
HAL Id: hal-02986228
https://hal.science/hal-02986228v3

Submitted on 21 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison-free polyregular functions
Lê Thành Dũng Nguyễn, Camille Noûs, Cécilia Pradic

To cite this version:
Lê Thành Dũng Nguyễn, Camille Noûs, Cécilia Pradic. Comparison-free polyregular functions. In-
ternational Colloquium on Automata, Languages and Programming 2021, Jul 2021, Glasgow, United
Kingdom. �hal-02986228v3�

https://hal.science/hal-02986228v3
https://hal.archives-ouvertes.fr

Comparison-free Polyregular Functions
Lê Thành Dũng (Tito) Nguyễn #Ñ

Laboratoire d’informatique de Paris Nord, Villetaneuse, France

Camille Noûs Ñ

Laboratoire Cogitamus

Cécilia Pradic
Department of Computer Science, University of Oxford, United Kingdom

Abstract
This paper introduces a new automata-theoretic class of string-to-string functions with polynomial
growth. Several equivalent definitions are provided: a machine model which is a restricted variant of
pebble transducers, and a few inductive definitions that close the class of regular functions under
certain operations. Our motivation for studying this class comes from another characterization,
which we merely mention here but prove elsewhere, based on a λ-calculus with a linear type system.

As their name suggests, these comparison-free polyregular functions form a subclass of polyregular
functions; we prove that the inclusion is strict. We also show that they are incomparable with
HDT0L transductions, closed under usual function composition – but not under a certain “map”
combinator – and satisfy a comparison-free version of the pebble minimization theorem.

On the broader topic of polynomial growth transductions, we also consider the recently introduced
layered streaming string transducers (SSTs), or equivalently k-marble transducers. We prove that a
function can be obtained by composing such transducers together if and only if it is polyregular,
and that k-layered SSTs (or k-marble transducers) are closed under “map” and equivalent to a
corresponding notion of (k + 1)-layered HDT0L systems.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases pebble transducers, HDT0L systems, polyregular functions

Related Version In ICALP’21 proceedings: https://doi.org/10.4230/LIPIcs.ICALP.2021.139

Acknowledgements Thanks to Mikołaj Bojańczyk and Sandra Kiefer for inspiring discussions, to
Gaëtan Douéneau-Tabot and Amina Doumane for explaining some features of their work to us, to
Charles Paperman for his help with bibliography and to the reviewers for their feedback.

Addendum (2023)

Our proof of the comparison-free pebble minimization theorem (Theorem 7.1) is heavily
based on a 2020 paper [28] that claimed to show pebble minimization for general polyregular
functions. While we could reuse many sound and useful ideas from that paper, that
central claim turned out to be wrong, as shown in [6, 27]. However, we are confident that
Theorem 7.1 is still valid; it has even been reproved and generalized to a larger subclass of
pebble transducers using different techniques [14] (subsequent papers such as [14, 27] refer
to the class of functions introduced here by the shorter name “polyblind”). Some typos have
also been fixed after publication, thanks to the reviewers of the first author’s PhD thesis.

1 Introduction

The theory of transducers (as described in the surveys [23, 32]) has traditionally dealt with
devices that take as input strings of length n and output strings of length O(n). However,
several recent works have investigated function classes going beyond linear growth. We
review three classes in this landscape below.

mailto:nltd@nguyentito.eu
https://nguyentito.eu/
https://orcid.org/0000-0002-6900-5577
https://www.cogitamus.fr/camilleen.html
https://orcid.org/0000-0002-1600-8846
https://doi.org/10.4230/LIPIcs.ICALP.2021.139

2 Comparison-free Polyregular Functions

Polyregular functions (§2.3) are thus named because they have (at most) polynomial
growth and include regular functions (§2.2) (the most expressive of the traditional
string-to-string transduction classes). They were defined in 2018 [4] by four equivalent
computational models, one of which – the pebble transducers – is the specialization to
strings of a tree transducer model that existed previously in the literature [31] (this
specialization had been investigated earlier in [19, 16]). A subsequent work [9] gave a
logical characterization based on Monadic Second-Order logic (MSO). They enjoy two
nice properties:

preservation of regular languages (by preimage): if f : Γ∗ → Σ∗ is polyregular and
L ⊆ Σ∗ is regular, then f−1(L) ⊆ Γ∗ is regular;
closure under function composition: if f : Γ∗ → ∆∗ and g : ∆∗ → Σ∗ are both
polyregular, then so is g ◦ f : Γ∗ → Σ∗.

HDT0L transductions (§2.1) form another superclass of regular functions, whose output
size may be at most exponential in the input size. They are older than polyregular
functions, and we shall discuss their history in Section 2.1; suffice to say for now, they also
admit various equivalent characterizations scattered in several papers [22, 24, 15]. These
functions preserve regular languages by preimage, but are not closed under composition
(the growth rate of a composition of HDT0L transductions may be a tower of exponentials).
Very recently, the polynomially bounded HDT0L transductions (§2.3) have been charac-
terized using two transducer models [15]. One of them, the k-marble transducers (where
k ∈ N depends on the function to be computed), is obtained by putting a syntactic
constraint on the model of (unbounded) marble transducers [15] which computes HDT0L
transductions. But it can also be seen as a restricted variant of pebble transducers; it
follows (although this is not explicitly stated in [15]) that a HDT0L transduction has
polynomial growth if and only if it is polyregular. Moreover, as claimed in [15, Section 6],
the functions computed by k-marble transducers are not closed under composition either,
and thus form a strict subclass of polyregular functions.

A new subclass of polyregular functions In this paper, we start by proving a few results on
the above classes (Section 3). For instance, we supply a proof for the aforementioned claim
of [15, Section 6], and show that the polyregular functions are exactly those computable by
compositions of k-marble transducers. Those complements are not particularly difficult nor
surprising and are included mostly for the sake of giving a complete picture.

But our main contribution is the introduction of a new class, giving its title to the paper;
as we show, it admits three equivalent definitions:

two ways to inductively generate the class (Sections 4 and 6 respectively):
by closing regular functions under a certain “composition by substitution” operation;
by combining regular functions and a certain kind of squaring functions (less powerful
than the squaring plus underlining functions used to characterize general poyregular
functions) with usual function composition;

a restriction on pebble transducers (Section 5) – we disallow comparing the positions
of a transducer’s multiple reading heads, hence the name comparison-free polyregular
functions (henceforth abbreviated as cfp).

Properties By the third definition above, comparison-free polyregular functions are indeed
polyregular, while the second one implies that our new class contains the regular functions
and is closed under composition. (In fact, in the proof that our first definition is equivalent
to the second one, most of the work goes into showing that the former enjoys closure under

L. T. D. Nguyễn, C. Noûs and C. Pradic 3

comparison-free

polyregular

polyregular

⊂layered HDT0L

(layered HDT0L)*

HDT0L

=

⊂

⊂

⊃⊂
=

comparison-free

pebble

= (regular + cfsq)*

Figure 1 Summary of the known relationships between superlinear transduction classes, taking
our results into account. Inclusions ⊂ are strict, and ⊃⊂ means that there is no inclusion either way.
Finally C∗ denotes the composition closure of the class C.

composition.) We rule out inclusions involving the other classes that we mentioned by proving
some separation results (Section 8): there exist

comparison-free polyregular functions that are not HDT0L (we take one example from [15]),
and polynomially bounded HDT0L transductions which are not comparison-free:

one of our examples follows from a precise characterization of cfp functions over unary
input alphabets (extending a known result for regular functions with unary inputs [11]),
which we give in Section 9;
another example shows that unlike (poly)regular functions, cfp functions are not closed
under a certain counterpart of the “map” operation in functional programming.

We summarize the inclusions and separations between classes that we get in Figure 1.
Finally, we show in Section 7 that the number of pebbles required to compute a function

using a comparison-free transducer is related to its growth rate. The analogous result for
pebble transducers was proved recently, with a whole paper dedicated to it [28]; we adapt
its arguments to our setting, resulting in our longest and most technical proof. There is a
similar property for k-marble transducers [15], but it is proved using very different tools.

Motivations Although this is the first proper paper to introduce comparison-free pebble
transducers, we were told that they had already been considered by several colleagues (Mikołaj
Bojańczyk, personal communication). But in fact, the starting point in our investigation
was a characterization of regular functions using a linear λ-calculus (in the sense of linear
logic) that we had previously obtained [34]; this was part of a research programme relating
automata and functional programming that we initiated in [35]. As we reported in a previous
version of the present paper, by tweaking a parameter in this characterization, one gets
the cfp functions instead; we initially defined the latter using composition by substitution,
and only later realized the connection with pebble transducers. One interesting feature of
the λ-calculus characterization is that it is trivially closed under composition, and this led
us to take inspiration from the category-theoretic machinery that we used in [34] for our
standalone composition proof in this paper.

Added in 2023: an “official” reference for this λ-calculus characterization can now be
found in the first author’s PhD thesis [33, Theorem 1.2.3].

2 Preliminaries

Notations The set of natural numbers is N = {0, 1, . . . }. We write |w| for the length of a
string w ∈ Σ∗; for Π ⊆ Σ, we write |s|Π for the number of occurrences of letters from Π in w;
and for c ∈ Σ, we abbreviate |w|{c} as |w|c. The i-th letter of w ∈ Σ∗ is denoted by either

4 Comparison-free Polyregular Functions

wi or w[i] (for i ∈ {1, . . . , |w|}). Given monoids M and N , Hom(M,N) is the set of monoid
morphisms. We write ε for the empty word and Σ = {a | a ∈ Σ} for a disjoint copy of the
alphabet Σ made of “underlined” letters.

2.1 HDT0L transductions and streaming string transducers
L-systems were originally introduced by Lindenmayer [29] in the 1960s as a way to generate
formal languages, with motivations from biology. While this language-centric view is still
predominant, the idea of considering variants of L-systems as specifications for string-to-string
functions – whose range are the corresponding languages – seems to be old. For instance, in a
paper from 1980 [20], one can find (multi-valued) string functions defined by ET0L systems.

More recently, Ferté, Marin and Sénizergues [22] provided alternative characterizations1

(by catenative recurrent equations and higher-order pushdown transducers of level 2) of
the string-to-string functions that HDT0L systems can express – what we call here HDT0L
transductions. Later work by Filiot and Reynier [24] and then by Douéneau-Tabot, Filiot
and Gastin [15] – that does not build on [40, 22] – proved the equivalence with, respectively,
copyful SSTs (Definition 2.3) and unbounded marble transducers (not presented here).

▶ Definition 2.1 (following [24]). A HDT0L system consists of:
an input alphabet Γ, an output alphabet Σ, and a working alphabet ∆ (all finite);
an initial word d ∈ ∆∗;
for each c ∈ Γ, a monoid morphism hc ∈ Hom(∆∗,∆∗);
a final morphism h′ ∈ Hom(∆∗,Σ∗).

It defines the transduction taking w = w1 . . . wn ∈ Γ∗ to h′ ◦ hw1 ◦ . . . ◦ hwn(d) ∈ Σ∗.

(The definition of HDT0L systems given in [40, 22] makes slightly different choices of
presentation2.) To define the equivalent model of copyful streaming string transducers, we
must first introduce the notion of register assignment.

▶ Definition 2.2. Fix a finite alphabet Σ. Let R and S be two finite sets disjoint from Σ; we
shall consider their elements to be “register variables”.

For any word ω ∈ (Σ ∪R)∗, we write ω† : (Σ∗)R → Σ∗ for the map that sends (ur)r∈R

to ω in which every occurrence of a register variable r ∈ R is replaced by ur – formally, we
apply to ω the morphism (Σ ∪R)∗ → Σ∗ that maps c ∈ Σ to itself and r ∈ R to ur.

A register assignment3 α from R to S (over Σ) is a map α : S → (Σ ∪R)∗. It induces
the action α† : u⃗ ∈ (Σ∗)R 7→ (α(s)†(u⃗))s∈S ∈ (Σ∗)S (which indeed goes “from R to S”).

▶ Definition 2.3 ([24]). A (deterministic copyful) streaming string transducer (SST) with
input alphabet Γ and output alphabet Σ is a tuple T = (Q, q0, R, δ, u⃗I , F) where

Q is a finite set of states and q0 ∈ Q is the initial state;
R is a finite set of register variables, that we require to be disjoint from Σ;
δ : Q× Γ → Q× (R → (Σ ∪R)∗) is the transition function – we abbreviate δst = π1 ◦ δ
and δreg = π2 ◦ δ, where πi is the projection from X1 ×X2 to its i-th component Xi;

1 Those characterizations had previously been announced in an invited paper by Sénizergues [40]. Some
other results announced in [40] are proved in [10].

2 The family (hc)c∈Γ is presented as a morphism H : Γ∗ → Hom(∆∗, ∆∗) (whose codomain is indeed a
monoid for function composition). And an initial letter is used instead of an initial word; this is of no
consequence regarding the functions that can be expressed (proof sketch: consider ∆′ = ∆ ∪ {x} with a
new letter x /∈ ∆, take x as the initial letter and let hc(x) = hc(w), h′(x) = h′(w)).

3 Some papers e.g. [12, 15] call register assignments substitutions. We avoid this name since it differs from
its meaning in the context of our “composition by substitution” operation.

L. T. D. Nguyễn, C. Noûs and C. Pradic 5

u⃗I ∈ (Σ∗)R describes the initial register values;
F : Q → (Σ ∪R)∗ describes how to recombine the final values of the registers, depending
on the final state, to produce the output.

The function Γ∗ → Σ∗ computed by T is

w1 . . . wn 7→ F (qn)† ◦ δreg(qn−1, wn)† ◦ . . . ◦ δreg(q0, w1)†(u⃗I)

where the sequence of states (qi)0≤i≤n (sometimes called the run of the transducer over the
input word) is inductively defined, starting from the fixed initial state q0, by qi = δst(qi−1, wi).

▶ Example 2.4. Let Σ = Γ ∪ Γ. We consider a SST T with Q = {q}, R = {X,Y } and

u⃗I = (ε)r∈R F (q) = Y ∀c ∈ Γ, δ(q, c) = (q, (X 7→ cX, Y 7→ cXY))

If we write (v, w) for the family (ur)r∈R with uX = v and uY = w, then the action of the
register assignments may be described as (X 7→ cX, Y 7→ cXY)†(v, w) = (c · v, c · v · w).

Let 1, 2, 3, 4 ∈ Γ. After reading 1234 ∈ Γ∗, the values stored in the registers of T are

(X 7→ 4X, Y 7→ 4XY)† ◦ . . . ◦ (X 7→ 1X, Y 7→ 1XY)†(ε, ε) = (4321, 4321321211)

Since F (q) = Y , the function defined by T maps 1234 to 4321321211 ∈ (Γ ∪ Γ)∗ = Σ∗.

This gives us an example of HDT0L transduction Γ∗ → (Γ ∪ Γ)∗, since:

▶ Theorem 2.5 ([24]). A function Γ∗ → Σ∗ can be computed by a copyful SST if and only if
it can be specified by a HDT0L system.

▶ Remark 2.6. As observed in [24, Lemma 3.3], there is a natural translation from HDT0L
systems to SSTs whose range is composed precisely of the single-state SSTs whose transitions
and final output function do not access the letters of their output alphabet – those are
called simple SSTs in [15, §5.1]. This involves a kind of reversal: the initial register values
correspond to the final morphisms, while the final output function corresponds to the initial
word. Thus, Theorem 2.5 is essentially a state elimination result; a direct translation from
SSTs to single-state SSTs has also been given by Benedikt et al. [2, Proposition 8]. However,
it does not preserve the subclass of copyless SSTs (this would contradict Proposition 3.7).

The lookahead elimination theorem for macro tree transducers [21, Theorem 4.21] arguably
generalizes this to trees. Indeed, while those transducers are generally presented as a top-
down model, their formal definition can also be read as bottom-up register tree transducers
in the style of [8, §4], and top-down lookahead corresponds to bottom-up states.

2.2 Regular functions

▶ Definition 2.7 (Alur and Černý [1]). A register assignment α : S → (Σ ∪R)∗ from R to S
is said to be copyless when each r ∈ R occurs at most once among all the strings α(s) for
s ∈ S, i.e. it does not occur at least twice in some α(s), nor at least once in α(s) and at least
once in α(s′) for some s ̸= s′. (This restriction does not apply to the letters in Σ.)

A streaming string transducer is copyless if all the assignments in the image of its
transition function are copyless. In this paper, we take computability by copyless SSTs as the
definition of regular functions (but see Theorem 5.3 for another standard definition).

▶ Remark 2.8. Thanks to Theorem 2.5, every regular function is a HDT0L transduction.

6 Comparison-free Polyregular Functions

1 2

a|a, c|a b|a b|b, c|b

a|b

Figure 2 An example of sequential transducer.

▶ Remark 2.9. The SST of Example 2.4 is not copyless: in a transition α = δreg(q, c), the
register X appears twice, once in α(X) = cX and once in α(Y) = cXY ; in other words, its
value is duplicated by the action α†. In fact, it computes a function whose output size is
quadratic in the input size, while regular functions have linearly bounded output.

▶ Example 2.10 (Iterated reverse [4, p. 1]). The following single-state SST is copyless:

Γ = Σ with # ∈ Σ Q = {q} R = {X,Y } u⃗I = (ε)r∈R F (q) = XY

δ(q,#) = (q, (X 7→ XY#, Y 7→ ε)) ∀c ∈ Σ \ {#}, δ(q, c) = (q, (X 7→ X, Y 7→ cY))

For u1, . . . , un ∈ (Σ \ {#})∗, it maps u1# . . .#un to reverse(u1)# . . .#reverse(un).

The concrete SSTs (copyless or not) that we have seen for now are all single-state. As a
source of stateful copyless SSTs, one can consider the translations of sequential transducers.
These are usual finite automata, whose transitions additionally produce a word catenated to
the end of the would-be output function. For instance, the one in Figure 2 computes the
function {a, b, c}∗ → {a, b}∗ that replaces each c in its input by the closest non-c letter on
its left (or a if no such letter exists). We do not give a detailed definition (which can be
found e.g. in [37, Chapter V]) here, but for our purpose, it suffices to observe any sequential
transducer can be translated into a copyless SST with the same set of states and a single
register.

2.3 Polynomial growth transductions
Next, we recall one way to define Bojańczyk’s polyregular functions [4].

▶ Definition 2.11 ([4]). The class of polyregular functions is the smallest class of string-to-
string functions closed under composition containing:

the functions computed by sequential transducers (for instance, the one of Figure 2);
the iterated reverse function of Example 2.10, over any finite alphabet containing #;
the squaring with underlining functions squaringΓ : Γ∗ → (Γ ∪ Γ)∗, for any finite Γ,
illustrated by squaringΓ(1234) = 1234123412341234.

As mentioned in the introduction, the intersection between the above class and HDT0L
transductions has been recently characterized by Douéneau-Tabot et al. [15].

▶ Theorem 2.12 ([15]). Let f : Γ∗ → Σ∗. The following conditions are equivalent:
f is both a polyregular function and a HDT0L transduction;
f is a HDT0L transduction and has at most polynomial growth: |f(w)| = |w|O(1);
there exists k ∈ N such that f is computed by some k-layered SST, defined below.

(Another equivalent model, the k-marble transducers, was mentioned in the introduction,
but we will not use it in the rest of the paper.) Those k-layered SST propose a compromise
between copyful and copyless SSTs: duplication is controlled, but not outright forbidden.

L. T. D. Nguyễn, C. Noûs and C. Pradic 7

▶ Definition 2.13 ([15]). A register assignment α : R → (Σ ∪R)∗ is k-layered (for k ∈ N)
with respect to a partition R = R0 ⊔ . . . ⊔Rk when for 0 ≤ i ≤ k,

for r ∈ Ri, we have α(r) ∈ (Σ ∪R0 ∪ . . . ∪Ri)∗;
each register variable in Ri appears at most once among all the α(r) for r ∈ Ri (however,
those from R0 ⊔ . . . ⊔Ri−1 may appear an arbitrary number of times).

A SST is k-layered if its registers can be partitioned in such a way that all assignments in
the transitions of the SST are k-layered w.r.t. that partition.

Beware: with this definition, the registers of a k-layered SST are actually divided into k + 1
layers, not k. In particular, a SST is copyless if and only if it is 0-layered. (We chose this
convention for backwards compatibility with [15]; see also Remark 5.4.)

For instance, the transducer of Example 2.4 is 1-layered with R0 = {X} and R1 = {Y }.
There also exist register assignments that cannot be made k-layered no matter the choice
of partition, such as X 7→ XX. Using such assignments, one can indeed build SSTs that
compute functions f such that e.g. |f(w)| = 2|w|.
▶ Remark 2.14. There is arguably an old precursor to this recent characterization of HDT0L
transductions with polynomial growth by a syntactic “layering” condition: Schützenberger’s
theorem on polynomially bounded Z-rational series, which dates back to the 1960s (see for
instance [3, Chapter 9, Section 2] – the preface of the same book describes this theorem as
“one of the most difficult results in the area”). Let us give a brief exposition.

A Z-rational series f : Σ∗ → Z is a function of the form f : w ∈ Σ∗ 7→ XT ·Φ(w) ·Y where
X,Y ∈ ZR and Φ is a morphism from Σ∗ to the multiplicative monoid of R-indexed square
matrices over Z, where R is a finite set. This data (X,Φ, Y) has a clear interpretation as a
“simple SST” (cf. Remark 2.6) with register set R, whose register values are integers rather
than strings. Schützenberger’s theorem says that any Z-rational series f with polynomial
growth (i.e. |f(w)| = |w|O(1) where | · | on the left is the absolute value) can be written as
f : w 7→ XT · Φ(w) · Y where

(i) the image of Φ has a block triangular structure;
(ii) the projection of this image on each diagonal block is a finite monoid.

The first item gives us a partition of the register into layers where each layer “depends”
only on the ones below them. The finiteness condition in the second item is equivalent to
having bounded coefficients, which means that the register assignments within each layer are
bounded-copy, while in a layered SST, they would be copyless instead – but bounded-copy
SSTs are known to be equivalent to copyless SSTs (see e.g. [12]). The theorem also states a
relationship between the number of blocks and the growth rate; compare this to Remark 7.2.

Via the canonical isomorphism {a}∗ ∼= N, HDT0L transductions with unary output
alphabet are the same thing as N-rational series. The counterpart of Schützenberger’s
theorem over N is thus a corollary of the results of [15] on layered SSTs.

2.4 Transition monoids for streaming string transducers
To wrap up the preliminaries, let us recall some algebraic tools for working with SSTs (this
technical section can be safely skipped on a first reading). Let us start by putting a monoid
structure on register assignments (Definition 2.2).

▶ Definition 2.15. Let MR,Σ = R → (Σ ∪ R)∗ for R ∩ Σ = ∅. We endow it with the
following composition operation, that makes it into a monoid:

α • β = α⊙ ◦ β where α⊙ ∈ Hom((Σ ∪R)∗, (Σ ∪R)∗), α⊙(x) =
{
α(x) for x ∈ R

x for x ∈ Σ

8 Comparison-free Polyregular Functions

The monoid MR,Σ thus defined is isomorphic to a submonoid of Hom((Σ ∪R)∗, (Σ ∪R)∗)
with function composition. It admits a submonoid of copyless assignments.

▶ Definition 2.16. We write Mcl
R,Σ for the set of all α ∈ MR,Σ such that each letter r ∈ R

occurs at most once among all the α(r′) for r′ ∈ R.

▶ Proposition 2.17. Mcl
R,Σ is a submonoid of MR,Σ. In other words, copylessness is

preserved by composition (and the identity assignment is copyless).

The following proposition ensures that this composition does what we expect. Recall from
Definition 2.2 that (−)† sends MR,Σ to (Σ∗)R → (Σ∗)R.

▶ Proposition 2.18. For all α, β ∈ MR,Σ, we have (α • β)† = β† ◦ α†.

To incorporate information concerning the states of an SST, we define below a special
case of the wreath product of transformation monoids.

▶ Definition 2.19. Let M be a monoid whose multiplication is denoted by m,m′ 7→ m ·m′.
We define M ≀ Q as the monoid whose set of elements is Q → Q × M and whose monoid
multiplication is, for µ, µ′ : Q → Q×M ,

(µ • µ′) : q 7→ (π1 ◦ µ′ ◦ π1 ◦ µ(q), (π2 ◦ µ(q)) · (π2 ◦ µ′ ◦ π1 ◦ µ(q)))

where π1 : Q×M → Q and π2 : Q×M → M are the projections.

For instance, if M is the trivial monoid with one element, Q ≀M is isomorphic to Q → Q

with reverse composition as the monoid multiplication: f • g = g ◦ f .

▶ Proposition 2.20. Let (Q, q0, R, δ, u⃗I , F) be an SST that computes f : Γ∗ → Σ∗ (using
the notations of Definition 2.3). For all c ∈ Γ, we have δ(−, c) ∈ MR,Σ ≀Q, and the SST is
copyless if and only if {δ(−, c) | c ∈ Γ} ⊆ Mcl

R,Σ ≀Q. Furthermore, for all w1 . . . wn ∈ Γ∗,

f(w1 . . . wn) = F (g(q0))†(α†(v⃗)) where (g, α) = δ(−, w1) • · · · • δ(−, wn)

Finally, it will sometimes be useful to consider monoids of assignments over an empty output
alphabet. This allows us to keep track of how the registers are shuffled around by transitions.

▶ Proposition 2.21. Let R and Σ be disjoint finite sets. There is a monoid morphism
MR,Σ → MR,∅, that sends the submonoid Mcl

R,Σ to Mcl
R,∅. For any Q, this extends to a

morphism MR,Σ ≀Q → MR,∅ ≀Q that sends Mcl
R,Σ ≀Q to Mcl

R,∅ ≀Q. We shall use the name
eraseΣ for both morphisms (R and Q being inferred from the context).

▶ Remark 2.22. Consider an SST with a transition function δ. Let φδ ∈ Hom(Γ∗, Mcl
R,∅≀Q) be

defined by φδ(c) = eraseΣ(δ(−, c)) for c ∈ Γ. The range φδ(Γ∗) is precisely the substitution
transition monoid (STM) defined in [12, Section 3].

▶ Proposition 2.23. For any finite R, the monoid Mcl
R,∅ is finite. As a consequence, the

substitution transition monoid of any copyless SST is finite.

Proof idea. For all α ∈ Mcl
R,∅ and r ∈ R, observe that |α(r)| ≤ |R|. ◀

3 Complements on HDT0L systems, SSTs and polyregular functions

Before embarking on the study of our new comparison-free polyregular functions, we state
some minor results that consolidate our understanding of pre-existing classes.

L. T. D. Nguyễn, C. Noûs and C. Pradic 9

Layered HDT0L systems Let us transpose the layering condition from SSTs to HDT0L
systems. The hierarchy of models that we get corresponds with an offset to layered SSTs.

▶ Definition 3.1. A HDT0L system (Γ,Σ,∆, d, (hc)c∈Γ, h
′) is k-layered if its working alphabet

can be partitioned as ∆ = ∆0 ⊔ · · · ⊔ ∆k such that, for all c ∈ Γ and i ∈ {0, . . . , k}:
for r ∈ ∆i, we have hc(r) ∈ (∆0 ⊔ · · · ⊔ ∆i)∗;
each letter in ∆i appears at most once among all the hc(r) for r ∈ ∆i (but those in
∆0 ⊔ · · · ⊔ ∆i−1 may appear an arbitrary number of times).

▶ Theorem 3.2. For k ∈ N, a function can be computed by a k-layered SST if and only if it
can be specified by a (k + 1)-layered HDT0L system.

In particular, regular functions correspond to 1-layered HDT0L systems.

The obvious translation from HDT0L systems to SSTs preserves 1-layeredness and
produces a single-state machine, so one may sacrifice copylessness to eliminate states for
SSTs.

▶ Corollary 3.3. Every regular function can be computed by a single-state 1-layered SST.

The converse to this corollary does not hold: the single-state 1-layered SST of Example 2.4
computes a function which is not regular (cf. Remark 2.9).

Polyregular functions vs layered SSTs By applying some results from [4], we can state a
variant of Definition 2.11 which is a bit more convenient for us.

▶ Proposition 3.4. Polyregular functions are the smallest class closed under composition
that contains the regular functions and the squaring with underlining functions squaringΓ.

This allows us to show that composing HDT0L transductions with at most polynomial
growth yields the polyregular functions. One direction of this equivalence is proved by
encoding squaringΓ as a composition of two SSTs, one of which is Example 2.4. More
precisely:

▶ Theorem 3.5. Let f : Γ∗ → Σ∗. The following are equivalent:
(i) f is polyregular;
(ii) f can be obtained as a composition of layered SSTs;
(iii) f can be obtained as a composition of single-state 1-layered SSTs.

But layered SSTs by themselves are strictly less expressive than polyregular functions, as
we shall see later in Theorem 8.1. Therefore, as promised in the introduction:

▶ Corollary 3.6 (claimed in [15, Section 6]). Layered SSTs are not closed under composition.

The importance of being stateful One interesting aspect of Theorem 3.2 is that 1-layered
HDT0L systems can be seen, through Remark 2.6, as a kind of one-way transducer model
for regular functions that does not use an explicit control state. This is in contrast with
copyless SSTs, whose expressivity critically depends on the states (unlike copyful SSTs).

▶ Proposition 3.7. The sequential (and therefore regular) function defined by the transducer
of Figure 2 (Section 2.2) cannot be computed by a single-state copyless SST.

In fact, the knowledgeable reader can verify that this counterexample belongs to the
first-order letter-to-letter sequential functions, one of the weakest classical transduction
classes.

10 Comparison-free Polyregular Functions

Closure under map The pattern of Example 2.10 (iterated reverse) can be generalized:

▶ Definition 3.8. Let f : Γ∗ → Σ∗ and suppose that # /∈ Γ ∪ Σ. We define the function
map(f) : w1# . . .#wn ∈ (Γ ∪ {#})∗ 7→ f(w1)# . . .#f(wn) ∈ (Σ ∪ {#})∗.

▶ Proposition 3.9. If f is an HDT0L transduction, then so is map(f). For each k ≥ 1, the
functions that can be computed by k-layered HDT0L systems are also closed under map.

As an immediate corollary, closure under map holds for both regular and polyregular
functions, but this was already known. In fact, map(f, [x1, . . . , xn]) = [f(x1), . . . , f(xn)] is an
essential primitive in the regular list functions [7] and polynomial list functions [4, §4], two
list-processing programming languages that characterize regular and polyregular functions
respectively. We will come back to this point in Corollary 8.5 and the subsequent remark.

4 Composition by substitution

At last, we now introduce the class of comparison-free polyregular functions. The simplest
way to define them is to start from the regular functions.

▶ Definition 4.1. Let f : Γ∗ → I∗, and for each i ∈ I, let gi : Γ∗ → Σ∗. The composition by
substitution of f with the family (gi)i∈I is the function

CbS(f, (gi)i∈I) : w 7→ gi1(w) . . . gik
(w) where i1 . . . ik = f(w)

That is, we first apply f to the input, then every letter i in the result of f is substituted by
the image of the original input by gi. Thus, CbS(f, (gi)i∈I) is a function Γ∗ → Σ∗.

▶ Definition 4.2. The smallest class of string-to-string functions closed under CbS and
containing all regular functions is called the class of comparison-free polyregular functions.

▶ Example 4.3. The following variant of “squaring with underlining” (cf. Definition 2.11) is
comparison-free polyregular: cfsquaringΓ : 123 ∈ Γ∗ 7→ 112321233123 ∈ (Γ ∪ Γ)∗.

Indeed, it can be expressed as cfsquaringΓ = CbS(f, (gi)i∈I) where I = Γ ∪ {#}, the
function f : w1 . . . wn 7→ w1# . . . wn# is regular (more than that, a morphism between free
monoids) and g# = id, gc : w 7→ c for c ∈ Γ are also regular. Its growth rate is quadratic,
while regular functions have at most linear growth. Other examples that also require a single
composition by substitution are given in Theorem 8.1.

We can already justify the latter half of the name of our new class. Using the “polynomial
list functions” mentioned at the end of the previous section, we prove:

▶ Theorem 4.4. Polyregular functions are closed under composition by substitution.

▶ Corollary 4.5. Every comparison-free polyregular function is, indeed, polyregular.

Fundamentally, Definition 4.2 is inductive: it considers the functions generated from the
base case of regular functions by applying compositions by substitution. The variant below
with more restricted generators is sometimes convenient.

▶ Definition 4.6. A string-to-string function is said to be:
of rank at most 0 if it is regular;
of rank at most k+ 1 (for k ∈ N) if it can be written as CbS(f, (gi)i∈I) where f : Γ∗ → I∗

is regular and each gi : Γ∗ → Σ∗ is of rank at most k.

L. T. D. Nguyễn, C. Noûs and C. Pradic 11

▶ Proposition 4.7. A function f is comparison-free polyregular if and only if there exists
some k ∈ N such that f has rank at most k. In that case, we write rk(f) for the least such k
and call it the rank of f . If (gi)i∈I is a family of comparison-free polyregular functions,

rk(CbS(f, (gi)i∈I)) ≤ 1 + rk(f) + max
i∈I

rk(gi)

A straightforward consequence of this definition is that, just like regular functions, cfp
functions are closed under regular conditionals and concatenation.

▶ Proposition 4.8. Let f, g : Γ∗ → Σ∗ be comparison-free polyregular functions and L ⊆ Γ∗

be a regular language. The function that coincides with f on L and with g on Γ∗ \ L is cfp,
and so is w ∈ Γ∗ 7→ f(w) · g(w); both have rank at most max(rk(f), rk(g)).

5 Comparison-free pebble transducers

We now characterize our function class by a machine model that will explain our choice of
the adjective “comparison-free”, as well as the operational meaning of the notion of rank
we just defined. It is based on the pebble transducers first introduced for trees by Milo,
Suciu and Vianu [31] and later investigated in the special case of strings by Engelfriet and
Maneth [19, 16]. However, the definition using composition by substitution will remain our
tool of choice to prove further properties, so the next sections do not depend on this one.

▶ Definition 5.1. Let k ∈ N with k ≥ 1. Let Γ,Σ be finite alphabets and ▷, ◁ /∈ Γ.
A k-pebble stack on an input string w ∈ Γ∗ consists of a list of p positions in the string

▷w◁ (i.e. of p integers between 1 and |w| + 2) for some p ∈ {1, . . . , k}. We therefore write
Stackk = N0 ∪ N1 ∪ · · · ∪ Nk, keeping in mind that given an input w, we will be interested in
“legal” values bounded by |w| + 2.

A comparison-free k-pebble transducer (k-CFPT) consists of a finite set of states Q, an
initial state qI ∈ Q and a family of transition functions

Q× (Γ ∪ {▷, ◁})p → Q× (Np → Stackk) × Σ∗ for 1 ≤ p ≤ k

where the Np on the left is considered as a subset of Stackk. For a given state and given letters
(c1, . . . , cp) ∈ (Γ ∪ {▷, ◁})p, the allowed values for the stack update function Np → Stackk

returned by the transition function are:
(identity) (i1, . . . , ip) 7→ (i1, . . . , ip) ∈ Np

(move left, only allowed when cp ̸= ▷) (i1, . . . , ip) 7→ (i1, . . . , ip − 1) ∈ Np

(move right, only allowed when cp ̸= ◁) (i1, . . . , ip) 7→ (i1, . . . , ip + 1) ∈ Np

(push, only allowed when p ≤ k − 1) (i1, . . . , ip) 7→ (i1, . . . , ip, 1) ∈ Np+1

(pop, only allowed when p ≥ 1) (i1, . . . , ip) 7→ (i1, . . . , ip−1) ∈ Np−1

(Note that the codomains of all these functions are indeed subsets of Stackk.)

The run of a CFPT over an input string w ∈ Γ∗ starts in the initial configuration
comprising the initial state qI , the initial k-pebble stack (1) ∈ N1, and the empty string
as an initial output log. As long as the current stack is non-empty a new configuration is
computed by applying the transition function to q and to ((▷w◁)[i1], . . . , (▷w◁)[ip]) where
(i1, . . . , ip) is the current stack; the resulting stack update function is applied to (i1, . . . , ip)
to get the new stack, and the resulting output string in Σ∗ is appended to the right of the
current output log. If the CFPT ever terminates by producing an empty stack, the output
associated to w is the final value of the output log.

12 Comparison-free Polyregular Functions

This amounts to restricting in two ways4 the definition of pebble transducers from [4, §2]:
in a general pebble transducer, one can compare positions, i.e. given a stack (i1, . . . , ip),
the choice of transition can take into account whether5 ij ≤ ij′ (for any 1 ≤ j, j′ ≤ p);
in a “push”, new pebbles are initialized to the leftmost position (▷) for a CFPT, instead
of starting at the same position as the previous top of the stack (the latter would ensure
the equality of two positions at some point; it is therefore an implicit comparison that we
must relinquish to be truly “comparison-free”).

This limitation is similar to (but goes a bit further than) the “invisibility” of pebbles in a
transducer model introduced by Engelfriet et al. [18] (another difference, unrelated to position
comparisons, is that their transducers use an unbounded number of invisible pebbles).
▶ Remark 5.2. Our definition guarantees that “out-of-bounds errors” cannot happen during
the run of a comparison-free pebble transducer. The sequence of successive configurations is
therefore always well-defined. But it may be infinite, that is, it may happen that the final
state is never reached. Thus, a CFPT defines a partial function.

That said, the set of inputs for which a given pebble tree transducer does not terminate
is always a regular language [31, Theorem 4.7]. This applies a fortiori to CFPTs. Using
this, it is possible6 to extend any partial function f : Γ∗ ⇀ Σ∗ computed by a k-CFPT
into a total function f ′ : Γ∗ → Σ∗ computed by another k-CFPT for the same k ∈ N, such
that f ′(x) = f(x) for x in the domain of f and f ′(x) = ε otherwise. This allows us to only
consider CFPTs computing total functions in the remainder of the paper.

A special case of particular interest is k = 1: the transducer has a single reading head,
push and pop are always disallowed.

▶ Theorem 5.3 ([1]). Copyless SSTs and 1-CFPTs – which are more commonly called
two-way (deterministic) finite transducers (2DFTs) – are equally expressive.

Since we took copyless SSTs as our reference definition of regular functions, this means
that 2DFTs characterize regular functions. But putting it this way is historically backwards:
the equivalence between 2DFTs and MSO transductions came first [17] and made this class
deserving of the name “regular functions” before the introduction of copyless SSTs.
▶ Remark 5.4. There are two different numbering conventions for pebble transducers. In [4, 28],
2DFTs are 1-pebble transducers, which is consistent with our choice. However, several other
papers (e.g. [31, 19, 16, 18, 13]) consider that a 2DFT is a 0-pebble transducer (likewise,
in [15], 2DFTs are 0-marble transducers). This is because they think of a pebble automaton
not as a restricted multi-head automaton, but as an enriched 2DFA that can drop stationary
markers (called pebbles) on input positions, with a single moving head that is not a pebble.

Let us now show the equivalence with Definition 4.2. The reason for this is similar to the
reason why k-pebble transducers are equivalent to the k-nested transducers7 of [28], which

4 There is also an inessential difference: the definition given in [4] does not involve end markers and
handles the edge case of an empty input string separately. This has no influence on the expressiveness
of the transducer model. Our use of end markers follows [17, 28].

5 One would get the same computational power, with the same stack size, by only testing whether ij = ip

for j ≤ p − 1 as in [31] (this is also essentially what happens in the nested transducers of [28]).
6 Proof idea: do a first left-to-right pass to determine whether the input leads to non-termination of the

original CFPT; if so, terminate immediately with an empty output; otherwise, move the first pebble
back to the leftmost position and execute the original CFPT’s behavior. This can be implemented by
adding finitely many states, including those for a DFA recognizing non-terminating inputs.

7 Remark: nested transducers should yield a machine-independent definition of polyregular functions as
the closure of regular functions under a CbS-like operation that relies on origin semantics [32, §5].

L. T. D. Nguyễn, C. Noûs and C. Pradic 13

is deemed “trivial” and left to the reader in [28, Remark 6]. But in our case, one direction
(Theorem 5.6) involves an additional subtlety compared to in [28]; to take care of it, we
use the fact that the languages recognized by pebble automata are regular (this is also part
of [31, Theorem 4.7]) together with regular conditionals (Proposition 4.8).

▶ Proposition 5.5. If f is computed by a k-CFPT, and the gi are computed by l-CFPTs,
then CbS(f, (gi)i∈I) is computed by a (k + l)-CFPT.

▶ Theorem 5.6. If f : Γ∗ → Σ∗ is computed by a k-CFPT, for k ≥ 2, then there exist a finite
alphabet I, a regular function h : Γ∗ → I∗ and a family (gi)i∈I computed by (k − 1)-CFPTs
such that f = CbS(h, (gi)i∈I).

▶ Corollary 5.7. For all k ∈ N, the functions computed by (k + 1)-CFPTs are exactly the
comparison-free polyregular functions of rank at most k.

6 Composition of basic functions

Another possible definition of cfp functions consists in swapping out squaringΓ for some
other function in Proposition 3.4:

▶ Theorem 6.1. The class of comparison-free polyregular functions is the smallest class
closed under usual function composition and containing both all regular functions and the
functions cfsquaringΓ (cf. Example 4.3) for all finite alphabets Γ.

The hard part is to show that cfp functions are closed under composition. We exploit the
following combinatorial phenomenon, often applied to the study of copyless SSTs: a copyless
register assignment, i.e. an element of Mcl

R,∆ (cf. Section 2.4), can be specified by
a “shape” described by an element of the finite monoid Mcl

R,∅ (Proposition 2.23),
plus finitely many “labels” in Σ∗ (where Σ is the output alphabet) describing the constant
factors that will be concatenated with the old register contents to give the new ones.

▶ Proposition 6.2. There is a bijection

Mcl
R,∆

∼=

{(
α, ℓ⃗
) ∣∣∣∣∣ α ∈ Mcl

R,∅, ℓ⃗ ∈
∏
r∈R

(∆∗)|α(r)|+1

}

through which erase∆ : Mcl
R,∆ → Mcl

R,∅ can be seen as simply removing the “labels” ℓ⃗.

Proof idea. Let β ∈ Mcl
R,∆. For each r ∈ R, one can write β(r) = w0r

′
1w1 . . . r

′
nwn with

w0, . . . , wn ∈ ∆∗ and r′
1, . . . , r

′
n ∈ R such that r′

1 . . . r
′
n = erase∆(β)(r) ∈ R∗. ◀

This provides a clear way to represent a copyless register assignment inside the working
memory of an SST: store the shape in the state and the labels in registers. Another important
fact for us is that given two assignments β, β′ ∈ Mcl

R,∆ the labels of β • β′ can be obtained
as a copyless recombination of the labels of β and β′.

(There is a subtlety worth mentioning here: while the set of stateful transitions Mcl
R,∆ ≀Q

also admits a “shape + labels” representation, its monoid multiplication does not have
this copylessness property. This prevents a naive proof of the closure under composition
of copyless SSTs from working. Nevertheless, the composition of two regular functions is
always regular, and we rely on this fact to prove Theorem 6.1.)

The rest of the proof of Theorem 6.1 is relegated to the technical appendix.

14 Comparison-free Polyregular Functions

7 Rank vs asymptotic growth

Our next result is the comparison-free counterpart to recent work on polyregular functions
by Lhote [28], whose proof techniques (in particular the use of Ramsey’s theorem) we reuse.
Compare item (ii) below to the main theorem of [28] and item (iii) – which provides yet
another definition of cfp functions – to [28, Appendix A].

▶ Theorem 7.1. Let f : Γ∗ → Σ∗ and k ∈ N. The following are equivalent:
(i) f is comparison-free polyregular with rank at most k;
(ii) f is comparison-free polyregular and |f(w)| = O(|w|k+1);
(iii) there exists a regular function g : ({0, . . . , k} × Γ)∗ → Σ∗ such that f = g ◦ cfpow(k+1)

Γ ,
with the following inductive definition: cfpow(0)

Γ : w ∈ Γ∗ 7→ ε ∈ (∅ × Γ)∗ and

cfpow(n+1)
Γ : w 7→ (n,w1) · cfpow(n)

Γ (w) · . . . · (n,w|w|) · cfpow(n)
Γ (w)

To make (ii) =⇒ (i) more precise, if f is cfp with rk(f) ≥ 1, then it admits a sequence of
inputs w0, w1, . . . ∈ Γ∗ such that |wn| → +∞ and |f(wn)| = Ω(|wn|rk(f)+1).

Note that cfpow(2)
Γ and cfsquaringΓ are the same up to a bijection {0, 1} × Γ ∼= Γ ∪ Γ.

▶ Remark 7.2. The growth of an HDT0L transduction is also related, in a very similar way
to item (ii) above, to the number of layers required in any SST that computes it [15, §5].

Some proof elements Let us present a few definitions and lemmas to give an idea of the
ingredients that go into the proof. Those technical details take up the rest of this section.

Lhote’s paper [28] makes a heavy use of factorizations of strings that depend on a
morphism to a finite monoid. This is also the case for our proof, but we have found that a
slightly different definition of the kind of factorization that we want works better for us.

▶ Definition 7.3 (similar but not equivalent to [28, Definition 19]). An r-split of a string
s ∈ Γ∗ according to a morphism φ : Γ∗ → M is a tuple (u, v1, . . . , vr, w) ∈ (Γ∗)r+2 such that:

s = uv1 . . . vrw with vi non-empty for all i ∈ {1, . . . , r};
φ(u) = φ(uv1) = · · · = φ(uv1 . . . vr);
φ(w) = φ(vrw) = · · · = φ(v1 . . . vrw).

▶ Proposition 7.4 (immediate from the definition). (u, v1, . . . , vr, w) is an r-split if and only
if, for all i ∈ {1, . . . , r}, (uv1 . . . vi−1, vi, vi+1 . . . vrw) is a 1-split.

The difference with the (1, r)-factorizations of [28, Definition 19] is that we have replaced
the equality and idempotency requirements on φ(v1), . . . , φ(vn) by the “boundary conditions”
involving φ(u) and φ(w) (actually, (1, r + 2)-factorizations induce r-splits). This change
allows us to establish a subclaim used in the proof of Lemma 7.7 in an elementary way.

The point of r-splits is that given a split of an input string according to the morphism
that sends it to the corresponding transition in a SST, we have some control over what
happens to the output of the SST if we pump a middle factor in the split. Furthermore,
it suffices to consider a quotient of the transition monoid which is finite when the SST is
copyless (this is similar to Proposition 2.23). More precisely, we have the key lemma below,
which is used pervasively throughout our proof of Theorem 7.1:

▶ Lemma 7.5. Let f : Γ∗ → Σ∗ be a regular function. There exist a morphism to a finite
monoid νf : Γ∗ → N (f) and, for each c ∈ Σ, a set of producing triples P (f, c) ⊆ N (f)3

such that, for any 1-split according to νf composed of u, v, w ∈ Γ∗ – i.e. νf (uv) = νf (u) and
νf (vw) = νf (w) – we have:

L. T. D. Nguyễn, C. Noûs and C. Pradic 15

if (νf (u), νf (v), νf (w)) ∈ P (f, c), then |f(uvw)|c > |f(uw)|c;
otherwise (when the triple is not producing), |f(uvw)|c = |f(uw)|c.

Furthermore, in the producing case, we get as a consequence that ∀n ∈ N, |f(uvnw)|c ≥ n.

▶ Definition 7.6. We fix once and for all a choice of N (f), νf and P (f, c) for each c ∈ Σ
and regular f : Γ∗ → Σ∗. We say that a 1-split (u, v, w) is producing with respect to (f, c)
when (νf (u), νf (v), νf (w)) ∈ P (f, c). For Π ⊆ Σ, we also set P (f,Π) =

⋃
c∈Π P (f, c).

Something like Lemma 7.5 (but not exactly) appears in the proof of [28, Lemma 18]. We
first apply it to prove the following lemma, which is morally a counterpart to the “k = 1 case”
of the central Dichotomy Lemma from [28], with r-splits instead of (k, r)-factorizations.

▶ Lemma 7.7. Let f : Γ∗ → Σ∗ be regular and φ : Γ∗ → M be a morphism with M finite.
Suppose that π ◦ φ = νf for some other morphism π : M → N (f). Let r ≥ 1 and Π ⊆ Σ.

We define L(f,Π, φ, r) to be the set of strings that admit an r-split s = uv1 . . . vrw

according to φ such that all the triples (uv1 . . . vi−1, vi, vi+1 . . . vrw) are producing with
respect to (f,Π) – let us call this a producing r-split with respect to (f,Π, φ).

Then L(f,Π, φ, r) is a regular language, and sup{|f(s)|Π | s ∈ Γ∗ \ L(f,Π, φ, r)} < ∞.

Our proof of the above lemma uses the proposition below, analogous to [28, Claim 20].
Its statement is a bit stronger than necessary for this purpose, but it will be reused in the
proof of Theorem 8.3; as for its proof, this is where a standard Ramsey argument occurs.

▶ Proposition 7.8. Let Γ be an alphabet, M be a finite monoid, φ : Γ∗ → M be a morphism
and r ≥ 1. There exists N ∈ N such that any string s = uvw ∈ Γ∗ such that |v| ≥ N admits
an r-split s = u′v′

1 . . . v
′
rw

′ according to φ in which u is a prefix of u′ and w is a suffix of w′.

To leverage Lemma 7.7, we combine it with an elementary property of composition by
substitution that does not depend on the previous technical development. (Compare the
assumptions of the lemma below with the conclusion of Lemma 7.7.)

▶ Lemma 7.9. Let g : Γ∗ → I∗ be a regular function and, for each i ∈ I, let hi : Γ∗ → Σ∗ be
comparison-free polyregular of rank at most k. Suppose that sup

s∈Γ∗
|g(s)|J < ∞ where

J =
{

{i ∈ I | rk(hi) = k} when k ≥ 1
{i ∈ I | |hi(Γ∗)| = ∞} when k = 0

(Morally, regular functions with finite range play the role of “comparison-free polyregular
functions of rank −1”.) Then rk(CbS(g, (hi)i∈I)) ≤ k.

The above lemma can be compared to [28, Claim 22], but it also seems to be related
to the way the “nested transducer” Rk+1 is defined in the proof of the Dichotomy Lemma
in [28]: indeed, Rk+1 can call either a k-nested subroutine or a (k − 1)-nested one.

The remainder of the proof of Theorem 7.1 consists mainly of a rather technical induction
on the rank, which we present in the appendix.

8 Separation results

Let us now demonstrate that the class of cfp functions is incomparable with the class of
HDT0L transductions and is a strict subclass of polyregular functions.

▶ Theorem 8.1. There exist comparison-free polyregular functions which are not HDT0L:

16 Comparison-free Polyregular Functions

(i) the function an ∈ {a}∗ 7→ (anb)n+1 ∈ {a, b}∗ for a ̸= b;
(ii) the function w ∈ Σ∗ 7→ w|w| for |Σ| ≥ 2 (a simplification of Example 4.3);
(iii) (from [15, §6]) the cfp functions that map an#w ∈ Σ∗ to (w#)n for a,# ∈ Σ, a ̸= #.

▶ Remark 8.2. The first example in [15, §5] shows that an 7→ an×n is HDT0L (via the
equivalent model of marble transducers), hence the necessity of |Σ| ≥ 2 above. More
generally, Douéneau-Tabot has shown very recently that every polyregular function with
unary output alphabet is HDT0L [13]. So polyregular functions with unary output coincide
with polynomial growth N-rational series (cf. Remark 2.14), and the latter admit several
algebraic characterizations in the literature (see [36] and [3, Chapter 9, Exercise 1.2]).

▶ Theorem 8.3. Some HDT0L transductions are polyregular but not comparison-free:
(i) f : an ∈ {a}∗ 7→ ban−1b . . . baabab (with f(ε) = ε and f(a) = b);
(ii) map(an 7→ an×n) : an1# . . .#ank 7→ an1×n1# . . .#ank×nk (cf. Definition 3.8).

▶ Remark 8.4. The function an1# . . .#ank 7→ an1×n1+···+nk×nk obtained by erasing the #s
in the output of map(an 7→ an×n) is also not comparison-free. This result implies the second
item of Theorem 8.3 by composition with the erasing morphism; we do not prove it here, but
it appears in Douéneau-Tabot’s aforementioned paper [13]. Therefore, according to [13], not
every polyregular function with unary output is comparison-free.

To see why the first of the two functions in Theorem 8.3 is HDT0L, observe that it is
Example 2.4 for Γ = {a} (taking b = a). As for the second one, combine Proposition 3.9 and
the first observation in Remark 8.2.

The non-membership parts of Theorems 8.1 and 8.3 require more work. For the former,
we use pumping arguments on HDT0L systems. Item (ii) of Theorem 8.3 is handled by first
appealing to Theorem 7.1 to reduce to showing that map(an 7→ an×n) ̸= CbS(g, (hi)i∈I)
when g and all the hi are regular functions; a combination of pumping and of a combinatorial
argument then shows that inputs with |I| occurrences of # suffice to discriminate the two
sides of the inequality. This result also has the following consequence:

▶ Corollary 8.5. Comparison-free polyregular functions are not closed under map.

▶ Remark 8.6. Contrast with Proposition 3.9. The discussion that follows that proposition
lends some significance to the above corollary: the latter rules out the obvious conjectures
for a characterization of cfp functions in the style of regular/polynomial list functions.

As for item (i) of Theorem 8.3, it concerns a function whose domain consists of words
over a unary alphabet, i.e., up to isomorphism, a sequence. This motivates the study of such
sequences, which is the subject of the next section.

9 Comparison-free polyregular sequences

From now on, we identify N with the set of words {a}∗ and freely speak, for instance, of cfp
sequences N → Γ∗ instead of cfp functions {a}∗ → Γ∗. It turns out that cfp sequences admit
a characterization as finite combinations of what we call poly-pumping sequences.

▶ Definition 9.1. A poly-pumping sequence is a function of the form JeK : N → Σ∗ where
e is a polynomial word expression generated by e ::= w | e · e′ | e∗ where w ∈ Σ∗;
JwK(n) = w, Je · e′K(n) = JeK(n)Je′K(n) and Je∗K(n) = (JeK(n))n.

The star-height of a polynomial word expression is defined in the usual way.

L. T. D. Nguyễn, C. Noûs and C. Pradic 17

▶ Theorem 9.2. Let s : N → Σ∗ and k ∈ N. The sequence s is comparison-free polyregular
with rk(s) ≤ k if and only if there exists p > 0 such that, for any m < p, there is a polynomial
word expression e of star-height at most k + 1 such that ∀n ∈ N, s((n+ 1)p+m) = JeK(n).

In short, the cfp sequences are exactly the ultimately periodic combinations of poly-
pumping sequences. Our proof strategy is an induction on k.

The base case k = 0 says that regular sequences are ultimately periodic combinations of
pumping sequences n 7→ u0(v1)n . . . (vl)nul. An essentially equivalent result is stated with
a proof sketch using 2DFTs in [11, p. 90]; we propose an alternative proof using copyless
SSTs. (Non-deterministic two-way transducers (2NFTs) taking unary inputs have also been
studied [25]; furthermore, the notion of “k-iterative language” that appears in a pumping
lemma for general 2NFTs [39] is related to the shape of the above pumping sequences.)

To make the inductive step go through, it is enough to synchronize the periods of the
different poly-pumping sequences involved and to observe that CbS(JeK, (Je′

iK)i∈I) is realized
by an expression obtained by substituting the e′

i for i in e.
Coming back to Theorem 8.3, we show that an 7→ ban−1b . . . bab is not comparison-free

polyregular by proving that its subsequences are not poly-pumping: for every poly-pumping
sequence s : N → {a, b}∗, there is a uniform bound on the number of distinct contiguous
subwords of the shape baa . . . ab occuring in each s(n) for n ∈ N. Another consequence of
Theorem 9.2 that we establish by induction over expressions contrasts with Corollary 8.5:

▶ Corollary 9.3. If f : Γ∗ → Σ∗ and s : N → (Γ ∪ {#})∗ are cfp, so is map(f) ◦ s.

10 Further topics

Functional programming We mentioned in the introduction a forthcoming characterization
of cfp functions using Church-encoded strings in a λ-calculus with linear types, in the vein of
our previous results [35, 34]. Meanwhile, Corollary 8.5 could be understood as negative result
in the search for another kind of functional programming characterization (cf. Remark 8.6).

It is also worth noting that the copying discipline of layered SSTs is very similar to
what happens in the parsimonious λ-calculus [30]: a datum of type !τ cannot be duplicated
into two copies of the same type !τ , but it may yield an arbitrary number of copies of type
τ without the modality ‘!’. Since the function classes defined following the methodology
of [35, 34] are automatically closed under composition, Theorem 3.5 leads us to conjecture
that polyregular functions can be characterized in a variant of the parsimonious λ-calculus.

First-order interpretations As we already said, regular and polyregular functions both
admit logical characterizations using Monadic Second-Order Logic [17, 9]. The basic conceit
behind these definitions is that a string w may be regarded as a finite model M(w) over a
signature containing the order relation ≤ on positions and predicates encoding their labeling.

The classes obtained by replacing MSO with first-order logic (FO) are to (poly)regular
functions what star-free languages are to regular languages, see [12, 4]. We expect that in
the same way, replacing regular functions (i.e. MSO transductions) by FO transductions in
Definition 4.2 and Theorem 6.1 results in the same class in both cases, which would then be the
natural FO counterpart of cfp functions. Furthermore, we believe it can be defined logically.
Given a finite model U = (U,R, . . .), we write Uk for the kth power (Uk, R1, . . . , Rk, . . .)
where Ri(x1, . . . , xm) of arity m is defined as R(πi(x1), . . . , πi(xm)) for 1 ≤ i ≤ k.

18 Comparison-free Polyregular Functions

▶ Conjecture 10.1. A function f : Γ∗ → Σ∗ is “FO comparison-free polyregular” if and only
if there exists k ∈ N and a one-dimensional FO interpretation φ such that for every w ∈ Γ∗

with |w| ≥ 2, there is an isomorphism of structures M(f(w)) ≃ φ
(
M(w)k

)
.

On an intuitive level, this seems to capture the inability to compare the positions of two
heads of comparison-free pebble transducers. However, as mentioned to us by M. Bojańczyk,
the naive transposition of this conjecture to MSO fails because the direct product, generalized
to Henkin structures, does not preserve standard second-order models.

Integer sequences Recall from Remarks 8.2 and 8.4 that for unary outputs, polyregular
and layered HDT0L transductions coincide, but comparison-free polyregular functions form
a strictly smaller class (those results come from [13]). If we also restrict to unary inputs – in
other words, if we consider sequences N → N – then we are fairly confident at this stage that
the three classes collapse to a single one, and that this can be shown by routine methods:

▷ Claim 10.2. The classes of polyregular, comparison-free polyregular and layered HDT0L
functions coincide on sequences of natural numbers.

Note that we already have a description of cfp integer sequences by specializing Theorem 9.2.

Membership and equivalence We presented comparison-free polyregular functions as a
strict subclass of polyregular functions. This leads to a natural membership problem, for
which partial results were recently obtained by Douéneau-Tabot [13]:

▷ Problem 10.3. Is there an algorithm taking as input a (code for a) pebble transducer
which decides whether the corresponding function Σ∗ → Γ∗ is comparison-free or not?

There are many similar problems of interest on the frontier between comparison-free
and general polyregular functions. We hope that investigating such issues may also lead to
machine/syntax-free characterizations of the containment between the two classes.

Finally, a major open problem on polyregular functions is the equivalence problem:

▷ Problem 10.4. Is there an algorithm taking as input two pebble transducers which decides
whether they compute the same function?

Interestingly, a positive answer is known for HDT0L transductions. There is an short
proof using Hilbert’s basis theorem [26], which is now understood to be an example of
a general approach using polynomial grammars (see e.g. [2, 5]). One could hope that a
restriction to comparison-free pebble transducers also puts the equivalence problem within
reach of known tools. Unfortunately, the extended polynomial grammars that would serve as
the natural target for a reduction from 2-CFPT equivalence already have an undecidable
zeroness problem (this was shown recently by Schmude [38]). This does not extend, however,
to an undecidability proof for the CFPT equivalence problem, so the latter is still open.

References

1 Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers. In Kamal
Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai,
India, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2010. doi:10.4230/LIPIcs.FSTTCS.2010.1.

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1

L. T. D. Nguyễn, C. Noûs and C. Pradic 19

2 Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata:
Zeroness and applications. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–12, Reykjavik, Iceland, June 2017. IEEE. doi:10.1109/LICS.2017.
8005101.

3 Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series with Applications,
volume 137 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
October 2010.

4 Mikołaj Bojańczyk. Polyregular functions, 2018. arXiv:1810.08760.
5 Mikołaj Bojańczyk. The Hilbert method for transducer equivalence. ACM SIGLOG News,

6(1):5–17, 2019. doi:10.1145/3313909.3313911.
6 Mikołaj Bojańczyk. On the growth rate of polyregular functions, 2022. arXiv:2212.11631.
7 Mikołaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna. Regular and First-

Order List Functions. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science - LICS ’18, pages 125–134, Oxford, United Kingdom, 2018. ACM Press.
doi:10.1145/3209108.3209163.

8 Mikołaj Bojańczyk and Amina Doumane. First-order tree-to-tree functions. In Holger Her-
manns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany (online confer-
ence), July 8-11, 2020, pages 252–265. ACM, 2020. doi:10.1145/3373718.3394785.

9 Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-String Interpretations With
Polynomial-Size Output. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 106:1–106:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.106.

10 Michaël Cadilhac, Filip Mazowiecki, Charles Paperman, Michał Pilipczuk, and Géraud Séniz-
ergues. On polynomial recursive sequences. Theory of Computing Systems, June 2021.
doi:10.1007/s00224-021-10046-9.

11 Christian Choffrut. Sequences of words defined by two-way transducers. Theoretical Computer
Science, 658:85–96, 2017. doi:10.1016/j.tcs.2016.05.004.

12 Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. Aperiodic String Transducers. In-
ternational Journal of Foundations of Computer Science, 29(05):801–824, August 2018.
doi:10.1142/S0129054118420054.

13 Gaëtan Douéneau-Tabot. Pebble Transducers with Unary Output. In Filippo Bonchi and
Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2021), volume 202 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 40:1–40:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.MFCS.2021.40.

14 Gaëtan Douéneau-Tabot. Pebble minimization: the last theorems, 2022. arXiv:2210.02426.
15 Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Paul Gastin. Register Transducers Are Marble

Transducers. In Javier Esparza and Daniel Kráľ, editors, 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 29:1–29:14, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.29.

16 Joost Engelfriet. Two-way pebble transducers for partial functions and their composition.
Acta Informatica, 52(7-8):559–571, 2015. doi:10.1007/s00236-015-0224-3.

17 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Transactions on Computational Logic, 2(2):216–254,
April 2001. doi:10.1145/371316.371512.

18 Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. XML navigation and transforma-
tion by tree-walking automata and transducers with visible and invisible pebbles. Theoretical
Computer Science, 850:40–97, January 2021. doi:10.1016/j.tcs.2020.10.030.

https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1109/LICS.2017.8005101
http://arxiv.org/abs/1810.08760
https://doi.org/10.1145/3313909.3313911
http://arxiv.org/abs/2212.11631
https://doi.org/10.1145/3209108.3209163
https://doi.org/10.1145/3373718.3394785
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://doi.org/10.1007/s00224-021-10046-9
https://doi.org/10.1016/j.tcs.2016.05.004
https://doi.org/10.1142/S0129054118420054
https://doi.org/10.4230/LIPIcs.MFCS.2021.40
http://arxiv.org/abs/2210.02426
https://doi.org/10.4230/LIPIcs.MFCS.2020.29
https://doi.org/10.1007/s00236-015-0224-3
https://doi.org/10.1145/371316.371512
https://doi.org/10.1016/j.tcs.2020.10.030

20 Comparison-free Polyregular Functions

19 Joost Engelfriet and Sebastian Maneth. Two-way finite state transducers with nested pebbles.
In Krzysztof Diks and Wojciech Rytter, editors, Mathematical Foundations of Computer
Science 2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August 26-30,
2002, Proceedings, volume 2420 of Lecture Notes in Computer Science, pages 234–244. Springer,
2002. doi:10.1007/3-540-45687-2_19.

20 Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. Tree transducers, L systems,
and two-way machines. Journal of Computer and System Sciences, 20(2):150–202, 1980.
doi:10.1016/0022-0000(80)90058-6.

21 Joost Engelfriet and Heiko Vogler. Macro tree transducers. Journal of Computer and System
Sciences, 31(1):71–146, 1985. doi:10.1016/0022-0000(85)90066-2.

22 Julien Ferté, Nathalie Marin, and Géraud Sénizergues. Word-Mappings of Level 2. Theory of
Computing Systems, 54(1):111–148, January 2014. doi:10.1007/s00224-013-9489-5.

23 Emmanuel Filiot and Pierre-Alain Reynier. Transducers, Logic and Algebra for Functions of
Finite Words. ACM SIGLOG News, 3(3):4–19, August 2016. doi:10.1145/2984450.2984453.

24 Emmanuel Filiot and Pierre-Alain Reynier. Copyful streaming string transducers. Fundamenta
Informaticae, 178(1-2):59–76, January 2021. doi:10.3233/FI-2021-1998.

25 Bruno Guillon. Input- or output-unary sweeping transducers are weaker than their 2-way
counterparts. RAIRO – Theoretical Informatics and Applications, 50(4):275–294, 2016. doi:
10.1051/ita/2016028.

26 Juha Honkala. A short solution for the HDT0L sequence equivalence problem. Theoretical
Computer Science, 244(1-2):267–270, 2000. doi:10.1016/S0304-3975(00)00158-4.

27 Sandra Kiefer, Lê Thành Dũng Nguyễn, and Cécilia Pradic. Revisiting the growth of polyregular
functions: output languages, weighted automata and unary inputs, 2023. arXiv:2301.09234.

28 Nathan Lhote. Pebble minimization of polyregular functions. In Holger Hermanns, Lijun Zhang,
Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages 703–712. ACM,
2020. doi:10.1145/3373718.3394804.

29 Aristid Lindenmayer. Mathematical models for cellular interactions in development II. Simple
and branching filaments with two-sided inputs. Journal of Theoretical Biology, 18(3):300–315,
March 1968. doi:10.1016/0022-5193(68)90080-5.

30 Damiano Mazza. Simple Parsimonious Types and Logarithmic Space. In 24th EACSL Annual
Conference on Computer Science Logic (CSL 2015), pages 24–40, 2015. doi:10.4230/LIPIcs.
CSL.2015.24.

31 Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers. Journal of
Computer and System Sciences, 66(1):66–97, 2003. Journal version of a PODS 2000 paper.
doi:10.1016/S0022-0000(02)00030-2.

32 Anca Muscholl and Gabriele Puppis. The Many Facets of String Transducers. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 2:1–2:21. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019. doi:10.4230/LIPIcs.STACS.2019.2.

33 Lê Thành Dũng Nguyễn. Implicit automata in linear logic and categorical transducer theory.
PhD thesis, Université Paris XIII (Sorbonne Paris Nord), December 2021. URL: https:
//nguyentito.eu/thesis.pdf.

34 Lê Thành Dũng Nguyễn, Camille Noûs, and Cécilia Pradic. Implicit automata in typed
λ-calculi II: streaming transducers vs categorical semantics, 2020. arXiv:2008.01050.

35 Lê Thành Dũng Nguyễn and Cécilia Pradic. Implicit automata in typed λ-calculi I: aperiodicity
in a non-commutative logic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
135:1–135:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.135.

https://doi.org/10.1007/3-540-45687-2_19
https://doi.org/10.1016/0022-0000(80)90058-6
https://doi.org/10.1016/0022-0000(85)90066-2
https://doi.org/10.1007/s00224-013-9489-5
https://doi.org/10.1145/2984450.2984453
https://doi.org/10.3233/FI-2021-1998
https://doi.org/10.1051/ita/2016028
https://doi.org/10.1051/ita/2016028
https://doi.org/10.1016/S0304-3975(00)00158-4
http://arxiv.org/abs/2301.09234
https://doi.org/10.1145/3373718.3394804
https://doi.org/10.1016/0022-5193(68)90080-5
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://doi.org/10.1016/S0022-0000(02)00030-2
https://doi.org/10.4230/LIPIcs.STACS.2019.2
https://nguyentito.eu/thesis.pdf
https://nguyentito.eu/thesis.pdf
http://arxiv.org/abs/2008.01050
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.4230/LIPIcs.ICALP.2020.135

L. T. D. Nguyễn, C. Noûs and C. Pradic 21

36 Christophe Reutenauer. Sur les séries associées à certains systèmes de Lindenmayer. Theoretical
Computer Science, 9:363–375, 1979. doi:10.1016/0304-3975(79)90036-7.

37 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
Translated by Reuben Thomas. doi:10.1017/CBO9781139195218.

38 Janusz Schmude. On polynomial grammars extended with substitution, 2021. arXiv:2102.
08705.

39 Tim Smith. A pumping lemma for two-way finite transducers. In Erzsébet Csuhaj-Varjú,
Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations of Computer
Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29,
2014. Proceedings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 523–534.
Springer, 2014. doi:10.1007/978-3-662-44522-8_44.

40 Géraud Sénizergues. Sequences of level 1, 2, 3, ..., k , .. In Volker Diekert, Mikhail V.
Volkov, and Andrei Voronkov, editors, Computer Science - Theory and Applications, Second
International Symposium on Computer Science in Russia, CSR 2007, Ekaterinburg, Russia,
September 3-7, 2007, Proceedings, volume 4649 of Lecture Notes in Computer Science, pages
24–32. Springer, 2007. doi:10.1007/978-3-540-74510-5_6.

https://doi.org/10.1016/0304-3975(79)90036-7
https://doi.org/10.1017/CBO9781139195218
http://arxiv.org/abs/2102.08705
http://arxiv.org/abs/2102.08705
https://doi.org/10.1007/978-3-662-44522-8_44
https://doi.org/10.1007/978-3-540-74510-5_6

22 Comparison-free Polyregular Functions

Contents

1 Introduction 1

2 Preliminaries 3
2.1 HDT0L transductions and streaming string transducers 4
2.2 Regular functions . 5
2.3 Polynomial growth transductions . 6
2.4 Transition monoids for streaming string transducers 7

3 Complements on HDT0L systems, SSTs and polyregular functions 8

4 Composition by substitution 10

5 Comparison-free pebble transducers 11

6 Composition of basic functions 13

7 Rank vs asymptotic growth 14

8 Separation results 15

9 Comparison-free polyregular sequences 16

10 Further topics 17

A Details for Remark 2.6 23

B Proofs for §3 (HDT0L systems, SSTs & polyregular functions) 23
B.1 Proof of Theorem 3.2 . 23
B.2 Proof of Corollary 3.3 . 25
B.3 Proof of Proposition 3.7 . 25
B.4 Proof of Proposition 3.4 . 26
B.5 Proof of Theorem 3.5 . 26
B.6 Proof of Proposition 3.9 . 27

C Proofs for §4 (composition by substitution) 27
C.1 Proof of Theorem 4.4 . 27
C.2 Proof of Proposition 4.7 . 28
C.3 Proof of Proposition 4.8 . 28

D Proofs for §5 (comparison-free pebble transducers) 29
D.1 Proof of Proposition 5.5 . 29
D.2 Proof of Theorem 5.6 . 30
D.3 Proof of Corollary 5.7 . 30

E Closure under composition 30

F A lower bound on growth from the rank 34
F.1 Proofs for the lemmas in Section 7 . 35
F.2 Wrapping up the proof of Theorem F.1 . 38

L. T. D. Nguyễn, C. Noûs and C. Pradic 23

G Proofs of Theorems 6.1 and 7.1 42

H Comparison-free polyregular sequences 44
H.1 Proof of Theorem 9.2 . 44
H.2 Proof of Corollary 9.3 . 45

I Separation results 47
I.1 Proof of Theorem 8.1 . 47
I.2 Proof of Theorem 8.3 . 48

I.2.1 Proof of Theorem 8.3 item (i) . 48
I.3 Proof of Theorem 8.3 item (ii) . 49

A Details for Remark 2.6

We recall the “natural” translation of HDT0L systems into single-state SSTs, which is relevant
to some proofs in Section 3. Let (Γ,Σ,∆, d, (hc)c∈Γ, h

′) be a HDT0L system. It is equivalent
to the SST specified by the following data:

a singleton set of states: Q = {q};
the working alphabet as the set of registers: R = ∆ (minor technicality: if ∆ ∩ Σ ̸= ∅,
one should take R to be a copy of ∆ that is disjoint from Σ);
hc ∈ Hom(∆∗,∆∗) ∼= (∆ → ∆∗) ⊆ (∆ → (Σ ∪ ∆)∗) as the register assignment associated
to an input letter c ∈ Γ – in other words, the transition function is δ : (q, c) 7→ (q, (hc)↾∆);
(h′(r))r∈∆ ∈ (Σ∗)R as the initial register values;
F : q 7→ d as the final output function (d ∈ ∆∗ ⊆ (Σ ∪ ∆)∗).

The cases of the transition and output functions involve a codomain extension from ∆∗ to
(Σ ∪ ∆)∗. This reflects the intuition that a HDT0L system is the same thing as a single-state
SST that “cannot access the output alphabet” (except in the initial register contents).

To prove the equivalence, the key observation is that hc is turned into δ(−, c) by a
morphism from Hom(∆∗,∆∗) to M∆,∅≀{q} ⊂ M∆,Σ≀{q}, using the notations from Section 2.4.
We leave the details to the reader.

B Proofs for §3 (HDT0L systems, SSTs & polyregular functions)

B.1 Proof of Theorem 3.2
▶ Theorem 3.2. For k ∈ N, a function can be computed by a k-layered SST if and only if it
can be specified by a (k + 1)-layered HDT0L system.

In particular, regular functions correspond to 1-layered HDT0L systems.

Proof of (⇒). The translation from SSTs to HDT0L systems given by [24, Lemma 3.5] turns
out to work. It is also formulated in terms of “simple SSTs” (isomorphic to HDT0L systems,
cf. Remark 2.6) in [15, §5.1], where the authors remark that “this construction does not
preserve copylessness nor k-layeredness”: indeed, what we show is that it increments the
number of layers by one! For the sake of clarity, we give an alternative presentation that
decomposes it into two steps.

Let Γ be the input alphabet and Σ be the output alphabet. Let T be a SST with a
k-layered set of register variables R = R0 ⊔ · · · ⊔Rk. First, we build a (k + 1)-layered SST
T ′ that computes the same function, with the set of registers

R′ = Σ ∪R = R′
0 ⊔ · · · ⊔R′

k+1 R′
0 = Σ ∀i ∈ {1, . . . , k + 1}, R′

i = Ri−1

24 Comparison-free Polyregular Functions

assuming Σ ∩R = ∅, and whose register assignments are without fresh letters: the range of
every α′ : R′ → (Σ ∪ R′)∗ is included in R′∗, which allows us to write α′ : R′ → R′∗. This
already brings us closer to the definition of HDT0L systems, since (R → R∗) ∼= Hom(R∗, R∗).
Similarly, we will ensure that the range of the output function of T ′ is included in R′.

Let underlineΣ ∈ Hom((Σ ∪ R)∗, (Σ ∪ R)∗) be defined in the expected way, and note
that its codomain is equal to R′∗. We specify T ′ as follows (and leave it to the reader to
check that this works):

the state space Q, initial state and state transitions are the same as those of T ;
the initial value of r′ ∈ R′ is the same as for T if r′ ∈ R, or the single letter c if r′ = c ∈ Σ;
every assignment α : R → (Σ ∪R) that appears in some transition of T becomes, in T ′,

α′ : R′∗ → R′∗ α′ : c ∈ Σ 7→ c α′ : r ∈ R 7→ underlineΣ(α(r))

its output function is F ′ = underlineΣ ◦ F where F : Q → (Σ ∪ R)∗ is the output
function of T .

Thus, the idea is to store a copy of c ∈ Σ in the register c. Since this register may feed in
a copyful way all other registers (in a SST, there are no restrictions on the use of output
alphabet letters), it must sit at the lowest layer, hence R′

0 = Σ and the resulting offset of
one layer.

Next, we turn T ′ into an equivalent HDT0L system with (k+ 1)-layered working alphabet

∆ = R′ ×Q = ∆0 ⊔ . . . ⊔ ∆k+1 ∀i ∈ {0, . . . , k + 1}, ∆i = R′
i ×Q

For q ∈ Q, let pairq ∈ Hom(R′∗,∆∗) be such that pairq(r′) = (r′, q) for r′ ∈ R′.
Let Q = {q(1), . . . , q(n)} be the states of T ′ (which are also those of T), with q(1) being

its initial state8. Using the fact that T ′ is without fresh letters, let F ′ : Q → R′∗ be its final
output function. The initial word of our HDT0L system is then

d = pairq(1)

(
F ′
(
q(1)
))

· . . . · pairq(n)

(
F ′
(
q(n)

))
∈ ∆∗

From the initial register values (uI,r′)r′∈R′ ∈ (Σ∗)R′ of T ′, we define the final morphism:

h′ ∈ Hom(∆∗,Σ∗) ∀r′ ∈ R′,
[
h′
(
r′, q(1)

)
= uI,r′ and ∀q ̸= q(1), h′(r′, q) = ε

]
Finally, let δ′

st : Q → Q and δ′
reg : Q → (R′ → R′∗) be the components of the transition

function of T ′. The morphisms hc ∈ Hom(∆∗,∆∗) for c ∈ Γ send (r′, q) ∈ ∆ to

hc(r′, q) = pairq(i1)(δ′
reg(q(i1), c)(r′)) · . . . · pairq(im)(δ′

reg(q(im), c)(r′))

where i1 < . . . < im and {q(i1), . . . , q(im)} = {q(?) ∈ Q | δ′
st(q(?), c) = q}.

Checking that this HDT0L system computes the right function is a matter of mechanical
verification, that has already been carried out in [24]. To wrap up the proof, we must
justify that it is (k + 1)-layered. To do so, let us fix a letter c ∈ Γ and two layer indices
i, j ∈ {0, . . . , k + 1}, and count the number Nr′,q of occurrences of (r′, q) ∈ ∆i among all the
hc(r̃′, q̃) for (r̃′, q̃) ∈ ∆j . The letter (r′, q) can only appear in hc(r̃′, q̃) when q̃ = δ(q, c), and
in that case, its occurrences (if any) are in the substring pairq(δ′

reg(q, c)(r̃′)). So Nr′,q counts
the occurrences of r ∈ R′

i among the δ′
reg(q, c)(r̃′) for r̃′ ∈ R′

j . Since T ′ is a (k + 1)-layered
SST, we are done. ◀

8 Except for that, this enumeration of Q is arbitrary. We write q(i) instead of qi to avoid confusion with
the run of an automaton.

L. T. D. Nguyễn, C. Noûs and C. Pradic 25

Proof of (⇐). The translation from HDT0L systems to single-state SSTs mentioned in
Remark 2.6 (see Appendix A) is not enough: starting from a (k + 1)-layered HDT0L system,
it gives us a (k + 1)-layered SST. But we can bring this down to k layers by adding states.

Let (Γ,Σ,∆, d, (hc)c∈Γ, h
′) be a HDT0L system (with d ∈ ∆∗, hc ∈ Hom(∆∗,∆∗) for c ∈ Γ,

and h ∈ Hom(∆∗,Σ∗)). Suppose that it is (k + 1)-layered with ∆ = ∆0 ⊔ · · · ⊔ ∆k+1. This
entails that hc(∆0) ⊆ ∆∗

0, and furthermore that (hc)↾∆0 : ∆0 → ∆∗
0 satisfies a copylessness

condition, that may succinctly be written as (hc)↾∆0 ∈ Mcl
∆0,∅ (cf. Definition 2.16).

We define a k-layered SST with:
Mcl

∆0,∅ as the set of states (finite by Proposition 2.23), with the monoid identity as its
initial state;
the set of registers R = ∆ \ ∆0 = ∆1 ⊔ · · · ⊔ ∆k+1, whose i-th layer is the (i+ 1)-th layer
of the original HDT0L system (0 ≤ i ≤ k);
the initial register contents (h′(r))r∈R – recall that h′ is the final morphism;
the transition function (α, c) 7→ (α • (hc)↾∆0 , (h′

↾∆∗
0

◦ α)⊙ ◦ (hc)↾R) where (−)⊙ extends
functions ∆0 → Σ∗ into morphisms in Hom((∆ ∪ Σ)∗, (R ∪ Σ)∗) that map each letter in
R ∪ Σ to itself (since ∆ = ∆0 ⊔R, the domain of these morphisms is (∆0 ⊔R ⊔ Σ)∗);
the final output function α 7→ (h′

↾∆∗
0

◦ α)⊙(d).
The layering condition for this SST is inherited is a direct consequence of the layering of
the original HDT0L system, and one can check the functions computed by the two are the
same. ◀

B.2 Proof of Corollary 3.3
▶ Corollary 3.3. Every regular function can be computed by a single-state 1-layered SST.

Any regular function is definable by some copyless SST, i.e. 0-layered SST. By Theorem 3.2,
it can be turned into a 1-layered HDT0L system. The latter can be translated to a single-state
SST by the construction of Appendix A. As can readily be seen from the definitions, this
construction preserves the 1-layered property.

B.3 Proof of Proposition 3.7
▶ Proposition 3.7. The sequential (and therefore regular) function defined by the transducer
of Figure 2 (Section 2.2) cannot be computed by a single-state copyless SST.

Consider any single-state copyless SST computing some g : {a, b, c}∗ → {a, b}∗ with a
set of registers R. We wish to show g does not coincide with the function computed by the
sequential transducer of Figure 2. Let ω ∈ ({a, b}∪R)∗ be the image of the single state by the
output function, and for x ∈ {a, b, c}, let αx : R → ({a, b} ∪R)∗ be the copyless assignment
performed by the SST when it reads x (that is, using the notations of Definition 2.3, ω = F (q)
and αx = δreg(q, x) with Q = {q}). Let u⃗ be the initial register contents. Then

∀x ∈ {a, b, c}∗, ∀n ∈ N, g(x · cn) = ω† ◦ (α†
c)n ◦ α†

x(u⃗)

Any register assignment β : R → ({a, b, c} ∪R)∗ admits a unique extension into a monoid
morphism β□ ∈ Hom(({a, b, c} ∪R)∗, ({a, b, c} ∪R)∗) that maps every letter in {a, b, c} to
itself. Let ωn =

(
α□

c

)n (ω) (so that ω0 = ω). One can check that, for all n ∈ N:
ω†

n = ω† ◦ (α†
c)n;

since αc is copyless, |ωn|r ≤ |ω|r for all r ∈ R, writing |w|x for the number of occurrences
of x in w ∈ Σ∗ for x ∈ Σ.

26 Comparison-free Polyregular Functions

Let (vx,r)r∈R = α†
x(u⃗) for x ∈ {a, b, c}; that is, vx,r the value stored in the register r ∈ R

after the SST has read the single letter x. We can rewrite the above equation as

∀x ∈ {a, b, c}∗, ∀n ∈ N, g(x · cn) = ω†
n((vx,r)r∈R)

and derive a numerical (in)equality

∀x ∈ {a, b, c}∗, ∀n ∈ N, |g(x · cn)|a = |ωn|a +
∑
r∈R

|ωn|r|vx,r|a =
n→+∞

|ωn|a +O(1)

using the fact that |ωn|r, as a non-negative quantity lower than the constant |ω|r, is O(1).
From this, it follows that as n increases, the difference between |g(a · cn)|a and |g(b · cn)|a

stays bounded. This property distinguishes g from the f : {a, b, c}∗ → {a, b}∗ computed by
the transducer given in Figure 2, since

∀n ∈ N, |f(a · cn)|a =
∣∣an+1∣∣

a
= n+ 1 and |f(b · cn)|a =

∣∣bn+1∣∣
a

= 0

B.4 Proof of Proposition 3.4
▶ Proposition 3.4. Polyregular functions are the smallest class closed under composition
that contains the regular functions and the squaring with underlining functions squaringΓ.

It is stated in the introduction to [4] that all regular functions are polyregular. One way
to see this is discussed in Section 5: the characterization by pebble transducers given in [4]
generalizes the classical definition of regular functions using two-way finite state transducers.
This takes care of one direction of the equivalence; for the converse, observe that:

sequential functions are regular, as already mentioned;
since the SST of Example 2.10 is copyless, the iterated reverse function is regular.

B.5 Proof of Theorem 3.5
▶ Theorem 3.5. Let f : Γ∗ → Σ∗. The following are equivalent:

(i) f is polyregular;
(ii) f can be obtained as a composition of layered SSTs;
(iii) f can be obtained as a composition of single-state 1-layered SSTs.

Proof of (i) ⇒ (iii). Thanks to Proposition 3.4, we know that any polyregular functions
can be written as a composition of a sequence of functions, each of which is either regular or
equal to squaringΓ for some finite alphabet Γ. It suffices to show that each function in the
sequence can in turn be expressed as a composition of single-state 1-layered SSTs.

We decompose squaringΓ as

1234 7→ 4321321211 7→ 1234123412341234

The first step is performed by the SST of Example 2.4, which has a single state and, as
mentioned in Section 2.3, is 1-layered. The second step can be implemented using a SST
with a single state q (that we omit below for readability), two registers X (at layer 0) and Y
(at layer 1) with empty initial values, an output function F (q) = Y , and

∀c ∈ Γ, δ(c) = (X 7→ X, Y 7→ cY) and δ(c) = (X 7→ cX, Y 7→ cXY)

As for regular functions, Corollary 3.3 takes care of them. ◀

L. T. D. Nguyễn, C. Noûs and C. Pradic 27

Proof of (iii) ⇒ (ii). Immediate by definition. ◀

Proof of (ii) ⇒ (i). All functions computed by k-layered SSTs are polyregular; this applies
in particular to single-state 1-layered SSTs. Therefore, their composition is also polyregular
(according to Definition 2.11, polyregular functions are closed under composition). ◀

B.6 Proof of Proposition 3.9

▶ Proposition 3.9. If f is an HDT0L transduction, then so is map(f). For each k ≥ 1, the
functions that can be computed by k-layered HDT0L systems are also closed under map.

Let (Γ,Σ,∆, d, (hc)c∈Γ, h
′) be a HDT0L system computing f : Γ∗ → Σ∗. We define below

a HDT0L system that computes map(f) : (Γ ∪ {#})∗ → (Σ ∪ {#})∗.
The intermediate alphabet is ∆̂ = ∆ ∪ Σ ∪ {#, X}, assuming w.l.o.g. that # /∈ ∆ ∪ Σ,
where X /∈ ∆ ∪ Σ ∪ {#} is an arbitrarily chosen fresh letter.
The starting word is Xd ∈ ∆̂∗.
For c ∈ Γ, we extend hc into ĥc ∈ Hom(∆∗,∆∗) by setting ĥc(x) = x for x ∈ Σ ∪ {#, X}.
Since the input alphabet is now Γ∪{#}, we also define the morphism ĥ# as the extension
of h′ (using Σ ⊂ ∆̂) such that ĥ#(X) = Xd# and ĥ#(x) = x for x ∈ Σ ∪ {#}.
The final morphism ĥ′ extends h′ with ĥ′(X) = ε and ĥ′(x) = x for x ∈ Σ ∪ {#}

This shows that HDT0L transductions are closed under map.
We now prove that for any k ∈ N≥1, this closure property holds for k-layered HDT0L

transductions (so, in particular, for regular functions by taking k = 1). Suppose that f is
computed by a k-layered HDT0L system with intermediate alphabet ∆ and initial word
d ∈ ∆∗. One can build a k-layered HDT0L system which computes the same function f

and such that the initial word contains at most one occurrence of each letter ; the idea is
to replace ∆ and d = d1 . . . dn by ∆ × {1, . . . , n} and (d1, 1), . . . , (dn, n) where n = |d|, and
to adapt the morphisms accordingly. Applying the above construction then results in a
k-layered HDT0L system that computes map(f); note that if we did not have this property
for the inital word, we would get a (k + 1)-layering instead.

C Proofs for §4 (composition by substitution)

C.1 Proof of Theorem 4.4

▶ Theorem 4.4. Polyregular functions are closed under composition by substitution.

We start by briefly recalling the definition of polynomial list functions from [4, Section 4].
The explanation is geared towards a reader familiar with the simply typed λ-calculus, which
this system extends. The λ-terms defining polynomial list functions are generated by the
grammar of simply typed λ-terms enriched with constants, whose meaning can be specified
by extending the β-rule. For instance, given a finite set S and a ∈ S, every element of S can
be used as a constant, another allowed constant is isS

a and we have

isS
a b =β true if a = b isa b =β false if b ∈ S \ {a}

The grammar of simple types and the typing rules are also extended accordingly. For instance,
any finite set S induces a type also written S, such that every element a ∈ S corresponds to
a term a : S of this type. There are also operations expressing the cartesian product (×)

28 Comparison-free Polyregular Functions

and disjoint union (+) of two types; and, for any type τ , there is a type τ∗ of lists whose
elements are in τ . So the constant isS

a receives the type

isS
a : S → {true} + {false} for any finite set S

See [4, Section 4] for the other primitive operations that are added to the simply typed
λ-calculus; we make use of is, case, map and concat here. Bojańczyk’s result is that if Γ
and Σ are finite sets, then the polynomial list functions of type Γ∗ → Σ∗ correspond exactly
the polyregular functions.

▶ Lemma C.1. Let I = {i1, . . . , i|I|}. Then the function matchI,τ : I → τ → . . . → τ → τ

which returns its (k+ 1)-th argument when its 1st argument is ik is a polynomial list function.

Proof idea. By induction on |I|, using isI
i (i ∈ I) and case{true},{false},τ . ◀

Proof of closure by CbS. Let f : Γ∗ → I∗, and for i ∈ I, gi : Γ∗ → Σ∗ be polyregular
functions. Assuming that f and gi (i ∈ I) are defined by polynomial list functions of the
same name, the λ-term

λw. concatΣ (mapI,Σ∗
(λi. matchI,Σ∗

i (gi1 w) . . . (gi|I| w)) (f w))

computes CbS(f, (gi)i∈I). ◀

C.2 Proof of Proposition 4.7
▶ Proposition 4.7. A function f is comparison-free polyregular if and only if there exists
some k ∈ N such that f has rank at most k. In that case, we write rk(f) for the least such k
and call it the rank of f . If (gi)i∈I is a family of comparison-free polyregular functions,

rk(CbS(f, (gi)i∈I)) ≤ 1 + rk(f) + max
i∈I

rk(gi)

This is equivalent to claiming that the smallest class C of functions such that
every regular function is in C,
and CbS(f, (gi)i∈I) ∈ C for any regular f : Γ∗ → I∗ and any (gi : Γ∗ → Σ∗)i∈I ∈ CI ,

contains all comparison-free polyregular functions. It suffices to show that C is closed under
composition by substitution, which can be done by induction using the equation

CbS(CbS(f, (gi)i), (hj)j) = CbS(f, (CbS(gi, (hj)j))i)

The same equation explains the inequality on the rank that we claim in the proposition.

C.3 Proof of Proposition 4.8
▶ Proposition 4.8. Let f, g : Γ∗ → Σ∗ be comparison-free polyregular functions and L ⊆ Γ∗

be a regular language. The function that coincides with f on L and with g on Γ∗ \ L is cfp,
and so is w ∈ Γ∗ 7→ f(w) · g(w); both have rank at most max(rk(f), rk(g)).

Closure under regular conditionals We first observe that the particular case where f and
g are both regular (rk(f) = rk(g) = 0) already appears in the literature [1]. We shall use it
in further appendices, so let us state it as a stand-alone lemma.

▶ Lemma C.2 ([1, Proposition 2]). Let f, g : Γ∗ → Σ∗ be regular functions and L ⊆ Γ∗ be a
regular language. The function that coincides with f on L and with g on Γ∗ \ L is regular.

L. T. D. Nguyễn, C. Noûs and C. Pradic 29

With this in hand, let us turn to the general case where f, g : Γ∗ → Σ∗ are cfp. It means
that we have regular functions f ′ and g′, as well as families of functions (f ′′

i)i∈I and (g′′
j)j∈J

such that

f = CbS(f ′, (f ′′
i)i∈I) and g = CbS(g′, (g′′

j)j∈J)

(if f (or g) is of rank 0, we can introduce a spurious CbS by taking f ′ (resp. g′) to be a
constant function outputting a single letter over the singleton alphabet). Assume without
loss of generality that I ∩ J = ∅. Using Lemma C.2 applied to f ′, g′ : Γ∗ → (I ∪ J)∗, there is
a function h′ : Γ∗ → (I ∪ J)∗ coinciding with f ′ over L and g′ over L \ Γ∗. Setting (h′′

k)k∈I∪J

to be the family of functions such that h′′
i = f ′′

i for i ∈ I and h′′
j = g′′

j for j ∈ J , we obtain a
cfp function h = CbS(h′, (h′′

k)k∈I∪J) corresponding to the desired conditional.

Closure under concatenation Similarly, first observe that the result holds for regular
functions. Using SSTs, this can be shown using a product construction.

Then, taking regular functions f ′ and g′, as well as families of functions (f ′′
i)i∈I and

(g′′
j)j∈J so that f = CbS(f ′, (f ′′

i)i∈I) and g = CbS(g′, (g′′
j)j∈J) with I and J disjoint as

above, one check that the pointwise concatenation f · g is equal to CbS(f ′ · g′, (h′′
k)k∈I∪J),

which is cfp since f ′ · g′ is regular.

D Proofs for §5 (comparison-free pebble transducers)

D.1 Proof of Proposition 5.5
▶ Proposition 5.5. If f is computed by a k-CFPT, and the gi are computed by l-CFPTs,
then CbS(f, (gi)i∈I) is computed by a (k + l)-CFPT.

First note that any k-CFPT can be transformed into an equivalent k-CFPT whose
transition functions δ : Q× (Γ ∪ {▷, ◁})p → Q× (Np → Stackk) × Σ∗ are such that, for every
input (q, b⃗), we have either π3(δ(q, b⃗)) = ε (in which case we call δ(q, b⃗) a silent transition)
or π3(δ(q, b⃗)) ∈ Σ and π2(δ(q, b⃗)) is the identity. So, without loss of generality, suppose that
we have a k-CFPT Tf implementing f is of this shape, with state space Qf and transition
function δf Similarly, we may assume without loss of generality that the current height of
the stack is tracked by the state of CFPTs if we allow multiple final states; assume that we
have such height-tracking l-CFPT and that we have l-CFPTs Ti implementing gi with state
spaces Qi and transition functions δi.

We combine these CFPTs into a single k + l CFPT T ′ with state space

Q′ = Qf ⊔ Qf ×
⊔
i∈I

Qi

The initial and final states are those of Tf . The high-level idea is that T ′ behaves as Tf

until it produces an output i ∈ I; in such a case it “performs a call” to Ti that might spawn
additional heads to perform its computations. At the end of the execution of Ti, we return
the control to Tf . Formally speaking, the transition function δ′ of T ′ behaves as follows:

δ′(q, b⃗) = δf (q, b⃗) if q ∈ Qf and δf (q, b⃗) is silent.
otherwise we take, we have π3(δf (q, b⃗)) = i for some i ∈ I. Calling ri the initial state of
Ti, we set π1(δ′(q, b⃗)) = (q, ri) and π2(δ′(q, b⃗)) corresponds to push a new pebble onto
the stack. We make δ′(q, b⃗) silent in such a case.
δ′((q, r), b⃗⃗b′) then corresponds to δi(r, b⃗′) if we are not in the situation where the stack
height is 1 and the stack update function is pop.

30 Comparison-free Polyregular Functions

otherwise we take π1(δ′((q, r), b⃗b′)) = π1(δf (q, b⃗)), π2(δ′(q, n+ 1, b⃗b′)) to be a pop action
and π3(δ′((q, r), b⃗b′)) = π3(δi((q, r), b⃗b′)).

D.2 Proof of Theorem 5.6
▶ Theorem 5.6. If f : Γ∗ → Σ∗ is computed by a k-CFPT, for k ≥ 2, then there exist a finite
alphabet I, a regular function h : Γ∗ → I∗ and a family (gi)i∈I computed by (k − 1)-CFPTs
such that f = CbS(h, (gi)i∈I).

Assume we have f : Γ∗ → Σ∗ computed by a k-CFPT T with state space Q and transition
function δ that we assume to be disjoint from Σ. For each q ∈ Q, we describe a k − 1 CFPT
Tq with the same state space, initial state q and transition function δq such that, for every
b′ ∈ N, b⃗ ∈ Stackl for l ≤ k − 1 and q′ ∈ Q, δ(q′, b′⃗b) and δq(q′, b⃗) coincide on the first and
last component; on the second component, we require they also coincide up to the difference
in stack size. If we fix r ∈ Q, by [31, Theorem 4.7], the language consisting of those w ∈ Γ∗

such that Tq halts on r is regular. Since regular languages are closed under intersection,
for any map γ ∈ QQ, the language Lγ ⊆ Γ∗ of those words w such that Tq halts on γ(q) is
regular.

Now fix γ ∈ QQ and let us describe a 1-CFPT transducer Tγ intended to implement the
restriction of a function h : Γ∗ → (Σ ∪Q)∗ to Lγ . Tγ has the same state space and initial
state as T , but has a transition function δγ defined by

δγ(q, b) =
{
δ(q, b) if π2(δ(q, b)) is not a push
(γ(r), (p 7→ p), r) otherwise, for r = π1(δ(q, b))

Since Γ∗ =
⋃

γ∈QQ Lγ , by applying repeatedly Lemma C.2, this determines the regular
function h : Γ∗ → (Σ ∪ Q)∗. We can then check that f = CbS(h, (gi)i∈Σ∪Q) where ga is
the constant function outputting the one-letter word a for a ∈ Σ (which can certainly be
implemented by a 1-CFPT) and gq is the function Γ∗ → Σ∗ implemented by the (k−1)-CFPT
Tq.

D.3 Proof of Corollary 5.7
▶ Corollary 5.7. For all k ∈ N, the functions computed by (k + 1)-CFPTs are exactly the
comparison-free polyregular functions of rank at most k.

The proof goes by induction over k ∈ N. By Theorem 5.3, the result holds for k = 0 since
2DFTs characterize regular functions; let us detail each direction of the inductive case k > 0:

for the left-to-right inclusion, assume we are given a (k + 1)-CFPT computing f and
apply Theorem 5.6 to obtain h and gis such that f = CbS(h, (gi)i∈I) with h regular and
the gis computable by k-CFPTs. The induction hypothesis implies that the gis have rank
< k, and thus f has rank ≤ k.
conversely, if f has rank k, it can be written as CbS(h, (gi)i∈I) with h regular and the
gis with rank < k; the induction hypothesis implies that the gis can be computed by
k-CFPTs. By Theorem 5.3, h is computable by a 1-CFPT, so by Proposition 5.5, f is
computed by a (k + 1)-CFPT

E Closure under composition

This section is dedicated to establishing the following theorem, which constitutes most of the
work that goes into proving Theorem 6.1.

L. T. D. Nguyễn, C. Noûs and C. Pradic 31

▶ Theorem E.1. Comparison-free polyregular functions are closed under composition.

First, by induction on the rank of the left-hand side of the composition, we can reduce to
the case where that side is a mere regular function, using the straightforward identity

CbS(f, (gi)i∈I) ◦ h = CbS(f ◦ h, (gi ◦ h)i∈I)

We then treat this case by another induction, this time on the rank of the right-hand side.
The base case is handled by invoking the closure under composition of regular functions.
Therefore, what remains is the following inductive case.

▶ Lemma E.2. Let f : Γ∗ → I∗ be a regular function and let (gi)i∈I be a family of comparison-
free polyregular functions Γ∗ → Σ∗. Suppose that for all regular h : Σ∗ → ∆∗ and all i ∈ I,
the composite h ◦ gi is comparison-free polyregular.

Then, for all regular h : Σ∗ → ∆∗, h ◦ CbS(f, (gi)i∈I) is comparison-free polyregular.

Our proof of the above lemma and related subclaims rely on the properties of transition
monoids introduced in Section 2.4 and on the combinatorics of register transitions discussed
in the paragraphs following Proposition 6.2.

▶ Lemma E.3. Let δ be the transition function of some copyless SST Σ∗ → ∆∗ whose sets
of states and registers are Q and R respectively, so that δ(−, c) ∈ Mcl

R,∆ ≀Q for c ∈ Σ. Let

ψδ ∈ Hom(Σ∗, Mcl
R,∆ ≀Q) such that ∀c ∈ Σ, ψδ(c) = δ(−, c)

and φδ = erase∆ ◦ ψδ as in Remark 2.22, q ∈ Q, r ∈ R, α ∈ Mcl
R,∅ and j ∈ {0, . . . , |α(r)|}.

Then the following function Σ∗ → ∆∗, defined thanks to Proposition 6.2, is regular:

s 7→

{
wj where π2(ψδ(s)(q))(r) = w0r

′
1w1 . . . r

′
nw

′
n if π2(φδ(s)(q)) = α

ε otherwise

(recall that π2 : Q×M → M is the second projection and M ≀Q = Q → Q×M).

Proof. We consider during this proof that the names q, r, α and j introduced in the above
statement are not in scope, so that we can use those variable names for generic elements of
Q, R, Mcl

R,∅ and N instead. Those data will be given other names when we need them.
We build a copyless SST whose set of states is Q× Mcl

R,∅. This is made possible by the
finiteness of Mcl

R,∅ (Proposition 2.23). As for the set of registers, we would like it to vary
depending on the current state for the sake of conceptual clarity, i.e. to have a family of
finite sets indexed by Q× Mcl

R,∅; when the SST moves from state (q, α) to (q′, α′), it would
perform a register assignment from Rq,α to Rq′,α′ (described by a map Rq′,α′ → (∆ ∪Rq,α)∗).
Such devices have been called state-dependent memory copyless SSTs in [34], and they are
clearly equivalent in expressive power to usual copyless SSTs.

The idea is that we want the configuration (current state plus register contents) of our
new SST, after reading s = s1 . . . sn, to faithfully represent

ψδ(s)(q0) = (δ(−, s1) • · · · • δ(−, sn))(q0) ∈ Q× Mcl
R,∆

where δ and ψδ are given in the lemma statement, and q0 is the given state that was called q
in that statement. Following Proposition 6.2, since we already have the “shape” stored in
the second component Mcl

∆,∅ of the set Q× Mcl
∆,∅ of new states, it makes sense to use the

register to store the “labels”, hence Rq,α = Rα with

Rα = {(r, j) | r ∈ R, j ∈ {0, . . . , |α(r)|}} so that (∆∗)Rα ∼=
∏
r∈R

(∆∗)|α(r)|+1

32 Comparison-free Polyregular Functions

The configurations of our SST are thus in bijection with Q × Mcl
R,∆ via Proposition 6.2,

and we would like the transition performed when reading c ∈ Σ to correspond through this
bijection to (using the notations of Definition 2.3)

(q, β) ∈ Q× Mcl
R,∆ 7→ (δst(q), β • δreg(q))

For a fixed β′ ∈ Mcl
R,∆, let us consider the right multiplication β 7→ β • β′ in Mcl

R,∆. Since
erase∆ : Mcl

R,∆ → Mcl
R,∅ is a morphism, the “shape” of β • β′ can be obtained from the

“shape” of β by multiplying by α′ = erase∆(β′). The important point is to show that we
can obtain the new labels from the old ones by a copyless assignment – formally speaking,
that for any α ∈ Mcl

R,∆ there exists a copyless

γα,β′ : Rα•α′ → (∆ ∪Rα)∗

such that for any β ∈ Mcl
R,∆ such that erase∆(β) = α, which therefore corresponds to(

α, ℓ⃗
)

for some ℓ⃗ ∈ (∆∗)Rα ∼=
∏
r∈R

(∆∗)|α(r)|+1

the shape-label pair that corresponds to β • β′ is (α • α′, γ†
α,β′(ℓ⃗)) (cf. Definition 2.2).

Our next task is to analyze the composite assignment β • β′ in order to derive a γα,β′

that works. Let r′′ ∈ R. First, if α′(r′′) = r′
1 . . . r

′
n ∈ R∗, then

β′(r′′) = w′
0r

′
1w

′
1 . . . r

′
nw

′
n for some w′

0, . . . , w
′
n ∈ ∆∗

and by applying the unique morphism β⊙ ∈ Hom((∆ ∪R)∗, (∆ ∪R)∗) that extends β and
sends letters of ∆ to themselves, we have

(β • β′)(r′′) = β⊙(β′(r)) = w′
0 · β(r′

1) · w′
1 · . . . · β(r′

n) · w′
n

Let us decompose further, for i ∈ {1, . . . , n}:

β(r′
i) = wi,0ri,1wi,1 . . . wi,ni

rni
for some wi,0, . . . , wi,ni

∈ ∆∗

By plugging this into the previous equation, we have (β • β′)(r′′) = w0r1w1 . . . rmwm where

{r1, . . . , rm} =
n⋃

i=1
{ri,1, . . . , ri,ni}

Furthermore, each wk for k ∈ {0, . . . ,m} is a concatenation of some w′
i and some wi,j , and

from the formal expression of wk depending on these w′
i and wi,j – which only depends on

the shape α and α′ – we can derive a definition of γα,β′(r′′, k). For instance,

w42 = w3,2w
′
3w4,0 ⇝ γ(r′′, 42) = (r′

3, 2) · w′
3 · (r′

4, 0) ∈ (∆ ∪Rα•α′)∗

Observe that this does not refer to the wi,j ; therefore, γα,β′ does not depend on β, as required.
One can check that defined this way, γα,β′ is indeed a copyless assignment and that the
desired property of γ†

α,β′ holds.
What we have just seen is the heart of the proof. We leave it to the reader to finish the

construction of the copyless SST. ◀

With this done, we can move on to proving Lemma E.2, which suffices to finish the proof
of Theorem E.1.

L. T. D. Nguyễn, C. Noûs and C. Pradic 33

Proof of Lemma E.2. Let w ∈ Γ∗ be an input string. In the composition, we feed to a
copyless SST Th that computes h the word CbS(f, (gi)i∈I)(w) = gi1(w) . . . gik

(w) where
f(w) = i1 . . . ik. A first idea is therefore to tweak Th into a new copyless SST that takes
I∗ as input and which executes, when it reads i ∈ I, the transition of Th induced by
gi(w). If we call h′

w the regular function computed by this new SST, we would then have
h′

w(f(w)) = h ◦ CbS(f, (gi)i∈I)(w). The issue is of course that h′
w depends on the input w.

More precisely, the data that h′
w depends on is the family of transitions

(ψδ ◦ gi(w))i∈I ∈ (Mcl
R,∆ ≀Q)I (see Lemma E.3 for ψδ)

where Q, R and δ are respectively the set of states, the set of registers and the transition
function of Th. We will be able to disentangle this dependency by working with

(φδ ◦ gi(w))i∈I = (erase∆ ◦ ψδ ◦ gi(w))i∈I ∈ (Mcl
R,∅ ≀Q)I

Concretely:

▷ Claim E.4. For each µ⃗ ∈ (Mcl
R,∅ ≀Q)I , there exist:

a finite alphabet Λµ⃗ equipped with a function ιµ⃗ : Λµ⃗ → I;
a regular function h′′

µ⃗ : I∗ → (∆ ∪ Λµ⃗)∗;
and regular functions lλ : Σ∗ → ∆∗ for λ ∈ Λ;

such that for i1 . . . in ∈ I∗ and w ∈ Γ∗, if (φδ ◦ gi(w))i∈I = µ⃗, then

h(gi1(w) · . . . · gin
(w)) = replace each λ ∈ Λµ⃗ in h′′

µ⃗(i1 . . . in) by lλ ◦ gι(λ)(w)

Proof. Proposition 6.2 says that every β = ψδ(gi(w)) ∈ Mcl
R,∆ can be decomposed into a

shape α = erase∆(β) ∈ Mcl
R,∅ and a finite family ℓ⃗ of strings in ∆∗. Each β(r) for r ∈ R

can then be reconstituted as an interleaving of letters in α(r) with labels in ℓ⃗, a process that
can be decomposed into two steps:

first, interleave the letters of α(r) with placeholder letters, taken from an alphabet disjoint
from both ∆ and R;
then substitute the labels for those letters.

Roughly speaking, this will allow us to manipulate an assignment with placeholders without
knowing the labels, and then add the labels afterwards.

Let µ⃗ ∈ (Mcl
R,∅ ≀ Q)I . We define a copyless SST Tµ⃗ with the same sets of states and

registers as Th, namely Q and R. Its initial register values and final output function are also
the same. It computes a function I∗ → (∆ ∪ Λµ⃗)∗, and its transition function is

δµ⃗ : (q, i) 7→
(
π1 ◦ µi(q),

(
r 7→ interleave

(
λq,i,r

0 . . . λq,i,r
|π2(µi(q))(r)|, π2(µi(q))(r)

)))
where interleave(u0 . . . un, v1 . . . vn) = u0v1u1 . . . vnun for letters u0, . . . , un, v1, . . . , vn over
some alphabet (recall also that µi : Q → Q× Mcl

R,∅ for i ∈ I). Thus, we take

Λµ⃗ =
{
λq,i,r

j

∣∣∣ q ∈ Q, i ∈ I, r ∈ R, j ∈ {0, . . . , |π2(µi(q))(r)|}
}

ι(λq,i,r
j) = i

and h′′
µ⃗ to be the function computed by Tµ⃗. (Note that although δµ⃗ does not involve

letters from ∆, the final output function and the initial register contents do.) Finally, given
λ = λq,i,r

j ∈ Λµ⃗, we define lλ to be the regular function provided by Lemma E.3 for the
transition function δ of Th, the state q0 (which is the initial state of both Th and Tµ⃗), the
register r, the assignment shape α = π2(µi(q)) and the position j ∈ {0, . . . , |α(r)|}.

34 Comparison-free Polyregular Functions

Let w ∈ Γ∗ be such that (φδ ◦ gi(w))i∈I = µ⃗. Consider χw ∈ Hom((∆ ∪ Λµ⃗)∗,∆∗) which
maps each letter of ∆ to itself and each λ ∈ Λµ⃗ to lλ ◦ gι(λ)(w). It lifts to a morphism
χ̂w ∈ Hom(Mcl

R,∆∪Λµ⃗
,Mcl

R,∆), and we have χ̂w(δµ⃗(−, i)) = ψδ ◦ gi(w). This leads to the
following invariant: the configuration of Th after reading gi1(w) · . . . · gin(w) is, in a suitable
sense, the “image by χw” of the configuration of Tµ⃗ after reading i1 . . . in. (In other words,
the “image of the SST Tµ⃗ by χw” is the copyless SST computing h′

w that we sketched at the
very beginning of this proof of Lemma E.2.) This directly implies the property relating h,
h′′

µ⃗ and (lλ)λ∈Λµ⃗
that we wanted. ◁

Let us finish proving Lemma E.2 using the fact we just proved. First of all, since the
letters of Λµ⃗ only serve as placeholders to be eventually substituted, they can be renamed at
our convenience. That means that we can take the Λµ⃗ to be disjoint for µ⃗ ∈ (Mcl

R,∅ ≀Q)I ,
and define Λ to be their disjoint union. We also take ι : Λ → I to be the unique common
extension of the ιµ⃗. In the same spirit, we glue together the functions h′′

µ⃗ ◦ f into

H : w ∈ Γ∗ 7→ h′′
(φδ◦gi(w)|i∈I)(f(w)) ∈ (∆ ∪ Λ)∗

From the above equation on h′′
µ⃗, one can then deduce for all w ∈ Γ∗ without condition that

h(CbS(f, (gi)i∈I)(w)) = CbS(H, (lλ ◦ gι(λ))λ∈Λ)(w)

(strictly speaking, one should have a family indexed by ∆ ∪ Λ on the right-hand side – to
comply with that, just extend the family with constant functions equal to x for each x ∈ ∆).

Using the above equation, we can rephrase our goal: we want to prove that the function
CbS(H, (lλ◦gι(λ))λ∈Λ) is comparison-free polyregular. This class of functions is – by definition
– closed under composition by substitution, so we can reduce this to the following subgoals:

H is comparison-free polyregular: in fact, it is regular, because regular functions are
closed under composition and regular conditionals (Lemma C.2). This argument relies on
the finiteness of the indexing set (Mcl

R,∅ ≀Q)I – a consequence of Proposition 2.23 – and
on the regularity of the language {w ∈ Γ∗ | (φδ ◦ gi(w))i∈I = µ⃗} for any µ⃗. The reasons
for the latter are as follows:
φδ is a morphism whose codomain Mcl

R,∅ ≀Q is finite, so φ−1
δ ({µi}) is regular for i ∈ I;

the functions gi for i ∈ I are assumed to be comparison-free polyregular, so they
preserve regular languages by inverse image, as all polyregular functions do [4];
regular languages are closed under finite intersections, and I is finite.

lλ ◦ gι(λ) is comparison-free polyregular for all λ ∈ Λ: because our main existence claim
states that lλ is regular for all λ ∈ Λ, and one of our assumptions is that any gi (for i ∈ I)
postcomposed with any regular function gives us a comparison-free polyregular function.

◀

F A lower bound on growth from the rank

In this section, we prove a statement that directly implies the last claim of Theorem 7.1:

▶ Theorem F.1. Let f : Γ∗ → Σ∗ be comparison-free polyregular of rank at least 1. Then there
exists a sequence of inputs (sn)n∈N ∈ (Γ∗)N such that |sn| = O(n) and |f(sn)| ≥ nrk(f)+1.

Let us start by proving the lemmas stated in the main text which this theorem depends on.

L. T. D. Nguyễn, C. Noûs and C. Pradic 35

F.1 Proofs for the lemmas in Section 7

Recall that the notion of r-split has been defined in Definition 7.3.

▶ Lemma 7.5. Let f : Γ∗ → Σ∗ be a regular function. There exist a morphism to a finite
monoid νf : Γ∗ → N (f) and, for each c ∈ Σ, a set of producing triples P (f, c) ⊆ N (f)3

such that, for any 1-split according to νf composed of u, v, w ∈ Γ∗ – i.e. νf (uv) = νf (u) and
νf (vw) = νf (w) – we have:

if (νf (u), νf (v), νf (w)) ∈ P (f, c), then |f(uvw)|c > |f(uw)|c;
otherwise (when the triple is not producing), |f(uvw)|c = |f(uw)|c.

Furthermore, in the producing case, we get as a consequence that ∀n ∈ N, |f(uvnw)|c ≥ n.

Proof idea. We reuse an idea from [28], but instead of using transition monoids of two-way
transducers, we rely on monoids of copyless register assignments. We shall use the notations
introduced in Section 2.4 for these monoids and the operations they support.

Let R and Σ be finite alphabets. First, we factor eraseΣ : Mcl
R,Σ → Mcl

R,∅ into two
surjective morphisms Mcl

R,Σ → Mcl01
R,Σ → Mcl

R,∅, going through a new monoid which keeps
some information about the letters of Σ but is still finite. To do so, we define an equivalence
relation on register assignments as follows: for α, β ∈ Mcl

R,Σ, we say that α ∼ β when
eraseΣ(α) = eraseΣ(β);
for each r ∈ R, the sets of letters from Σ that appear in α(r) and β(r) are equal.

One can show that ∼ is a congruence, so we may form the quotient monoid Mcl01
R,Σ = Mcl

R,Σ/∼.
Thanks to the first clause in the definition of ∼, the morphism eraseΣ factors through the
canonical projection. The quotient is finite since each equivalence class has a representative α
such that |α(r)| ≤ |R| + |Σ| for all r ∈ R: essentially, ∼ only takes into account the presence
or absence of each letter in Σ, not their multiplicity (hence the notation “01”).

Next, let f : Γ∗ → Σ∗ be computed by some copyless SST (Q, q0, R, δ, u⃗I , F). We take
N (f) = Mcl01

R,Σ ≀Q and define νf as a composition Γ∗ → Mcl
R,Σ ≀Q → N (f) where the first

morphism – which we may call ψδ, as in Lemma E.3 – maps c ∈ Γ to δ(−, c) and the second
morphism is the canonical projection.

What we need to show now is that, given a 1-split (u, v, w) ∈ (Γ∗)3 with respect to νf ,
the comparison between |f(uvw)| and |f(uw)| depends only on νf (x) for x ∈ {u, v, w}.

Let q′ and u⃗′
I be the state and register values of the SST after reading u; to be more

formal, ψδ(u)(q0) = (q′, α) and α†(u⃗I) = u⃗′
I . Note that q′ is also the first component of the

pair νf (u)(q0); since νf (uv) = νf (u) (by definition of 1-split), the SST reaches the state q′

after reading uv as well: ψδ(q′, v) = (q′, β) for some β ∈ Mcl
R,Σ.

Let ψδ(w)(q′) = (q′′, γ). Then

f(uvw) = F (q′′)† ◦ (β • γ)†(u⃗′
I) f(uw) = F (q′′)† ◦ γ†(u⃗′

I)

Since νf (vw) = νf (w), we have eraseΣ(β • γ) = eraseΣ(γ). Therefore, ω = (β • γ)⊙(F (q′′))
and ω′ = γ⊙(F (q′′)) have the same letters from R with the same multiplicities (and appearing
in the same order, although this does not matter for us here): |ω|r = |ω′|r for all r ∈ R. This
is why the two sums over R cancel out in the following computation (writing u⃗′

I = (u′
r)r∈R):

∀c ∈ Σ, |f(uvw)|c − |f(uw)|c = |ω†(u⃗′
I)|c − |(ω′)†(u⃗′

I)|c
= |ω|c +

∑
r∈R

|ω|r · |u′
r|c − |ω′|c −

∑
r∈R

|ω′|r · |u′
r|c

= |ω|c − |ω′|c

36 Comparison-free Polyregular Functions

From now on, let c ∈ Σ. From the definition of β⊙, we have

|ω|c = |β⊙(ω′)|c = |ω′|c +
∑
r∈R

|ω′|r · |β(r)|c

So we get the dichotomy of the lemma statement:
if there exists some r ∈ R such that |ω′|r > 0 and |β(r)|c > 0, then |f(uvw)| > |f(uw)|;
otherwise, |f(uvw)| = |f(uw)|.

For each r ∈ R, the condition |ω′|r > 0 can be checked from q′ and νf (w); in turn, q′ depends
only on νf (u). As for |β(r)|c > 0, since it is a condition on the presence or not of a certain
letter from Σ in β(r), without considering its precise multiplicity, it depends only on νf (v):
this is the information that νf was designed to encode. This gives us the definition of the set
of producing triples P (f, c).

There remains a final claim to prove in the lemma statement, concerning |f(uvnw)|c
when (u, v, w) ∈ P (f, c) and n ∈ N. Using µ(uv) = µ(u), one can show that for all m ∈ N,
the triple (uvm, v, w) is also a producing 1-split. So we have

|f(uvnw)|c > |f(uvn−1w)|c > · · · > |f(uw)|c

and since all elements of this sequence are natural numbers, |f(uvnw)|c ≥ n. ◀

Next, we prove Proposition 7.8 before Lemma 7.7, following the order of logical dependency.

▶ Proposition 7.8. Let Γ be an alphabet, M be a finite monoid, φ : Γ∗ → M be a morphism
and r ≥ 1. There exists N ∈ N such that any string s = uvw ∈ Γ∗ such that |v| ≥ N admits
an r-split s = u′v′

1 . . . v
′
rw

′ according to φ in which u is a prefix of u′ and w is a suffix of w′.

Proof. By the finite Ramsey theorem for pairs, there exists R ∈ N such that every complete
undirected graph with at least R vertices whose edges are colored using |M | colors contains
a monochromatic clique with r + 3 vertices. We take N = R− 1.

Let s = uvw ∈ Γ∗ with |v| ≥ N . Let us write s[i . . . j] for the substring of s between
two positions i, j ∈ {0, . . . , |s|}. Those indices are considered as positions in-between letters,
so, for instance, s = s[0 . . . |s|], while s[(i − 1) . . . i] is the i-th letter of s; note also that
s[i . . . j] · s[j . . . k] = s[i . . . k]. In particular, we have v = s[|u| . . . |uv|].

Consider the following coloring of the complete graph over V = {|u|, . . . , |uv|}: the edge
(i, j) ∈ V 2 with i < j is given the color φ(s[i . . . j]). Since |V | ≥ N + 1 = R, there exists a
monochromatic clique {i0, . . . , ir+2} ⊆ V with i0 < · · · < ir+2.

We now define u′ = s[0 . . . i1] and w′ = s[ir+1 . . . |s|], which ensures that u is a prefix of
u′ and w is a suffix of w′ since i1 and ir+1 are positions in v. For m ∈ {1, . . . , r}, we also
take v′

m = s[im . . . im+1] ̸= ε (because |v′
m| = im+1 − im ≥ 1). Then s = u′v′

1 . . . v
′
rw

′, and

φ(u′v′
1 . . . v

′
m) = φ(s[0 . . . im+1]) = φ(s[0 . . . i0])φ(s[i0 . . . im+1])

= φ(s[0 . . . i0])φ(s[i0 . . . i1]) by monochromaticity
= φ(s[0 . . . i1]) = φ(u′)

and similarly, φ(v′
m . . . v′

1w
′) = φ(w′). Thus, by definition, we have an r-split of s. ◀

▶ Lemma 7.7. Let f : Γ∗ → Σ∗ be regular and φ : Γ∗ → M be a morphism with M finite.
Suppose that π ◦ φ = νf for some other morphism π : M → N (f). Let r ≥ 1 and Π ⊆ Σ.

We define L(f,Π, φ, r) to be the set of strings that admit an r-split s = uv1 . . . vrw

according to φ such that all the triples (uv1 . . . vi−1, vi, vi+1 . . . vrw) are producing with
respect to (f,Π) – let us call this a producing r-split with respect to (f,Π, φ).

Then L(f,Π, φ, r) is a regular language, and sup{|f(s)|Π | s ∈ Γ∗ \ L(f,Π, φ, r)} < ∞.

L. T. D. Nguyễn, C. Noûs and C. Pradic 37

Proof. L(f,Π, φ, r) can be recognized by a non-deterministic automaton that guesses an
adequate r-split and computes φ(u), φ(v1), . . . , φ(vr), φ(w). The hard part is showing that
|f(−)|Π is bounded on the complement of this language.

By the previous proposition, there exists some N ∈ N such that any string s ∈ Γ∗ of
length at least N admits an r-split according to φ. Thanks to the existence of π, it is also
an r-split according to νf . So if this long string is in Γ∗ \ L(f,Π, φ, r), then it is of the form
s = uv1 . . . vrw where, for some i ∈ {1, . . . , r}, (uv1 . . . vi−1, vi, vi+1 . . . vrw) is not producing.
Therefore, |f(uv1 . . . vi−1vi+1 . . . vrw)|Π = |f(uv1 . . . vrw)|Π. The important part is that the
argument in the left-hand side is strictly shorter (the definition of r-split contains vi ̸= ε).
Furthermore, we claim that s′ = uv1 . . . vi−1vi+1 . . . vrw ∈ Γ∗ \ L(f,Π, φ, r). Once this is
established, a strong induction on the length suffices to show that |f(−)|Π restricted to
Γ∗ \ L(f,Π, φ, r) reaches its maximum at some string of length smaller than N , and thus to
conclude the proof.

It remains to show that s′ /∈ L(f,Π, φ, r). If this were false, then by definition we would
have a producing r-split s′ = u′v′

1 . . . v
′
rw

′. Assuming this, we will lift this split to a producing
r-split of s in order to contradict s /∈ L(f,Π, φ, r). We give notations to the components of
our non-producing triple: û = uv1 . . . vi−1, v̂ = vi, ŵ = vi+1 . . . vrw.

Suppose that for some j ∈ {1, . . . , r} and x ∈ Γ∗, we have û = u′v′
1 . . . v

′
j−1x and |x| ≤ |v′

j |.
Then there must exist a unique y ∈ Γ∗ such that v′

j = xy and ŵ = yv′
j+1 . . . v

′
rw

′. What we
want to show now is that (u′, v′

1, . . . , v
′
j−1, xv̂y, v

′
j+1, . . . , v

′
r, w

′) is a producing r-split of s.
First, the concatenation of this sequence of length r + 2 is indeed equal to ûv̂ŵ = s.
Next, we have φ(u′v′

1 . . . vj−1(xv̂y)) = φ(ûv̂y) = φ(ûv̂)φ(y) = φ(û)φ(y) since (û, v̂, ŵ)
is a 1-split of s, and φ(û)φ(y) = φ(ûy) = φ(u′v′

1 . . . v
′
j). For k ≥ j, by multiplying

by φ(v′
j+1 . . . v

′
k) on the right, we get φ(u′v′

1 . . . v
′
j−1(xv̂y)v′

j+1 . . . v
′
k) = φ(u′v′

1 . . . v
′
k).

Similarly, for k ≤ j, we have φ(v′
k . . . v

′
j−1(xv̂y)v′

j+1 . . . v
′
rw

′) = φ(v′
k . . . v

′
rw

′).
Combining the above with the fact that (u′, v′

1, . . . , v
′
r, w

′) is an r-split of s′ gives us
directly from the definitions that our new (r + 2)-tuple with xv̂y is an r-split of s.
Finally, we must check that it is producing.

Let k ≤ j − 1. We must show that (u′v′
1 . . . v

′
k−1, vk, v

′
k+1 . . . v

′
j−1(xv̂y)vj+1 . . . v

′
rw

′) is
producing with respect to (f,Π). We have seen previously that the componentwise
image by φ of this triple is the same as the one for (u′v′

1 . . . v
′
k−1, v

′
k, v

′
k+1 . . . v

′
rw

′).
The latter is producing (since it comes from an r-split chosen to be producing), and
therefore so is the former, because thanks to νf = π ◦ φ, the image by φ suffices to
determine whether a triple is producing.
The case k ≥ j + 1 is symmetrical.
The remaining case is (u′v′

1 . . . v
′
j−1, xv̂y, v

′
j+1 . . . v

′
rw

′). It would be convenient if xv̂y
and v′

j had the same image by φ, but this is not guaranteed. Instead, we come back
to the dichotomy concerning what happens when we remove the substring xv̂y in s.
This can be done in two steps: first remove v̂ in s, which gives us s′, then remove
xy = v′

j from s′, resulting in s′′ = u′v′
1 . . . v

′
j−1v

′
j+1 . . . v

′
rw

′. Using the fact that the
r-split of s′ is producing while (û, v̂, ŵ) is not, we have |f(s)|Π = |f(s′)|Π > |f(s′′)|Π.
This means that the 1-split containing xv̂y must be producing.

If the (j, x) chosen previously does not exist, then either u′ is a prefix of û or w′ is a suffix
of ŵ. In those cases, there is an analogous lifting procedure, and its proof of correctness is
simpler; we leave this to the reader. ◀

▶ Remark F.2. It is not clear whether the above reasoning can be made to work if we
require idempotency in the definition of r-split. An analogous argument is made in the first
paragraph of the proof of the original Dichotomy Lemma in [28], but we were unable to

38 Comparison-free Polyregular Functions

check that s′ /∈ L(f,Π, φ, r) when forcing the central elements of producing triples to be
idempotent. Thankfully it does not seem to be required to carry out further arguments
leading to a proof of Theorem F.1.

▶ Lemma 7.9. Let g : Γ∗ → I∗ be a regular function and, for each i ∈ I, let hi : Γ∗ → Σ∗ be
comparison-free polyregular of rank at most k. Suppose that sup

s∈Γ∗
|g(s)|J < ∞ where

J =
{

{i ∈ I | rk(hi) = k} when k ≥ 1
{i ∈ I | |hi(Γ∗)| = ∞} when k = 0

(Morally, regular functions with finite range play the role of “comparison-free polyregular
functions of rank −1”.) Then rk(CbS(g, (hi)i∈I)) ≤ k.

Proof. We write f = CbS(g, (hi)i∈I).

First, let us consider the case k = 0. For convenience, we assume w.l.o.g. that I ∩ Σ = ∅.
Let N = sup{|g(s)|J | s ∈ Γ∗} – in the degenerate case J = ∅, this leads to N = 0 – and
ιn(s) be the n-th letter of J in g(s) if it exists, or else ε. Then we use the equation g(s) =
ρ0(s)ι1(s)ρ1(s) . . . ιN (s)ρN (s) to define uniquely ρ0, . . . , ρN : Γ∗ → (I \ J)∗. One can build
for each n ∈ {0, . . . , N} a sequential transducer whose composition with g yields ρn; therefore,
since g is regular, so is ρn. We define ψn(s) next as hιn(s)(s) when ιn(s) ∈ J , and ε otherwise.
For any n ∈ {1, . . . , N}, since the languages g−1(((I \ J)∗J)n−1(I \ J)∗iI∗) are regular for
all i ∈ J , this defines ψn as a combination of {s 7→ ε} ∪ {hi | i ∈ J} by regular conditionals,
so ψn is regular. Finally, we set f ′(s) = ρ0(s)ψ1(s)ρ1(s) . . . ψN (s)ρN (s) ∈ (Σ ∪ I \ J)∗; the
function f ′ thus defined is regular by closure under concatenation (use a product construction
on copyless SSTs). Observe that f ′(s) is obtained by substituting each occurrence of a letter
i ∈ J in g(s) by hi(s) (thus, it is equal to g(s) when J = ∅, and to f(s) when J = I).

What remains to do is to substitute the letters of I \ J to get f . To do so, let us define
Lw⃗ = {s ∈ Γ∗ | ∀i ∈ I \ J, hi(s) = wi} for w⃗ = (wi)i∈I\J ∈

∏
i∈I\J hi(Γ∗). The function f

coincides on Lw⃗ with f ′ postcomposed with the morphism that replaces each i ∈ I \ J by
wi; this is regular by closure under composition. Furthermore, the factors of

∏
i∈I\J hi(Γ∗)

are finite by definition of J , and I \ J itself is a subset of the finite alphabet I. So there are
finitely many Lw⃗, and they partition Σ∗; they are also all regular, as finite intersections of
preimages of singletons by regular functions. Therefore, f is obtained by combining regular
functions by a regular conditional, so it is regular, i.e. rk(f) = 0 as we wanted.

This being done, let us move on to the case k ≥ 1. For i ∈ J , let hi = CbS(g′
i, (h′

i,x)x∈Xi)
where all the g′

i are regular and the h′
i,x are of rank at most k − 1, choosing the Xi to be

pairwise disjoint as well as disjoint from I. Let f ′(s) be obtained from g(s) by substituting
each occurrence of a letter i ∈ J by g′

i(s). For the same reasons as those exposed in the first
paragraph of the case k = 0, this defines a regular function f ′. By taking its composition
by substitution with the disjoint union of the families (hi)i∈I\J and (h′

i,x)x∈Xi for i ∈ J , we
recover f . Since the functions involved in this union family are all of rank at most k − 1 (by
definition of J), this means that rk(f) ≤ k. ◀

F.2 Wrapping up the proof of Theorem F.1
▶ Lemma F.3. Let f : Γ∗ → Σ∗ be comparison-free polyregular. There exists a morphism
to a finite monoid ν′

f : Γ∗ → N ′(f) such that, for any 1-split according to ν′
f composed of

u, v, w ∈ Γ∗ and any c ∈ Σ∗, the sequence (|f(uvnw)|c)n∈N is non-decreasing.

L. T. D. Nguyễn, C. Noûs and C. Pradic 39

Proof. By straightforward induction on rk(f), using Lemma 7.5: for f = CbS(g, (hi)i∈I)
where g is regular and the hi are comparison-free, we take N ′(f) = N (g) ×

∏
i∈I

N ′(hi). ◀

▶ Lemma F.4. Let f : Γ∗ → Σ∗ be a comparison-free polyregular function. Let φ : Γ∗ → M

be a morphism to a finite monoid and let r ≥ 1. Then there exists a regular language
L̂(f, φ, r) ⊆ Γ∗ such that:

the function which maps L̂(f, φ, r) to ε and coincides with f on Γ∗ \ L̂(f, φ, r)
is regular and takes finitely many values if rk(f) = 0 i.e. f is regular;
is comparison-free polyregular with rank strictly lower than rk(f) otherwise;

for any s ∈ L̂(f, φ, r), there exist k = rk(f) + 1 r-splits according to φ – let us write
them as s = u(m)v

(m)
1 . . . v

(m)
r w(m) for m ∈ {1, . . . , k} – such that, for any factorization

s = α0β1α1 . . . βkαk where, for some permutation σ of {1, . . . , k}, each βm coincides
with some v(σ(m))

l (in the sense that their positions as substrings of s are equal), we have

∀n ∈ N, |f(α0β
n
1 α1 . . . β

n
kαk)| ≥ nk

(note that in general, such factorizations s = α0β1α1 . . . βkαk might not exist, for instance
when r = 1 and all the substrings v(m)

1 overlap)

Proof. We proceed by induction on rk(f).

Base case: rk(f) = 0. In this case, f is regular. Let ψ : Γ∗ → M × N (f) be the monoid
morphism obtained by pairing φ (given in the lemma statement) with νf (given in Lemma 7.7).
Then, using Lemma 7.7, one can see that taking L̂(f, φ, r) = L(f,Σ, ψ, r) works.

Inductive case: rk(f) ≥ 1. In this case, f = CbS(g, (hi)i∈I) for some regular g : Γ∗ → I∗

and some comparison-free polyregular hi : Γ∗ → Σ∗ with rk(hi) ≤ rk(f) − 1 for all i ∈ I. Let
φ and r be as given in the lemma statement. Let J be defined as in Lemma 7.9:

J =
{

{i ∈ I | rk(hi) = rk(f) − 1} when rk(f) ≥ 2
{i ∈ I | |hi(Γ∗)| = ∞} when rk(f) = 1

For i ∈ J , let ψi : Γ∗ → M × N (g) × N ′(hi) be obtained by combining φ with the morphisms
given by Lemmas 7.5 and F.3. We shall consider the regular languages L̂(hi, ψi, r) provided
by the inductive hypothesis.

Let us take a copy J = {i | i ∈ J} of J such that J ∩ I = ∅. We define the regular
function g′ : Γ∗ → (I∪J)∗ as follows: for any input s ∈ Γ∗, to build the output g′(s), we start
from g(s) and then, for each i ∈ J such that s /∈ L̂(hi, ψi, r), we replace all the occurrences
of i by i. For i ∈ J , we also define hi to be the function which maps L̂(hi, ψi, r) to ε and
coincides with hi on Γ∗ \ L̂(hi, ψi, r). By construction, f = CbS(g′, (hi)i∈I∪J).

Note that g′ is regular: it is indeed generated from g using regular conditionals and
postcomposition by letter-to-letter morphisms. We can therefore build a morphism

χ : Γ∗ → M × N (g′) ×
∏
i∈J

N ′(hi)

in the expected way, and define the language provided by the lemma statement as

L̂(f, φ, r) = L(g′, J, χ, r)

40 Comparison-free Polyregular Functions

According to Lemma 7.7, it is indeed a regular language. Concerning the first item of the
lemma statement, the function that it considers can be expressed as

CbS(g′′, (hi)i∈I∪J) where g′′ : s 7→

{
ε when s ∈ L(g′, J, χ, r)
g′(s) otherwise

We want to show that rk(CbS(g′′, (hi)i∈I∪J)) ≤ rk(f) − 1. The shape of this statement fits
with the conclusion of Lemma 7.9, so we just have to check the corresponding assumptions.

g′′ is regular, by closure of regular functions under regular conditionals.
for i ∈ I ∪ J , the function hi is comparison-free polyregular of rank at most rk(f) − 1:

for i ∈ I, this was required in our choice of expression for f = CbS(g, (hi)i∈I) (and
such a choice was possible by definition of rank);
for i = j ∈ J , we get this by applying the first item of the inductive hypothesis to hj

(indeed, the function introduced by this item is none other than hj = hi).
We also get that, with the same J as before,

J =
{

{i ∈ I ∪ J | rk(hi) = rk(f) − 1} when rk(f) ≥ 2 i.e. ∀i ∈ J, rk(hi) ≥ 1
{i ∈ I ∪ J | |hi(Γ∗)| = ∞} when rk(f) = 1 i.e. ∀i ∈ J, rk(hi) = 0

using again the first item of the inductive hypothesis to handle the case of indices in J .
Finally, by definition of g′′ and by Lemma 7.7, using the convention sup∅ = 0,

sup
s∈Γ∗

|g′′(s)|J = sup{|g′(s)|J | s ∈ Γ∗ \ L(g′, J, χ, r)} < ∞

Let us now check the second item concerning splits and factorizations. Let s ∈ L̂(f, φ, r).
By definition, there exists i ∈ J such that s ∈ L(g′, i, χ, r). In particular, |g′(s)|i ≥ 1, which
entails that s ∈ L̂(hi, ψi, r) by definition of g′. The inductive hypothesis gives us a family
of r-splits s = u(m)v

(m)
1 . . . v

(m)
r w(m) according to ψ for m ∈ {1, . . . , k − 1} – recall that

rk(hi) + 1 = rk(f) = k − 1. We complete it by taking (u(k), v
(k)
1 , . . . , v

(k)
r , w(k)) to be a

producing r-split of s with respect to (g′, i, χ), whose existence is guaranteed by definition of
L(g′, i, χ, r). Since φ factors through both ψi and χ by construction, this indeed gives us a
family of k r-splits according to φ.

Now, let s = α0β1α1 . . . βkαk be a factorization and σ be a permutation of {1, . . . , k}
such each βm coincides with some v(σ(m))

l for some l. Note that from the original expression
of f as a composition by substitution, we have

∀s′ ∈ Γ∗, |f(s′)| ≥ |g(s′)|i · |hi(s′)|

Therefore, our desired inequality will follow once we prove the ones below:

∀n ∈ N, |g(α0β
n
1 α1 . . . β

n
kαk)|i ≥ n and |hi(α0β

n
1 α1 . . . β

n
kαk)| ≥ nk−1

To illustrate the idea, we assume σ(k) = k, so that βk = v
(k)
l for some l, and we invite the

reader to convince themself that this is merely a matter of notational convenience for the
rest of the proof.

Let us start with hi. Since ν′
hi

factors through χ, the triple

(α0β1 . . . βk−1αk−1, βk, αk) = (u(k)v
(k)
1 . . . v

(k)
l−1, v

(k)
l , v

(k)
l+1 . . . v

(k)
r w(k))

is a 1-split according to ν′
hi

. Using the fact that ν′
hi

factors through ψi, one can show that
(α0β

n
1 . . . β

n
k−1αk−1, βk, αk) is still a 1-split according to ν′

hi
. Therefore, for n ∈ N,

|hi(α0β
n
1 . . . β

n
k−1αk−1β

n
kαk)| ≥ |hi(α0β

n
1 . . . β

n
k−1αk−1βkαk)| ≥ nk−1

L. T. D. Nguyễn, C. Noûs and C. Pradic 41

where βk is not raised to the n-th power in the middle; the left inequality comes from
Lemma F.3, while the right inequality is part of the induction hypothesis applied to hi.

The case of g requires an additional step. We know that (α0β1 . . . βk−1αk−1, βk, αk) is a
producing triple with respect to (g′, i, χ); therefore, by Lemma 7.5,

∀n ∈ N, |g′(α0β1 . . . βk−1αk−1β
n
kαk)|i ≥ n

To replace g′ by g in the above inequality, recall that by definition of g′, since i ∈ J ,

∀s′ ∈ Γ∗, (|g′(s′)|i ̸= 0 =⇒ |g′(s′)|i = |g(s′)|i)

One can then conclude by Proposition F.5 below, taking l = k − 1. There is a subtlety
here: our definitions ensure that νg factors through ψi, but this might not be the case for
νg′ (because ψi had to be defined before g′). So for this final step, we must work with the
function g, whereas to leverage the producing triple, we had to use g′. ◀

The following proposition, which we used at the end of the above proof, will also be useful
to prove Theorem 8.3.

▶ Proposition F.5. Let g : Γ∗ → Σ∗ be a regular function and s = α0β1α1 . . . βlαl ∈ Γ∗ such
that every triple (α0β1 . . . αm, βm+1, αm+1βm+2 . . . αl) is a 1-split according to νg. Then for
every c ∈ Σ, the function

(n1, . . . , nl) 7→ |g(α0β
n1
1 α1 . . . β

nl

l αl)|c

is monotone according to the product partial order on Nl.

Proof idea. In order to apply Lemma 7.7, the key observation is that the triple

(α0β
n1
1 . . . αmβ

nm+1
m+1 , βm+1, αm+1β

nm+2
m+2 . . . αl)

is also a 1-split. This is because we have, by definition of 1-split, νg(α0β
n1
1) = νg(α0β1), then

νg(α0β1α1β
n2
2) = νg(α0β1α1β2), etc., and similarly on the right side. ◀

After having established Lemma F.4, we can use it to finally wrap up this section.

Proof of Theorem F.1. We apply Lemma F.4 to get a language L̂(f, φ, rk(f) + 1) where φ
does not matter (take for instance the morphism from Γ∗ to the trivial monoid). It must
be non-empty (or else we would have the contradiction rk(f) < rk(f)), so we can choose an
arbitrary element s ∈ L̂(f, φ, rk(f) + 1).

Let k = rk(f) + 1. Lemma F.4 gives us k factorizations s = u(m)v
(m)
1 . . . v

(m)
k w(m)

satisfying certain properties. Note that k plays two roles here that were distinct in the lemma.
We claim that thanks to this, there exists a factorization s = α0β1α1 . . . βkαk as described
in Lemma F.4. This entails that setting sn = α0β

n
1 α1 . . . β

n
kαk proves the theorem.

Our task is therefore to select one element in each of the k sets {v(m)
l | l ∈ {1, . . . , k}}

of substrings of s for m ∈ {1, . . . , k}, such that the selected substrings are pairwise non-
overlapping. There is a strategy for this which is similar to the classical greedy algorithm for
computing a maximum independent set in an interval graph. We take β1 to be the substring
of s among the v(m)

1 whose right endpoint is leftmost. One can check that β1 cannot overlap
with any v

(m)
l for l ≥ 2. Thus, by discarding the set to which β1 belongs, as well as each

v
(m)
1 in the other sets, we reduce the remainder of the task to our original goal with k being

decremented by 1. At this stage, an induction suffices to conclude the proof. ◀

42 Comparison-free Polyregular Functions

G Proofs of Theorems 6.1 and 7.1

Now that we have shown that cfp functions are closed under composition and that their
asymptotic growth are tightly linked to their ranks, we have the essential ingredients to prove
Theorems 6.1 and 7.1. There are a couple of preliminary lemmas helpful for both that we
first prove here.

▶ Lemma G.1. For any comparison-free polyregular function f : Γ∗ → Σ∗ and k ≥ rk(f),
there exists a regular function f ′ : ({0, . . . , rk(f)} × Γ)∗ → Σ∗ such that f = f ′ ◦ cfpow(k+1)

Γ .

Proof. By induction on rk(f) (with an inductive hypothesis that quantifies over k).

Base case (f regular). Consider the unique φ ∈ Hom(({0, . . . , rk(f)} × Γ)∗,Γ∗) such that
for every c ∈ Γ, φ(k, c) = c and φ(m, c) = ε when m < k. Since regular functions are closed
under composition, f ′ = f ◦ φ is regular, and the desired equation follows from the fact that
φ ◦ cfpow(k+1)

Γ = idΓ∗ .

Inductive case. Let f = CbS(g, (hi)i∈I) with g : Γ∗ → I∗ regular and hi : Γ∗ → Σ∗ cfp
such that rk(hi) ≤ rk(f) − 1 for all i ∈ I. Using the inductive hypothesis, we know that
hi = h′

i ◦ cfpow(k)
Γ for some family of regular functions (h′

i)i∈I . Thus, let us assume we are
given 2DFTs T and (T ′

i)i∈I corresponding to g and the family (h′
i)i∈I . Without loss of

generality, let us assume further that T always output at most one letter at each transition,
never outputs a letter upon reading ◁, and that the Ti always terminate on the marker ▷ by
a transition that does not move the reading head. With these assumptions, let us describe
informally a 2DFT T ′′ corresponding to the function f ′ such that CbS(g, (h′

i ◦cfpow(k)
Γ)i∈I) =

f ′ ◦ CbS(g, (h′
i)i∈I) ◦ cfpow(k+1)

Γ .
Assuming that the state space of T is Q and the state space of T ′

i is Q′
i, with Q and the

Q′
is all pairwise disjoint, we take the state space of T ′′ to be

Q′′ = Q× {L,R,S} ×

(
{•} ⊔

⋃
i∈I

Q′
i × {L,R,S}

)

with initial state (q0,R, •), if q0 is the initial state of T and final states the triples (qf ,M, •)
such that qf is a final state of T . To guide intuitions, the elements L, R and S should be
respectively read as “left”, “right” and “stay”. With this in mind, the high-level description
of computations carried out by T ′′ over words pow(k)

Γ is as follows.
When in a state (q0,M, •), T ′′ essentially acts as T on letters of the shape (k, a) or
end-markers and ignores letters (l, a) for l < k; the central component M then determines
whether to seek the next relevant position to the left or to the right when reading such
an irrelevant letter. This continues up until upon reading a letter (k, a) in state (q,M, •)
such that T would ouput i when reading a in q, T ′′ moves into the state (r,M′, (q′

0,i,R))
where q′

0,i is the initial state of T ′
i and (r,M′) is determined by the transition in T .

When in a state (q,M, (q′
i,M′)) for q′

i ∈ Q′
i, T behaves exactly as Ti as long as the current

transition does not reach the final state, treating letters outside of its input alphabets as
end markers; this is possible because of the component M′ of the state, that we use to
keep track of the last move of the reading head. Meanwhile the components q ∈ Q and
M are untouched. When a final transition is taken, by our assumption we return control
to T by going to state (q,M, •) and moving in the direction prescribed by M (recall that,
by assumption, we are moving away from (or staying in) the position at which Ti started
running).

L. T. D. Nguyễn, C. Noûs and C. Pradic 43

We leave formalizing this definition and checking that T ′′ has a desirable behaviour to the
reader. ◀

▶ Lemma G.2. For every k ∈ N, cfpow(k)
Γ is equal to a a composition of sequential functions

and squaring functions cfsquaring∆.

Proof. We proceed by induction over k. The cases of k = 0, 1, 2 are immediate as cfpow(k)
Γ

then corresponds, up to isomorphism of output alphabet, to a constant function, the identity
and cfsquaringΓ respectively, so we focus on the inductive step. To achieve the desired
result, it suffices to show that there exists a sequential function

f : (({0, . . . , k} × Γ) ∪ ({0, . . . , k} × Γ))∗ → ({0, . . . , k + 1} × Γ)∗

such that cfpow(k+1)
Γ = f ◦ cfsquaring{0,...,k}×Γ ◦ cfpow(k+1)

Γ . In fact, the sequential
transducer pictured below computes such an f :

o i
(k, a) | (k + 1, a)
(k, a) | (k, a)
(m, a) | (m, a)

(m, a) | ε

(m, a) | ε

(k, a) | ε
(m, a) | ε

(k, a) | (k + 1, a)
ε ε

where m designates any element of {0, . . . , k − 1}. ◀

Now we turn to the proofs of our main theorems.

▶ Theorem 6.1. The class of comparison-free polyregular functions is the smallest class
closed under usual function composition and containing both all regular functions and the
functions cfsquaringΓ (cf. Example 4.3) for all finite alphabets Γ.

Proof of Theorem 6.1. The direct implication is obtained by combining the two lemmas
above: every cfp function can be written as a composition f ◦ cfpow(k)

Γ for some k ∈ N and f
regular by Lemma G.1, and Lemma G.2 guarantees that in turn, cfpow(k)

Γ is a composition of
sequential (and a fortiori regular) functions and squarings. Conversely, that cfp functions are
closed under composition is proven in Appendix E, which is enough to conclude as regular
functions and cfsquaringΓ are cfp. ◀

▶ Theorem 7.1. Let f : Γ∗ → Σ∗ and k ∈ N. The following are equivalent:
(i) f is comparison-free polyregular with rank at most k;
(ii) f is comparison-free polyregular and |f(w)| = O(|w|k+1);
(iii) there exists a regular function g : ({0, . . . , k} × Γ)∗ → Σ∗ such that f = g ◦ cfpow(k+1)

Γ ,
with the following inductive definition: cfpow(0)

Γ : w ∈ Γ∗ 7→ ε ∈ (∅ × Γ)∗ and

cfpow(n+1)
Γ : w 7→ (n,w1) · cfpow(n)

Γ (w) · . . . · (n,w|w|) · cfpow(n)
Γ (w)

To make (ii) =⇒ (i) more precise, if f is cfp with rk(f) ≥ 1, then it admits a sequence of
inputs w0, w1, . . . ∈ Γ∗ such that |wn| → +∞ and |f(wn)| = Ω(|wn|rk(f)+1).

44 Comparison-free Polyregular Functions

Proof of Theorem 7.1. We prove the circle of implications (i) ⇒ (iii) ⇒ (ii) ⇒ (i). (The
claim after this equivalence has already been established in Theorem F.1.)

The first implication (i) ⇒ (iii) corresponds exactly to Lemma G.1 we just proved.
The implication (iii) ⇒ (ii) is also relatively easy: cfpow(k)

Γ is cfp (this is a consequence
of Lemma G.2 and Theorem 6.1, although cfpow(k)

Γ can also be shown to fit Definition 4.2 in
a more elementary way) and so is f ◦ cfpow(k+1)

Γ by Theorem 6.1 for f regular. Furthermore,
|cfpow(k+1)

Γ (w)| = O(|w|k+1) and, since f is regular, |f(u)| = O(|u|), so we have, as expected,
|(f ◦ cfpow(k+1)

Γ)(w)| = O(|w|k+1).
The final implication (ii) ⇒ (i) is technically the hardest as it relies on Theorem F.1.

Let f : Γ∗ → Σ∗ be cfp and k ∈ N such that |f(w)| = O(|w|k+1). If f is regular, then
rk(f) = 0 ≤ k. Otherwise, by Theorem F.1, there exists a sequence (wn)n∈N of inputs such
that |wn| = O(n) and |f(wn)| ≥ nrk(f)+1. So nrk(f)+1 = O(nk+1), hence rk(f) ≤ k. ◀

H Comparison-free polyregular sequences

H.1 Proof of Theorem 9.2

▶ Theorem 9.2. Let s : N → Σ∗ and k ∈ N. The sequence s is comparison-free polyregular
with rk(s) ≤ k if and only if there exists p > 0 such that, for any m < p, there is a polynomial
word expression e of star-height at most k + 1 such that ∀n ∈ N, s((n+ 1)p+m) = JeK(n).

As announced, we prove Theorem 9.2 inductively on the rank of the sequence under
consideration. The bulk of the reasoning is concentrated in the base case, stating that regular
sequences are exactly the ultimately periodic combinations of pumping sequences.

▶ Lemma H.1. A sequence of words s : N → Σ∗ is regular if and only if there is m > 0 such
that for every k < m, there are words u0, . . . , vl, v1, . . . , vl such that for every n ∈ N, we have

∀n ∈ N, s((n+ 1)m+ k) = u0(v1)n . . . (vl)nul

Proof. The “if” direction is straightforward, so we only prove the “only if” part of the
statement. To keep notations harmonized, let us work with f : {a}∗ → Σ∗ such that
s(n) = f(an) for every n ∈ N and fix a copyless SST computing f : {a}∗ → Σ∗ whose
set of states, set of registers and transition function we call Q, R and δ respectively. We
use the monoid Mcl

R,∅ ≀ Q introduced in Section 2.4, which contains µ = eraseΣ(δ(−, a)).
Since Mcl

R,∅ ≀ Q is finite (Proposition 2.23), there is an exponent m ∈ N \ {0} such that
µ•m = µ • . . . (m times) . . . • µ is idempotent, i.e. µ•m = µ•2m. This m is the one put forth
in the lemma statement.

Let us fix k < m. Let (q, α) = µ•m(q0) where q0 is the initial state of the SST. We
have µ•(m+k) • µ•m = µ•(2m+k) = µ•k • µ•2m = µ•k • µ•m = µ•(m+k) as usual. Therefore,
µ•m(q) = (q, β) with α • β = α and β • β = β (the latter is because of µ•2m = µ•m). Thus,
q is the state reached by the SST after reading am(n+1)+k for any n ∈ N. We also have
(δ(−, a))•m(q) = (q, γ) with γ ∈ Mcl

R,Σ and eraseΣ(γ) = β.
Given r ∈ R, we distinguish two cases.
First, suppose that β(r) = ε or equivalently that γ(r) ∈ Σ∗ (in general, the codomain of
γ is (Σ ∪R)∗). When the SST is in state q and reads am, it executes the assignment γ;
when β(r) = ε, the new value of the register r is this γ(r) ∈ Σ∗ which does not depend
on the old value of any register. Therefore, for all n ∈ N, the content of the register r
after having read am(n+1)+k (starting from the initial configuration) is the constant γ(r).

L. T. D. Nguyễn, C. Noûs and C. Pradic 45

We now treat the case where β(r) is non-empty. By definition, β • β = β∗ ◦ β where
β∗ ∈ Hom(R∗, R∗) extends β : R → R∗. Since we know, as a consequence of the
idempotency of µ•m, that β • β = β, we have β∗(β(r)) = β(r) ̸= ε.
Let us study in general the situation β∗(ρ) = β(r) ̸= ε for ρ ∈ R∗. A first observation
is that the letters in β(r) cannot be found in any other β(r′) for r′ ∈ R \ {r} because
β is copyless, so ρ /∈ (R \ {r})∗. We therefore have n ≥ 1 occurrences of r in ρ, so
ρ = ρ0r . . . rρn with ρ0, . . . , ρn /∈ (R \ {r})∗. By coming back to β∗(ρ) = β(r), into which
we plug this expression for ρ, and using the fact that β(r) has non-zero length, we can
see that n = 1 and β∗(ρ0) = β∗(ρ1) = ε.
Let us apply this to ρ = β(r) = eraseΣ(γ)(r) and lift the result to γ(r):

γ(r) = urrvr for some ur, vr ∈ (Σ ∪ β−1({ε}))∗

In the previous case (β(r′) = ε for r′ ∈ R), we saw that γ(β−1({ε})) ⊆ Σ∗. Therefore
γ⊙(ur), γ⊙(vr) ∈ Σ∗, where γ⊙ ∈ Hom((Σ ∪R)∗, (Σ ∪R)∗) extends γ : R → (Σ ∪R)∗ by
being the identity on Σ. Since Σ∗ is fixed by γ⊙, when we iterate, we obtain

γ•(n+1)(r) = (γ⊙)n ◦ γ(r) = (γ⊙(ur))n · urrvr · (γ⊙(vr))n

Now, let F be the final output function of the SST that computes f , and w⃗m+k be the register
values after it has read a prefix am+k. Then after reading am(n+1)+k, the new register values
are (γ•(n+1))†(w⃗m+k). More precisely, the register r contains:

γ(r) ∈ Σ∗ if β(r) = ε;
(γ⊙(ur))n · ((urrvr)†(w⃗m+k)) · (γ⊙(vr))n otherwise.

These values are combined by F (q)† – where q is the recurrent state we have been working
with all along, and F is the final output function – to produce the output f(am(n+1)+k).
This yields the desired shape: an interleaved concatenation of finitely many factors that are
either constant, (γ⊙(ur))n or (γ⊙(vr))n for some r ∈ R. ◀

Proof of Theorem 9.2. We proceed by induction on the rank of the sequence s : N → Σ∗

under consideration. If the rank of s is 0, it is regular and we apply Lemma H.1 and the
desired polynomial word expression is of the shape u0 · (v1)∗ . . . (vl)∗ · ul.

If the rank of s is k + 1, thanks to the induction hypothesis and the base case above,
it can be written as CbS(JeK, (Je′

iK)i∈I) where e is an expression over the alphabet I with
star-height at most one and the e′

is expressions over Σ with star-height at most k. Without
loss of generality, we may assume that that terminal nodes of polynomial word expressions
are words of length at most one. For such an expression over alphabet I, one may define
inductively the following substitution operation to obtain an expression of Σ∗:

j[(e′
i)i∈I] = e′

j ε[(e′
i)i∈I] = ε

(f · f ′)[(e′
i)i∈I] = f [(e′

i)i∈I] · f ′[(e′
i)i∈I] f∗[(e′

i)i∈I] = (f [(e′
i)i∈I])∗

One can then check by induction on the structure of e that Je[(e′
i)i∈I]K = CbS(JeK, (Je′

iK)i∈I)
and that e[(e′

i)i∈I] has star-height bounded by k + 1. ◀

H.2 Proof of Corollary 9.3
We finally show that cfp sequences are closed by post-composing with functions map(f) for
f cfp.

▶ Corollary 9.3. If f : Γ∗ → Σ∗ and s : N → (Γ ∪ {#})∗ are cfp, so is map(f) ◦ s.

46 Comparison-free Polyregular Functions

We first prove the result for poly-pumping sequences.

▶ Lemma H.2. If JeK : N → (Γ ∪ {#})∗ is a poly-pumping sequence and f : Γ∗ → Σ∗ is
comparison-free polyregular, then map(f) ◦ JeK is a cfp sequence.

For the rest of this subsection, we write S for the successor function n 7→ n+ 1 over N.
We will use the fact that s is a cfp sequence iff s ◦ S also is.

Proof. We first note that if the separator # does not occur at any leaf of e, then the result
is immediate as we would have map(f) ◦ JeK = f ◦ JeK. We thus focus on the cases when it
does occur, and proceed inductively over e.

If e = w ∈ (Γ ∪ {#})∗, then map(f) ◦ JeK is a constant sequence, which is obviously cfp.
If e = (e′)∗, with # occuring in e′, let hl, hr : N → Γ∗ and hc : N → (Γ ⊔ {#})∗ be the
sequences such that

Je′K ◦ S ◦ S = hl · # · hc · # · hr

with hl(n) being the largest #-free prefix of Je′K(n+ 2) and hr(n) the largest #-free suffix
of Je′K(n+ 2). There is a regular function

f ′ : (Γ ⊔ {#})∗ → (Γ ⊔ {#})∗

w0#w1# . . . wn−1#wn 7→ w1# . . . wn−1 (w0, . . . , wn ∈ (Γ ⊔ Γ)∗)

stripping away the first and last component of its input, so that it satisfies

f ′ ◦ map(f) ◦ Je′K ◦ S ◦ S = map(f) ◦ hc

By the inductive hypothesis, we know that map(f) ◦ Je′K is comparison-free polyregular.
We may therefore conclude by composition (cf. Theorem 6.1) that map(f) ◦ hc is cfp.
One can check analogously that hl and hr are also cfp. Then observe that

(JeK ◦ S ◦ S)(n) = (hl · # · hc · # · hr)(n)n+2

= (hl · (# · hc · # · hr · hl)n+1 · # · hc · # · hr)(n)

which means that we have

map(f) ◦ JeK ◦ S ◦ S =

(f ◦ hl)
·

(# · (map(f) ◦ hc) · # · (f ◦ (hr · hl)))∗

·
· (map(f) ◦ hc) · # · (f ◦ (hr · hl))

·
· (map(f) ◦ hc) · # · (f ◦ hr)

Thanks again to the closure under composition, each component of this expression is cfp,
so map(f) ◦ JeK ◦ S ◦ S is also cfp. Hence, so is map(f) ◦ JeK.
The last case where e = e′ · e′′ is handled similarly after a case analysis determining
whether # occurs only in e′, e′′ or in both; we leave it to the reader. ◀

Proof of Corollary 9.3. Suppose we are given f : Γ∗ → Σ∗ and s : N → (Γ ∪ {#})∗ cfp. By
Theorem 9.2, s is an ultimately periodic combination of poly-pumping sequences, so that there
are m > 0 and some expressions e0, . . . , em−1 such that s(m(n+ 1) + k) = JekK(n) for every
k < m. By Lemma H.2, every map(f) ◦ JekK is cfp. The set Lk = {m(n+ 1) + k | n ∈ N}
is semi-linear, i.e., corresponds to a regular language, and there are regular sequences
rk : N → N such that rk(m(n+ 1) + k) = n. Further, N = {n | n < m} ∪

⋃
k<m Lk, so we

may use the regular conditional provided by Proposition 4.8 to show that the combination of
the map(f) ◦ JekK ◦ rk and the first m values of map(f) ◦ s, which corresponds exactly to
map(f) ◦ s, is indeed cfp. ◀

L. T. D. Nguyễn, C. Noûs and C. Pradic 47

I Separation results

I.1 Proof of Theorem 8.1
▶ Theorem 8.1. There exist comparison-free polyregular functions which are not HDT0L:

(i) the function an ∈ {a}∗ 7→ (anb)n+1 ∈ {a, b}∗ for a ̸= b;
(ii) the function w ∈ Σ∗ 7→ w|w| for |Σ| ≥ 2 (a simplification of Example 4.3);
(iii) (from [15, §6]) the cfp functions that map an#w ∈ Σ∗ to (w#)n for a,# ∈ Σ, a ̸= #.

These examples are comparison-free. We have seen in Example 4.3 that w 7→ w|w| is a
comparison-free polyregular function. For the other examples:

(an 7→ (anb)n+1) = CbS((an 7→ an+1), (an 7→ anb)i∈{a}) is obtained as a composition by
substitution of sequential functions, i.e. functions computed by sequential transducers (cf.
Section 2.2), which are in particular regular;
for an alphabet Σ with a,# ∈ Σ, there exist sequential functions f : Σ∗ → {a}∗ and
g : Σ∗ → Σ∗ such that f(an#w) = an and g(an#w) = w# for n ∈ N and w ∈ Σ∗, so
that CbS(f, (g)i∈{a})(an#w) = (w#)n.

(i) is not HDT0L. Let us fix a HDT0L system ({a}, {a, b},∆, d, (h)i∈{a}, h
′) and show that

it does not compute an 7→ (anb)n+1. Let letters(w) be the set of letters occurring in the
string w at least once. By the infinite pigeonhole principle, there exists an infinite X ⊆ N
such that letters(hn(d)) has the same value ∆′ for all n ∈ X. Let us do a case analysis:

Suppose first that for some r ∈ ∆′ and some m ∈ N, the letter b appears twice in
h′ ◦ hm(r); in other words, that the latter contains a factor bakb for some k ∈ N. Then
for all n ∈ X, h′ ◦ hm+n(d) ∈ Σ∗bakbΣ∗. Since X is infinite, this holds for some n such
that m+ n > k, so that this word – i.e. the output of the HDT0L system for am+n – is
different from (am+nb)m+n+1 /∈ Σ∗bakbΣ∗.
Otherwise, for all r ∈ ∆′ (that includes the degenerate case ∆′ = ∅) and all m ∈ N,
there is at most one occurrence of b in h′ ◦ hm(r). Then for all m ∈ N, the length of
hmin(X)(d) bounds the number of occurrences of b in h′ ◦hm+min(X)(d), and this bound is
independent of m. On the contrary, in the sequence ((anb)n+1)n≥m+min(X), the number
of occurrences of b is unbounded.

(ii) is not HDT0L. The second counterexample, namely w 7→ w|w|, reduces to the first one:
indeed, (anb)n+1 = (anb)|anb| for all n ∈ N, which can also be expressed as

(w 7→ w|w|) ◦ (u ∈ {a}∗ 7→ ub) = (an 7→ (anb)n+1)

Suppose for the sake of contradiction that there is a HDT0L system (Σ,Σ,∆, d, (hc)c∈Σ, h
′)

that computes w 7→ w|w| with |Σ| ≥ 2; we may assume without loss of generality that a, b ∈ Σ.
Then ({a}, {a, b},∆, hb(d), (ha)c∈{a}, h

′) computes an 7→ (anb)n+1.

(iii) is not HDT0L. (This is claimed without proof in [15, Section 6].)
Let Σ ⊇ {a,#} be an alphabet and let (Σ,Σ,∆, d, (hc)c∈Σ, h

′) be a HDT0L system. We
reuse a similar argument to our treatment of the counterexample (i). Let the sets ∆′ ⊆ ∆
and X ⊆ N with X infinite be such that letters(hn

a(d)) = ∆′ for all n ∈ X.
Suppose first that for some r ∈ ∆′ and some m ∈ N, the string h′ ◦ hm

a ◦ h#(r); contains
a factor # · ak · # for some k ∈ N. Then for all n ∈ X, the given HDT0L system maps
am#an to a string in Σ∗ · # · ak · # · Σ∗. For n > k, this language does not contain
(an#)m; such a n ∈ X exists because X is infinite.

48 Comparison-free Polyregular Functions

Otherwise, for any m ∈ N, since # occurs at most once in h′ ◦ hm
a ◦ h#(r) for r ∈ ∆′,

the output of the HDT0L system has at most |hmin(X)(d)| occurrences of # on input
am#amin(X). Therefore, for large enough m, this output is different from (amin(X)#)m.

I.2 Proof of Theorem 8.3
Let us recall the theorem.

▶ Theorem 8.3. Some HDT0L transductions are polyregular but not comparison-free:
(i) f : an ∈ {a}∗ 7→ ban−1b . . . baabab (with f(ε) = ε and f(a) = b);
(ii) map(an 7→ an×n) : an1# . . .#ank 7→ an1×n1# . . .#ank×nk (cf. Definition 3.8).

(i) and (ii) are proven separately.

I.2.1 Proof of Theorem 8.3 item (i)
As mentioned in the body of the paper, this is proven by showing that the lengths of blocks
of baa . . . aab, or equivalently, maximal blocks of a in the output of a given regular sequence
is determined by a finite number of polynomial expressions. Let us formalize this notion.

▶ Definition I.1. Let Σ be a finite alphabet and c ∈ Σ. Call βc : Σ∗ → P(N) the function
assigning to a word w the set of lengths of its maximal factors lying in {c}∗ (including ε):

βc(w) = {k ∈ N | w ∈ (Σ∗ \ (Σ∗ · c)) · ck · (Σ∗ \ (c · Σ∗))}

We say that a sequence s : N → Σ∗ is poly-uniform if for every c ∈ Σ there exists a finite set
of polynomials As,c ⊆ Q[X] such that, for every n ∈ N,

βc(s(n)) ⊆ As,c(n) = {P (n) | P ∈ As,c}

▶ Lemma I.2. Every comparison-free polyregular sequence f : N → Σ∗ is poly-uniform.

Proof. First, observe that any ultimately periodic combination of poly-uniform sequence
is poly-uniform. Indeed, assume that we have such a sequence s and m > 0 so that
n 7→ s(m(n + 1) + k) is poly-uniform for every k, and finite sets Ak,c ⊆ Q[X] so that
βc(s(m(n+ 1) + k)) ⊆ Ak,c(n). Then we have

As,c =
⋃

l<m

{
P

(
X − l

m

)
| P ∈ Ak,c

}
∪ βc(s(l))

witnessing that s is poly-uniform.
Hence, by Theorem 9.2, it suffices to show that poly-pumping sequences are all poly-

uniform. We proceed by induction over polynomial word expressions e, defining suitable
finite sets of polynomials Ae,c for c ∈ Σ such that βc(JeK(n)) ⊆ Ae,c(n) and 0 ∈ Ae,c:

Ae·e′,c = {P +Q | (P,Q) ∈ Ae,c ×Ae′,c} Aw,c = βc(w) ∪ {0}
Ae∗,c = Ae,c ∪ {XP | P ∈ Ae,c}

◀

We can now conclude the proof of the first item of Theorem 8.3 by observing that
the function f : an 7→ ban−1b . . . bab does not correspond to a poly-uniform sequence:
βc(f(an)) = {0, . . . , n − 1} is unbounded, and thus cannot be covered by a finite set of
functions, let alone polynomials in Q[X].

L. T. D. Nguyễn, C. Noûs and C. Pradic 49

I.3 Proof of Theorem 8.3 item (ii)
Suppose for the sake of contradiction that f = map(an 7→ an×n) is comparison-free. Using
Theorem 7.1, it must then have rank 1 since |f(w)| = O(|w|2). Thus, we may write
f = CbS(g, (hi)i∈I) where g : {a,#}∗ → I∗ and all the hi : {a,#}∗ → {a,#}∗ are regular.

For each J ⊆ I and k ∈ {0, . . . , |I|} (though the definition would make sense for k ∈ N),
let ρJ,k : {a∗} → (I \ J)∗ be uniquely defined by the condition

∀w ∈ {a,#}∗, ρJ,k(w) =
{
s when g(w) ∈ ((I \ J)∗J)k · s · ({ε} ∪ JI∗)
ε when |g(w)|J < k

(recall from Appendix F the notation | · |J). To put it plainly, ρJ,k(w) is the k-th block
of letters from I \ J that appears in g(w) (the block may be the empty string if there are
consecutive letters from J), or the empty string if this k-th block does not exist. The function
ρJ,k is regular because it is the composition of a sequential function with g.

We reuse some tools from Appendix F, especially the notion of producing 1-split from
Lemma 7.7. There is a unique sensible way to combine the morphisms νf ′ : {a,#}∗ → N (f ′)
given by this lemma into a morphism

φ : {a,#}∗ →
∏

f ′∈F

N (f ′) for F = {g} ∪ {hi | i ∈ I} ∪ {ρJ,k | J ⊆ I, k ∈ {0, . . . , |I|}}

Note that the codomain above is a finite monoid: this allows us to apply Proposition 7.8
to this morphism φ and r = 1, which gives us some N ∈ N. Let s = aN (#aN)|I|. For each
m ∈ {0, . . . , |I|}, we apply the proposition to the factorization s = ukvkwk with uk = (aN #)k,
vk = aN and wk = (#aN)|I|−k to get a 1-split s = u′

kv
′
kw

′
k according to φ where uk is a

prefix of u′
k and wk is a suffix of w′

k. Let pk = |vk| ≠ 0 and qk = N − |vk|.
For f ′ ∈ F (the finite set of functions introduced above), we then define

f̃ ′ : (n0, . . . , n|I|) ∈ N|I|+1 7→ f ′ (an0p0+q0# . . .#an|I|p|I|+q|I|
)

Thanks Proposition F.5 and to the 1-split conditions that we made sure to get previously,
we see that for each letter c in the codomain of f ′ (either {a,#} or I), |f̃ ′|c : N|I|+1 → N is
monotone for the product partial order. Since f = map(a 7→ an×n) = CbS(g, (hi)i∈I),

∀x ∈ N|I|+1,
∑
i∈I

|g̃(x)|i ·
∣∣∣h̃i(x)

∣∣∣
#

=
∣∣∣f̃(x)

∣∣∣
#

= |I|

where f̃ : (n0, . . . , n|I|) ∈ N|I|+1 7→ f
(
an0p0+q0# . . .#an|I|p|I|+q|I|

)
= a(n0p0+q0)2

. . .#a(n|I|p|I|+q|I|)2

Since |g̃|i and |h̃i|# are monotone for all i ∈ I, and N|I|+1 admits a minimum (0, . . . , 0), the
fact that the above sum is constant means that, for each i ∈ I,

either one of |g̃|i and |h̃i|# is constant equal to 0,
or both are non-zero constant.

Let J# ⊆ I be the set of indices that fit the second case. We claim that for i ∈ J#, the
constant value taken by |h̃i|# must be 1. If this were not the case, then for all n ∈ N, there
would be a substring of the form #a . . . a# in |h̃i(n, . . . , n)|#, and since f = CbS(g, (hi)i∈I)
and |g̃(n, . . . , n)|i ̸= 0, it would also be a substring of f̃(n, . . . , n) with length at most
|h̃i(n, . . . , n)|# = O(n) (since hi is regular). This is impossible: for k ∈ {0, . . . , |I|}, the k-th
substring of this form in f̃(n, . . . , n) has length (npk + qk)2 + 2 = Θ(n2).

50 Comparison-free Polyregular Functions

Combining this with the above equation for |f̃ |#, we see that |g̃|J# is the constant
function equal to |I|. Let us abbreviate ρk = ρJ#,k ∈ F (recall that we defined it at the
beginning of this proof) for k ∈ {0, . . . , |I|}; then

∀x ∈ N|I|+1, ∃!ι1(x), . . . , ι|I|(x) ∈ J# : g̃(x) = ρ̃0(x)ι1(x)ρ̃1(x) . . . ι|I|(x)ρ̃|I|(x)

Using this, we define h′
k(x) = h̃ιk(x)(x) for x ∈ N|I|+1 and k ∈ {1, . . . , |I|}, plus two edge

cases h′
0 : x 7→ ε and h′

|I|+1 : x 7→ ε.
Let k ∈ {0, . . . , |I|}. Write e⃗k = (0, . . . , 0, 1, 0, . . . , 0) ∈ N|I|+1 for the k-th vector of the

canonical basis of Q|I|+1. By looking again at the k-th substring of the form #a . . . a# in
f̃(x), with x = ne⃗k here, we get

∀n ∈ N, (npk + qk)2 + 2 ≤ |h′
k(ne⃗k)| +

∑
i∈I

|ρ̃k(ne⃗k)|i ·
∣∣∣h̃i(ne⃗k)

∣∣∣+ |h′
k+1(ne⃗k)|

Note that all the lengths involved in the right-hand side above are linearly bounded in n

because of the regularity of the functions involved. So there must exist ik ∈ I such that
both |ρ̃k(ne⃗k)|ik

and |h̃ik
(ne⃗k)| are unbounded: otherwise, the whole RHS would be O(n),

contradicting the Ω(n2) lower bound induced by the above inequality.
We thus get a finite sequence of indices i0, . . . , i|I| ∈ I. By the pigeonhole principle, there

must exist k, l ∈ {0, . . . , |I|} such that k ̸= l and ik = il; we call i this common value. Let
m ∈ N be such that |ρ̃k(me⃗k)|i ≥ 1. By monotonicity (since ρk, hi ∈ F):

|ρ̃k(me⃗k + ne⃗l)|i ≥ 1 for all n ∈ N;∣∣∣h̃i(me⃗k + ne⃗l)
∣∣∣ is unbounded when n → +∞.

The product of those two quantities is a lower bound for the length of the k-th substring
of the form #a . . . a# in f̃(me⃗k + ne⃗l), which contradicts the fact that this length does not
depend on n (it is equal to (mpk + qk)2 + 2).

	1 Introduction
	2 Preliminaries
	2.1 HDT0L transductions and streaming string transducers
	2.2 Regular functions
	2.3 Polynomial growth transductions
	2.4 Transition monoids for streaming string transducers

	3 Complements on HDT0L systems, SSTs and polyregular functions
	4 Composition by substitution
	5 Comparison-free pebble transducers
	6 Composition of basic functions
	7 Rank vs asymptotic growth
	8 Separation results
	9 Comparison-free polyregular sequences
	10 Further topics
	A Details for rem:hdt0l-single-state
	B Proofs for §3 (HDT0L systems, SSTs & polyregular functions)
	B.1 Proof of thm:layered-hdt0l-equiv
	B.2 Proof of cor:regular-single-state-1-layered
	B.3 Proof of prop:single-state-copyless-weak
	B.4 Proof of prop:polyreg-reg-squaring
	B.5 Proof of thm:polyreg-layered
	B.6 Proof of prop:fmap-hdt0l

	C Proofs for §4 (composition by substitution)
	C.1 Proof of thm:polyreg-cbs
	C.2 Proof of prop:CbS-ind
	C.3 Proof of prop:cfp-conditionals

	D Proofs for §5 (comparison-free pebble transducers)
	D.1 Proof of prop:cfpebble-easy
	D.2 Proof of thm:cfpebble-hard
	D.3 Proof of cor:cfpebble

	E Closure under composition
	F A lower bound on growth from the rank
	F.1 Proofs for the lemmas in sec:minimization
	F.2 Wrapping up the proof of thm:minimization

	G Proofs of Theorems 6.1 and 7.1
	H Comparison-free polyregular sequences
	H.1 Proof of thm:cfp-seq
	H.2 Proof of cor:cfp-map-seq

	I Separation results
	I.1 Proof of thm:cf-not-hdt0l
	I.2 Proof of thm:polyreg-not-cf
	I.2.1 Proof of thm:polyreg-not-cf item (i)

	I.3 Proof of thm:polyreg-not-cf item (ii)

