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ABSTRACT
Audio source separation has seen a rapid progress due to the
advances in data-driven approaches. Motivated by the success
of the transformer architecture and the self-attention mecha-
nism in many fields, we investigate in this paper how to in-
clude these recent advances in an audio source separation al-
gorithm and in particular in the separator of a TasNet architec-
ture. Our main result leads us to think that LSTM layers are
required before the attention mechanism. Our other architec-
ture design experiments focus on finding an optimal number
of dense nodes within the point-wise neural networks of the
transformer block as well as the right weights initialization
in relationship with the multiphase gammatone filterbank. Fi-
nally, the non-causal version of our proposed algorithm shows
promising results on the MUSDB18 test set (SiSEC challenge
data).

Index Terms— Audio source separation, Self-attention
mechanism, Transformer, TasNet

1. INTRODUCTION

Data-driven audio source separation greatly benefited from
the rapid progress of deep learning techniques. While tra-
ditional approaches relied on various priors such as the har-
monics of the signal or a linear correlation within the audio
signal, recent techniques are data-driven and centered around
deep neural networks [1, 2]. Within the field of audio source
separation, we can distinguish two families of approaches,
namely the frequency and time domain approaches. Early ap-
proaches to audio source separation were frequency domain
approaches and the first data-driven approaches were also fre-
quency based [1].

More specifically, it consists in using a time-frequency
representation, e.g. Short-Time Fourier Transform (STFT),
of the time domain audio signal as input and predicting the
time-frequency representation of the unknown sources before
converting back into the time domain. A frequency mask is
usually predicted for each source and transcribes the fact that
a particular frequency bin corresponds to a given source. Var-
ious techniques including ensemble learning as well as deep
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clustering among others used a time-frequency representation
as input, yielding various levels of success [3–8].

On the other hand, time domain approaches quickly be-
came prevalent as they are able to address both the magnitude
and the phase of the signal in an end-to-end fashion [9]. These
architectures typically incorporate three subparts: an encoder,
a separator, and a decoder. Similarly to the time-frequency
approaches, time domain approaches can also be mask-based,
and it is the separator that learns to predict relevant masks
for each source. Conversely to frequency approaches where
the representation is fixed, the representation is learned by
the encoder, which converts the raw audio data into a weight
matrix. Finally, the decoder applies the masks produced by
the separator on the weight matrix and reconstructs each time
domain signal for each predicted source. One of the founda-
tional time-domain approaches, TasNet, was first applied to
address real time speech separation [10], and led to a great
state-of-the-art improvement. A noncausal version of TasNet
using bidirectional long short-term memory (LSTM) layers
in the separator block was also proposed, yielding a better
performance than the causal counterpart on the WSJ0-2mix
dataset [11]. Other recent approaches include models using
convolutional layers, recurrent layers, and U-Net based archi-
tectures [12–15].

An important subpart of the time domain approaches is
the separator block. Since it is the one with the most learnable
parameters, it is also most responsible for the performance
of the separation. While the separator of the original TasNet
is based on LSTMs, there has been an urge to use the mul-
tihead self-attention mechanism instead of the LSTM layers
since the introduction of the transformer architecure [16].
This mechanism has proven to be effective for sequence
transduction thanks to its parallelizable scaled dot product.
Self-attention was successfully applied in sequence transduc-
tion for speech recognition [17], language modeling [18],
or recommender systems [19]. Concerning the usage of the
self-attention mechanism for audio separation, a few pioneer
approaches have been proposed [20, 21]. Through depth-
wise separable CNNs and multi-head self-attention, Sam-
sNet [20] obtains results at the level of the state of the art on
the MUSDB18 dataset, which is quite promising.

In this paper, we first investigate the incorporation of
the self-attention mechanism inside the separator block of



TasNet. More specifically, we demonstrate which kind of
configuration works well for this particular task, as well as
show the impact of the weight initialization with respect to a
deterministic encoder. In addition, we propose a noncausal
transformer-based separator which equals the original TasNet
on MUSDB18 test set with additional benefits.

2. PROPOSED LTL ARCHITECTURE

In this section, we present the proposed LTL architecture
(LSTM-Transformer-LSTM) applied to TasNet’s separator
and formalize the self-attention mechanism incorporated in
it.

2.1. Baseline system

The backbone of our model is TasNet [10]. Starting from
the input signal, a segment is selected to be processed. This
segment then passes through two 1D convolutional layers
in parallel with different activation functions. One of the
layer uses the rectified linear unit (ReLu) while the other
one uses the sigmoid function. An element-wise multipli-
cation (Hadamard product) is then performed between the
outputs of each layer. This produces the mixture weight ma-
trix w ∈ RL×C , where C is the number of filters used in the
1D convolutional layer and L is the length of the kernel. The
decoder block uses a dense layer on the result of the product
from the output of the separator and w. This acts as a learned
deconvolutional operation, mimicking an inverse operation of
the 1D convolutional layers [10]. The last step is to concate-
nate the recovered signals across all segments to obtain each
estimated source si and compute the loss function.

2.2. Multi-headed self-attention

Self-attention was introduced by Vaswani et al. [16] to cap-
ture long-range dependencies in sequences through an atten-
tion mechanism. Other key aspects of this mechanism are a
reduction of the complexity per layer, as well as an increase in
the amount of parallel processing during the training. Given a
sequence of inputs I ∈ RS×E where S is the sequence length
and E is the embedding dimension of each input feature, we
first compute the query Q, key K, and value V matrices are
computed as follows:

Q = IWq, K = IWk, and V = IWv, (1)

where Wq , Wk, and Wv are learnable weights through a linear
function. The attention output, also called the head output, is
then computed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (2)

where dk is the dimension of the key vector K ∈ R1×dk . The
operation inside the softmax function is called a scaled dot

product, and is implemented to refrain the dot products from
having big values [16]. In addition to this attention mecha-
nism, multiple heads using multiple projections Wq , Wk, and
Wv were used to allow the network to attend various areas of
the sequence. Given a number of heads H , multi-head atten-
tion is computed as:

MultiHead(Q,K, V ) = Concat(OutHead1, ..., OutHeadH)WO (3)

where OutHeadi is computed through equation 2. The orig-
inal transformer mentioned is based on an encoder-decoder
structure. The encoder part of the transformer contains 2
sub-layers: the multi-head self-attention and the position-
wise feed-forward neural network. While the multi-head
self-attention part is explained above, the feed-forward neu-
ral network uses the output of the multi-head attention as
an input. Given the output of the multi-head attention
MultiHeadOut, we feed this output to a 2 layer fully-
connected network with a ReLu activation function after the
first layer:

FFN(MultiHeadOut) = ReLu(MultiHeadOutW1 + b1)W2 + b2 (4)

Residual connections are also included around each of the 2
sub-layers followed by a layer normalization. In this work,
we are only interested in the encoder part of the transformer
since we focus into the latent space of TasNet’s separator.

2.3. Proposed LTL architecture

As mentioned previously, we investigate the TasNet separa-
tor by incorporating both LSTM layers and encoders of the
transformer architecture. More specifically, we try zero or
more LSTM layers before and/or after the encoder block of
the transformer. This transformer block is made of at least
one transformer encoder. Fig. 1 shows the LTL model. For
the sake of simplicity, we refer in the legend and later a trans-
former encoder as simply a transformer layer.

Fig. 1. Schema of the LTL architecture.

3. EXPERIMENTAL PROCEDURES

We present in this section a quick description of the music
dataset as well as the modalities of the experiments. More
specifically, we define the data used, show some hyperparam-
eters used, and formalize the objective function.



3.1. Dataset and training procedure

Each input data is a mixture track mi ∈ Rl where l is the
length in samples of the track, while an output is the set of
source tracks S = {si}Ci=1, where C is the number of tar-
get source signals. The entire dataset is a collection of songs
divided into training and validation files (80%/20%) also de-
scribed in [22]. Unless otherwise stated, 10% of all the dataset
is used. This choice has been made to shorten experimental
duration. Each data sample is made of 3 files: the input mix-
ture song, the target vocal ground truth, and the target accom-
paniment ground truth. We use audio excerpts of 20 seconds
as recommended in [22]. The sampling rate is 44.1 kHz.

Similarly to TasNet, we use the scale-invariant source-to-
noise ratio (SI-SNR) as training objective because this loss
function proved to be effective for this particular use case [12,
15, 22–24].

Adam algorithm [25] was used to optimize the SI-SNR,
with a learning rate of 1e−4. Gradient clipping by norm was
also used, with a threshold of 5. In addition, a basic learning
rate scheduler was implemented with a halving of the learning
rate if the validation loss does not improve after three con-
secutive epochs. An early stopping mechanism is also used
after ten consecutive epochs. This is why the curves plotted
in Fig. 2 and 3 are of different length. In order to make a fair
comparison between the experiments, some hyperparameters
were kept constant across all the trainings. These include the
hidden size of the LSTMs (500), the number of filters in the
1D convolution of the encoder block (500), the length of these
filters (220), as well as the number of the sources (2).

Concerning the used hardware, most experiments used
a Nvidia GTX 1080 GPU, while all experiments involving
more than 10% of the dataset used a Nvidia Titan X GPU.

3.2. MP-GTF

Another recent work in [26] proposed a deterministic encoder
block instead of a learned one, which is based on the audi-
tory system and which showed to yield an improvement of
the scale-invariant source-to-noise ratio (SI-SNR) of 0.7 dB.
We decided to incorporate such a deterministic encoder in-
troduced in [26] in our experiment. This approach has been
adapted to audio source separation, allowing real-time pro-
cessing and enforcing the non-negative constraint.

3.3. Weight initialization

The initialization of the weights in the transformer block at
the beginning of the training revealed to be a crucial hyperpa-
rameter, because sometimes allowing the gradient descent to
converge faster. Here we present the 4 distribution functions
used to initialize the weights. The first two functions are the
normal and uniform distributions Kn and Ku of the Kaiming
function defined in [27]. We also use the normal and uniform
versions of the Glorot initialization [28] Xn and Xu.

4. RESULTS AND DISCUSSION

In this section, the findings of a set of experiments are de-
picted. For the sake of simplicity, we write X trans Y to
denote X LSTM layers before the encoder part of the trans-
former, and Y LSTM layers after it.

4.1. The right LTL configuration

A first investigation was based on the right number of LSTM
layers before and after the transformer block. Several config-
urations were tested (i.e., LSTMs before only, after only, both
before and after, no LSTMs), and our research showed that
using LSTM layers only before the transformer block yielded
the best results. More specifically, the best separator archi-
tectures were 1 trans 0 and 2 trans 0, performing similarly
to our TasNet baseline model with less parameters, or outper-
foming the baseline by 0.25 dB SI-SNR, respectively.

4.2. Low impact of the fully connected layer

The number of fully connected nodes within the position-wise
feed-forward layer of the transformer layer was also subject
to analysis. Based on the previous results, both the 1 trans 0
and 2 trans 0 architectures were examined. The number of
fully connected nodes tested were 128, 256, 512, 1024, and
2048 for both of these configurations. From a general stand-
ing, decreasing the number of fully connected nodes is bene-
ficial to the models because it allows simpler networks with-
out being detrimental in terms of performance. Moreover,
256 dense nodes is the optimal number of dense nodes. In-
deed, using 256 nodes allowed the 1 trans 0 model to per-
form comparably to the baseline model using 11% less pa-
rameters, and the 2 trans 0 model to slightly outperform the
baseline model. Fig. 2 shows the impact of these experiments
with respect to the average SI-SNR of both the loss of the vo-
cals and the accompaniment. An interesting behavior is the
suboptimal loss then a sudden drop when using 128 or 2048
dense nodes, while the other numbers of dense nodes make
the network easily escape local minima. Therefore, it seems
that the network architectures need neither too few nor too
many dense nodes.

4.3. Impact of the transformer weight initialization

As mentioned in section 3.3, the initial weight distribution
plays a critical role in the trainings performed. Therefore,
these experiments used different function distributions to ini-
tialize the weights of the transformer. Additionally, we also
use in some of the experiments the deterministic encoder pre-
sented in section 3.2 (i.e. MP-GTF). The results are shown in
Fig. 3.

Concerning the trainings involving the 1 trans 0 model,
if we analyze the results by pairs of experiments where each
pair is made of an experiment using a specific distribution
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Fig. 2. The impact of the number of fully connected nodes in
the transformer part of the 2 trans 0 architecture.
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Fig. 3. The impact of MP-GTF and weight initialization on
the 1 trans 0 architecture.

and the other experiment is made of the same distribution
jointly used with MP-GTF, we can observe an interesting pat-
tern. The experiment “Xu + MP -GTF ” gives worse results
than using Xu only. Similarly, the experiment “Ku + MP -
GTF ” gives worse results than using Ku only. In contrast to
this observation, using “Kn + MP -GTF ” increases the per-
formance by approximately 1.5 dB compared to the experi-
ment using the distribution Kn only. In addition, the experi-
ment “Xn + MP -GTF ” leads to an improvement of around
1.25 dB compared to using Xn only, even if the training
seemed stuck in a local minimum during the first 70 epochs.

To sum up the results observed for 1 trans 0, we can see
there is a good synergy between the normal distribution on the
transformer and the MP-GTF on the encoder of TasNet when
used on the 1 trans 0 architecture since the filterbank con-
sistently improved the performance of the experiments where
the normal distribution is used. It would be hard to come up
with an interpretation of such result mainly because of the po-
sition of the LSTM layer between the encoder (potentially set
to MP-GTF) and the transformer block. Furthermore, the op-
posite effect can be seen when using a uniform distribution.
Similar experiments for the 2 trans 0 architecture leads us
to choose the Xavier uniform distribution without using the
MP-GTF for later experiments.

4.4. Bidirectionnal version scores on MUSDB18 test set

Motivated by the superior results of the bidirectional version
of TasNet, a LTL architecture using bidirectional LSTMs
was also investigated. In particular, a 3 trans 0 model using
2048 dense nodes within the transformer yielded comparable
separation performances to our TasNet baseline model (here
with bidirectional LSTMs) when using 10% or 100% of the
dataset, hence showing good scaling capability. Despite the
2048 dense nodes being unfavorable for the previous causal
models, using this number of dense nodes for the bidirectional
LTL leads to stable and efficient learning of the separation
task. We assume that using three bidirectional LSTM layers
induces a transformer block with more paramaters in order to
learn the appropriate masks. Moreover, a Xavier uniform was
used to instantiate the weights of the transformer block, and
no MP-GTF was used.

In terms of SDR on the MUSDB18 test set, the proposed
3 trans 0 achieved an encouraging 7.30 SDR (dB) on the
vocals source and 13.46 SDR (dB) on the accompaniment
source which is also closed but slightly inferior to the results
obtained by our TasNet baseline [22]. However, this proposed
3 trans 0 architecture brings additional benefits compared
to our TasNet baseline: firstly, a faster convergence (58% of
the time necessary to TasNet to end its training, i.e., 29 days
instead of 50) with around 3 times less epochs but with a
double epoch duration and secondly a decrease by 53 % of
the inference time compared to TasNet, but the number of
learnable parameters increased (+43%, i.e., 33M ). One can
argue that the faster convergence is due to a higher number of
parameters but similar behaviors are observed during experi-
ments of Section 4.2 without the bias of different number of
parameters.

5. CONCLUSION

This paper explores the use of the self-attention mechanism
for the task of music source separation within the state of the
art framework of TasNet. In particular, we described a se-
ries of experiments that lead us to our proposed new archi-
tecture scheme for the separator module of the TasNet frame-
work/architecture: 1 to 3 LSTM layers followed by layers
composed of the encoder part of a transformer. Experiments
on the combination of a non-learned TasNet encoder (using
Gammatone) and different transformer weight initialization
are also described with intriguing behaviours. Finally, a bidi-
rectional version of the proposed model is evaluated on the
MUSDB18 test set (SiSEC challenge data) and reaches com-
parable separation performances as the state of the art while
significantly reducing training, convergence and in-use time.
Future experiments will focus on augmenting the length of the
audio excerpts to conclude on the capacity of our architecture
to better capture long dependencies.
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