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Abstract
The linear search problem, informally known as the cow path problem, is one of the fundamental
problems in search theory. In this problem, an immobile target is hidden at some unknown position
on an unbounded line, and a mobile searcher, initially positioned at some specific point of the line
called the root, must traverse the line so as to locate the target. The objective is to minimize the
worst-case ratio of the distance traversed by the searcher to the distance of the target from the root,
which is known as the competitive ratio of the search.

In this work we study this problem in a setting in which the searcher has a hint concerning the
target. We consider three settings in regards to the nature of the hint: i) the hint suggests the
exact position of the target on the line; ii) the hint suggests the direction of the optimal search (i.e.,
to the left or the right of the root); and iii) the hint is a general k-bit string that encodes some
information concerning the target. Our objective is to study the Pareto-efficiency of strategies in
this model. Namely, we seek optimal, or near-optimal tradeoffs between the searcher’s performance
if the hint is correct (i.e., provided by a trusted source) and if the hint is incorrect (i.e., provided by
an adversary).
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1 Introduction

Searching for a target is a common task in everyday life, and an important computational
problem with numerous applications. Problems involving search arise in such diverse areas as
drilling for oil in multiple sites, the forest service looking for missing backpackers, search-and-
rescue operations in the open seas, and navigating a robot between two points on a terrain.
All these problems involve a mobile searcher which must locate an immobile target, often
also called hider, that lies in some unknown point in the search domain, i.e, the environment
in which the search takes place. The searcher starts from some initial placement within the
domain, denoted by O, which we call the root. There is, also, some underlying concept of
quality of search, in the sense that we wish, in informal terms, for the searcher to be able to
locate the target as efficiently as possible.

One of the simplest, yet fundamental search problems is searching on an infinite line that
is unbounded both to the left and to the right of the root. In this problem, which goes back
to Bellman [17] and Beck and Newman [10], the objective is to find a search strategy that
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minimizes the competitive ratio of search. More precisely, let S denote the search strategy,
i.e., the sequence of moves that the searcher performs on the line. Given a target t, let d(S, t)
denote the total distance that the searcher has traveled up to the time it locates the target,
and d(t) the distance of t from O. We define the competitive ratio of S as

cr(S) = sup
t

d(S, t)
d(t) .

A strategy of minimum competitive ratio is called optimal. The problem of optimizing the
competitive ratio of search on the line is known as the linear search problem (mostly within
Mathematics and Operations Research), but is also known in Computer Science as the cow
path problem.

It has long been known that the optimal (deterministic) competitive ratio of linear search
is 9 [15], and is derived by a simple doubling strategy. Specifically, let the two semi-infinite
branches of the line be labeled with 0, 1 respectively. Then in iteration i, with i ∈ N, the
searcher starts from O, traverses branch i mod 2 to distance 2i, and returns to the root.

Linear search, and its generalization, the m-ray search problem, in which the search
domain consists of m semi-infinite branches have been studied in several settings. Substantial
work on linear search was done in the ’70s and ’80s predominantly by Beck and Beck, see
e.g., [11, 16, 12, 13, 14]. Gal showed that a variant of the doubling strategy is optimal for
m-ray search [25, 26]. These results were later rediscovered and extended in [9].

Other related work includes the study of randomization [41] and [30]; multi-searcher
strategies [35]; searching with turn cost [23, 3]; the variant in which some probabilistic inform-
ation on the target is known [27, 28]; the related problem of designing hybrid algorithms [29];
searching with an upper bound on the distance of the target from the root [34] and [20]; fault
tolerant search [22, 33]; and performance measures beyond the competitive ratio [31, 38, 4].
Competitive analysis has been applied beyond the linear and star search, for example in
searching within a graph [32, 24, 6].

1.1 Searching with a hint
Previous work on competitive analysis of deterministic search strategies has mostly assumed
that the searcher has no information about the target, whose position is adversarial to the
search. In practice, however, we expect that the searcher may indeed have some information
concerning the target. For instance, in a search-and-rescue mission, there may be some
information on the last sighting of the missing person, or the direction the person had taken
when last seen. The question then is: how can the searcher leverage such information, and
to what possible extent?

If the hint comes from a source that is trustworthy, that is, if the hint is guaranteed
to be correct, then the performance of search can improve dramatically. For example, in
our problem, if the hint is the branch on which the target lies, then the optimal search is
to explore that branch until the target is found, and the competitive ratio is 1. There is,
however, an obvious downside: if the hint is incorrect, the search may be woefully inefficient
since the searcher will walk eternally on the wrong branch, and the competitive ratio in this
case is unbounded.

We are thus interested in analyzing the efficiency of search strategies in a setting in which
the hint may be compromised. To this end, we first need to define formally the concept of
the hint, as well as an appropriate performance measure for the search strategy. In general,
the hint h is a binary string of size k, where the i-th bit is a response to a query Qi. For
example, one can define a single query Q as “Is the target within distance at most 100 from
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O?” and a one-bit hint, so that the hint answers a range query. For another example, if
Q=“Is the target to the left or to the right of O?”, then a 1-bit hint informs the searcher
about the direction it should pursue. From the point of view of upper bounds (positive
results), we are interested in settings in which the queries and the associated hints have some
natural interpretation, such as the ones given above. From the point of view of lower bounds
(impossibility results), we are interested on the limitations of general k-bit hint strings which
may be associated with any query, as we will discuss in more detail later.

Concerning the second issue, namely evaluating the performance of a search strategy S
with a hint h, note first that S is a function of h. We will analyze the competitiveness of
S(h) in a model in which the competitive ratio is not defined by a single value, but rather by
a pair (cS,h, rS,h). The value cS,h describes the competitive ratio of S(h) assuming that h is
trusted, and thus guaranteed to be correct. The value rS,h describes the competitive ratio of
S(h) when the hint is given by an adversarial source. More formally, we define

cS,h = sup
t

inf
h

d(S(h), t, h)
d(t) , and rS,h = sup

t
sup
h

d(S(h), t, h)
d(t) , (1)

where d(S(h), t, h) denotes the distance traversed in S(h) for locating a target t with a hint
h. We will call cS,h the consistency of S(h), and rS,h the robustness of S(h). To simplify
notation, we will often write S instead of S(h) when it is clear from context that we refer to
a strategy with a hint h.

For example, if the hint h is the branch on which the target lies, then the strategy
that always trusts the hint is (1,∞) competitive, whereas the strategy that ignores the
hint entirely is (9, 9)-competitive. Our objective is then to find strategies that are provably
Pareto-optimal or Pareto-efficient in this model, and thus identify the strategies with the
best tradeoff between robustness and consistency.

Our model is an adaptation, to search problems, of the untrusted advice framework for
online algorithms proposed by Angelopoulos et al. [5]. In their work, the online algorithm is
given some additional information, or advice which may, or may not be correct. To the best
of our knowledge, our setting is a first attempt to quantify, in an adversarial setting, the
impact of general types of predictions in search games. It is also in line with recent advances
on improving the performance of online algorithms using predictions, such as the work of
Lykouris and Vassilvitskii [36], who introduced the concepts of consistency and robustness in
the context of paging, and the work of Purohit et al. [39], who applied it to general online
problems. Our framework for the k-bit hint is also related to other work in Machine Learning,
such as clustering with k noisy queries, e.g., the work of Mazumdar and Saha [37].

It should be emphasized that there is previous work that has studied the impact of specific
types of hints on the performance of search strategies, such as bounds on the maximum or
the minimum distance of the target from the root, e.g., [34, 20, 27]. However, the hint in
these works is always assumed to be trusted and correct.

1.2 Contribution
In this work we study the power of limitations of linear search with hints. Let r ≥ 9 be
a parameter that in general will denote the robustness of a search strategy, and let br be
defined as

br =
ρr +

√
ρ2
r − 4ρr

2 , where ρr = (r − 1)/2.

We consider the following classes of hints:

ITCS 2021
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The hint is the position of the target. Here, the hint describes the exact location of the
target on the line: its distance from O, along with the branch (0 or 1) on which it lies.
We present a strategy that is ( br−1

br+1 , r)-competitive, and we prove it is Pareto-optimal.
The hint is the branch on which the target lies. Here, the hint is information on whether
the searcher is to the left or to the right of the root. We present a strategy that, given
parameters b > 1 and δ ∈ (0, 1), has consistency c = 1 + 2 · ( b2

b2−1 + δ b3

b2−1 ), and robustness
r = 1 + 2 · ( b2

b2−1 + 1
δ

b3

b2−1 ). Again, we prove that this strategy is Pareto-optimal.
The hint is a general k-bit string. In the previous settings, the hint is a single bit, which
answers the corresponding query. Here we address the question: how powerful can be
a single-bit hint, or more generally a k-bit hint? In other words, how powerful can k
binary queries be for linear search? We give several upper and lower bounds on the
competitiveness of strategies in this setting. First, we look at the case of a single-bit
hint. Here, we give a 9-robust strategy that has consistency at most 1 + 4

√
2, whereas we

show that no 9-robust strategy can have consistency less than 5, for any associated query.
For general robustness r, we give upper and lower bounds that apply to some specific,
but broadly used class of strategies, including geometric strategies (see Section 2 for a
definition and Theorem 10 for the statement of the result). For general k, and for a given
r ≥ 9, we give an r-robust strategy whose consistency decreases rapidly as function of k
(Proposition 11).

In terms of techniques, for the first setting described above (in which the hint is the
position of the target), the main idea is to analyze a geometric strategy with “large” base,
namely br, for r ≥ 9. The technical difficulty here is the lower bound; to this end, we prove
a lemma that shows, intuitively, that for any r-robust strategy, the search length of the
i-th iteration cannot be too big compared to the previous search lengths (Lemma 2). This
technical result may be helpful in more broad settings (e.g., we also apply it in the setting in
which the advice is a general k-bit string).

Concerning the second setting, in which the hint describes the branch, we rely on tools
developed by Schuierer [40] for lower-bounding the performance of search strategies; more
precisely on a theorem for lower-bounding the supremum of a sequence of functionals. But
unlike [40], we use the theorem in a parameterized manner, that allows us to express the
tradeoffs between the consistency and the robustness of a strategy, instead of their average.

Concerning the third, and most general setting, our upper bounds (i.e., the positive
results) come from a strategy that has a natural interpretation: it determines a partition
of the infinite line into 2k subsets, and the hint describes the partition in which the target
lies. The lower bounds (negative results) come from information-theoretic arguments, as is
typical in the field of advice complexity of online algorithms (see, e.g., the survey [21]).

The broader objective of this work is to initiate the study of search games with some
limited, but potentially untrusted information concerning the target. As we will show, the
problem becomes challenging even in a simple search domain such as the infinite line. The
framework should be readily applicable to other search games, and the analysis need not
be confined to the competitive ratio, or to worst-case analysis. For example, search games
in bounded domains are often studied assuming a probability distribution on the target,
with the objective to minimize the expected search time (for several such examples see the
book [1]). However, very little work has addressed the setting in which the searcher may
have access to hints, such as the High-Low search games described in Section 5.2 of [1], in
which a searcher wants to locate a hider on the unit interval by a sequence of guesses. Again,
our model is applicable, in that one would like to find the best tradeoff on the expected time
to locate the target assuming a trusted or untrusted hint.
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2 Preliminaries

In the context of searching on the line, a search strategy X can be defined as an infinite set
of pairs (xi, si), with i ∈ N, xi ∈ R≥1 and si ∈ {0, 1}. We call i an iteration and xi the length
of the i-th search segment. More precisely, in the i-th iteration, the searcher starts from the
root O, traverses branch si up to distance xi from O, then returns to O. It suffices to focus
on strategies for which xi+2 ≥ xi, i.e., in any iteration the searcher always searches a new
part of the line. We will sometimes omit the si’s from the definition of the strategy, if the
direction is not important, i.e., the searcher can start by moving either to the left or to the
right of O. In this case, there is the implicit assumption that si and si+1 have complementary
parities, since any strategy that revisits the same branch in consecutive iterations can be
transformed to another strategy that is no worse, and upholds the assumption. We make
the standing assumption that the target lies within distance at least a fixed value, otherwise
every strategy has unbounded competitive ratio. In particular, we will assume that t is such
that d(t) ≥ 1.

Given a strategy X = (x0, x1, . . .) (which we will denote by X = (xi), for brevity), its
competitive ratio is given by the expression

cr(X) = 1 + 2 sup
i≥0

∑i
j=1 xj

xi−1
, (2)

where x−1 is defined to be equal to 1. This expression is obtained by considering all the
worst-case positions of the target, namely immediately after the turn point of the i-th segment
(see e.g., [40]).

Geometric sequences are important in search problems, since they often lead to efficient,
or optimal strategies (see, e.g., Chapters 7 and 9 in [1]). We call the search strategy Gb = (bi)
geometric with base b. From (2), we obtain that

cr(Gb) = 1 + 2 b2

b− 1 . (3)

For example, for the standard doubling strategy in which xi = 2i, hence b = 2, the above
expression implies a competitive ratio of 9.

For any r ≥ 4 define ρr to be such that r = 1 + 2ρr, thus ρr = (r − 1)/2. Moreover,
from (3) and the definition of br, we have that cr(Gbr

) = r.
In the context of searching with a hint, we will say that a strategy is (c, r)-competitive if

it has consistency at most c and robustness at most r; equivalently we say that the strategy
is c-consistent and r-robust. Clearly, an r-robust strategy gives rise to a strategy with no
hints, and with competitive ratio at most r.

We conclude with some definitions that will be useful in Section 4. Let X = (x0, x1, . . .)
denote a sequence of positive numbers. We define αX as

αX = limn→∞x
1/n
n .

We also define as X+i the subsequence of X starting at i, i.e, X+i = (xi, xi+1, . . .). Last, we
define the sequence Gb(γ0, . . . γn−1) as

Gb(γ0, . . . γn−1) = (γ0, γ1a, γ2a
2, . . . γn−1a

n−1, γ0a
n, γ1a

n+1, . . .).

ITCS 2021
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3 Hint is the position of the target

In this section we study the setting in which the hint is related to the exact position of
the target. Namely, the hint h describes the distance d(t) of the target t from the root,
as well as the branch on which it hides. For any r ≥ 9, we will give a strategy that is
( br+1
br−1 , r)-competitive. Moreover, we will show that this is Pareto-optimal. We begin with
the upper bound.

I Theorem 1. For any r ≥ 9 there exists a ( br+1
br−1 , r)-competitive strategy for linear search

in which the hint is the position of the target.

Proof. From the hint h, we have as information the distance d(t) as well as the branch t on
which the target t lies; without loss of generality, suppose that this branch is the branch 0.
Recall that this information may or may not be correct, and the searcher is oblivious to this.

Consider the geometric strategy Gbr = (bir), with i ∈ N, and recall that Gbr is r-robust
(as discussed in Section 2). There must exist an index jt such that bjt−2

r < d(t) ≤ bjt
r . Define

λ = bjt
r /d(t) ≥ 1, and let G′ denote the strategy G′ = ({ 1

λb
i
r, si}), where the si’s are defined

such that that si+1 6= si, for all i, and sjt
= 0.

In words, G′ is obtained by “shrinking” the search lengths of Gbr
by a factor equal to λ,

and by choosing the right parity of branch for starting the search, in a way that, if the hint
is trusted, then in G′ the searcher will locate the target right as it is about to turn back to
O at the end of the jt-th iteration.

Since Gbr
is r-robust, so is the scaled-down strategy G′; this is because the worst-case

competitive ratio is attained for targets hiding right after the turn points of the segments. It
remains then to bound the consistency cG′ of G′. Suppose that the hint is trusted. We have
that

d(G′, t) = 1
λ

(2
jt−1∑
i=0

bir + bjt
r ),

and since d(t) = bjt
r /λ we can bound cG′ from above by

d(G′, t)
d(t) = 1 + 2 bjt

r − 1
bjt
r (br − 1)

≤ 1 + 2
br − 1 = br + 1

br − 1 .

We conclude that G′ is ( br+1
br−1 , r)-competitive. J

Next, we will show that the strategy of Theorem 1 is Pareto-optimal. To this end, we
will need a technical lemma concerning the segment lengths of any r-robust strategy.

I Lemma 2. For any r-robust strategy X = (xi), it holds that

xi ≤
(
br + br

i+ 1

)
xi−1,

for all i ≥ 1, where x−1 is defined to be equal to 1.

We obtain a useful corollary concerning the sum of the first i− 1 search lengths of an
r-robust strategy.

I Corollary 3. For any r-robust strategy X = (xi), it holds that
i−1∑
j=0

xj ≥
xi

1 + 1
i+1

(
br

br − 1 −
i+ 2
i+ 1

)
,

and for every ε ∈ (0, 1], there exists i0 such that for all i > i0,
∑i−1
j=0 xj ≥ ( 1

br−1 − ε)xi.
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We can now show a lower bound on the competitiveness of every strategy that matches
the upper bound of Theorem 1.

I Theorem 4. For every (c, r)-competitive strategy for linear search in which the hint is the
position of the target, it holds that c ≥ br+1

br−1 − ε, for any ε > 0.

Proof. Let X = (xi) denote an r-robust strategy, with a hint that specifies the position of a
target t. Suppose that X locates the target at the jt-th iteration. We have that

c = d(X, t)
d(t) =

2
∑jt−1
i=0 xi + d(t)
d(t) ≥

2
∑jt−1
i=0 xi + xjt

xjt

= 1 + 2
∑jt−1
i=0 xi
xjt

.

Note that the target t can be chosen to be arbitrarily far from O, which means that
jt can be unbounded (otherwise the strategy would not have bounded robustness). From
Corollary 3 this implies that

∑jt−1
i=0 xi can be arbitrarily close to xjt

1
br−1 , and therefore c is

arbitrarily close to 1 + 2 1
br−1 = br+1

br−1 , which concludes the proof. J

4 Hint is the direction of search

In this section we study the setting in which the hint is related to the direction of the search.
More precisely, the hint is a single bit that dictates whether the target is to the left or to the
right of the root O. Again, we are interested in Pareto-optimal strategies with respect to
competitiveness: namely, for any fixed r ≥ 9, what is the smallest c such that there exist
(c, r)-competitive strategies?

A related problem was studied by Schuierer [40], which is called biased search. One
defines the left and right competitive ratios, as the competitive ratio of a search, assuming
that the target hides to the left of the root, or to the right of the root, respectively. However,
the searcher does not know the target’s branch. Of course we know that the maximum of the
left and the right competitive ratios is at least 9 (and for the doubling strategy, this is tight).
[40] shows that for any search strategy on the line (not necessarily 9-robust), the average of
the left and the right competitive ratios is at least 9. At first glance, one may think that this
could be an unsurprising, and perhaps even trivial result; however this is not the case. The
proof in [40] is not straightforward, and relies in a generalization of a theorem of [25] which
lower bounds the supremum of a sequence of functionals by the supremum of much simpler,
geometric functionals. We will discuss this theorem shortly.

The problem studied in [40] is related to our setting: the left and right competitive ratios
correspond to the consistency c and the robustness r of the strategy. Hence from [40] we
know that c+ r ≥ 18. However, there is a lot of room for improvement. In this section we
will show a much stronger tradeoff between c and r, and we will further prove that it is tight.
For example, we will show that for any (c, r)-competitive strategy, if c approaches 5 from
above, then r approaches infinity (in contrast, in this case, the lower bound of [40] yields
r ≥ 13). In fact, we will show that c+ r is minimized when c = r = 9. To this end, we will
apply a parameterized analysis based on Schuierer’s approach. We begin with the upper
bound, by analyzing a specific strategy.

I Theorem 5. For every b ≥ 1, and δ ∈ (0, 1], there is a (c, r)-competitive strategy for linear
search with the hint being the direction of search, in which

c = 1 + 2 · ( b2

b2 − 1 + δ
b3

b2 − 1) and r = 1 + 2 · ( b2

b2 − 1 + 1
δ

b3

b2 − 1).

ITCS 2021
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Proof. Suppose, without loss of generality, that the hint points to branch 0. Consider a
strategy X = ({xi, i mod 2}), which starts with branch 0, and alternates between the two
branches. This strategy has consistency and robustness given by the following expressions,
as a consequence of (2):

c = 1 + 2 · sup
k≥0
{
∑2k+1
i=0 xi
x2k

} and r = 1 + 2 · sup
k≥0
{
∑2k
i=0 xi
x2k−1

}, (4)

where x−1 is defined to be equal to 1.
In addition, the search lengths of X are defined by

xi = bi, if i even and xi = δbi, if i is odd,

where we require that b > 1, and δ ∈ (0, 1]. Note that X is “biased” with respect to branch
0, which makes sense since the hint points to that branch.

Substituting these values into (4), we obtain that

c = 1 + 2 · sup
k≥0
{
∑k
i=0 b

2i

b2k + δ

∑k
i=0 b

2i+1

b2k } = 1 + 2 · sup
k≥0
{ b

2(k+1) − 1
(b2 − 1)b2k + δ

b2k+3 − 1
(b2 − 1)b2k }

≤ 1 + 2 · ( b2

b2 − 1 + δ
b3

b2 − 1).

Similarly, we have that

r = 1 + 2 · sup
k≥0
{1
δ

∑k

i=0 b
2i

b2k−1 +
∑k−1

i=0 b
2i+1

b2k−1 } = 1 + 2 · sup
k≥0
{1
δ

b2(k+1) − 1
(b2 − 1)b2k−1 + b2k+1 − 1

(b2 − 1)b2k−1 }

≤ 1 + 2 · (1
δ

b3

b2 − 1 + b2

b2 − 1). J

For example, if δ = 1, and b = 2, then Theorem 5 shows that there exists a (9, 9)-
competitive strategy. Interestingly, the theorem shows that as the consistency c approaches
5 from above, the robustness r of the strategy must approach infinity. This is because the
function b2

b−1 is minimized for b = 2, and hence for c to approach 5 from above, it must be
that b approaches 2, and δ approaches 0. But then 1

δ must approach infinity, and so must r.
We will show that the strategy of Theorem 5 is Pareto-optimal. To this end, we will use

the following theorem of [40]. Recall the definitions of αX , X+i and Ga(γ0, . . . γn−1) given
in Section 2.

I Theorem 6 (Theorem 1 in [40]). Let p, q be two positive integers, and X = (x0, x1, . . .) a
sequence of positive numbers with supn≥0 xn+1/xn <∞ and αX > 0. Suppose that Fk is a
sequence of functionals that satisfy the following properties:
(1) Fk(X) depends only on x0, x1, . . . xpk+q,
(2) Fk(X) is continuous in every variable, for all positive sequences X,
(3) Fk(aX) = Fk(X), for all a > 0,
(4) Fk(X + Y ) ≤ max(Fk(X), Fk(Y )), for all positive sequences X,Y , and
(5) Fk+i(X) ≥ Fk(X+ip), for all i ≥ 1.
Then there exist p positive numbers γ0, γ1, γp−1 such that

sup
0≤k<∞

Fk(X) ≥ sup
0≤k<∞

Fk(GαX
(γ0, . . . , γp−1)).
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We will use Theorem 6 to prove a tight lower bound on the competitiveness of any
strategy X.

I Theorem 7. For every (c, r)-competitive strategy, there exists α > 1, and δ ∈ (0, 1] such
that c ≥ 1 + 2 · ( α2

α2−1 + δ α3

α2−1 ), and r ≥ 1 + 2 · ( α2

α2−1 + 1
δ

α3

α2−1 ).

Proof. Let X = (x0, x1, . . .) denote a (c, r)-competitive strategy, and suppose, without loss
of generality, that the hint specifies that the target is in the branch labeled 0. There are
two cases concerning X: either the first exploration is on the branch labeled 0, or on the
branch labeled 1. Let us assume the first case; at the end, we will argue that the second case
follows from a symmetrical argument. As we argued in the proof of Theorem 5, in this case
the competitiveness of X is described by (4). Let us define the functionals

Ck =
∑2k+1
i=0 xi
x2k

and Rk =
∑2k
i=0 xi
x2k−1

.

Then we have that

c = 1 + 2 · sup
k≥0

Ck and r = 1 + 2 · sup
k≥0

Rk. (5)

The functional Ck satisfies the conditions of Theorem 6 with p = 2, as shown in [40] therefore
there exist γ0, γ1 > 0 such that

sup
k≥0

Ck ≥ sup
k≥0

Ck(GαX
(γ0, γ1)) = sup

k≥0

γ0 + γ1αX + γ0α
2
X + . . .+ γ0α

2
Xk + γ1α

2k+1
X

γ0α2k
X

= sup
k≥0
{
∑k
i=0 α

2i
X

α2k
X

+ γ1

γ0

∑k
i=0 α

2i+1
X

α2k
X

}.

If αX ≤ 1, then the above implies that supk≥0 Ck =∞ (another way of dismissing this case
is that if αX ≤ 1, then X is bounded and the two branches are not explored to infinity, as
required by any strategy of bounded consistency). We can thus assume that αX > 1, and we
obtain that

sup
k≥0

Ck ≥ sup
k≥0
{
α2k+2
X − 1

(α2
X − 1)α2k

X

+ γ1

γ0

α2k+3
x − 1

(α2
X − 1)α2k

X

} = α2
X

α2
X − 1 + γ1

γ0

α3
X

α2
X − 1 . (6)

We can lower-bound r using a similar argument, and obtain

sup
k≥0

Rk ≥ sup
k≥0
{γ0

γ1

α2k+2
X − 1

(α2
X − 1)α2k−1

X

+ α2k+1
x − 1

(α2
X − 1)α2k−1

X

} = γ0

γ1

α3
X

α2
X − 1 + α2

X

α2
X − 1 . (7)

Let us define δ = γ1
γ0
> 0. The result follows then by combining (5), (6) and (7). Note

that if we require that c ≤ r, it must be that δ ≤ 1, since αX > 1.
It remains to consider the symmetric case, in which in X, the first explored branch is

branch 1. In this case the analysis is essentially identical: in (5) we substitute Ck with Rk
and vice versa, in the expressions of c and r, and in the resulting lower bounds we require
that δ > 1. J

It is important to note that in the proof of Theorem 7 we used the fact that the values
γ0 and γ1 depend only on X and not on any functionals defined over X, as follows from the
proof of Theorem 6 in [40].
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Theorem 7 implies that any (c, r)-competitive strategy X is such that

c+ r ≥ 2 + 4 α2
X

α2
X − 1 + 2(δ + 1

δ
) α3

X

α2
X − 1 ,

which is minimized at δ = 1, hence c+ r is minimized only if c = r = 1 + 2 α2
X

αX−1 ≥ 9. We
conclude that the average of a strategy’s consistency and robustness (or the average of the
left and right competitive ratio, in the terminology of [40]) is minimized only by strategies
that are 9-robust.

5 Hint is a k-bit string

In this section we study the setting in which the searcher has access to a hint string of k bits.
We first consider the case k = 1. In Section 5.1 we will study the more general case.

It should be clear that even a single-bit hint is quite powerful, and that the setting is
non-trivial. For example, the bit can indicate the right direction for search, as discussed in
Section 4, but it allows for other possibilities, such as whether the target is at distance at
most D from the root, for some chosen D. The latter was studied in [27], assuming that the
hint is correct. More generally, the hint can induce a partition of the infinite line into two
subsets L1 and L2, such that the hint dictates whether the target is hiding on L1 or L2.

We begin with the upper bound, namely we describe a specific search strategy, and the
corresponding hint bit (as well as the query which it responds). Consider two strategies of
the form

X1 = (bir) and X2 = (bi+
1
2

r ).

Note that both X1 and X2 are r-robust: X1 is geometric with base br, whereas X2 is obtained
from X1 by scaling the search lengths by a factor equal to b1/2

r . We also require that the two
strategies start by searching the same branch, hence in every iteration, they likewise search
the same branch.

We can now define a strategy Z with a single bit hint, which indicates whether the
searcher should choose strategy X1 or strategy X2. For any given target, one of the two
strategies will outperform the other, assuming the hint is trusted. Thus, an equivalent
interpretation of the hint is in the form of a partition of the infinite line into two sets L1
and L2, such that if the target is in Li, then Xi is the preferred strategy, with i ∈ [1, 2]. See
Figure 1 for an illustration.

The following result bounds the performance of this strategy, and its proof will follow as
a corollary of a more general theorem concerning k-bit strings that we show in Section 5.1
(Theorem 11).

I Proposition 8. For given r ≥ 9, the above-defined strategy Z is r-robust and has consistency
at most 1 + 2a

3/2

a−1 , where a = br, if r ≤ 10, and a = 3, otherwise.

Note that if r = 9, then Z has consistency 1+4
√

2 ≈ 6.657. For r ∈ [9, 10], the consistency
of Z is decreasing in r, as one expects. For r ≥ 10, the consistency is 1 + 3

√
3 ≈ 6.196.

We now turn our attention to lower bounds. To this end, we observe that a single-bit hint
h has only the power to differentiate between two fixed strategies, say X = (xi), and Y = (yi),
i.e., two strategies that are not defined as functions of h. We say that Z is determined by
strategies X and Y , and the bit h.
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O

Figure 1 Illustration of strategy Z, using the first four segments of strategies X1 and X2. Blue
(dark)and orange (faded) segments correspond to the search segments of strategies X1 and X2,
respectively. The parts of the line in blue (resp. orange) indicate the hiding intervals for the target
such that X1 (resp. X2) is preferred, and thus chosen by the hint.

Setting up the lower-bound proofs

We give some definitions and notation that will be used in the proofs of Theorems 9 and 10.
Let Z be determined by strategies X and Y , and a single-bit hint h. Let C denote the lower
bound on the consistency of Z that we wish to show. For given i, define T iX = 2

∑i
j=0 xj+xi−1,

and similarly for T iY . Define also q = r/C.
Note that a searcher that follows strategy X will turn towards the root at iteration i− 1,

after having explored some branch βi ∈ {0, 1} up to distance xi−1. Thus, X barely misses
a target that may be hiding at branch βi, and at distance xi−1 + ε from O, with ε > 0
infinitesimally small, and thus requires time T iX to discover it. We will denote this hiding
position of a potential target by Pi. If, on the other hand, the searcher follows Y , then it
can locate a target at position Pi at a time that may be smaller than T iX ; let τi denote this
time. When strategy Y locates a target hiding at Pi, it does so by exploring branch βi to
a length greater than xi−1. Let ji be the iteration at which Y locates Pi, thus yji

≥ xi−1.
Last, let Qi denote the position in branch βi and at distance yji + ε from O. In words, if a
target hides at Qi, then strategy Y barely misses it when executing the search segment yji

.
We first show a lower bound on the consistency of 9-robust strategies. In the proof we

will not replace all parameters with the corresponding values (e.g., we will sometimes use r
to refer to robustness, instead of the value 9). We do so because the arguments in the proof
can be applied to other settings, as will become clear in the proof of Theorem 10.

I Theorem 9. For any (c, 9)-competitive strategy with single-bit hint, it holds that c ≥ 5.

Proof. We will prove the result by way of contradiction. Let C = 5, and suppose that
there is a strategy Z of consistency strictly less than C. Let Z be determined by two fixed
strategies X and Y . Both X and Y must be r-robust (i.e., 9-robust), otherwise Z cannot be
r-robust.

Fix i0 ∈ N. Suppose first that i0 is such that for all i ≥ i0, we have τi ≥ 1
qT

i
X . In this

case, for a target at position Pi, defined earlier, X requires time T iX to locate it, whereas Y
requires time at least τi ≥ 1

qT
i
X to locate it, thus the minimum time X or Y can locate this

target is 1
qT

i
X . Therefore, the consistency of Z is at least

c ≥ sup
i≥i0

T iX
q · xi−1

= 1
q

sup
i≥i0

T iX
xi−1

≥ C

r
· r = C, (8)
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which is a contradiction. Here, we used crucially the fact that supi≥i0
T i

X

xi−1
≥ 9, for any

9-robust strategy X and any i01. Specifically, there exists sufficiently large i such that T iX is
arbitrarily close to 9xi−1.

It must then be that i0 does not obey the property described above, namely for some
i ≥ i0 we have that τi ≤ 1

qT
i
X . Since X is r = 9-robust, it must also be that T i

X

xi−1
≤ r, as can

be seen if a target hides at Pi. We therefore obtain that

τi ≤
1
q
T iX ≤

1
q
· r · xi−1 = Cxi−1. (9)

We can also give a lower bound on τi, as follows. Recall that we denote by yji
the segment at

which strategy Y locates a target at position Pi. For arbitrarily small ε > 0, we can choose
i0 sufficiently large, which also implies that ji can also be sufficiently large (since otherwise
Y would not have finite robustness), so that Corollary 3 applies. To simplify the arguments,
in the remainder of the proof we will assume that the corollary applies with ε = 0; this has
no effect on correctness, since we want to show a lower bound of the form C − δ on the
consistency, and ε can be made as small as we want in comparison to δ. More precisely, we
obtain that

τi = 2
ji∑
l=0

yl + xi−1 ≥
2

br − 1yji + xi−1. (10)

Combining (9) and (10) we have

yji
≤ C − 1

2 (br − 1)xi−1. (11)

In particular, since r = 9 and C = 5, we have that yji
≤ 2xi−1.

Consider now a target at position Qi, and recall that this position is at distance infinites-
imally larger than yji

. We will show that in both X and Y , there exists an i ≥ i0 such that
the searcher walks distance at least C · yji before reaching this position, which implies that
Z has consistency at least C, and which yields the contradiction.

Consider first strategy Y . In this case, the searcher walks distance at least T ji

Y , to reach
Qi, from the definition of TY . Since r = 9, we know that supi≥i0

T
ji
Y

yji
≥ 9, for any i0, hence

there exists an i ≥ i0 such that the distance walked by the searcher is at least r · yji
, and

hence at least C · yji .
Consider now strategy X. In this case, in order to arrive at position Qi, the searcher

needs to walk distance T iX , then at least an additional distance yji − xi−1 to reach Qi. Let
us denote by Di

X this distance. We have

Di
X = T iX + yji − xi−1

≥ 9xi−1 + yji
− xi−1 (From Corollary 3 and since T iX is arbitrarily close to 9xi−1)

= 8xi−1 + yji
. (12)

We then bound the ratio Di
X/yji

from below as follows.

Di
X

yji

≥ 8xi−1 + yji

yji

= 1 + 8xi−1

yji

≥ 1 + 8 xi−1

2 · xi−1
(From the fact that yji

≤ 2 · xi−1)

= 5. (13)

We thus conclude that C ≥ 5, which yields the contradiction, and completes the proof. J

1 In general, this statement is not immediately true for arbitrary r > 9.
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Showing a lower bound on the consistency, as a function of general r > 9 is quite hard,
even for the case of a single-bit hint. The reason is that as r increases, so does the space
of r-robust strategies. For example, any geometric strategy Gb has robustness r, as long
as b ∈ [ ρr−

√
ρ2

r−4ρr

2 ,
ρr+
√
ρ2

r−4ρr

2 ]. In what follows we will show a lower bound for a class
of strategies which we call asymptotic. More precisely, recall the definition of T iX . We
call an r-robust strategy S asymptotic if supi≥i0

T i
X

xi−1
= r, for all fixed i0. In words, in an

asymptotic strategy, the worst-case robustness (i.e., the worst case competitive ratio without
any hint) can always be attained by targets placements sufficiently far from the root. All
geometric strategies, including the doubling strategy, have this property, and this holds
for many strategies that solve search problems on the line and the star, such as the ones
described in the introduction. Note also that the strategies X1 and X2 that determine the
strategy Z in the statement of Proposition 8 are asymptotic, since they are near-geometric.
Thus, the lower bound we show in the next theorem implies that in order to substantially
improve consistency, one may have to resort to much more complex, and most likely irregular
strategies.

I Theorem 10. Let Z denote a strategy with 1-bit hint which is determined by two r-robust,
asymptotic strategies X and Y . Then Z is (c, r)-competitive, with c ≥ 1 + 2br

br−1 .

5.1 k-bit hints
Here we consider the general setting in which the hint is a k-bit string, for some fixed k.
First, we give an upper bound that generalizes Proposition 8. We will adapt an algorithm
proposed in [5] for the online bidding problem with untrusted advice. Consider 2k strategies
X0, . . . , X2k−1, where

Xj = (ai+
j

2k )i≥0,

for some a to be determined later, and where all the Xj have the same parity: they all search
the same branch in their first iteration and, therefore in every iteration as well. Define a
strategy Z, which is determined by X0, . . . , X2k−1, and in which the k-bit hint h dictates
the index j of the chosen strategy Xj . In other words, h answers the query Qh=“which
strategy among X0, . . . , X2k−1 should the searcher choose?”. An equivalent interpretation
is that the statements of the Xj ’s induce a partition of the line, such that for every given
target position, one of the Xj ’s is the preferred strategy. Thus every bit i of the hint can
be thought, equivalently, as the answer to a partition query Qi of the line, i.e., of the form
“does the target belong in a subset Li of the line or not?”.

I Theorem 11. For every r ≥ 9, the strategy Z defined above is (c, r)-competitive with

c ≤ 1 + 2a
1+ 1

2k

a−1 , where a = br, if ρr ≤ (1+2k)2

2k , and a = 1 + 2k, otherwise.

For example, for r = 9, we obtain a strategy that is (1 + 22+ 1
2k , 9)-competitive. Thus,

the consistency decreases rapidly, as function of k, and approaches 5.
Last, it is easy to see that no 9-robust strategy with hint string of any size can have

consistency better than 3. To see this, let X be any 9-robust strategy, and let it be the
iteration in which it locates a target t. Since t can be arbitrarily far from O, it is unbounded,
and thus Corollary 3 applies. We thus have that

d(X, t)
d(t) =

∑it−1
j=0 xj + d(t)

d(t) = 1 + 2
∑it−1
j=0 xj

d(t) ≥ 1 + 2
∑it−1
j=0 xj

xit
≥ 1 + 2(1− ε)xit

xit
,

thus the consistency of X cannot be smaller that 3− ε, for any ε. The same holds then for
any strategy that is determined by any number of 9-robust strategies, and thus for any hint.
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6 Conclusion

We introduced a model that allows us to analyze the performance of search strategies with
some information on the target. As explained in the introduction, the eventual goal is to
apply this model to many other search problems, within or beyond competitive analysis, and
for deterministic or randomized strategies. A good starting point is the generalization of
linear search, namely the m-ray star problem, which has a long history of research, and has a
broad connection to resource allocation problems (see, e.g. [33, 8, 18]). In this context, there
are m tasks and the goal is to allocate resources to each of them, without knowing ahead of
time which task will be the crucial one. The hint can be interpreted as some information
concerning the instance (e.g., the index of the crucial task, or the time we may have to
allocate to each one of the tasks in order to guarantee some good solution).

Another direction is to consider the case in which the hint comes with some error η, as
in recent works in Machine Learning [36, 39, 37]. The ultimate goal would be to describe
Pareto-efficient solutions in which the competitive ratio of the search also degrades gently
as η increases. This is a challenging task, since one will have to strike a balance between
the robustness, the consistency, and the competitive ratio, both from the point of upper
and lower bounds. But there is a major obstacle as far as linear search is concerned. That
is, unlike other online problems, the competitive ratio of linear search is not necessarily
an increasing function of the error η. For example, consider the case in which there is a
prediction of the position of the target, and suppose that we have a “bad” search strategy,
which does not perform well if the error is small (i.e., turns right before discovering the
target). However, it is possible that with significant error, the target happens to be found
just as the searcher is about to turn and return to O, in one of the iterations. In this case,
the strategy is quite efficient. These are counterintuitive complications that need to be taken
into consideration in terms of defining efficiency in this setting.

In very recent work [7], we addressed the above questions in the context of a related
problem in AI, namely the problem of contract scheduling under the acceleration ratio. There
are interesting connections between searching on the line and contract scheduling [19, 2], and
the techniques we developed and the results we showed in [7] should be readily applicable in
searching on the line with noisy predictions.
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