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Abstract 
 
Birds demontrate that Flapping-wing flight (FWF) is a versatile flight mode, compatible with 
hovering, forward flight, and gliding to save energy. This extended flight domain would be 
especially useful on mini UAVs.  However, design is challenging because aerodynamic efficiency 
is conditionned by complex movements of the wings, and because many interactions exist between 
morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke 
amplitude, wing unfolding). Here we used Artificial Evolution to optimise these morpho-kinematic 
features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight 
tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating 
horizontal flight for minimal mechanical power were retained. Results showed that flight at medium 
speed (10-12 m/s) can be obtained for reasonnable mechanical power (20 W/kg), while flight at 
higher speed (16-20 m/s) implied increased power (30-50 W/kg). Flight at low speed (6-8 m/s) 
necessitated unrealistic power levels (70-500 W/kg), probably because our simulator neglected 
unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight 
speed were compared to available biological data on the flight of birds. 
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1. Introduction 
 
In order to achieve sustained horizontal flight, human flying machines usually rely on a fixed wing 
and a powered propeller such as an airplane, or on powered rotating wings like in helicopters. On 
the other hand, birds, bats, and insects - i.e., actively flying animals - use flapping-wing flight 
(FWF) to produce the lift and thrust forces needed for forward flight. The reasons why biological 
and technical worlds have retained different solutions may be of both historical (e.g., contingency) 
and structural (e.g., material constraints) nature. In particular, it appears that: 
 

- Continually, rotating mechanical joints - on which propellers and rotors are based in 
human technology - do not exist in animals at the macroscopic, morphological level. 
Skeletal joints would belong to the category of rotating joints, but the dependence on 
muscles and tendons as force and torque effectors limit their angular rotation. Hence only 
reciprocating movements between skeleton elements are possible in animals. As a 
consequence of the historical, contingent constraint of inheriting a muscle-based activation 
system, propellers or rotating wings for active flight are beyond the reachable phenotypes of 
extant animals. 

 
- Articulated, moving wings as necessitated by FWF are hard to design for human flight. At 
a man-lifting scale, with usual aeronautical materials such as wood, steel, aluminium or even 
newer composite materials, flapping-wing flight is a tremendous aerodynamic, mechanical 
and structural challenge for current technology. Although several “ornithopters” have been 
constructed in the last 100 years, even the most recent designs (DeLaurier 1999) remain 
marginally efficient compared to classical fixed-wing or rotor designs. As a result, the great 
potential of FWF demonstrated by animals in terms of speed range or manoeuvrability, 
though attractive, remains beyond the achievable goals of today's human aerial 
transportation prospect. 

 
Although FWF seems rather impractical at a man-lifting scale, which is also illustrated by the fact 
that flying animals rarely exceed 10 kg in mass, the recent technological field of unmanned aerial 
vehicles (UAVs) may find in FWF solutions to challenging flight dynamics problems. As small size 
is a determining factor, research efforts on FWF are mostly focused on micro-UAVs (insect to 
small bird-sized: 1-100g) and mini-UAVs (medium to large bird-sized: 0.1-10kg). At these sizes, 
FWF has the potential to allow unique flight dynamics abilities, as demonstrated by the 
performance of flying animals :  
 

- FWF is versatile. Depending on specific size and weight, flying animals can hover, fly 
forward at varying speeds, and glide or soar to save energy. Many species can perform all 
three flight regimes, as exemplified by the European kestrel, F. tinnunculus. These regimes 
are selected according to daily activities like foraging, observation or migration. These 
species merge both helicopter and airplane-like abilities into a single, extended flight 
domain.  
- Active articulated wings and asymmetrical flapping provide very high manoeuvrability, 
especially useful in obstructed spaces, as demonstrated by perching birds that fly among tree 
branches for example. 
- Reciprocating wing movements allow flying animals to use favourable unsteady 

aerodynamics, at least during hovering and slow flight (Norberg 1990). For example, one 
well-known unsteady effects is the “delayed stall”, which can increase the airfoil maximal 
lift up to 50% when the wing’s angle of attack is suddenly increased (Vogel 1994).  

 
Drawing inspiration from natural flyers, one of the main interests in transposing FWF to small 
UAVs is the ability to obtain an extended flight-mode range. Namely, a hovering and very slow 
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flight appears useful for exploration and observation in obstructed or urban areas, while a medium 
to high speed horizontal flight at low energetic cost, which is not well achieved by helicopters, is 
necessary to cover large distances. Moreover, the ability to soar in ascending air currents is a 
supplementary key-feature for energy saving. 
Although the perspective of implementing these three flight modes on a single UAV is very 
attractive, the main drawback in using FWF, as mentioned above, is the high difficulty of designing 
a mechanically and aerodynamically functional  flapping wing, because of the large number of 
interacting parameters like morphological characteristics, degrees of freedom and kinematic data 
associated with the wing’s parts. 
 
In an attempt to overstep these difficulties, we used Artificial Evolution (AE) to explore the range 
of  functional wing morphologies and kinematics for a simulated bird-like mini UAV. AE is a “trial 
and error” optimisation method inspired from Darwinian natural selection. It may call upon several 
numerical optimisation procedures such as “Genetic Algorithms”, “Evolution Strategies”, and 
others (Goldberg 1989), which are used in engineering, artificial intelligence and biology to solve 
complex problems (for an AE application to biological morphology, see de Margerie et al. 2005). 
Compared to classical knowledge-driven engineering methods, AE has the main advantage that it 
does not need a comprehensive high-level knowledge of the considered problem. In our case, only 
the basic laws of aerodynamics need  to be implemented in a simulator, to make the generation of 
various FWF solutions possible. By selecting the best among such randomly generated solutions, by 
randomly recombining and mutating them, and by testing the “offspring” solutions again, AE can 
generate satisfactory optimised solutions to intricate problems, with minimal initial knowledge. 
This can be useful for solving the FWF problem because one only needs to know rather general 
aerodynamic laws to test any AE-produced wing morphology, or any flapping movement, in a flight 
simulator.  
 
The present work is part of the ROBUR project (Doncieux et al. 2004) that aims at designing an 
outdoor bird-like mini UAV  of 1-2m wingspan, with adaptive locomotion modes and abilities 
required for a true decisional autonomy like obstacle avoidance (Muratet et al. 2005), localization 
and mapping (Angeli et al. 2006) and energy management (Barate et al. 2006) . Here we focus on 
wing morphology and movements and use AE to find morphological and kinematic parameters 
providing flapping flight at minimal energetic cost. These parameters mainly include the wing area, 
the wing aspect ratio, the flapping frequency, the stroke amplitude and the angles of attack. As a 
first stepping stone, before later considering turning, ascending or aerobatic flight, we concentrated 
the present work on forward horizontal flight at varying speeds (6-20 m.s

-1
), for an approximately 1 

kg bird-like UAV. 
 
A few previous works have used AE to optimize FWF, but with notable differences relatively to the 
present work. Salles and Schiele (2004), for instance,  optimised the movement of a small rigid 
wing inspired from an hawkmoth's wing, manipulated at low Reynolds number by a robotic arm, 
using a genetic algorithm. Van Breugel and Lipson (2005) used an evolutionary algorithm to 
optimise the lift produced by a simulated 50-310g four-wing ornithopter. Although not using AE, 
Rakotomamonjy et al. (2004) used an optimisation algorithm (non linear programming) on a neural 
network controlling the kinematics of a simulated 30g micro-UAV, in order to maximize the lift 
forces. Beyond differences in the UAV’s mass, our work differs from these previous studies by the 
fact that we simultaneously optimize the kinematics and the wing morphology (size and shape) of 
our UAV. To our knowledge, the work of Shim et al. (2004) is the only other study evolving both 
the morphology and kinematics of bird- or bat-sized FWF UAVs. However, their optimisation 
process does not consider energy consumption - their fitness criterion being a sum of flight speed 
and hovering time - and accordingly embeds their study in a different perspective tied to artificial 
life and virtual worlds and then less realistic and applicable to real UAVs than ours. 
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2. Methods 
 
2.1 UAV morphology and kinematics 
 

 
 

Figure 1 : UAV Morphology. a: Wing panels and their degrees of freedom (DOFs) ; dihedral (DI), sweep (SW), shoulder 
incidence (SINC) and wrist incidence (WINC). b, c, d, e: four possible morphologies, for extreme values of the wing area 

(aw) and the wing aspect ratio (λw). UAVs are displayed in flight, with random angular values on the four DOFs. The light-
blue sphere indicates the position of the UAV’s center of gravity. The yellow line is the trajectory of the UAV’s body. b: aw 

= 0.1 m
2
, λw = 4.5, wingspan = 0.67 m. c: aw = 0.1 m

2
, λw = 10, wingspan = 1 m. d: aw = 0.4 m

2
, λw = 4.5, wingspan = 1.34 

m. e: aw = 0.4 m
2
, λw = 10, wingspan = 2 m. 

 
Freely inspired from bird morphology, our simulated UAV had two symmetrical wings and a 
central tail, as described on fig.1. Each wing comprised an inner rectangular and an outer elliptic 
panel of equal spans, named IP and OP, respectively. Each wing had 4 degrees of freedom (DOF): 
rotation was possible in dihedral (x) and incidence (y) at the “shoulder” joint, i.e. between body and 
IP, while rotations in sweep (z) and incidence (y) were allowed at the “wrist” joint, i.e. between IP 
and OP. Rotation in sweep allowed the UAV to possibly retract its wings during the flapping stroke. 
A sweep angle implied that IP and OP partly overlap, hence entailing a decrease in the 
aerodynamically efficient wing area. This overlap interacted freely with incidence rotation at the 
wrist, i.e. potential collisions between panels were avoided by continuously modifying the panels' 
shape at their joint. As dihedral movements only happened at the shoulder and sweep movements at 
the wrist, these two DOFs will be referred to as “dihedral” (DI) and “sweep” (SW). Likewise, the 
two incidence DOFs will be distinguished with the terms “shoulder incidence” (SINC) and “wrist 
incidence” (WINC). 
 
The size, shape and movements of the wings were determined by 12 parameters which were 
allowed to vary - within the bracketed limits given below - during the AE optimisation process. 
These parameters constituted the “genome” of our UAV: 
 
1 – The wing area (aw) [0.1 - 0.4m

2
] was the “size” parameter, i.e. the sum of areas of both wings 

fully extended (no sweep).  
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2 – The wing aspect ratio (λw) [4.5 – 10] was the “shape” parameter, expressing the ratio of wing 
span - both wings included - to wing chord. 
 
3 – The flapping frequency (f) [1 – 10 Hz] was common to all DOFs - shoulder dihedral and 
incidence, wrist sweep and incidence - which were all controlled through sinusoidal functions. 
 
4 – The dihedral amplitude (ampdi) [0 – 89°] was the amount of x angular oscillation between body 
and wing. Upward and downward rotation ranges of the wings were symmetric (e.g. 89° upward 
and 89° downward,  zero-centered). The max value of 89° was chosen to prevent geometrical and 
numerical singularities at 90°. 
 
5 – The sweep amplitude (ampsw) [0 – 89°] was the maximal z angle between IP and OP leading 
edges. Contrary to dihedral, this range holds only backward, i.e. OP could not rotate frontward to IP 
in a “negative sweep” configuration. 
 
6 – The sweep offset (offsw) [0 – 500% of sinus period] determined the periodic offset between 
dihedral and sweep movements. A range of 500%, instead of the theoretically sufficient 100%, 
allowed this parameter to possibly evolve near to a 100% value without encountering any boundary. 
 
7 – The shoulder incidence reference (refsinc) [-20 – 20°] is the default y angle between body and IP, 
around which the incidence sinusoidal oscillation occurred. 
 
8 – The shoulder incidence amplitude (ampsinc) [0 – 69°] is the amount of y angular oscillation 
between body and IP. 
 
9 – The shoulder incidence offset (offsinc) [0 – 500%] is the periodic offset between dihedral and 
shoulder incidence movements. 
 
10 – The wrist incidence reference (refwinc) [-20 – 20°] is the default y angle between IP and OP. 
 
11 – The wrist incidence amplitude (ampwinc) [0 – 69°] is the amount of y angular oscillation 
between IP and OP. 
 
12 – The wrist incidence offset (offwinc) [0 – 500 %] is the periodic offset between dihedral and 
wrist incidence movements. 
 
 
Based on the preceding parameters, the time-dependent kinematic laws of the angular variations in 
DOFs were:  
 

t)fπ(amp=DI di ... 2.sin     (1) 

 

)))off+t(fπ(+(amp=SW swsw ... 2.sin
2

1

2

1
.     (2) 

 

))off+t(fπ(amp+ref=SINC sincsincsinc ... 2.sin     (3) 

 

))off+t(fπ(amp+ref=WINC wincwincwinc ... 2.sin     (4) 

 
with t being the simulated time in seconds. 
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The remaining features of the UAV may be inferred either from the evolving parameters just 
mentioned, or from deliberate constraints such as:   
The span (bw) and inner chord (cw) of each wing were direct geometrical outcomes of the wing area 
and aspect ratio: 
 

2

. ww

w

aλ
=b     (5) 
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π
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a
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w

w

w

4
1.

    (6) 

 
The body of the UAV was a cylinder with rounded tips (fig.1). Its length (lb) was proportional to the 
wing chord, and its radius (rb) was a function of the wing area, such that the body cross-section was 
proportional to the wing area: 
 

wb c=l .
3

4
    (7) 

10

w

b

a
=r     (8) 

 
 
The tail area (at) was proportional to the wing area. The tail parts extending laterally beyond body 
sides were raised at 45° around x axis to provide some lateral stability to the UAV through a V-
shaped tail surface:  

2

w
t

a
=a     (9) 

 
Tail position relative to the body was not allowed to change and remained constant along all 
experiments. A control of the tail should further increase our artificial bird stability, but we 
preferred not to include one, to rely on passive stability as much as possible. 
 
The masses of the UAV elements were determined as follows: 
Considering that the wing mass would represent a significant part of the total mass in a real FWF 
UAV, and considering that we aim at designing an approximately 1 kg flyer, the body mass (mb) 
was set to:  
 

kg=mb  .5 0     (10) 

 
The wing mass (mw, for both wings) depended on the wing area through an isometric relationship 
inspired from Greenewalt (1975). The tail mass (mt) was estimated through a similar relationship: 
 
 

.5 1. 2 )(a=m ww
    (11) 

 
.5 1

)(a=m tt      (12) 
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The masses of wings and tail were concentrated in their respective leading edges, and uniformly 
distributed along the span. The mass distribution within the body was such that the whole UAV’s 
center of gravity (CG) was located at about 25% of wing chord when the wings were fully 
extended.  
 
The chosen ranges and laws of variation of our parameters can now be compared to biological data.  
Starting from the hard constraint that the body of our UAV had a 0.5 kg mass, we found several 
species with similar masses in the data of Magnan (1922, in Greenewalt, 1962). These species, 
among which are Hooded Crow (Corvus cornix), Shearwater (Calonectris diomedea) or Marsh-
Harrier (Circus aeruginosus), have wing areas ranging from 0.13 to 0.23 m

2
, except some “duck-

model” fast-flying species like Shoveler (Anas clypeata) or  Coot (Fulica atra), which have wing 
areas as low as 0.06 m

2
. Choosing a range of (0.1 – 0.4) for aw covered the whole biological size 

range with the same mass, except the smallest, highly loaded duck-styled flyers, which can be 
considered as high-speed flight specialists, differing from our versatile UAV objective. As a direct 
outcome of the wing area, the wing loading of our UAV (ratio of total mass to wing area) could 
range from 2.6 for maximal aw to 5.7 kg.m

-2
 for minimal aw.. According to Greenewalt (1975, p.16), 

this range covers the natural wing loadings of all sampled groups, including raptors 
[Falconiformes], owls [Strigiformes], herons [Ardeidae] and bats of comparable masses, except the 
highly loaded ducks and shorebirds. In the latter groups, wing loading usually attains 6 – 10 kg.m

-2
, 

while Auks [Alcidae] can attain even higher wing loadings, up to 24 kg.m
-2

. 
Concerning wing masses, relationship (11) was inspired from isometric biological data, but yielded 
slightly higher UAV wing masses compared to the above mentioned bird species, especially at 
higher wing areas. For example, we predicted mw = 0.22 kg for a 0.23 m

2
 wing area, whereas wings 

of a Marsh-Harrier are 0.14 kg according to Magnan. We chose to be rather conservative regarding 
this issue, as real articulated UAV wings will probably not equal natural performances regarding 
weight saving. We were also conservative when assuming a uniform wing mass distribution along 
the span of our UAV, rather than a decrease in mass toward the wing tips as it is observed in birds, 
which reduces the inertial power required for flapping flight (Van den Berg and Rayner 1995). 
According to Norberg (1990, p.173), the aspect ratio of birds weighting 0.75 kg - a rough 
estimation of the mean total mass of our UAV including body, wing and tail - averages 7.7. When 
individual species are considered in Magnan’s data, λ ranges from 6 for Hooded Crow to 9 for 
Shearwater. We allowed AE to search the optimal λ between 4.5 and 10. The lower boundary is 
imposed by our wing geometry for consistent panel overlap. The upper boundary at 10 was chosen 
to avoid generating high-λ virtual morphologies that would probably not be stiff or strong enough in 
reality. This precaution was necessary, as our mechanical model did not take structural resistance 
into account (see below). 
Last, the range of frequency we allowed (1-10 Hz) is similar to biological data corresponding to the  
same mass (2-10Hz; Norberg 1990 p.177). 
 
Drawing inspiration from birds for setting the variation ranges of the morphology and kinematics of 
our UAV is deliberate. It does not warrant that the optimal FWF UAV will be found within these 
limits. It is definitely possible that a more efficient UAV design virtually exists beyond what nature 
has ever explored (especially using artificial construction materials). However as one observes 
natural flyers' skills and versatility, it is obvious that an UAV exhibiting at least some of these 
features would already be a large step forward compared to current humanly-designed flying 
machines. In a broader perspective, our deliberately bio-mimetic strategy falls within the scope of 
the “animat approach”, which aims at designing simulated animals or real robots whose structure 

and functionalities are inspired from current biological knowledge, in the hope that they will exhibit 
at least some of the versatile capacities of real animals. Rather than direct inspiration consisting of 
copying the morphology and movements of a single bird species, here we launch artificial evolution 
within a biologically-informed search space, in order to obtain results that can be compared a 
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posteriori to biological data for validation and analysis, e.g. evolutionary trends and comparative 
adaptations. Interestingly, some of the results obtained in simulation, in a fully controlled 
environment (contrary to real world experiments) may, in turn, appear useful to biologists to 
disentangle the complex biological adaptations such as those involved in FWF. 
 
2.2. Flight simulation 
 
To test the flight characteristics of the multiple FWF solutions generated by the AE algorithm in 
terms of wing size, shape and movements, a flight simulator using the air speed vector at local 
points of the wing and tail was needed to compute the generated aerodynamic forces. This vector 
was a composition of both the UAV speed and the speed induced by the wing stroke. Moreover, 
possibly high local angles of incidence and lateral drift due to sweep had to be accounted for. 
We used a model specifically designed for flapping articulated wings (FMFAW, Flight Mechanics 
for Flapping Articulated Wings), which has been described elsewhere (Druot 2004). This semi-
empirical, quasi-steady-aerodynamics model considered that a wing was divided in a number of 
rigid flat quadrangular wing elements (WEL). In the present work, we divided each wing’s IP into 3 
coplanar WELs, and each OP into 6 coplanar WELs. At each time step (0.005 sec in the present 
work) and for each WEL, the model estimated the local incident airspeed, and computed 3 
cumulative aerodynamic forces: the leading edge lift, the parachute drag and the friction drag, as 
decribed in more details by Druot (2004) . As the size and shape of our wings could vary, it was 
necessary that the model took the aspect ratio and the Reynolds number into account. The wing 
aspect ratio (λw) was accounted for by classical induced lift and drag formulae: 
 

2
.

+λ

λ
Cl=Cl

w

w
λ

   (13) 

 

w

2

λ

λπ

Cl
+Cd=Cd

.
   (14) 

 
with Clλ, Cdλ being the lift and drag coefficients corrected for aspect ratio, and Cl, Cd uncorrected 
coefficients, i.e. at infinite aspect ratio. λw was common to all WELs, such that the whole wing's 
aspect ratio affected the performance of each WEL, whereas the wing movement effects on the 
effective aspect ratio were neglected for simplicity. Moreover, no particular loss of aerodynamic 
efficiency was assumed at the body/IP and IP/OP interfaces because it was uneasy to determine a 
priori what mechanical solution would be adopted for the real UAV's shoulder and wrist, and 
because we did not want the optimisation process to depend on such matters initially. 
The Reynolds number (Re) was assumed to have an effect on the friction drag coefficient in 
FMFAW (Cdf). According to Norberg (1990), we assumed a dependence on Re

0.5
 for laminar flow, 

and on Re
0.2

 for turbulent flow: 
 

);(=Cd f

.2 0.5 0 .2Re 08Remax −−    (15) 

 
Contrary to the aspect ratio, Re (and thus Cdf) was considered as a “local” variable, computed at 
each time step and for each WEL individually.  
As a result of (15), the transition from laminar to turbulent flow happened in our model around Re 
2.10

5
. As for other parameters in FMFAW, e.g., those setting the dependence of the lift coefficient 

on the angle of incidence, proportionality coefficients in (15) were chosen to have the closest 
possible fit with experimental data for a particular airfoil. We chose the Selig 4083 airfoil, which is 
a 8% thick, under-cambered airfoil designed for providing high lift and lift/drag ratio at low 
Reynolds number (6.10

4
 – 2.10

5
). Its performances were measured experimentally in a wind tunnel 
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for Re 6.10
4
-3.10

5
 (Selig 1997). Figure 2 compares these experimental curves with the outcome of 

FMFAW as used in the present work. Beyond providing useful experimental data to calibrate our 
model, we chose the Se 4083 for its affinities with wing airfoils in birds, in terms of shape, 
thickness, camber, maximum lift coefficient and Reynolds number range (Withers 1981). 
 

 
 
Figure 2 : Lift and drag coefficients as computed by the FMFAW model (thin lines), compared to experimental 
measures on the Selig 4083 airfoil (corrected for aspect ratio effect, dotted lines). a:  outline of the Selig 4083 airfoil. b: 
Lift (Cl) and Drag (Cd) coefficients of wing surface elements, as a function of angle of incidence. Although experimental 
data are only available in the “common” incidence range (-5 to 10°), FMFAW estimates values for the whole 180° 

incidence range. c: effects of Reynolds number (Re) and aspect ratio (λ) variations on the polar lift-drag curve. 

 
Concerning the UAV tail, aerodynamic forces were calculated similarly to the wings, but assuming 
a symmetrical Naca 009 airfoil, and a 1.0 value for aspect ratio. Finally, the body of the UAV was 
assumed to produce drag only, with a drag coefficient of 0.3 indexed on its frontal area (Norberg 
1990, p.165). 
 
Although the fit between FMFAW aerodynamic forces and experimental data at varying Reynolds 
number seems rather satisfactory (fig.2), FMFAW remains based on steady aerodynamics, and thus 
does not compute unsteady aerodynamics effects, nor interactions between UAV's parts. Thus the 
quantitative results of simulations must be interpreted with enough caution, especially at low flight 
speed, where unsteady effects, interactions and flight in disturbed air grow in importance. For this 
reason, we optimised our UAV using FMFAW for flight speeds ranging from 6 to 20 m.s

-1
, but not 

for lower flight speeds, nor for hovering flight. 
 
Aside FMFAW and flight mechanics, we used the Open Dynamics Engine (ODE, Smith 2006) to 
simulate the relative movements of each part of our articulated UAV and compute its flight 
trajectory. Body and wing parts, considered as not deformable solids, were attached using joints 
having the same DOFs as in fig. 1. Sinusoidal angular movement of these 4 DOFS were obtained by 
producing enough torque at the joints to follow precisely the desired kinematic curve as dictated by 
the UAV’s genome. High torques, possibly up to unrealistic values, were allowed to be produced at 
some joints if this was necessary to follow the “genetic” kinematics against possibly strong external 
forces, i.e. weight and aerodynamic forces on wing panels. It was the role of evolution to find an 
adequate, realistic wing morphology and movement that minimized the torques at joints, and hence 
decreased the required mechanical power, while achieving forward flight at a given speed. 
 
2.3. Evaluation, Fitness and Evolutionary Algorithm 
 
First, we briefly remind the general principles of Artificial Evolution, and how AE draws 
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inspiration from natural random variation and Darwinian selection. 
Each potential solution generated by AE is called an “individual”, as its characters are dictated by a 
genome (a chain of 12 floating point numbers in the present work), and expressed into a phenotype 
(specific morphology and kinematics) interacting with a simulated world (flight simulation). The 
“fitness” of each individual relatively to the chosen problem (forward horizontal flight) is measured 
during its lifetime (the duration of an evaluation), and determines its breeding success, i.e. the 
chance that its genome will be selected for creating a new individual or “offspring” at the next 
evolution step. When an individual possesses a high fitness and is selected for offspring production, 
its genome is copied, crossed with the genome of another selected individual, randomly mutated, 
and then expressed into the offspring’s phenotype, which is evaluated in turn.  
 
In the present case, the fitness of each individual was assessed through a standardized test flight: the 
UAV was launched forward at an initial 300m height, with a given initial horizontal speed which 
was constant for all individuals within an evolutionary “run” (e.g. 10 m.s

-1
). The genetically 

determined kinematics of the individual were symmetrically applied at joints of both wings since 
the first time step of evaluation and for 10 seconds - i.e. 2000 time steps - during which the UAV 
flew freely: no particular constraint was applied to its trajectory to “help” it achieve a stable 
horizontal flight. At each time step of the evaluation, two variables were recorded in order to 
quantify the fitness of the individual:  

- the distance (D) between the UAV’s body and the ideal “reference” trajectory, i.e. an 
horizontal path at the initial launch speed (e.g. 10 m.s

-1
). 

- the instantaneous mechanical power (P) produced at the wings' joints (shoulders and wrists). 
This variable was computed as the sum, for all 4 joints, of the scalar product between the 
instantaneous torque (τ) and the instantaneous rotational speed (ω). 

 

| |∑
4

1

.
=i

ii ωτ=P
rr

   (16) 

 
with i referring to each individual joint.  
Note that the power was counted positive regardless of the sign of the scalar product. This 
means that the torques produced to accelerate the instantaneous joint rotation and the 
torques used to slow down the rotation were assumed to have equivalent energetic costs. We 
chose this conservative hypothesis which maximized the power consumption, a priori 
assuming that the real UAV would probably not have an elastic energy storage capacity. 
Referring to assumptions in the biological literature about the power consumption of birds, 
some authors consider the acceleration only and ignore the decelerating power, although 
some other recommend to add both, as we did (Van den Berg and Rayner 1995). 
 

At the end of the evaluation flight, the fitness of the individual was determined by two separate 
criterions, based on D and P respectively: the maximal value attained by D during the 10 sec - 
which quantified how far from its reference horizontal path the UAV’s trajectory diverged -, and the 
mean absorbed P - which measured the mechanical power cost of the achieved flapping movement, 
given the individual’s size and shape: 
 

[ ]mean(P)(D);=Fitness −− max    (17) 

 
Both fitness parameters were minus signed, because selection in the Evolutionary Algorithm we 
used favors high fitness values, and because we aimed at reducing both the trajectory divergence 
and the power consumption. 
 
The Evolutionary Algorithm we used (epsilon-MOEA; Deb et al. 2005) is a multi-objective 
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algorithm, that takes into account the two just-mentioned fitness criterions simultaneously without 
merging them into one single fitness value as many other algorithms proceed. As an outcome, not a 
single but several individuals are considered as the “bests”. The selection scheme is based on the 
concept of “domination”: within the population, the best individuals are those which have fitness 
values such that no other individual has higher values on both fitness criterions. The individual is 
then declared “non-dominated” (see fig.3). By this rule, many individuals in the population can be 
non-dominated, representing locally optimal compromises between fitness criterions. These 
individuals are called “Pareto-optimal” solutions, and constitute the most favoured individuals for 
offspring production. In epsilon-MOEA, Pareto-optimal individuals are placed in what is called an 
“elite” group, from which one of the two parents implied in each offspring production is 
systematically chosen at random. The other parent is chosen among the population (see Deb et al. 
2005 for details). An important particularity of epsilon-MOEA, compared to some other multi-
objective algorithms, is that individual in the elite must differ from each other by some fitness 
increment: 0.1m in trajectory divergence and 1.0 W in power consumption, in the present case. In 
other words, the “Pareto front” of the population is interval-sampled. It prevents too much 
similarity between favoured genitor individuals within the elite, which often causes the premature 
convergence of evolution toward a local optimum. 
 

 
 

Figure 3: Population and fitness values. Plot of the two fitness criterions (absolute values) for the whole population, at 
an intermediary step of evolution (example of a 10 m/s run after 10000 generation). Each cross represents an individual, 
i.e. the phenotypic performance of a given genome (a combination of 12 parameter values). The “best” individuals (i.e. 
“non-dominated individuals” or “Pareto front”, see text) are those in the bottom left corner (i.e. lower power consumption 
and lower departure from reference trajectory), represented as white dots. The next generation will consist of crossing 
the genome of one individual of the elite (white dot) with one individual of the remaining population (cross). If the 
offspring is better than both its parents, it will appear closer to the bottom left corner, hence making the Pareto front 
progress towards better performance. 

 
The sequence of an evolutionary run was as follows:  
1 – 2000 individuals with randomly generated genomes were created and individually tested. 
2 – the best individuals, in the sense of the multi-objective fitness just exposed, were retained to 
constitute a first elite group, and the 100 next individuals, only dominated by the elite, constituted 
the root population for evolution. Other individuals were discarded. 
3 – an individual of the elite was randomly chosen for mating with another individual drawn from 
the population. 
4 - the two genomes were crossed to produce an offspring genome: each of the 12 parameters in the 
offspring genome was randomly chosen from one or the other parent. 
5 – the offspring genome was mutated, with a probability of  30% for each parameter: the 
corresponding value was randomly increased or decreased by some amount. This amount was 
randomly drawn from a normal distribution of mean 0 and variance 4% of the parameter authorized 
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range. 
6 – the offspring genome was expressed into a phenotype tested into the flight simulator, and its 
fitness values were measured. 
7 – If its fitness values made the offspring a non-dominated individual compared to individuals 
currently in the population and the elite, it joined the elite group. Otherwise, it was only placed in 
the “regular” population, with the condition that it was able to replace a relatively worse individual. 
Otherwise, the offspring was discarded. 
8 – steps 3 to 7 were repeated 50 000 times. In the following, we will refer to such a cycle as a 
generation. 

At the end of the evolutionary run, the performance, as well as the morphological and kinematic 
parameters, of individuals in the final elite group were scrutinized. 
 
In order to assess the influence of the flight speed on the evolutionary adaptation of wing size, 
shape, and movement, we conducted separate evolutionary runs with 6, 8, 10, 12, 16 and 20 m.s

-1
 

initial horizontal speeds. In all runs, only the flight speed was changed: all individuals had a 500 g 
body mass, and the same possible range of variation for other parameters. As AE is a stochastic 
optimisation method implying many random draws in initial genome generation, as well as in the 
crossover and mutation processes, we felt necessary to launch 4 duplicate runs per flight speed 
value in order to estimate how much the resulting adapted morphologies and kinematics converged 
(or diverged towards different local optima). Hence a total of 24 independent evolutionary runs was 
conducted initially, each one representing 52000 test flights. As a whole, this represented a total of 
3500 virtual flight hours, and approximately 1500 hours of computation on standard personal 
computers (2 Ghz processor with 512 Mb of RAM). In a second stage, some supplementary runs 
were launched for further analysis (see results and discussion). 
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3. Results and Discussion 
 
3.1. Progressive emergence of forward horizontal flight 
 
Figure 4 shows the progression of the Pareto front (“elite”) of the population through successive 
generations for one of the evolutionary runs aiming at a horizontal flight speed of 10 m.s

-1
. The 

randomly generated front of the initial population already contained different compromise solutions 
to the horizontal FWF problem. On the right-hand part of the front were located individuals 
consuming little or no power, but sensibly departing from the horizontal trajectory. These 
individuals consumed no power because they usually did not move their wings at all, or only 
through passive movements, i.e. caused by external forces only, and they may be assimilated to 
“gliders”. As a consequence, they systematically lose height during the test flight, as quantified by 
their score on the distance to the reference trajectory criterion: 15-20 m departure from the 
horizontal 10 m.s

-1
 trajectory at the end of the 10 s. flight. On the left-hand part of the initial front 

were individuals flying closer to an horizontal path (4 m departure), but at the cost of high power 
consumption, up to 200 W of mechanical power in that run. Such high power values were usually 
due to large wing flapping, at high frequency and with non-optimal incidence angles. Between these 
two extreme solutions were a few other non-dominated individuals with intermediate performances: 
better than pure gliders on trajectory departure, and better than the most active flappers on power 
consumption. After the first 500 generations, the Pareto front progressed significantly, meaning that 
some offspring were better than their parents and replaced them in the elite group. This was true for 
all types of solutions: gliders lose less height (12m) and active flappers consumed less power 
(120w). Better intermediate solutions were also found. Similarly, after 1000 offspring generations, 
the front progressed further, especially for intermediate solutions that became more numerous. Later 
in the evolution, after 10000 generations, the best glider attained a height loss reduced around 10 m, 
hence a glide ratio of approximately 10, since the reference trajectory for 10 s at 10 m.s

-1
 was a 100 

m horizontal path. On the other hand, the departure from horizontal trajectory was reduced to 0.6 m, 
for 40 W consumed. During the last 40000 offspring generations, the evolutionary algorithm 
processed much slower, with the generation of individuals decreasing the power consumption on 
the “active flapper”, on the left-hand side of the Pareto front (mechanical power finally dropped to 
25 W), and little or no progress on the “glider”, on the right-hand side of the front, attaining limits 
of the airfoil's lift/drag ratio. 
 

 
 

Figure 4: Progression of the elite population through 50000 generations. For the same evolutionary run as in fig. 3 



14 

(10 m/s flight), the Pareto front of the population is plotted at 0 (initial random individuals), 500, 1000, 10000, 20000 and 
50000 generations. Within the final elite group (gray dots), only individuals departing less than 2m from perfect horizontal 
flight (gray area) are retained for further analysis. 

 
Evolutionary runs at other reference flight speeds (6, 8, 12, 16 and 20 m.s

-1
) displayed the same 

trends, though with varying power consumption values. There was an early emergence of glider 
solutions, which satisfied only one of the fitness criterions, and a more progressive evolution of 
active flappers and intermediate solutions toward lower power consumption and lower departure 
from horizontal flight. 
At the end of each evolutionary run, after 50000 generations, we retained a few relevant individuals 
for further analysis of their morphological and kinematic parameters. We were only interested in 
horizontal flight, and not in glider optimisation, despite the fact that evolution possibly  used gliders 
as parents of active flappers, taking advantage of the multi-objective optimisation scheme. 
Therefore, we tolerated a maximal departure of 2 m from horizontal flight over the 10s flight (see 
fig. 4). Only individuals satisfying this a posteriori constraint were analysed later in the study. 
Whether this relative tolerance on trajectory departure represents a significant bias on power 
consumption can be evaluated by considering that, in the worst case, a 2 m height loss for a 1 kg 
UAV represents 20 J of lost potential energy during 10 s, hence a power saving of the order of 
magnitude of a few Watts, which remains tolerable compared to the optimised power levels attained 
at varying flight speeds (see par. 3.2.1). Furthermore, small errors on altitude might also be due to 
the lack of pitch closed-loop control, a situation that implies a very accurate parameter tuning that 
could disappear in a closed-loop control system. All evolutionary runs, at all tested flight speeds, 
yielded individuals satisfying this constraint after 50000 generations, though in variable number: 
fewer individuals succeeded in performing a sub-horizontal flight at the lowest (6 m.s

-1
) and highest 

(20 m.s
-1

) flight speed, compared to results obtained with intermediate speeds. 
 
3.2. Morpho-kinematic adaptation to varying flight speeds : comparative analysis 
 
Figures 5 presents the results of the 24 evolutionary runs we launched, i.e. 4 duplicate runs for 6 
flight speeds. We plotted the performance and parameters of the horizontal active flappers at the 
end of evolution. As an outcome of the stochastic optimisation process, variability between 
duplicate runs for the same flight speed existed, by varying amounts, depending on the variable 
considered. However, for most variables, there was a significant convergence between duplicate 
runs when compared to differences between runs at different flight speeds. In other words, the 
variability was low enough to identify and discuss comparative adaptations: 
 
3.2.1. - Power consumption (fig. 5a, b) 
The lowest mechanical power for horizontal FWF of our 500g-bodied UAV, plus the mass of wings 
and tail (which depended on individual morphology), approximated 15 W, and was achieved at 
intermediate flight speeds (10, 12 m.s

-1
). At high speeds, i.e., 16 and  20 m.s

-1
, the minimal power to 

sustain flight increased to almost 20 and 30 W, respectively. On the other hand, at low speeds, the 
minimal power attained by the most efficient individuals reached much higher values of 60 W at 8 
m.s

-1
 and 400 W at 6 m.s

-1
. These results suggest a general U-shaped curve for power consumption 

across flight speeds, which is consistent with biological models and measurements of FWF power 
(Rayner, 1999). However, it should be noted that the curves in fig.5a are not directly comparable to 
biological power/speed curves, because biologists estimate power consumption at varying speeds 
for a same species, for which only kinematics vary, through the flapping behaviour of a given bird. 
On the other hand, we present results of (evolutionary) adaptation of both the morphology and 
kinematics to a given flight speed. Beyond the general U-shape trend, comparisons of absolute 
power values with biological literature is tempting but somewhat hazardous, as our power values 
depend on many model parameters that are inevitably only partly bio-mimetic, for example airfoil 
characteristics. Moreover, empirical measurements of mechanical power in bird species have been 
conducted on smaller bird species, because of wind tunnel size constraints. With these restrictions 
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in mind, we still can refer to the results of Dial et al. (1997), who measured a minimum 9 W.kg
-1

 
power (per kilogram of bird mass) in the magpie (Pica pica). Tobalske et al. (2003) measured a 
minimum of 17 W.kg

-1
 in the cockatiel (Nymphicus hollandicus), and 31 W.kg

-1
 in the ringed-

turtled dove (Streptopelia risoria). Our minimal value of 20 W.kg
-1

 after mass correction (fig. 5b) 
falls among those biological values. However, maximal measured mechanical power consumption 
is 54 W.kg

-1 
in the dove (Tobalske et al. 2003), a value that many of our optimised individuals 

exceed by a large amount, especially at low speed. Though the mass-specific power limit in birds is 
probably above the above-mentioned values, as 80 W.kg

-1
 have been documented in some species 

during take-off (Askew et al. 2001), it is clear that the power values we obtain at 6 m.s
-1

 are 
unrealistic at 400W or 500 W.kg

-1
. Technological considerations suggest that the mechanical power 

produced on a real UAV prototype would hardly exceed 200W. This rather optimistic figure is 
obtained assuming a single, 150 g state-of-the-art electric motor (e.g. ModelMotors 2820/8), 
absorbing 400 W of electric power, and a global 50% efficiency for the whole flapping mechanism. 
Two main hypotheses can explain the unreasonable energetic levels we obtain for slow flapping 
flight : 

(i) Our UAV’s DOFs are too restrictive compared to those of real birds, and constrain the 
possible kinematics so much that slow flight cannot be performed efficiently. 

(ii) Our flight mechanics model does not take unsteady aerodynamics into account, and thus 
our candidate individuals cannot use effects such as delayed stall to increase airfoil 
performance (Vogel 1994).  

Since we obtain extreme power values only at low flight speed, and since unsteady aerodynamics 
are known to grow in relative importance at low flight speed, the second hypothesis is theoretically 
well grounded. As for the first hypothesis, it will be discussed later during the analysis of 
morphological and kinematic parameters (par. 3.2.5). 
 
3.2.2. - Wing area (aw) adaptation (fig. 5c, d) 
The optimal wing area emerging from evolution depended greatly on the flight speed: the general 
trend was that aw decreased with an increasing flight speed. As the mass of the UAV’s body 
remained 0.5 kg, the adaptation of wing area implied an increase of wing loading for higher flight 
speeds, a well known relationship for all flying objects, as there is a physical proportionality 
relationship between the natural flight speed and the square root of wing loading (e.g. Norberg 
1990). At 6-8 m.s

-1
, the mean aw was near 0.3 m

2
. At 10 and 12 m.s

-1
, aw decreased to approx. 0.2 

and 0.15 m
2
 respectively, i.e., to values approaching the natural wing areas of 500g-bodied birds 

such as Marsh-Harrier, Shearwater or Hooded Crow (Greenewalt 1962). At 16 and 20 m.s
-1

, 
evolution converged to the minimum allowed wing area value of 0.1 m

2
, indicating that selection 

strongly favoured highly loaded individuals at these high speeds, mimicking a “duck-like” 
adaptation. It should be noted that optimal individuals at the end of our evolutionary runs are 
necessarily “specialists” of the flight speed at which they were selected, which is different in natural 
bird species, whose characters (e.g. wing loading) probably result from selective compromises over 
the whole flight speed range they practice. Whether wing areas values selected here at a given flight 
speed would remain functional at other flight speeds, by changing the wing movement only, is an 
issue dealt with later (par. 3.5). 
 
3.2.3. – Wing aspect ratio (λw) adaptation (fig.5e, f) 
Evolution yielded high aspect ratio values at almost all tested flight speeds. The maximal ratio 
value of 10 was reached by most individuals at 6, 8, 10, 12 and 16 m.s

-1
. It is only at 20 m.s

-1
 that an 

optimal aspect ratio averaging 8.5 was obtained. A λw lower than 7 was never retained at the end of 
the evolutionary runs. High aspect ratios have the beneficial effect of decreasing the induced drag 
(eq.14), and hence the forward thrust force that must be generated by flapping. However, for a 
given wing area, wings with a high aspect ratio have a  lower chord and thus experience lower 
Reynolds number, which increases the airfoil friction drag (eq.15). Optimal aspect ratio should 
theoretically result from a compromise between these contradictory effects. The optimal value 
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therefore depends on the flight speed, the wing area, and on the sensibility of the airfoil 
performance to Reynolds number. Moreover, in FWF, aspect ratio has other implications: more 
power will be needed to accelerate/decelerate a high aspect ratio wing, which has higher inertia 
around the shoulder joint. On the other hand, the flapping frequency would possibly be reduced 
with a wing with a high aspect ratio, as wing tip velocity induced by flapping will be increased by 
higher wingspans, thus generating higher thrust forces. In the present case, with the specific 
characteristics of our UAV in terms of mass, area, airfoil and flight speeds, it appears that the 
optimal λw is around 10 or more, which is above values observed for similarly-sized birds (7.7 on 
average; Norberg 1990). This difference has two main possible origins:  
 

(i) our simulator did not take structural resistance into account, whereas a bird’s fitness 
strongly depends on maintaining the integrity of its wing structure with a reasonable safety factor. 
In other words, depending on the material used, it is possible that high aspect ratio wings would 
bend or break during flapping at a high frequency. This is a first selective pressure towards low 
aspect ratio wings that is lacking in our study. 

 (ii) most importantly, we only selected our UAVs for forward flight. Thus no selective 
pressure was placed on manoeuvrability, on flight in obstructed areas (vegetation), or simply on 
wing folding for walks on the ground, which are factors that all favour the selection of lower aspect 
ratios in birds, at the expense of a slightly lower aerodynamic efficiency (Norberg 1990, 2002). 
Considering these limitations compared to natural conditions, it is not surprising that simulated 
evolution converged towards what can be considered as high aspect ratio “open space flyers”, 
somewhat analogous to marine bird species that are almost 100% occupied at flying, like 
albatrosses and other Diomedeidae or Procellaridae.  
 
3.2.4. – Flapping frequency (f) and Dihedral amplitude (ampdi) adaptation (fig. 5g, h) 
At intermediate speeds (10 and 12 m.s

-1
), the flapping stroke frequency was about 3 Hz. This value 

is in the lower biological range (2-10 Hz at this mass, Norberg 1990), which is not surprising given 
the long, seabird-like wings of our UAV: with this morphology, sufficient thrust can be generated 
with a low flapping frequency (Norberg, 1990, p.177). As a point of comparison, the Kelp gull 
(Larus dominicanus) has a “natural” flapping frequency of 3.5 Hz (Pennycuick 1996), for mass and 
area (0.89 kg and 0.23 m

2
) characteristics comparable to those of our intermediate speed UAV. 

However, this species has a slightly lower aspect ratio of approximately 7.5. 
Slow and fast flight both implied higher frequency values (closer to 5 Hz on average), which 
contribute to explain the observed increase in power consumption at those speeds. Concerning the 
stroke amplitude, there was a less clear adaptive trend, with most individuals presenting a dihedral 
amplitude in the 25-45° range, with some increase at the lowest and highest flight speeds, 
contributing further to the increase in  mechanical power. As a whole it seems that variations in 
both the stroke frequency and amplitude were implied in the adaptation of flapping kinematics to 
flight speed. However, both variables did not vary similarly: for example, only frequency increased 
from 12 to 16 m.s

-1 
(with a slight decrease in stroke amplitude), whereas only amplitude increased 

from 16 to 20 m.s
-1

, suggesting that these variables exhibit a rather complex adaptive landscape. 
These trends are unfortunately not easily comparable to intraspecific biological kinematic data 
because, in the present case, the wing area varied between flight speeds. Nevertheless, it should be 
mentioned that biological data show that flapping frequency  depends on flight speed in some 
species, while it remains fairly constant in others (Tobalske and Dial 1996, Park et al. 2001). 
 
3.2.5. – Sweep amplitude (ampsw) and offset (offsw) adaptation (fig. 5i, j) 
The potential usefulness - or worthlessness - of an articulated wing in a FWF UAV is an interesting 
issue that has not been directly addressed previously. Of course birds and bats have elbow and wrist 
and use these DOFs in flight, with an amount depending on species and flight speed (Tobalske and 
Dial 1996, Park et al. 2001, Tobalske et al. 2003). From  an adaptationist, functionalist point of 
view, this suggests that an articulated wing may be aerodynamically useful. On the other hand, 
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other factors constrain the presence of wing articulations in birds and bats : first of all, the heredity 
of a vertebrate limb organisation plan is an historical, contingent constraint that questions the purely 
functional necessity of an articulated wing. For example, insect can fly efficiently without 
articulated wings. Moreover, an articulated wing may be beneficial to other functional aspects than 
forward flight, e.g., to increased manoeuvrability, and the simple biological necessity to fold wings 
on the ground represent a potentially strong natural selective pressure that is not necessarily relevant 
for an UAV. Hence it was interesting to test whether the presence of a wrist in our simulated wing 
was used by evolution for purely forward flight, and to quantify its possible beneficial effects.  
Figure 5i shows that the sweep of the outer panel was used by almost all optimised individuals, at 
all flight speeds. Between 8 and 20 m.s

-1
, the amplitude of the sweep did not vary much in a 

consistent manner, and averaged 25°. A different pattern appeared at 6 m.s
-1

, as most individuals at 
this lowest speed used a much higher amount of sweep, attaining 60 to 80°. Fig 5j shows how the 
sweep was synchronised with the dihedral : the sweep (SW) tended to have a 0-25 % period offset 
compared to the dihedral (DI) which, according to equations (1) and (2), shows that a maximal 
sweep angle (i.e. adducted wing tips, minimal wingspan) was attained in the second half of the 
upstroke, whereas a zero sweep angle (i.e. fully extended wing) was attained in the second half of 
the downstroke. This is close to what is observed in birds, for which it has been usually reported 
that the maximal wingspan occurs at mid-downstroke, and minimal wingspan at mid-upstroke, 
which corresponds to a 25% value for offsw.The amount of wing retraction was globally less than in 
real birds: given our UAV morphology (fig. 1), the ratio of minimal to maximal wingspan was 0.95 
for 25° of sweep, 0.75 for 60° and 0.58 for 80°. Birds for which this same “span ratio” variable has 
been measured in flight exhibit much lower values, usually below 0.5 (Tobalske and Dial 1996, 
Park et al. 2001, Tobalske et al. 2003). Moreover, most of these species (e.g. Barn Swallow 
[Hirundo rustica], Pigeon [Columba livia], Cockatiel [Nymphicus hollandicus]) have a tendency to 
more retract their wings at a higher speed, which is not observed in the present case. As already 
noted, this discrepancy can partly result from the fact that our UAV’s size changed between flight 
speeds, hence the wing area adaptation need not  be achieved through partial wing folding as in real 
birds. It is also important to note that the bird species thus investigated are far from the “seabird” 
morphotype, for which data on span ratio is lacking. We speculate from personal observations that 
wing adduction in gulls and akin species is less pronounced than in pigeons for example. There are 
also structural reasons why our UAV retracts its wings rather modestly compared to birds. First, the 
wrist in our UAV cannot be adducted, as only the wingtips can. This constraint de facto limits the 
span ratio to a minimal value of 0.5. Second, as wrists cannot move forward or backward relative to 
the body, we considered the possibility that a strong sweep of the external panel would separate the 
lift center of the wing from the center of gravity the UAV, and hence cause pitch torques and 
instability issues. However, this hypothesis is partly refuted by the fact that individuals at 6 m.s

-1
 

succeed in using up to 83° of sweep. It remains that the limitations we put on wing retraction, 
suggested by anticipated constraints on prototype construction, might indeed partly cause the very 
high power consumptions we obtained at low speed. It could indeed prevent our UAV from 
exploring some of the wing movements a bird can achieve, which are especially refined at low 
speeds, as illustrated and discussed in the biological literature mentioned herein. Although the wing 
retraction possibilities of our UAV were modest compared to those of birds and bats, it remains that 
the wrist sweep was almost systematically used, thus suggesting that it allowed the generation of 
more efficient aerodynamic forces. To test this idea further, we quantified the power gained from 
wrist movements (see par. 3.4).  
 
3.2.6. – Shoulder and wrist incidence rotations (fig. 5k, l, m, n, o, p) 
The shoulder incidence position (SINC) determines the angle between IP and body, whereas the 
wrist incidence position (WINC) determines the angle between OP and IP. Hence the angle between 
OP and body results from the sum of SINC and WINC. Plots of reference angles versus flight speed 
(refsinc, refwinc, fig. 5k and 5l) show that IP tended to have a higher angle of incidence at low speed, 
but not OP: negative angles at the wrist tended to compensate the positive angles at the shoulder. 
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Concerning the variation of the angle of incidence, its amplitude (ampsinc, ampwinc, fig. 5m, 5n) 
tended to increase with lower flight speeds, for both IP and OP, which is in agreement with 
kinematic data in birds which associate higher variations in the wing angle of attack with slow 
flights  (Heddrick et al. 2002). It is noteworthy that SINC and WINC values being relative angles 
between body and wing panels, they provide only an indirect information on the aerodynamic angle 
of attack, which depends on the incident air speed induced by the flapping stroke, and on possible 
changes in the  body tilt angle (see par. 3.2.7). The offset between the incidence and dihedral 
oscillation (offsinc, offwinc, fig. 5o, 5p) converged to values approaching 25% on average. In other 
words, a maximal positive incidence was attained at mid-upstroke, while a minimal incidence (often 
negative angles between body and wing panels) was attained at mid-downstroke. As a direct 
outcome, this pattern tend to maintain the wing airfoil at low angles of attack throughout the stroke, 
thus maximizing the lift/drag ratio (fig. 2). 
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Figure 5: Results of morpho-kinematic adaptation to varying flight speed. The characters of the best individuals 
resulting from 4 duplicate evolutionary runs at each flight speed (6, 8, 10, 12, 16 and 20 m/s) are plotted (individuals 
generated during the same run are aligned vertically). For all genomic parameters, the vertical range of the graph equals 
the authorised search space during evolution.
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Figure 5 (continued). 
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3.2.7. – Analysis of aerodynamic forces in representative individuals. 
To investigate the respective aerodynamic role of inner/outer panels during downstroke and 
upstroke throughout the flight speed range, we plotted the aerodynamic forces generated by IP and 
OP along the flight path for one individual. We chose the most power-saving individual at each 
flight speed. As a consequence of the dual-objective optimisation scheme, these individuals do not 
necessarily have the best performances in terms of horizontality of flight. On the contrary,  turns out 
that the best individuals in terms of flight horizontality achieved their flight at the expense of power 
consumptions that were an order of magnitude higher, with much more variability between 
duplicate runs, than those of the six individuals selected here - clearly suggesting  that they were 
much less aerodynamically efficient, and hence less interesting and representative of aerodynamic 
optimisation. As a complementary illustration, we also produced in-flight motion videos of these six 
individuals (available on http://animatlab.lip6.fr). Numerical values of all parameters for these 
individuals are presented in table 1. 
 

 
 
Figure 6: Aerodynamic forces on the wing panels of six optimised UAVs. The force vectors are summed over the 
“wing elements” (WELs, see “Flight Simulation” section) constituting a single (inner or outer) panel. The vectors' origins 
are on a line representing the trajectory of each panel‘s center of area. Tail and fuse forces are not represented for 
clarity. 
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 Flight speed (m/s) 6 8 10 12 16 20 

        

Fitness               

 mean P (W) 401 59 15 14 18 31 

 max D (m) 1.11 1.95 1.98 1.77 1.80 1.48 

                

Genome        

 aw (m
2
) 0.264 0.299 0.225 0.145 0.100 0.100 

 λw 10.0 10.0 10.0 10.0 9.6 8.4 

 f (Hz) 6.25 3.30 2.41 3.03 4.83 4.01 

 ampdi (°) 40.3 34.0 32.8 32.7 27.9 47.7 

 ampsw (°) 75.4 10.8 25.0 20.0 30.2 16.6 

 offsw (%) 17.0 11.2 14.6 13.5 25.1 9.7 

 refsinc (°) 6.4 4.8 4.8 4.6 1.4 -0.7 

 ampsinc (°) 18.8 11.1 4.3 3.2 3.1 3.9 

 offsinc (%) 21.1 7.8 20.0 24.1 32.6 20.6 

 refwinc (°) -11.3 -5.4 -3.3 -2.8 -0.9 0.0 

 ampwinc (°) 24.2 16.3 7.3 7.1 6.2 6.7 

 offwinc (%) 22.3 25.6 27.2 24.5 23.7 33.9 

        

Other information               

 bw (m) 0.81 0.87 0.75 0.60 0.49 0.46 

 cw (m) 0.18 0.19 0.17 0.13 0.11 0.12 

 rb (m) 0.05 0.05 0.05 0.04 0.03 0.03 

 total span (m) 1.68 1.78 1.55 1.24 1.01 0.95 

 mb (kg) 0.500 0.500 0.500 0.500 0.500 0.500 

 mw (kg) 0.272 0.327 0.213 0.110 0.063 0.063 

 mt (kg) 0.048 0.058 0.038 0.020 0.011 0.011 

 total mass (kg) 0.820 0.885 0.751 0.630 0.574 0.574 

 wing loading (kg/m
2
) 3.1 3.0 3.3 4.3 5.7 5.7 

 specific power (w/kg) 490 67 20 22 31 53 

                

        

 
Table 1: Parameters of the most power-saving individual at each flight speed.  

 
A first remark concerns the trajectory and position of the body. It followed an oscillating path, 
ascending during downstroke and descending during downstroke. More interestingly, the body axis 
took a significantly tilted position at low speed (up to approx. 30° at 6 m.s

-1
), a tendency observed 

and measured with comparable amounts in birds (Tobalske and Dial 1996, Tobalske et al. 2003).  
Considering the forces generated by OP it appeared that the force generation was almost fully 
concentrated during the downstroke, regardless of the flight speed. These downstroke OP forces had 
both vertical (upward) and horizontal (forward) components, showing that OP had both a lifting and 
a propulsive function. At the beginning of the upstroke, weak lifting forces were also produced, but 
shifted to weak downward forces later in the upstroke. As a whole, OP was almost inactive during 
the upstroke at all flight speeds. Interestingly, at 6 m.s

-1
, this asymmetric OP force pattern between 

downstroke and upstroke was achieved through a drastic variation in the relative airspeed : the 
simultaneous effects of a high wrist sweep - causing backward retraction of the outer wing part 
during upstroke - and the body tilt angle produced an almost zero OP horizontal speed during 
upstroke, while the same panel was greatly accelerated during downstroke. At higher flight speed, 
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such a velocity difference was not observed with comparable amounts, thus suggesting that the 
absence of OP upstroke forces was mainly caused by placing the OP airfoil at a non-lifting angle of 
attack.  
Concerning IP, the force generation exhibited a different pattern. Forces were more evenly 
distributed among down- and upstroke, and included a lift (upward) and a drag (backward) 
component. This showed that IP, contrary to OP, did not usually participate to the propulsion of the 
UAV. This IP force pattern changed somewhat at the highest speeds, with a weakening of upstroke 
forces, with relatively stronger forces generated during the downstroke, and with a slight forward 
component of the generated force at mid-downstroke. As a whole, this IP force pattern at high speed   
was closer to the previously described OP force pattern. 
The comparison of the mean force amplitude over the full stroke on OP and IP showed a clear OP 
domination at 6 m.s

-1
, and a more even repartition over the wing span at other speeds. This is 

explained by the fact that the airflow is dominated by wing flapping at slow flight speeds (Hedrick 
et al. 2002), and hence depends on the distance from the articulated dihedral joint. 
Concerning the down-/upstroke repartition for the wing as a whole, more lifting forces and all 
propulsive forces were generated at the downstroke, at all flight speeds. This was mainly due to OP 
generating forces during downstroke only. However, according to what has been described above, 
this downstroke domination tend to be less obvious at intermediate speeds (8-12 m.s

-1
) as lift 

produced by IP during upstroke took relatively higher importance. This is globally convergent with 
the results of Hedrick et al. (2002) in the Dove and Cockatiel: these birds appear to have a more 
continuous lift generation at intermediate speeds (Hedrick et al. 2002, Tobalske et al. 2003). These 
significant variations in force generation modes across the flight speed range suggest that the 
limited kinematics of our UAV compared to real birds, which prevent very adducted upstrokes (e.g. 
“feathered” upstroke, Tobalske and Dial 1996), still leave room for efficient adaptation in the 
aerodynamic flight regime. 
 
3.3. Flight stability and robustness of the “open-loop” kinematic control 
 
Aside from pure energetic performance, the applicability of our optimised flapping flight 
kinematics to a real UAV prototype depends on its ability to generate a stable flight. Our UAV’s 
wing movement control was truly “open loop” in the present work, i.e. the UAV had no information 
on its flight variables and was not able to change its kinematics to correct its flight trajectory. For 
this reason, we anticipated that the UAV’s trajectory, even after kinematic optimisation, would 
necessarily diverge from horizontal flight after a short time, presumably because of pitch instability. 
Therefore, we a priori considered the optimised kinematics produced here as basic wing motion 
laws that would necessitate a supplementary, higher level “closed-loop” controller to achieve flight 
stability in our UAV, like the ones described in Mouret et al. (submitted). 
To verify this presumption, we extended to 60 seconds  the flying time of the optimised individuals 
(table 1), instead of the 10 s. of regular evaluation flight, in order to study the type of instability that 
might thus occur. Results are presented as flight trajectories in fig.7. Surprisingly, the longitudinal 
(pitch axis) stability was much better than expected, as any strong vertical trajectory divergence 
after the first 10s of evaluation time was never observed. Instead, despite the symmetric flight 
kinematics, we observed some lateral instability, i.e. the UAV progressively engaged into a 
descending spiral turn. This spiral occurred after a longer time at high flight speed, individuals 
flying at 16 and 20 m.s

-1
 being able to fly for 60 s. without being affected. Even during these 

relatively longer forward flights, pitch stability was observed throughout, the sub-horizontal 
trajectory being maintained for the whole minute (i.e. 920 and 1200m distances, respectively). 
Moreover, a few supplementary flight tests, with variable initial speeds on the same individual, 
demonstrated that some individuals were able to passively correct large flight speeds discrepancies. 
For example, the individual optimised for 20 m.s

-1
 and launched at 6 m.s

-1
 was able to return to its 

horizontal 20 m.s
-1

 flight within a minute (fig.7). Unfortunately, the opposite test of launching the 
individual optimised for 6 m.s

-1
 at 20 m.s

-1
 was unsuccessful, as lateral instability soon occurred 
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(fig. 7). 

 

 
Figure 7: Flight trajectories (side views) of optimised UAVs during extended 60s. flights. Thick lines represent the 
10s. initial evaluation flight.Thin lines represent the 50 s. flight prolongation, and demonstrate good longitudinal stability, 
but lesser lateral stability at low speed (spiral dive) of open-looped controlled FWF UAVs (see text). * : trajectory of the 
individual optimised for 20 m/s, launched at a lower speed (6 m/s) : horizontal flight at 20 m/s is recovered. ** : trajectory 
of the individual optimised for 6 m/s, launched at a higher speed (20 m/s) : horizontal flight is not achieved, due to lateral 
instability. 

 
It is probable that our initial choice of placing the CG at 25% of wing chord, where lift forces apply, 
and of providing the morphology with a large tail helped the UAV to achieve pitch stability, at least 
in gliding flight. However, it remains that most non-optimised flapping kinematics during 
evolutionary exploration had as a first consequence to destabilise the UAV and to place it on an 
erratic flight trajectory. In this perspective, it is an interesting result that optimised UAVs were 
finally able to achieve a reasonable amount of passive pitch stability in flight. This suggests that the 
necessarily superimposed closed-loop controller mentioned above will eventually have relatively 
little corrective work to do to provide long-term longitudinal - and lateral – stability.  
 
3.4. Effect of wrist lock : Usefulness of an articulated wing 
 
Previously exposed results show that the wrist sweep was used by almost all optimised individuals. 
At 6 m.s

-1
, the sweep was used at its maximum, and force plots (fig. 6) suggest that it allowed to 

accelerate the wing tip during downstroke. However, the role of a relatively lower amount of sweep 
at higher speed was less obvious, and thus could appear a priori less important for flight 
performance. To test further the usefulness of a functional wrist, which would imply a more 
complex UAV prototype structure, we launched additional evolutionary runs in the same original 
conditions except that the wrist DOFs were disabled. We launched 2 runs at each flight speed with 
the wrist sweep locked (SW = 0°, i.e. wing fully extended), and 2 more runs at each flight speed 
with the wrist sweep and the wrist incidence locked (SW = 0° and WINC = 0°, i.e. wing fully 
extended and same incidence for IP and OP). After 50000 generations for each of these 24 
evolutionary runs, we compared the power consumption for the best horizontal flappers,  with the 
same original 2 m tolerance in the departure from reference trajectory. 
Results (fig.8) show that disabling the wrist sweep implied a 8-79% increase in power consumption, 
depending on flight speed, except at 8 m.s

-1
 where no power cost was observed. This surprising 

pattern at 8 m.s
-1

 is partly explained by the fact that the original individual at 8 m.s
-1

 used 11° of 
wrist sweep only, which affords the sweep-locked individual the possibility of attaining very similar 
kinematics. At other flight speeds, where the original sweep amplitude was 17 – 75°, locking the 
wrist sweep caused evolution to attain more costly kinematics, even when the original sweep 
amplitude was modest and its aerodynamic role unclear. For example, a 79% power increase at 12 
m.s

-1
 resulted from preventing the original 25° sweep amplitude. The sweep's beneficial effect tend 

to be less important at high speed. Globally, these results suggest that a functional wrist is really 
useful even in pure forward flight, at most flight speeds. Locking both the wrist sweep and the 
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incidence rotations caused dramatic power increases at most speeds (10-252 %). Stressing further 
the crucial role of an articulated wing for FWF, this finding demonstrates that much power can be 
saved by allowing different incidence angles between rigid wing panels. Such variation in the 
incidence angle along the wing span is well known in birds and bats (Norberg 1990, p.118), though 
achieved through a flexible wing surface composed of feathers or membrane respectively, rather 
than through articulated rigid panels. It seems likely that we would get lower power consumption if 
we allowed a continuous twisting of our UAV wing, but this possibility generates additional 
technical complications if one wants to maintain an efficient airfoil (e.g. DeLaurier 1999). 
 

 
 
Figure 8: Effect of wrist lock on power consumption. 

 
3.5. Evolution at fixed size and shape : Readaptation of kinematics to different flight speeds 
 

As already explained, evolving the wing size, the shape and the kinematics at a given flight speed 
probably tends to produce “specialist” individuals, i.e. whose characters are well optimised for the 
considered flight speed, but non optimal at any other regime. To evaluate the degree of 
specialisation of the optimised individuals we previously obtained, we let the kinematics of some 
individuals evolve again at different flight speeds, while keeping the initial morphology (i.e. wing 
area and aspect ratio) unchanged. We performed 12 additional evolutionary runs: the morphology of 
the most power-saving individual at 6 m.s

-1 
(A) was used to re-evolve the kinematics at 10 and 16 

m.s
-1

 (2 duplicate runs per flight speed). Similarly, the best morphology adapted for 10 m.s
-1

 (B) 
was tested at 6 and 16 m.s

-1
, while new kinematics for the best morphology at 16 m.s

-1
 (C) were 

evolved at 6 and 10 m.s
-1

. Results in terms of minimal power consumption are presented in fig.9.  
A first finding was that each of the three morphologies remained the most power-saving solutions at 
their original flight speeds, which comforted the idea that separately evolving the kinematics on a 
constrained morphology has indeed a cost, as compared with the original choice of simultaneously 
evolving the wing morphology and kinematics. However, the performances of B at 6 m.s

-1
 and A at 

10 m.s
-1

 were only a few watts above the original values. This is not surprising given that A and B 
had rather close wing area values (0.264 and 0.225 m2 respectively) and hence similar wing 
loadings (3.10 and 3.34 kg.m-2). Evolving the kinematics for A or B at 16 m.s

-1
, as compared to the 

high-speed specialist (C, 0.1 m2 wing area), had a more obvious consequence since necessary 
power was approximately doubled. Aerodynamically, this cost is caused by the high drag forces 
exerted on a large wing at a high speed, as compared to a smaller wing.  Biologically, this same 
energetic cost explains why gulls do not fly forward as fast as ducks. Most interesting was the fact 
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that C was able to fly at 10 m.s
-1

 with a 5-fold increased cost compared to B, and simply unable to 
fly at 6 m.s

-1
: evolution failed to find any kinematics generating an horizontal flight. The best 

individual in the two runs lost 8 m of height in 10 s. This result expresses the difficulty to generate 
much lift with a small wing, and can be biologically illustrated by the tendency of ducks and similar 
species to refrain from flying slowly - though they can occasionally do it. As a whole, these tests 
showed that all individuals resulting from our optimisation runs had not attained the same degree of 
specialisation. Namely, whereas morphologies evolved initially for low to medium speed flight 
could adapt their kinematics to fly faster, the opposite was not true : high speed morphs could loose 
the ability to fly at lower flight speeds. Technically, this suggests that one would better choose A or 
B morphologies for a FWF UAV prototype rather than C, if the versatility in terms of flight speed 
range is an objective.  
 

 
 
Figure 9: Re-adaptation of kinematics to different flight speeds. Three individual morphologies (A, B, C), initially 
optimised for different flight speed (6, 10 and 16 m/s respectively, white bars), were used to re-evolve new kinematics 
(without changing the morphology) at other speeds (gray bars). No experiment converged with the C morphology at 
6m/s. See text for analysis of the consequences on power consumption.



27 

4. Conclusions and perspectives 
 
The proximal aim of the present work was to find optimal morphologies and kinematics for a 
flapping, articulated-wing mini-UAV. By using Artificial Evolution on a bird-like parameterised 
morphology, we were able to find morphological parameters and flapping stroke kinematics that 
achieve forward flight at medium speed (10-12 m.s

-1
) for an estimated mechanical cost comparable 

to that of real birds: approximately 15W or 20 W.kg
-1

. These parameters correspond to a 0.2 m
2
, 

high aspect ratio wing, flapping around 3 Hz, looking like a gull in many aspects. Even more 
indicative is the fact that evolution also yielded angular variation laws for each articulation of this 
UAV (shoulder and wrist) capable of producing efficient lift and thrust forces throughout the 
flapping stroke with the chosen wing airfoil.  
 
In a short-term perspective, we plan to test this morphology and its associated kinematics on a real 
UAV prototype, secured on a robotic arm (research in progress in the ROBUR project). We expect 
of course that real energy levels will differ somewhat from simulation predictions, and that some 
fine-tuning of kinematics will be necessary to correct for the unescapable simulation 
approximations. 
 
Beyond medium-speed steady flight, the main interest of flapping wing flight for an UAV is the 
potential to vary its flight speed to a large amount, and to achieve special flight modes such as 
hovering or gliding. Though we could not cover the whole flight domain extensively in the present 
study, we already gained valuable information on the energetic consequences of speed variation. 
Flying at high speed (16-20 m.s

-1
) could be achieved at rather low cost (20-30 W) in a small UAV 

(0.1m
2
), but with a loss of flight abilities at lower speeds. On the other hand, we observed that it 

was possible to re-adapt the kinematics of a larger UAV (0.2 - 0.3 m
2
), initially optimised for lower 

speed flight, to fly at high speed for a reasonable power cost (30 - 40W at 16 m.s
-1

). This second 
strategy hence seems more promising in the perspective of a versatile real UAV. 
 
Flying at low speed (6-8 m.s

-1
) appeared very costly, and unrealistic power consumption were 

attained at 6 m.s
-1

. Though the steady aerodynamics that were used in our simulation probably 
underestimated the lift production in slow flight, it is possible that our articulated morphology, as it 
stands, is inadequate for very slow or hovering flights, at least for a 1 kg UAV prototype. Even 
birds of this size hardly achieve hovering for more than a few seconds. At another end of the flight 
domain, the fact that our UAV was able to achieve gliding flight with a decent sinking speed 
(around -1 m.s

-1
) is encouraging and suggests that bio-mimetic energy-saving behaviours, through 

soaring in ascending air, are within reach of our UAV's abilities. 
 
Another original result brought by this work concerns the usefulness of an articulated wing for 
flapping flight: even without considering turning or manoeuvrability issues, we already learned that 
the movement of the wrist may have a strong influence on energy saving in forward flight, 
especially at medium-speed flight: compared to monolithic wings, allowing sweep and incidence 
rotations of no more than 20-25° at mid-span can drastically reduce the power consumption of a 
FWF UAV, provided that these supplementary movements are well synchronised with the flapping 
stroke. In other words, this finding suggests that implementing an articulated wing on a UAV 
prototype might be worth the implied technical complications. 
 
Finally, from a methodological point of view, we mainly relied on biological data to 
validate/analyse our results. This was facilitated by the fact that we initially constrained the 
evolutionary search space to bio-mimetic morphologies and kinematics, in agreement with the 
rationale of the animat approach.  Although more efficient flapping-wing machines may exist 
outside these boundaries, we are convinced that discovering and analysing such non-biomimetic 
FWF solutions would probably have been much more difficult, as we could not have relied on 
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zoological records as an helpful documented referential for a preliminary validation of our results 
before experiments on real prototypes. Conversely, some of our simulation results should be useful 
to biologists. Although being not as reliable as real-world measures, Artificial Evolution coupled 
with environment simulation may be considered as a very valuable, fully controlled experimental 
framework serving to test the effect of all sorts of constraints - physical, historical or developmental 
- on the course and outcome of adaptation of all sorts of biological characters. Such an evolutionary 
modelling approach should be especially useful for functional morphologists and biomechanicists 
(de Margerie et al. 2005). As illustrated by the present work on FWF, many experiments that would 
be impossible in a wind tunnel may be relatively easily reproduced  in simulation, and yield to 
original results, such as: 
− "flapping wing flight without the brain":  our flight experiments with purely open-looped 

kinematics demonstrate that flapping a wing efficiently does not necessarily compromise the 
passive gliding-flight stability, nor does a short forward flight necessarily require any stabilizing 
neural control. This kind of result, possibly reinforced by experiments on variable tail areas for 
example, could provide useful information on the degree of active stabilisation the extant birds 
need to achieve in flight, and also produce valuable arguments on the morphological and 
neurological prerequisites for the emergence of flight in vertebrates. 

− "flapping wing flight with a stiff wing": we were able to independently lock some degrees of 
freedom in our morphology, which is hardly conceivable on a real bird in a wind tunnel, and to 
evaluate the consequences on the energetic cost of flapping flight after letting the UAV readapt 
its kinematics. It was thus demonstrated that even a limited sweep movement of the outer wing 
part can save a significant part of power consumption, and that the ability to vary the incidence 
angle along wing span is a crucial feature of FWF at this size. 

We are convinced that, as well as roboticists may draw helpful inspiration from zoological records 
and Darwinian evolution (Meyer and Guillot, in press), biologists interested in adaptation at a high 
integration level, such as organismal biologists or ecologists, can find new lines of evidence by 
using Artificial Evolution on modelled organisms. Although the structure of our study - notably the 
type of Artificial Evolution experiments that were conducted and the way the results were analysed 
- was primarily aimed at helping designing an UAV, and not at yielding biologically relevant 
findings, we hope the present work still participates at demonstrating these reciprocating interests. 
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