence (yσ)σ1>σ2

converges to y∗ = Y ∗1Ω1
+y∗21Ω2

weakly in L2(0, T ;H1
0 (Ω)), weakly-* in L∞(0, T ;L2(Ω)),

and strongly in C0((0, T ];L2(Ω)), where (Y ∗, y∗2) solves (2.24) with F∗ = 0 and f∗2 = u∗1ω.
According to the above convergences, we also have that Y ∗(T ) = 0 and y∗2(T ) = 0 in Ω2, which means

that u∗ is a null control for the limit equation (1.8) with initial datum (Y0, y0,2).
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4 Further comments and open problems

4.1 A spectral approach in the 1d case

In the 1-dimensional case, Theorem 1.1 can alternatively be proved using the moment method, i.e. a spectral
approach based on suitable properties of the eigenvalues and eigenvectors of the underlying operator, the
difficulty being to get uniform estimates with respect to the parameter going to infinity.

To better explain this strategy, for ε ∈ (0, 1), let us consider the system of equation

∂tyL − ∂2
xyL = 0, in (0, T )× (−1, 0),

∂tyR −
1

ε2
∂2
xyR = 0, in (0, T )× (0, 1),

yL(t, 0) = yR(t, 0), on (0, T ),

∂xyL(t, 0) =
1

ε2
∂xyR(t, 0), on (0, T ),

yL(t,−1) = u(t), yR(t, 1) = 0, on (0, T ),

(yL, yR)(0) = (y0,L, y0,R), in (−1, 0)× (0, 1),

(4.1)

where the control u is now acting only on the left at x = −1.
Note that, strictly speaking the system of equation (4.1) does not correspond to the system considered

in (1.3) in 1d, but it clearly has the same flavor and can be dealt with similarly to the price of some minor
additional technical difficulties.

We claim the following counterpart to Theorem 1.1 for system (4.1):

Theorem 4.1. For all T > 0, there exist ε0 > 0 and C > 0 such that for all (y0,L, y0,R) ∈ L2(−1, 0)×L2(0, 1),
for all ε ∈ (0, ε0), there exists a control uε ∈ L2(0, T ), such that the solution (yL,ε, yR,ε) of (4.1) satisfies
(yL,ε(T ), yR,ε(T )) = (0, 0) in L2(−1, 0)× L2(0, 1), and

‖uε‖L2(0,T ) 6 C ‖(y0,L, y0,R)‖L2(−1,0)×L2(0,1) . (4.2)

Remark 4.2. Note that the limit system corresponding to (4.1) in the limit ε→ 0 simply is
∂tyL − ∂2

xyL = 0, in (0, T )× (−1, 0),

yL(t, 0) = 0, on (0, T ),

yL(t,−1) = u(t), on (0, T ),

yL(0) = y0,L, in (−1, 0)× (0, 1),

(4.3)

i.e. the heat equation with homogeneous Dirichlet boundary condition at x = 0, for which null-controllability
is well-known (see e.g. [14]).

Also note that homogeneous Neumann boundary conditions ∂xyR(t, 1) = 0 on yR at x = 1 in (4.1) would
have led in the limit ε→ 0 to the dynamic boundary condition ∂tyL(t, 0) + ∂xyL(t, 0) similarly to (1.8) in 1d,
for which the work [17, Chapter 5] proves the null-controllability of the corresponding equation.

We will not provide a detailed proof of Theorem 4.1 since it is quite lengthy and could also be done
quicker using the observability of the corresponding wave equation and the transmutation technique as we
did for the proof of Theorem 1.1.

We will nevertheless briefly sketch it below to explain the key steps to prove Theorem 4.1 using the
moment method.

Sketch of the proof of Theorem 4.1. The moment method is a spectral approach, relying on a good knowledge
of eigenvalues and eigenvectors. Thus, for all ε ∈ (0, 1), we define the operator Aε defined on L2(−1, 0) ×
L2(0, 1) by

Aε(yL, yR) =

(
−∂2

xyL,−
1

ε2
∂2
xyR

)
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with domain

D(Aε) = {(yL, yR) ∈ H2(−1, 0)×H2(0, 1)

with yL(−1) = yR(1) = 0, yL(0) = yR(0), and ∂xyL(0) =
1

ε2
∂xyR(0)}.

Similarly as in Section 2.1, it is classical to check that these operators are self-adjoint, positive definite and
with compact resolvent.

Therefore, their spectrum is made by a sequence of strictly positive eigenvalues (λk,ε)k∈N (increasingly
ordered) and of corresponding eigenvectors (Φk,L,ε,Φk,R,ε)k∈N.

Our next goal will be to prove the following statement: There exists ε0 > 0 small enough such that

� The eigenvalues satisfy:

inf
ε∈(0,ε0)

inf
k∈N

{√
λk+1,ε −

√
λk,ε

}
> 0. (4.4)

� The eigenvectors satisfy:

inf
ε∈(0,ε0)

inf
k∈N

{
|∂xΦk,L,ε(−1)|√

λk,ε ‖(Φk,L,ε,Φk,R,ε)‖L2(−1,0)×L2(0,1)

}
> 0. (4.5)

To prove these properties, for ε ∈ (0, 1), we consider the eigenvalue problem:

−∂2
xΦL = λΦL in (−1, 0),

− 1

ε2
∂2
xΦR = λΦR in (0, 1),

ΦL(0) = ΦR(0),

∂xΦL(0) =
1

ε2
∂xΦR(0),

ΦL(−1) = ΦR(1) = 0.

(4.6)

Setting ω =
√
λ, the first four equations imply, that, for some constants A and B,

ΦL,ε(x) = A cos(ωx) +B sin(ωx), x ∈ (−1, 0),

ΦR,ε(x) = A cos(εωx) + εB sin(εωx), x ∈ (0, 1).

The boundary conditions then imply that A and B can be chosen to be non-zero if and only if

Det

(
cos(ω) − sin(ω)
cos(εω) ε sin(εω)

)
= 0,

that is if ω > 0 satisfies

fε(ω) = 0 where fε(ρ) = ε cos(ρ) sin(ερ) + sin(ρ) cos(ερ), (ρ ∈ R∗+). (4.7)

In fact, one easily checks that, for all ε > 0, λ > 0 is an eigenvalue of Aε corresponding to an eigenvector
(ΦL,ΦR) if and only if fε(

√
λ) = 0, and then the corresponding eigenvector (not normalized) can be given

by

ΦL(x) = sin(
√
λ(x+ 1)), x ∈ (−1, 0), (4.8)

ΦR(x) =
ε cos(

√
λ)

cos(ε
√
λ)

sin(ε
√
λ(x− 1)), x ∈ (0, 1), (4.9)

where ε cos(
√
λ)/cos(ε

√
λ) is replaced by 1 when cos(ε

√
λ) = 0 (if cos(ε

√
λ) = 0 and fε(

√
λ) = 0, cos(

√
λ) = 0,

and this ratio should thus be seen as the extension by continuity of the map ρ 7→ ε cos(ρ)/ cos(ερ) when the
functions ρ 7→ cos(ρ) and ρ 7→ cos(ερ) cancel in the same point).
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Proof of estimate (4.4). In order to prove the estimate (4.4), according to the above discussion, it
is sufficient to prove that there exists a constant α > 0 such that for ε > 0 small enough, two positive
consecutive root of the function fε (defined in (4.7)) are at a distance > α. This is not difficult to check,
following the arguments hereafter.

First, remark that if fε(ω) = 0 and cos(ω) = 0, then cos(εω) = 0, and that if fε(ω) = 0 and cos(εω) = 0,
then cos(ω) = 0. Therefore, it is interesting to write fε under the form fε(ρ) = cos(ρ) cos(ερ)gε(ρ) for the
function gε defined by

gε(ρ) = ε tan(ερ) + tan(ρ), (4.10)

for ρ ∈ R∗+ \ (∪k∈N{(k + 1/2)π} ∪`∈N {(`+ 1/2)π/ε}). Accordingly, roots of fε are either simultaneous roots
of cos and cos(ε·), or roots of gε.

If we first assume that ε cannot be written under the form (2k + 1)/(2` + 1) for (k, `) ∈ N2, then there
are no common roots of cos and cos(ε·), so the equation reduces to the analysis of the roots of gε. Since gε
is a strictly increasing function apart from the singularities of tan and tan(ε·), it is clear that gε has exactly
one roots between each of the singularities of tan and tan(ε·).

If ω is a root of gε which belongs to an interval of the form (−π/2 + kπ, π/2 + kπ) with k ∈ N such that
tan(ε·) has no singularity in this interval, then we are in one of the following cases:

� if ω < π/4 + kπ, the next root being after the next singularity of gε, it necessarily is at a distance at
least π/4.

� if ω > π/4 + kπ, then tan(ω) > 1, and therefore ε tan(εω) 6 −1. Thus, if ε is small enough, we
necessarily have that tan(ε·) is well-defined and negative on (π/2+kπ, π/2+(k+1)π), so that the next
root ω1 necessarily satisfies ω1 ∈ (π/2+kπ, π/2+(k+1)π) and tan(ω1) > 0. Accordingly, ω1 > (k+1)π
and ω1 − ω > π/2.

If ω is a root of gε which belongs to an interval of the form (−π/2 + kπ, π/2 + kπ) with k ∈ N such that
tan(ε·) has a singularity in this interval, of the form (`+ 1/2)π/ε with ` ∈ N, then

� if ω is larger than (` + 1/2)π/ε; We first check that for ε > 0 small enough, ε tan(ερ) 6 −1 for all
ρ ∈ ((`+ 1/2)π/ε, (k + 3/2)π), so that the next root ω1 of gε satisfies ω1 ∈ (π/2 + kπ, π/2 + (k + 1)π)
and tan(ω1) > 0 and thus ω1 > (k + 1)π and ω1 − ω > π/2. Besides, we have that tan(ω) > 1.

� if ω is smaller than (` + 1/2)π/ε; We first check that for ε > 0 small enough, ε tan(ερ) > 1 for all
ρ ∈ ((k− 1/2)π, (`+ 1/2)π/ε), so that we necessarily have that tan(ω) 6 −1. The previous item shows
that the next root ω1 of gε belongs to ((`+ 1/2)π/ε, (k + 1/2)π) and satisfies tan(ω1) > 1. Therefore,
ω1 − ω is necessarily larger than π/2.

We have thus proved the uniform spectral gap condition (4.4) when ε is small enough and not of the
form (2k + 1)/(2` + 1) for (k, `) ∈ N2. In fact, when ε is of the form (2k + 1)/(2` + 1) for (k, `) ∈ N2, the
same arguments as above can be adapted locally around the common roots of cos and cos(ε·) with almost
no change, so we leave it to the reader.

Proof of estimate (4.5). According to the formulas (4.8)–(4.9), proving the estimate (4.5) amounts to
show that

sup
ε∈(0,ε0)

sup

{∣∣∣∣ε cos(ω)

cos(εω)

∣∣∣∣ , for ω such that fε(ω) = 0

}
<∞. (4.11)

Indeed, if (4.11) holds, then the ratio ‖Φk,L,ε‖L2(−1,0) / ‖(Φk,L,ε,Φk,R,ε)‖L2(−1,0)×L2(0,1) is uniformly bounded

from below for ε ∈ (0, ε0) and k ∈ N, and then (4.5) follows from the classical fact that

inf
ε∈(0,ε0)

inf
k∈N

{
|∂xΦk,L,ε(−1)|√

λk,ε ‖Φk,L,ε‖L2(−1,0)

}
> 0.

which is a straightforward estimate for Φk,L,ε of the form (4.8).
To prove (4.11), we simply remark that fε(ω) = 0 implies that

ε2 cos(ω)2 sin(εω)2 = sin(ω)2 cos(εω)2,
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hence
ε2 cos(ω)2(1− cos(εω)2) = (1− cos(ω)2) cos(εω)2,

and
ε2 cos(ω)2

cos(εω)2
= (1− (1− ε2) cos(ω)2) 6 1.

This concludes the proof of property (4.11) and property (4.5).

Conclusion. To conclude the proof of Theorem 4.1, for all ε ∈ (0, ε0), we can then follow the classical
strategy (see e.g. [30] or [8, Chapter IV]), which consists in building biorthogonal families to the exponential
functions (t 7→ exp(−λk,εt))k∈N and constructing a control uε by a suitable combination of these biorthogonal
families. The only point to check is the uniform bound on the controls uε constructed that way, which will
follow from the application of [8, Theorems IV.1.8 and IV.1.9], whose assumptions are satisfied due the
uniform bounds in (4.4) and (4.5). In particular, one easily checks that condition (4.4) implies, by setting

γ = inf
ε∈(0,ε0)

inf
k∈N

{√
λk+1,ε −

√
λk,ε

}
,

that for all r > 0 and ε ∈ (0, ε0),

∑
λk,ε>r

1

λk,ε
6
∑
k∈N

1

(
√
r + γk)2

=
1

r
+

∞∑
k=1

1

(
√
r + γk)2

6
1

r
+

∫ ∞
0

1

(
√
r + γx)2

dx 6
1

r
+

1

γ
√
r
,

so that all families (λk,ε)k∈N have a uniform remainder function. The other conditions of [8, Theorems IV.1.8
and IV.1.9] follow easily from the condition (4.4) and the fact that the first eigenvalues λ1,ε are uniformly
bounded from below.

4.2 More general geometric conditions

A very interesting problem is to discuss if the geometric conditions (A1) and (A2) are really needed or not
to get uniform controllability results when the conductivity in one of the two medium goes to infinity.

We emphasize that here, these geometric conditions arise because our strategy of proof relies on the
controllability of the corresponding wave equation, and are thus probably only technical.

It would be very natural to try to develop suitable Carleman estimates in the spirit of the works [5, 6, 7,
21, 22, 20] to derive uniform observability estimates (1.12) for the solutions of (1.11) for conductivities σ of
the form (1.1) when σ1 →∞ under the only condition that the control set ω is non-empty and ω ⊂ Ω2.

This is so far an open problem, even when considering the restrictive geometric setting of [10].

4.3 The case of a control set in the strongly conductive material

When considering a control acting in the strongly conductive material, we claim the following result:

Theorem 4.3. Let Ω be a smooth bounded domain of Rd, d > 2, Ω1 be a smooth non-empty subdomain of
Ω with Ω1 b Ω, and Ω2 = Ω \ Ω1, ω ⊂ Ω1, σ2 > 0, and T > 0.

Then there is no constant C such that for all σ1 > σ2, any solution zσ of (1.11) satisfies the observability
inequality

‖zσ(T )‖L2(Ω) 6 C ‖zσ‖L2((0,T )×ω) . (4.12)

In particular, the systems (1.3) are not uniformly controllable as σ1 →∞.

Proof. We prove Theorem 4.3 by contradiction, by assuming that the systems (1.11) are uniformly observable
and uniformly satisfy the observability inequality (4.12) with ω ⊂ Ω1.

In such case, according to Theorem 2.2 and following the proof of Corollary 1.3, we could deduce the
null-controllability of the limit system with a scalar control u∗ acting on the boundary ∂Ω1. To be more
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precise, this implies that for all (Y0, y0,2) ∈ R × L2(Ω2), there exists a control function u∗ ∈ L2(0, T ) such
that the solution (Y, y2) of

∂ty2 − σ2∆y2 = 0, in (0, T )× Ω2,
y2(t, x) = 0, on (0, T )× ∂Ω,
y2(t, x) = Y (t), on (0, T )× ∂Ω1,

∂tY +
σ2

|Ω1|

∫
∂Ω1

∂νy2(t) dγ = u∗, in (0, T ),

y2(0, ·) = y0,2(·), in Ω2,
Y (0) = Y0,

(4.13)

satisfies Y (T ) = 0 and y2(T ) = 0 in Ω2.
Consequently, this would entail that for all y0,2 ∈ L2(Ω2), there exists a control Y ∈ L2(0, T ) such that

the solution y2 of 
∂ty2 − σ2∆y2 = 0, in (0, T )× Ω2,
y2(t, x) = 0, on (0, T )× ∂Ω,
y2(t, x) = Y (t), on (0, T )× ∂Ω1,
y2(0, ·) = y0,2(·), in Ω2,

(4.14)

satisfies y2(T ) = 0 in Ω2.
This is in contradiction with Müntz-Szász theorem when d > 2. Indeed, since the Laplace operator

A = −∆ in Ω2 in L2(Ω2) with domain H2 ∩ H1
0 (Ω2) is positive self-adjoint, its spectrum is formed by a

sequence of eigenvalues (λk)k∈N going to infinity, and of orthogonal eigenvectors (wk)k∈N. Besides, according
to Weyl’s law, the sequence (λk)k∈N is equivalent to C(Ω)k2/d (see [33, Corollary 4.2, Chap. 13]), entailing
in particular that

∑
k 1/λk = ∞ when d > 2. According to Müntz-Szász theorem (see e.g. [32, p.91]), the

set (t 7→ exp(σ2λkt))k∈N is complete in C0([0, T ]), and this is still true even when removing a finite number
of elements, for instance its first one. Accordingly there is no solution Y ∈ L2(0, T ) of the moment problem∫ T

0

Y (t) exp(σ2λk(t− T )) dt

(∫
∂Ω1

∂νwk dγ

)
= 1k=1, k ∈ N,

which is the moment problem corresponding to the null-controllability problem for (4.14) with the initial
datum w1.

4.4 The case of a strongly insulating material σ1 → 0

It is also interesting to briefly discuss the case σ1 → 0 as it corresponds to the limit of a strongly insulating
material.

To better understand what happens in this case, let us first present the following convergence result,
whose proof is left to the reader:

Proposition 4.4. Let Ω be a smooth (C 2) bounded domain in Rd (d ∈ N∗), Ω1 b Ω be a smooth bounded
domain, and Ω2 = Ω \ Ω1.

Let σ2 > 0 be fixed, T > 0, y0 ∈ L2(Ω), and let (fσ)σ1>0 be a bounded family of L2(0, T ;L2(Ω)), which
weakly converges as σ1 → 0 to f∗ in L2(0, T ;L2(Ω)).

For σ1 > 0, and σ as in (1.1), let (yσ)σ1>0 be the solution of
∂tyσ − div (σ∇yσ) = fσ, in (0, T )× Ω,

yσ = 0, on (0, T )× ∂Ω,

yσ(0) = y0, in Ω.

(4.15)

Then as σ1 → 0, the sequence (yσ)σ1>0 weakly converges in L2(0, T ;L2(Ω)) to the solution y∗ of
∂ty
∗ − div (1Ω2

σ2∇y∗) = f∗, in (0, T )× Ω,

y∗ = 0, on (0, T )× ∂Ω,

y∗(0) = y0, in Ω.

(4.16)
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It is then clear that if Ω1 \ ω 6= ∅, the equation (4.16) will not be null-controllable with null-controls
localized in the set ω, since in Ω1 \ ω, the equation (4.16) would then reduce to

∂ty
∗ = 0 in D ′((0, T )× (Ω1 \ ω)).

Still, an interesting open question is the analysis of the rate at which the cost of controllability blows up
as σ1 goes to 0.
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