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Testing for Gaussianity and Non Linearity in the sustained portion of musical sounds

Higher order spectra of a signal contain information about the non Gaussian and non Linear properties of the system that created it. Since the non linearity in musical signal usually originate in the excitation signal while the linear spectral characteristics are attributed t o t h e r esonant chambers, we discard t h e s p ectral information by looking at the higher order statistical properties of the residual signal, i.e. the estimated input signal obtained b y inverse ltering of the sound.

In the current paper we show that the skewness and kurtosis values of the residual could be u s e d for characterization of such important sound properties as belonging to families of strings, woodwind and brass instrumental timbres. The skewness parameter is shown to be closely related to the bicoherence function calculated over the original signal and as such it is succinct to an interpretation as statistical test for the signal conforming to a linear non Gaussian model. The above results are c ompared to the Hinich bispectral tests for Gaussianity and non Linearity of time series and exhibit a similar classi cation results. Finally, regarding the higher order statistics of a signal as a feature v e ctor, a statistical distance m e asure for the cumulant space is suggested.

Introduction

In the current w ork we try to identify the structure of musical signals based on the information present i n the higher order statistics1 (HOS), of the stationary portion of the sound. Spectral matching of a signal gives a representation of the sound as a white process passing through a linear lter whose role is to enter the second order correlation properties into the signal and thus shape its spectrum. Stable linear systems subject to a Gaussian input are thus completely characterized by t h e c o variance function of their output and hence their power spectrum. In case of a non Gaussian input signal, higher order cumulants appear in the output and moreover, if the relation between the output and input signals is not linear, the statistics of the output signal will not be Gaussian even if the input is normal.

Given a signal X t , the bispectrum B X (! 1 ! 2 ) g i v es a measure of the multiplicative nonlinear interaction between frequency components in the signal

B X (! 1 ! 2 ) = 1 X m=;1 1 X n=;1 C X (m n)e ;i(!1m+!2n) (1)
with C X (m n) = E(X(t)X(t + m)X(t + n)) the third order cumulant of zero mean process X(t). Assuming that our signal is generated by a nonlinear ltering operation satisfying a Volterra 12], 11] functional expansion, we write X t = 1 X u=0 h 1 (u)U(t ; u) + 1 X u=0 1 X v=0 h 2 (u v)U(t ; u)U(t ; v) + ::: :

(2)

In the linear case, the model is completely characterized by t h e transfer function H 1 (!) = 1 X u=0 h 1 (u)e ;i!u

(3) while H 2 (! 1 ! 2 ) = 1 X u=0 1 X v=0 h 2 (u v)e ;i(!1u+!2v) (4) 
represents the kernel that weights the contribution of the components at frequencies ! 1 ! 2 in the input signal U t to the component at frequency (! 1 + ! 2 ) in the output X t (and so fourth for higher order kernels). We s a y here that a signal X t is linear if the system that created it has no kernels of order higher then two. This notion of linearity implies that no multiplicative i n teractions occur between the frequency components in the stationary portion of the signal and the principle of superposition applies in the sense that the resultant signal is obtained as a sum of frequencies with appropriate spectral amplitudes. Although the more common and obvious manifestations of non linearity appear in the dynamic behavior of the sound (such as the non linear dependence of the signal properties upon its amplitude), the bispectral properties in the sustained portion can quantify nonlinearities as well2 .

Schematically, our approach could be summarized by the following graph: The signal is considered as some kind of stochastic pulse train X t passing through a linear lter. In case of a pitched signal (i.e. signal with discrete spectrum), Gaussianity of the input signal is obtained either for inharmonic signals [START_REF] Dubnov | of Frequency Jitter E ect on Higher Order Moments of Musical Sounds with Applications to Synthesis and Classi cation[END_REF] or harmonic sounds with statistically independent partials. The independence is obtained for instances such as presence of random independent modulations at each harmonic 3]. In the following analysis we shall address the questions of Gaussianity and linearity based on the higher order statistics of X t without attempting to estimate the kernels or other system parameters. Since we h a ve no underlying parametric model for our sounds, this paper is more concerned with the analysis of structure of musical signals with some applications discussed in section 6.
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Figure 2: Estimation of the excitation signal (residual) by i n verse ltering.

In the following we will make use of the bicoherence index:

b(! 1 ! 2 ) = jB X (! 1 ! 2 )j p S X (! 1 )S X (! 2 )S X (! 1 + ! 2 ) (5)
This is a useful function that compensates for the di erences in spectral magnitudes at various frequencies by normalizing the bispectra by the power spectrum S X (!) = 1 X m=;1 C X (m)e ;i!1m (6) .

2 Higher order moments of the residual signal Since the non linear properties in musical signal are attributed mainly to the properties of excitation signal, the investigation of the higher order statistical properties of the residual seems a natural next step beyond the spectral modeling of the linear resonator. In general, any process X t could be represented as a sum of deterministic and stochastic components and the Wold decomposition teaches us that any signal can be optimally represented in terms of a lter (linear predictor) acting on a white input noise, with the optimality being in respect to second order statistics of a signal [START_REF] Dubnov | Hearing beyond the spectrum[END_REF] . Let us assume for the moment that the musical signal X t could be described by a non Gaussian, independent and identically distributed (i.i.d) excitation signal U t passing through a linear lter h

(n). X t = 1 X u=0 h(u)U(t ; u) (7) 
In such a case, the spectra and bispectra of X t are equal to

S X (!) = 2 jH(!)j 2 (8) B X (! 1 ! 2 ) = 3 H(! 1 )H(! 1 )H (! 1 + ! 2 )
(with similar equation for the tri-spectra) with 2 3 (and 4 ) being the second, third (and fourth) order cumulants of U t . F or convenience we shell assume 2 = 1. Although exact solution of the lter parameters in the non linear case is problematic 11], 12], 4], [START_REF] Dubnov | Spectral Estimation using Higher Order Statistics[END_REF] we assume that it could be e ectively estimated based on spectral information only. T aking a spectrally matching lter Ĥ(!) S X (!) = j Ĥ(!)j 2 (9) the inverse ltering of X t with Ĥ;1 (!) g i v es a V t . Since V t is a result of passing a non Gaussian signal X t through a lter Ĥ;1 (!), its bispectrum is

B V (! 1 ! 2 ) = B X (! 1 ! 2 ) Ĥ(! 1 ) Ĥ(! 2 ) Ĥ (! 1 + ! 2 ) : (10) 
Taking the absolute value of B V (! 1 ! 2 ) and using the spectral matching property o f Ĥ we get the equivalence of the right hand equation to the de nition of the bicoherence index for the original signal X t .

The residual signal would be ideally a decorrelated version of the original sound for the case when the excitation is a white noise, i.e. a signal with continuous at spectrum. In such a case, V t is an i.i.d process -its cumulants are zero at all times other then zero. In the case of pitched excitation, the residual signal is not ideally decorrelated [START_REF] Gray | Distance M e asures for Speech Processing[END_REF] and it contains correlations at time lags that correspond to multiples of the pitch period and thus respectively demonstrates peaks in the polyspectra. Inverse Fourier of the bispectra at zero lag times gives

C 3 V (0 0) = 1 (2 ) 2 Z ; Z ; B V (! 1 ! 2 ) : (11) 
so that the cumulants at time zero are integrals of the over the bispectral plane. We claim that for excitation signals of both the continuous (excitation noise) and the discrete (pitched) spectra types, the cumulants at time zero are signi cant features. Obviously, for i.i.d white noise excitation, the rst order amplitude histogram of the decorrelated signal is a plausible estimate of the excitation distribution function, and as such it is completely characterized by its moments. In the pitched case, zero time lag cumulants which a r e integrals over polyspectral planes of various orders (3 and 4 in our work) appear to be important quantities as well, although they can not anymore characterize the excitation distribution function which n o w c o n tains pairwise and higher order dependencies.

Assuming ergodicity, the cumulants can be calculated more conveniently as time averages

C 3 V (0 0) = lim T!1 1 T Z T 0 V 3 (t)dt (12) C 4 V (0 0 0) = lim T!1 1 T Z T 0 V 4 (t)dt ; 3 C 2 V (0) :
and these results could be used as estimates of the actual third and fourth order cumulants 3 4 of the input U t at zero time lag. Instead of working with the cumulants directly, w e l o o k a t t h e skewness 3 = 3 = 3 of the signal which i s the ratio of the third order moment 3 = E(x ; Ex) 3 over the 3/2 power of the variance 2 = 2 and kurtosis 4 = 4 = 4 which i s t h e v ariance normalized version of the fourth order moment 4 = E(x ; Ex) [START_REF] Dubnov | Hearing beyond the spectrum[END_REF] . Since we are dealing with zero mean processes, the third order moment is equivalent to the third order cumulant. For the fourth order we subtract 3 from the kurtosis to get the variance normalized cumulant 7 ].

Tests for Gaussianity and Linearity

As noted above, if a process is Gaussian, all its polyspectra of order higher then second are zero. Hence, if the process has a non-zero bispectrum this could be due to either:

1. The process conforms to a linear model but the input signal statistics are not Gaussian.

2. The process conform to a non linear model, regardless of the input signal statistics.

Case (1) is examined by testing the null-hypothesis the bispectrum is zero over all the bispectral plane. Case (2) is examined by using the expression for bispectra of a signal X(t) assuming it has a linear representation B X (! 1 ! 2 ) = 3 H 1 (! 1 )H 1 (! 2 )H 1 (! 1 + ! 2 ):

(13) The spectral density function of the process is given by

S(!) = 2 jH(!)j 2 (14) hence the bicoherence function b(! 1 ! 2 ) = jB X (! 1 ! 2 )j p S(! 1 )S(! 2 )S(! 1 + ! 2 ) = constant ( a l l ! 1 ! 2 ) (15)
The test for linearity is based on replacing the B X (! 1 ! 2 ) and S(!) b y their sample estimates and testing the constancy of the sample values of the bicoherence index over a grid of points.

Results

Returning to real musical signals, we e v aluate these moments by empirically calculating the skewness and kurtosis of various musical instrument sounds. These moments were calculated for a group of 18 instruments and they show a clear distinction between string, woodwind and brass sounds. Representing the sounds as coordinates in 'cumulants space' locates the instrumental groups on 'orbits' with various distances around the origin. This graphical representation also suggest a simple distance measure which could be used for classi cation of these signals.

-2 -1.5 -1 -0. Testing for Gaussianity and Linearity 8 ], 9] g i v es qualitatively similar results. One must note that the cumulants space representation can not determine the Gaussianity/Linearity problem since the calculation of the cumulants involves integrating over the bicoherence plane and no information about the constancy of the bicoherence values is directly available. One nds though an intuitive correlation between the gaussianity and non linearity properties and the magnitudes of the cumulants.

In the Gaussianity test, the null hypothesis is that the data have zero bispectrum. Since the estimators are asymptotically normal, our test statistic is approximately chi-square and the computed probability of false alarm (PFA) value is the probability t h a a v alue of the chi-squared random variable will exceed the computed test statistic. The PFA v alue indicates the false alarm probability in accepting the alternate hypothesis, that the data have non-zero bispectrum. Usually, the null hypothesis is accepted if PFA is greater than 0.05 (i.e., it is risky to accept the alternate hypothesis).

In the Linearity test, the range R est of values of the estimated bicoherence is computed and compared to theoretical range R theory of a chi-squared r.v. with two degrees of freedom and non-centrality parameter 'lambda'. The parameter 'lambda' is proportional to the mean value of the bicoherence is also computed. The linearity hypothesis is rejected if the estimated and theoretical ranges are very di erent from one another.

Since the Linearity test assumes a non zero bispectrum, it should be considered reliable only if the signal passed successfully the earlier Gaussianity test. In the following gure we present the results of Gaussianity and Linearity test plotted so that the X axis represent the Gaussianity P F A v alue and the Y axis is the di erence between the estimated and theoretical ranges. 

Probabilistic Distance Measure for HOS features

In this study we h a ve p r o vided qualitative evidence that the cumulant description of the rst-order amplitude histogram of the decorrelated acoustic signal is an important feature for musical instruments. Considering two classes P 1 and P 2 , the Bhattacharyya (B) distance between probability densities of features of the two classes is B(P 1 P 2 ) = ;ln Z ( p(ĝjP 1 )p(ĝjP 2 )] 1=2 dx (16)

where ĝ denotes the HOS feature vector with conditional probability p(ĝjP i ) for class i. I t i s k n o wn that asymptotically the distribution of the k-th order statistic C k V (0 0) is normal around its true value. For Gaussian densities, the B distance becomes

B(P 1 P 2 ) = 1 8 (g 1 ; g 2 ) T ( 1 + 2 2 ) ;1 (g 1 ; g 2 ) (17) 
+ 1 2 ln 1 2 j 1 + 2 j (j 1 j j 2 j) 1=2 where g i and i represent the feature mean vector and covariance matrix of the According to our cumulants space representation, the instrumental families are resident on orbits of similar distance from the origin. In such a case, the grouping of timbres into families should be according to the relative B distances of the instruments from a normal gaussian signal N(0 1). Then, the B distances become B(P N) = 1 8 g T ;1 g (18) where the covariance matrix must be evaluated for each instrumental class.

Discussion

Our main result is that the cumulant space representation suggests an ordering of the signals according to common practice instrumental families of string, woodwind and brass instruments. The grouping is with respect to the distances of the signals from the origin which corresponds to an ideal gaussian (and hence linear) signal. The string instruments, being the closest to the origin, are the most Gaussian and similarly the Linearity test applies to them. The second orbit band is occupied by w ood wind instruments which are classi ed as Linear but Non Gaussian in the Hinich tests. The perimeter orbits are containing brass sounds. These sounds also satisfy the non Linearity tests with increasing level of con dence for signals with stronger moments.

Considering the technical application of these results, there are two approaches to creation of a musically meaningful signal with Gaussian or non Gaussian properties which w e are currently investigating. In the rst approach 2 ] w e assume that we can represent our input signal as a sum of sinusoidal components with constant amplitudes. Application of random jitter to these components e ectively reduces the correlations between the constituent frequencies and the resultant signal approaches Gaussianity in the sense that its higher order cumulants vanish. This of course does not imply that the signal becomes audibly a noise since second order correlations remain arbitrary long and they determine the spectrum and the perceived pitch. Another approach i s p a s s i n g a Gaussian noise through a comb lter, which is a poor mans approximation to a bowing of a Karups-Strong string.

Since Gaussian statistics are preserved under linear transformation, Gaussianity of the output signal indicates that the input signal is Gaussian also. In the cases where the signal is linear but non Gaussian, the non Gaussianity originates in the higher order cumulants of the input signal. In the sum of sinusoids interpretation this might b e understood as a sum of sinusoids with a constant l e v el of correlation between all components. This e ect could be achieved by passing a Gaussian signal through a memoryless non linear function 7]. Strictly speaking, non Gaussianity is a certain sort of non linearity where the non linear properties are e ective at a single time instance only while all memory is assigned to the linear component o n l y .

Musical Signi cance

For conclusion, it is apt to discuss in brief the musical signi cance of the orchestral family classi cations. Beyond the traditional and instrument builders' reasons for this classi cation, the categorization into instrumental families has a strong evidence in orchestration practice. Scoring of chords and harmonic (homophonic) writing achieves better 'blend' for instruments of the same family. F or combination of timbres S.Adler 1] suggests that \When considering doubling notes, try to nd instruments that have an acoustic a nity for one another." This very idea of acoustic a nity had been formulated in our work as a problem of representation and statistical distance in hos feature space, with the idea of using cumulants as acoustic features beeing novel in audio signal analysis.

To demonstrate the correspondence between our features and the orchestration practice, it is interesting to note for instance that the French Horn is located intermediate between woodwinds and brass timbres in the moment space representation. This is very much in accordance with the orchestration handbooks description of the instrument, so to quote W. Piston 10] \The horns form an important link between brass and woodwind. Indeed, they seem to be as much a part of the woodwind section as of the brass, to which they belong in nature."

To conclude the discussion we w ould like t o n o t e t h a t h e a b o ve results were tested also on a larger (> 50) suite of sounds with comparable results. We note also that since we are dealing with stationary sounds only we neglect any non stationary or transitory phenomena which do not fall in the domain, or could not be considered as microscopic stationary uctuations at the sustained portion of a sound.
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 1 Figure 1: Signal Model -Stochastic pulse train passing through a lter.
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 3 Figure 3: Location of sounds in the 3rd and 4th cumulants plane. The value 3 is substructed from the kurtosis so that the origin would correspond to a perfect gaussian signal. Left: All 18 signals. Brass sounds are on the perimeter. Right: Zoom in towards the center containing strings and surrounded by w oodwinds.

Figure 4 :

 4 Figure 4: Results of the Gaussianity and Linearity t e s t s . PFA > 0.05 means Gaussianity. R-estimated >> R-theory means non Linearity. The deviations in the Y-axis of the right gure should not be considered since the Linearity test is unreliable for signals with zero bispectrum (Gaussian).

We consider high order cumulants in the time domain and their Fourier related polyspectra in the frequency domain

Although it is not clear whether these are the same non linearities or if the same non linear mechanisms are active in the transitory and the sustained portions of a signal.

Spectrally, the signal is composed of incommensurate set of sinusoids, i.e. no partial sum of frequencies in the set corresponds to an already existing frequency.

Since in the gaussian case \white" implies independent, the Wold optimality is maintained only then.

Such a solution must be optimal with respect to the spectral, bispectral and all higher order statistical information and requires the complete knowledge of noise distribution parameters.

Resonant c hamber of the musical instrument should be modeled by a l o w order lter and its inverse (decorrelating) lter is a high boost that attens out the spectral envelope but retains the \comb-like" structure of the signal.