
HAL Id: hal-02986228
https://hal.science/hal-02986228v1

Preprint submitted on 2 Nov 2020 (v1), last revised 21 Feb 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison-free polyregular functions
Lê Thành Dũng Tito Nguyễn, Camille Noûs, Pierre Pradic

To cite this version:
Lê Thành Dũng Tito Nguyễn, Camille Noûs, Pierre Pradic. Comparison-free polyregular functions.
2020. �hal-02986228v1�

https://hal.science/hal-02986228v1
https://hal.archives-ouvertes.fr

Comparison-free polyregular functions
Lê Thành Dũng Nguyễn
Laboratoire d’informatique de Paris Nord, Villetaneuse, France
nltd@nguyentito.eu

Camille Noûs
Laboratoire Cogitamus
https://www.cogitamus.fr/camilleen.html

Pierre Pradic
Department of Computer Science, University of Oxford, United Kingdom
https://www.cs.ox.ac.uk/people/pierre.pradic/
pierre.pradic@cs.ox.ac.uk

Abstract
We study automata-theoretic classes of string-to-string functions whose output may grow faster than
linearly in their input. Our central contribution is to introduce a new such class, with polynomial
growth and three equivalent definitions: the smallest class containing regular functions and closed
under a “composition by substitution” operation; a restricted variant of pebble transducers; a
λ-calculus with a linear type system.

As their name suggests, these comparison-free polyregular functions form a subclass of polyregular
functions; we prove that the inclusion is strict. Other properties of our new function class that we
show are incomparability with HDT0L transductions and closure under composition.

Finally, we look at the recently introduced layered streaming string transducers (SSTs), or
equivalently k-marble transducers. We prove that a function can be obtained by composing such
transducers together if and only if it is polyregular, and that k-layered SSTs (or k-marble transducers)
are equivalent to a corresponding notion of (k + 1)-layered HDT0L systems.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases pebble transducers, HDT0L systems, linear logic

Acknowledgements Thanks to Mikołaj Bojańczyk, Gaëtan Douéneau-Tabot and Amina Doumane
for explaining some features of their work to the authors.

A table of contents is provided in the last page, after the appendix.

1 Introduction

The theory of transducers (as described in the surveys [12, 20]) has traditionally dealt with
devices that take as input strings of length n and output strings of length O(n). However,
several recent works have investigated function classes going beyond linear growth. We
review three classes in this landscape below.

Polyregular functions are thus named because they have (at most) polynomial growth
and include regular functions (the most expressive of the traditional string-to-string
transduction classes). They were defined in 2018 [3] by four equivalent computational
models, one of which – the pebble transducers – is the specialization to strings of a tree
transducer model that existed previously in the literature [19]. A subsequent work [5]
gave a logical characterization base on Monadic Second-Order logic (MSO). They enjoy
two nice properties:

preservation of regular languages (by preimage): if f : Γ∗ → Σ∗ is polyregular and
L ⊆ Σ∗ is regular, then f−1(L) ⊆ Γ∗ is regular;

https://orcid.org/0000-0002-6900-5577
mailto:nltd@nguyentito.eu
https://orcid.org/0000-0002-0778-8115
https://www.cogitamus.fr/camilleen.html
https://www.cs.ox.ac.uk/people/pierre.pradic/
mailto:pierre.pradic@cs.ox.ac.uk

2 Comparison-free polyregular functions

closure under function composition: if f : Γ∗ → ∆∗ and g : ∆∗ → Σ∗ are both
polyregular, then so is g ◦ f : Γ∗ → Σ∗.

HDT0L transductions form another superclass of regular functions, whose output size
may be at most exponential in the input size. They are older than polyregular functions,
and we shall discuss their history in Section 2.1; suffice to say for now, they also admit
various equivalent characterizations scattered in several papers [11, 13, 8]. These functions
preserve regular languages by preimage, but are not closed under composition (the growth
rate of a composition of HDT0L transductions may be a tower of exponentials).
Very recently, the polynomially bounded HDT0L transductions have been characterized
using two transducer models [8]. One of them, the k-marble transducers (where k ∈ N
depends on the function to be computed), is a restricted variant of pebble transducers;
it follows (although this is not explicitly stated in [8]) that a HDT0L transduction has
polynomial growth if and only if it is polyregular. Moreover, as claimed in [8, Section 6],
the functions computed by k-marble transducers are not closed under composition either,
and thus form a strict subclass of polyregular functions.

A new subclass of polyregular functions In this paper, we prove a few results on the
above classes. For instance, we supply a proof for the aforementioned claim of [8, Section 6],
and show that the polyregular functions are exactly those computable by compositions of
k-marble transducers. But our main contribution is the introduction of a new class, giving
its title to the paper; as we show, it admits three equivalent definitions:

the smallest class containing regular functions and closed under a certain “composition
by substitution” operation;
a restriction on pebble transducers – we disallow comparing the positions of a transducer’s
multiple reading heads, hence the name comparison-free polyregular functions;
the functions expressible in a certain way in a λ-calculus with linear types, obtained by
tweaking a similar characterization of regular functions [21] (this notion of linearity in
programming languages is analogous to “copylessness” or “single use restrictions” in
various transducer models).

We believe that each of those definitions constitute self-evidently natural classes of
string functions to investigate1 We use the first as our official definition of comparison-free
polyregular functions throughout the paper, and show it to be equivalent to the other two.

Interestingly, our starting point in this investigation was the λ-calculus based definition.
Our initial goal was to extend our characterization of regular functions by terms of the
λ`⊕&-calculus in [21] to terms that are allowed to duplicate their input strings. Since the
λ`⊕&-calculus does not feature primitive constructs to operate on strings, inputs and outputs
are presented via Church encodings. This means in particular that such characterizations do
not “know” anything a priori about transducer models; they may well be seen as results in
programming language theory, answering arguably natural questions about the expressiveness
of the λ`⊕&-calculus.

Properties By the first definition above, comparison-free polyregular functions are indeed
polyregular, while the second item implies that regular functions are comparison-free. We

1 While they do not, to the best of our knowledge, appear in the litterature, we were told that the
definition based on comparison-free pebble transducers was already considered (Mikołaj Bojánczyk,
personal communication).

L. T. D. Nguyễn, C. Noûs and P. Pradic 3

rule out inclusions involving the other classes that we mentioned by proving some separation
results: there exist

comparison-free polyregular functions that are not HDT0L (we take one example from [8]),
and a polynomially bounded HDT0L transduction which is not comparison-free – this
relies on a technical property on the maximal factors in the output of comparison-free
polyregular functions over unary alphabets, which is violated by the example.

From the third definition, it quickly follows that our new function class is closed under
composition. But this point of view hides some difficulties: to show that this characterization
based on the λ`⊕&-calculus is equivalent to the other ones, we invoke the heavyweight
machinery of categorical semantics of programming languages, whose relationship with
transducers was investigated in [21]. We also give a (non-trivial) purely automata-theoretic
proof for closure under composition, avoiding the detour through this machinery.

Plan of the paper We start by recalling in detail the definitions and main results from
the above-mentioned previous work (§2), and follow this with some minor complements
(§3). Comparison-free polyregular functions are then defined as an extension of the class of
regular functions by an operator we dub “composition by substitutions” in Section 4, and
their properties are presented in Sections 4 and 5. After this, we present the alternative
characterizations (§6, §7) and close the paper with a concluding section (§8). Most of the
proofs do not appear in the main text, and may be found in the appendix.

2 Preliminaries

Notations By convention, 0 ∈ N. We write |w| for the length of a string w ∈ Σ∗ and either
wi or w[i] for its i-th letter (i ∈ {1, . . . , |w|}). Given monoids M and N , Hom(M,N) is the
set of monoid morphisms. We write ε for the empty word and Σ = {a | a ∈ Σ} for a disjoint
copy of the alphabet Σ made of “underlined” letters.

2.1 HDT0L transductions and streaming string transducers
L-systems were originally introduced by Lindenmayer [16] in the 1960s as a way to generate
formal languages, with motivations from biology. While this language-centric view is still
predominant, the idea of considering variants of L-systems as specifications for string-to-string
functions – whose range are the corresponding languages – seems to be old. For instance, in a
paper from 1980 [10], one can find (multi-valued) string functions defined by ET0L systems.

More recently, Ferté, Marin and Sénizergues [11] provided alternative characterizations of
the string-to-string functions that HDT0L systems can express – what we call here HDT0L
transductions. (Those characterizations, by catenative recurrent equations and higher-order
pushdown transducers of level 2, had previously been announced in an invited paper by
Sénizergues [25].) Later work by Filiot and Reynier [13] and then by Douéneau-Tabot, Filiot
and Gastin [8] – that does not build on [25, 11] – proved the equivalence with, respectively,
copyful SSTs (Definition 2.3) and unbounded marble transducers (not presented here).

I Definition 2.1 (following [13]). A HDT0L system consists of:
an input alphabet Γ, an output alphabet Σ, and a working alphabet ∆ (all finite);
an initial word d ∈ ∆∗;
for each c ∈ Γ, a monoid morphism hc ∈ Hom(∆∗,∆∗);
a final morphism h′ ∈ Hom(∆∗,Σ∗).

It defines the transduction taking w = w1 . . . wn ∈ Γ∗ to h′ ◦ hw1 ◦ . . . ◦ hwn(d) ∈ Σ∗.

4 Comparison-free polyregular functions

(The definition of HDT0L systems given in [25, 11] makes slightly different choices of
presentation2.) To define the equivalent model of copyful streaming string transducers, we
must first introduce the notion of register assignment.

I Definition 2.2. Fix a finite alphabet Σ. Let R and S be two finite sets disjoint from Σ;
we shall consider their elements to be “register variables”.

For any word ω ∈ (Σ∪R)∗, we write ω† : (Σ∗)R → Σ∗ for the map that sends (ur)r∈R to
ω in which every occurrence of a register variable r ∈ R is replaced3 by ur.

A register assignment4 α from R to S (over Σ) is a map α : S → (Σ ∪R)∗. It induces
the action α† : ~u ∈ (Σ∗)R 7→ (α(s)†(~u))s∈S ∈ (Σ∗)S (which indeed goes “from R to S”).

I Definition 2.3 ([13]). A (deterministic copyful) streaming string transducer (SST) with
input alphabet Γ and output alphabet Σ is a tuple T = (Q, q0, R, δ, ~uI , F) where

Q is a finite set of states and q0 ∈ Q is the initial state;
R is a finite set of register variables, that we require to be disjoint from Σ;
δ : Q× Γ→ Q× (R→ (Σ ∪R)∗) is the transition function – we abbreviate δst = π1 ◦ δ
and δreg = π2 ◦ δ, where πi is the projection from X1 ×X2 to its i-th component Xi;
~uI ∈ (Σ∗)R describes the initial register values;
F : Q→ (Σ ∪R)∗ describes how to recombine the final values of the registers, depending
on the final state, to produce the output.

The function Σ∗ → Γ∗ computed by T is

w1 . . . wn 7→ F (qn)† ◦ δreg(qn−1, wn)† ◦ . . . ◦ δreg(q0, w1)†(~uI)

where the sequence of states (qi)0≤i≤n (sometimes called the run of the transducer over the
input word) is inductively defined, starting from the fixed initial state q0, by qi = δst(qi−1, wi).

Here is an example of a copyful SST which will be useful later.

I Example 2.4. Let Σ = Γ ∪ Γ. We consider a SST T with Q = {q}, R = {X,Y } and

~uI = (ε)r∈R F (q) = Y ∀c ∈ Γ, δ(q, c) = (q, (X 7→ cX, Y 7→ cXY))

If we write (v, w) for the family (ur)r∈R with uX = v and uY = w, then the action of the
register assignments may be described as (X 7→ cX, Y 7→ cXY)†(v, w) = (c · v, c · v · w).

Let 1, 2, 3, 4 ∈ Γ. After reading 1234 ∈ Γ∗, the values stored in the registers of T are

(X 7→ 4X, Y 7→ 4XY)† ◦ . . . ◦ (X 7→ 1X, Y 7→ 1XY)†(ε, ε) = (4321, 4321321211)

Since F (q) = Y , the function defined by T maps 1234 to 4321321211 ∈ (Γ ∪ Γ)∗ = Σ∗.

This gives us an example of HDT0L transduction Γ∗ → (Γ ∪ Γ)∗, since:

I Theorem 2.5 ([13]). A function Γ∗ → Σ∗ can be computed by a copyful SST if and only
if it can be specified by a HDT0L system.

2 The family (hc)c∈Γ is presented as a morphism H : Γ∗ → Hom(∆∗,∆∗) (whose codomain is indeed a
monoid for function composition). And an initial letter is used instead of an initial word; this is of no
consequence regarding the functions that can be expressed (proof sketch: consider ∆′ = ∆ ∪ {x} with a
new letter x /∈ ∆, take x as the initial letter and let hc(x) = hc(w), h′(x) = h′(w)).

3 Formally, we apply to ω the morphism (Σ ∪R)∗ → Σ∗ that maps c ∈ Σ to itself and r ∈ R to ur.
4 Some papers e.g. [7, 8] call register assignments substitutions. We avoid this name since it differs from

its meaning in the context of our “composition by substitution” operation or of the λ-calculus.

L. T. D. Nguyễn, C. Noûs and P. Pradic 5

qa qb

a|a, c|a b|b

a|a

b|b, c|b

Figure 1 An example of sequential transducer.

I Remark 2.6. As observed in [13], it is straightforward to translate a HDT0L system into
a single-state SST. There is a “reversal”: the initial register values correspond to the final
morphisms, while the final output function corresponds to the initial word. Morally, SSTs
are HDT0L systems endowed with a finite set of states and the additional ability to access
the letters of the output alphabet; Theorem 2.5 is essentially a state elimination result. A
direct translation from SSTs to single-state SSTs is given by Benedikt et al. in a paper on
polynomial automata [2, Proposition 8].

2.2 Regular functions
I Definition 2.7 (Alur and Černý [1]). A register assignment α : S → (Σ ∪R)∗ from R to S
is said to be copyless when each r ∈ R occurs at most once among all the strings α(s) for
s ∈ S, i.e. it does not occur at least twice in some α(s), nor at least once in α(s) and at least
once in α(s′) for some s 6= s′. (This restriction does not apply to the letters in Σ.)

A streaming string transducer is copyless if all the assignments in the image of its
transition function are copyless. In this paper, we take computability by copyless SSTs as the
definition of regular functions.

I Remark 2.8. Thanks to Theorem 2.5, every regular function is a HDT0L transduction.
The SST of Example 2.4 is not copyless: in a transition α = δreg(q, c), the register X

appears twice, once in α(X) = cX and once in α(Y) = cXY ; in other words, its value is
duplicated by the action α†. In fact, it computes a function whose output size is quadratic in
the input size, while regular functions have linearly bounded output.

I Example 2.9 (Iterated reverse [3, p. 1]). The following single-state SST is copyless:

Γ = Σ with ‖ ∈ Σ Q = {q} R = {X,Y } ~uI = (ε)r∈R F (q) = XY

δ(q, ‖) = (q, (X 7→ XY ‖, Y 7→ ε)) ∀c ∈ Σ \ {‖}, δ(q, c) = (q, (X 7→ X, Y 7→ cY))

For u1, . . . , un ∈ (Σ \ {‖})∗, it maps u1‖ . . . ‖un to reverse(u1)‖ . . . ‖reverse(un).

The concrete SSTs (copyless or not) that we have seen for now are all single-state. As a
source of stateful copyless SSTs, one can consider the translations of sequential transducers.
These are usual finite automata, whose transitions can produce output. For instance, the one
in Figure 1 computes the function {a, b, c}∗ → {a, b}∗ that replaces each c in its input by
the closest non-c letter on its left (or a if no such letter exists). Any sequential transducer
can be translated into a copyless SST with the same set of states and a single register.

2.3 Polynomial growth transductions
Next, we recall one way to define Bojańczyk’s polyregular functions [3].

6 Comparison-free polyregular functions

I Definition 2.10 ([3]). The class of polyregular functions is the smallest class of string-to-
string functions closed under composition containing:

the functions computed by sequential transducers (for instance, the one of Figure 1);
the iterated reverse function of Example 2.9, over any finite alphabet containing ‖;
the squaring with underlining functions squaringΓ : Γ∗ → (Γ ∪ Γ)∗, for any finite Γ,
illustrated by squaringΓ(1234) = 1234123412341234.

As mentioned in the introduction, the intersection between the above class and HDT0L
transductions has been recently characterized by Douéneau-Tabot et al. [8].

I Theorem 2.11 ([8]). Let f : Γ∗ → Σ∗. The following conditions are equivalent:
f is both a polyregular function and a HDT0L transduction;
f is a HDT0L transduction and has at most polynomial growth: f(|w|) = |w|O(1);
there exists k ∈ N such that f is computed by some k-layered SST, defined below.

(Another equivalent model, the k-marble transducers, was mentioned in the introduction,
but we will not use it in the rest of the paper.) Those k-layered SST propose a compromise
between copyful and copyless SSTs: duplication is controlled, but not outright forbidden.

I Definition 2.12 ([8]). A register assignment α : R → (Σ ∪ R)∗ is k-layered (for k ∈ N)
with respect to a partition R = R0 t . . . tRk when for 0 ≤ i ≤ k,

for r ∈ Ri, we have α(r) ∈ (Σ ∪R0 ∪ . . . ∪Ri)∗;
each register variable in Ri appears at most once among all the α(r) for r ∈ Ri (however,
those from R0 t . . . tRi−1 may appear an arbitrary number of times).

A SST is k-layered if its registers can be partitioned in such a way that all assignments in
the transitions of the SST are k-layered.

Beware: with this definition, the registers of a k-layered SST are actually divided into k + 1
layers, not k. In particular, a SST is copyless if and only if it is 0-layered.

For instance, the transducer of Example 2.4 is 1-layered with R0 = {X} and R1 = {Y }.
There also exist register assignments that cannot be made k-layered no matter the choice
of partition, such as X 7→ XX. Using such assignments, one can indeed build SSTs that
compute functions f such that e.g. |f(w)| = 2|w|.

3 Complements on HDT0L systems, SSTs and polyregular functions

Before embarking on the study of our new comparison-free polyregular functions, we state
some minor results that consolidate our understanding of pre-existing classes.

Layered HDT0L systems Let us transpose the layering condition from SSTs to HDT0L
systems. The hierarchy of models that we get corresponds with an offset to layered SSTs.

IDefinition 3.1. A HDT0L system (Γ,Σ,∆, d, (hc)c∈Γ, h
′) is k-layered if its working alphabet

can be partitioned as ∆ = ∆0 t · · · t∆k such that, for all c ∈ Γ and i ∈ {0, . . . , k}:
for r ∈ ∆i, we have hc(r) ∈ (∆0 t · · · t∆i)∗;
each letter in ∆i appears at most once among all the α(r) for r ∈ ∆i (but those in
∆0 t · · · t∆i−1 may appear an arbitrary number of times).

I Theorem 3.2. For k ∈ N, a function can be computed by a k-layered SST if and only if it
can be specified by a (k + 1)-layered HDT0L system.

In particular, regular functions correspond to 1-layered HDT0L systems.

I Corollary 3.3. Every regular function can be computed by a single-state 1-layered SST.

L. T. D. Nguyễn, C. Noûs and P. Pradic 7

I Remark 3.4. The converse to this corollary does not hold: Example 2.4 provides an example
of single-state 1-layered SST whose output size is quadratic in its input size, whereas regular
functions have at most linear growth. This shows that there are meaningful differences
between single-state SST and HDT0L systems when one looks at the layering condition due
to the access to the output alphabet letters (see Remark 2.6).

The importance of being stateful One interesting aspect of Theorem 3.2 is that 1-layered
HDT0L systems can be seen, through Remark 2.6, as a kind of one-way transducer model
for regular functions that does not use an explicit control state. This is in contrast with
copyless SSTs, whose expressivity critically depends on the states (unlike copyful SSTs).

I Proposition 3.5. The sequential (and therefore regular) function defined by the transducer
of Figure 1 (Section 2.2) cannot be computed by a single-state copyless SST.

In fact, the knowledgeable reader can verify that this counterexample belongs to the first-order
letter-to-letter sequential functions, one of the weakest classical transduction classes.

Polyregular functions vs layered SSTs By applying some results from [3], we can state a
variant of Definition 2.10 which is a bit more convenient for us.

I Proposition 3.6. Polyregular functions are the smallest class closed under composition
that contains the regular functions and the squaring with underlining functions squaringΓ.

This allows us to show that composing layered SSTs – equivalently, HDT0L transductions
with at most polynomial growth – yields exactly the polyregular functions. One direction
of this equivalence is proved by encoding squaringΓ as a composition of two SSTs, one of
which is Example 2.4. More precisely:

I Theorem 3.7. Let f : Γ∗ → Σ∗. The following are equivalent:
(i) f is polyregular;
(ii) f can be obtained as a composition of layered SSTs;
(iii) f can be obtained as a composition of single-state 1-layered SSTs.

But layered SSTs by themselves are strictly less expressive than polyregular functions, as
we shall see later in Theorem 5.3. Therefore, as promised in the introduction:

I Corollary 3.8 (claimed in [8, Section 6]). Layered SSTs are not closed under composition.

4 Composition by substitution

At last, we now introduce the class of comparison-free polyregular functions. The simplest
way to define them is to start from the regular functions.

I Definition 4.1. Let f : Γ∗ → I∗, and for each i ∈ I, let gi : Γ∗ → Σ∗. The composition
by substitutions of f with the family (gi)i∈I is the function

CbS(f, (gi)i∈I) : w 7→ gi1(w) . . . gik(w) where i1 . . . ik = f(w)

That is, we first apply f to the input, then every letter i in the result of f is substituted by
the image of the original input by gi. Thus, CbS(f, (gi)i∈I) is a function Γ∗ → Σ∗.

I Definition 4.2. The smallest class of string-to-string functions closed under CbS and
containing all regular functions is called the class of comparison-free polyregular functions.

8 Comparison-free polyregular functions

I Example 4.3. The squaring (without underlining) function w 7→ w|w|, which can be
expressed as CbS(f : w 7→ a|w|, (ga : w 7→ w)) with f and ga regular, is comparison-free
polyregular. Its growth rate is quadratic, while regular functions have at most linear growth.
Other examples that also require a single CbS are given in Theorem 5.3.

This definition has the disadvantage of not explaining the name, which comes from the
equivalent characterization by comparison-free pebble transducers (Section 6). In particular,
one consequence of this equivalence is that:

I Proposition 4.4. Every comparison-free polyregular function is, indeed, polyregular.

But this inclusion can also be obtained as an immediate corollary of the following result,
that we prove using polynomial list functions [3, Section 4], a formalism for polyregular
functions based on the simply typed λ-calculus.

I Theorem 4.5. Polyregular functions are closed under composition by substitutions.

Minimized form and rank Fundamentally, Definition 4.2 is inductive: it considers the
functions generated from the base case of regular functions by applying compositions by
substitutions. The variant below with more restricted generators is sometimes convenient.

I Proposition 4.6. The smallest class C of functions such that
every regular function is in C,
and CbS(f, (gi)i∈I) ∈ C for any regular f : Γ∗ → I∗ and any (gi : Γ∗ → Σ∗)i∈I ∈ CI ,

is exactly the class of comparison-free polyregular functions.

For instance, by induction over the above characterization, we can assign to every
comparison-free polyregular function an integer rank, whose operational meaning will be
clarified by the connection with pebble transducers.

I Definition 4.7. A string-to-string function is said to be:
of rank at most 0 if it is regular;
of rank at most k + 1 (for k ∈ N) if it can be written as CbS(f, (gi)) where f is regular
and each gi is of rank at most k.

I Proposition 4.8. A function f is comparison-free polyregular if and only if there exists
some k ∈ N such that f has rank at most k. In that case, we write rk(f) for the least such k
and call it the rank of f . If (gi)i∈I is a family of comparison-free polyregular functions,

rk(CbS(f, (gi)i∈I)) ≤ 1 + rk(f) + max
i∈I

rk(gi)

5 Closure under composition and separation properties

Before we present alternative computational models for comparison-free polyregular functions,
let us work with our current definition to establish some of their properties.

I Theorem 5.1. Comparison-free polyregular functions are closed under composition.

To prove this, we exploit the following combinatorial phenomenon: in a copyless SST, a
transition acting on the state and registers can be specified by

a “shape” described by an element of its substitution transition monoid [7, §3], this
monoid being finite due to the copyless assignment restriction,

L. T. D. Nguyễn, C. Noûs and P. Pradic 9

plus finitely many “labels” in Σ∗ (where Σ is the output alphabet) describing the constant
factors that will be concatenated with the old register contents to give the new ones.

This technique is often applied to the study of copyless SSTs (see also [4, p. 206–207]).
Another property that we use is the closure of regular functions under regular conditionals:

I Lemma 5.2 ([1, Proposition 2]). Let f, g : Γ∗ → Σ∗ be regular functions and L ⊆ Γ∗ be a
regular language. The function that coincides with f on L and with g on Γ∗ \ L is regular.

Next, we show that comparison-free polyregular functions are incomparable with HDT0L
transductions, and strictly included in the class of polyregular functions.

I Theorem 5.3. There exist comparison-free polyregular functions which are not HDT0L:
(i) the function an ∈ {a}∗ 7→ (anb)n+1 ∈ {a, b}∗ for a 6= b;
(ii) the squaring function w ∈ Σ∗ 7→ w|w| for |Σ| ≥ 2 (cf. Example 4.3);
(iii) (from [8, §6]) any function that maps an‖w ∈ Σ∗ to (w‖)n for a, ‖ ∈ Σ with a 6= ‖.

I Theorem 5.4. There exists a HDT0L transduction which is also a polyregular function,
but is not comparison-free: f : an ∈ {a}∗ 7→ ban−1b . . . baabab (with f(ε) = ε and f(a) = b).

Theorem 5.3 follows from a pumping argument. Concerning the first part of Theorem 5.4,
observe that f is precisely the function computed by the (single-state) 1-layered SST of
Example 2.4 for Γ = {a}, taking b = a. The proof that f is not comparison-free requires
more work and is the subject of the remainder of this section. First, we need a pumping
lemma for regular functions with unary input alphabet:

I Lemma 5.5. For any regular function f : {a}∗ → Σ∗, there exist m, p0, k ∈ N with m 6= 0
such that, for every p ≥ p0, one can find u0, . . . , uk, v1, . . . , vk ∈ Σ∗ with the property that

∀n ∈ N, f(amn+p) = u0(v1)nu1(v2)n . . . (vk)nuk

I Remark 5.6. Let L ⊆ Σ∗ be the range of some two-way nondeterministic finite transducer –
this includes, by Theorem 6.3, the case L = f(Γ∗) where f : Γ∗ → Σ∗ is regular. A result
by Smith [24] states that L is k-iterative for some k ∈ N: every w ∈ L that is long enough
can be decomposed into w = u0v1u1v2 . . . vkuk with v1 . . . vk 6= ε such that for any n ∈ N,
the pumped word u0(v1)nu1(v2)n . . . (vk)nuk is in L. The special case for a regular function
Γ∗ → Σ∗ with |Γ| = 1 can be recovered as a consequence of Lemma 5.5. (But our proof is
rather different from [24] since we work with SSTs instead of two-way transducers.)

With our pumping lemma, we can prove a combinatorial result on the maximal number
of consecutive occurrences of a given letter in a word.

I Definition 5.7. Let Σ be a finite alphabet and c ∈ Σ. Call βc : Σ → P(N) the function
assigning to a word w the set of lengths of its maximal factors lying in {c}∗ (including ε):

βc(w) = {k ∈ N | w ∈ (Σ∗ \ (Σ∗ · c)) · ck · (Σ∗ \ (c · Σ∗))}

We say that a function f : {a}∗ → Σ∗ is poly-uniform if for every c ∈ Σ there exists a finite
set of polynomials Af,c ⊆ Q[X] such that, for every n ∈ N, βc(f(an)) ⊆ {P (n) | P ∈ Af,c}.

I Lemma 5.8. Every comparison-free polyregular function f : {a}∗ → Σ∗ is poly-uniform.
Furthermore, the polynomials in Af,c can be chosen to have degrees at most rk(f) + 1.

Proof of Theorem 5.4. The function f given in the theorem statement has the property
that βa(f(an)) = {0, . . . , n− 1} for n ∈ N \ {0}. Since this sequence of sets has unbounded
cardinality, f is not poly-uniform. Therefore, it is not comparison-free polyregular. J

10 Comparison-free polyregular functions

6 Comparison-free pebble transducers

As promised, we now justify the name of our function class by an alternative characterization.

I Definition 6.1. Let k ∈ N with k ≥ 1. Let Γ,Σ be finite alphabets and ., / /∈ Γ.
A k-pebble stack on an input string w ∈ Γ∗ consists of an ordered list of p positions

in the strings .w/ (i.e. of p integers between 1 and |w| + 2) for some p ∈ {1, . . . , k}. We
therefore write Stackk = N0 ∪ N1 ∪ · · · ∪ Nk, keeping in mind that given an input w, we will
be interested in “legal” values bounded by |w|+ 2.

A comparison-free k-pebble transducer (k-CFPT) consists of a finite set of states Q, an
initial state qI ∈ Q and a family of transition functions

Q× (Γ ∪ {., /})p → Q× (Np → Stackk)× Σ∗ for 1 ≤ p ≤ k

where the Np on the left is considered as a subset of Stackk. For a given state and given letters
(c1, . . . , cp) ∈ (Γ ∪ {., /})p, the allowed values for the stack update function Np → Stackk
returned by the transition function are:

(identity) (i1, . . . , ip) 7→ (i1, . . . , ip) ∈ Np ⊂ Stackk;
(move left, only allowed when cp 6= .) (i1, . . . , ip) 7→ (i1, . . . , ip − 1) ∈ Np ⊂ Stackk;
(move right, only allowed when cp 6= /) (i1, . . . , ip) 7→ (i1, . . . , ip + 1) ∈ Np ⊂ Stackk;
(push, only allowed when p ≤ k − 1) (i1, . . . , ip) 7→ (i1, . . . , ip, 1) ∈ Np+1 ⊂ Stackk;
(pop, only allowed when p ≥ 1) (i1, . . . , ip) 7→ (i1, . . . , ip−1) ∈ Np−1 ⊂ Stackk.

The run of a CFPT over an input string w ∈ Γ∗ starts in the initial configuration
comprising the initial state qI , the initial k-pebble stack (1) ∈ N1, and the empty string
as an initial output log. As long as the current stack is non-empty a new configuration is
computed by applying the transition function to q and to5 ((.w/)[i1], . . . , (.w/)[ip]) where
(i1, . . . , ip) is the current stack; the resulting stack update function is applied to (i1, . . . , ip)
to get the new stack, and the resulting output string in Σ∗ is appended to the right of the
current output log. If the CFPT ever terminates by producing an empty stack, the output
associated to w is the final value of the output log.

This amounts to restricting in two ways6 the definition of pebble transducers from [3, §2]:
in a general pebble transducer, one can compare positions, i.e. given a stack (i1, . . . , ip),
the choice of transition can take into account whether7 ij ≤ ij′ (for any 1 ≤ j, j′ ≤ p);
in a “push”, new pebbles are initialized to the leftmost position (.) for a CFPT, instead
of starting at the same position as the previous top of the stack (the latter would ensure
the equality of two positions at some point; it is therefore an implicit comparison that we
must relinquish to be truly “comparison-free”).

I Remark 6.2. Our definition guarantees that “out-of-bounds errors” cannot happen during
the run of a comparison-free pebble transducer. The sequence of successive configurations is
therefore always well-defined. But it may be infinite, that is, it may happen that the final
state is never reached. Thus, a CFPT defines a partial function.

5 Recall that we write u[i] for the i-th letter of the word u.
6 There is also an inessential difference: the definition given in [3] does not involve end markers and

handles the edge case of an empty input string separately. This has no influence on the expressiveness
of the transducer model. Our use of end markers follows [9, 15].

7 One would get the same computational power, with the same stack size, by only testing whether ij = ip
for j ≤ p− 1 as in [19] (this is also essentially what happens in the nested transducers of [15]).

L. T. D. Nguyễn, C. Noûs and P. Pradic 11

That said, the set of inputs for which a given pebble tree transducer does not terminate
is always a regular language [19, Theorem 4.7]. This applies a fortiori to CFPTs. Using
this, it is possible to extend any partial function f : Γ∗ ⇀ Σ∗ computed by a k-CFPT into a
total function f ′ : Γ∗ → Σ∗ computed by another k-CFPT for the same k ∈ N, such that
f ′(x) = f(x) for x in the domain of f and f ′(x) = ε otherwise. This allows us to only
consider CFPTs computing total functions in the remainder of the paper.

A special case of particular interest is k = 1: the transducer has a single reading head,
push and pop are always disallowed.

I Theorem 6.3 ([1]). Copyless SSTs and 1-CFPTs – which are more commonly called
two-way (deterministic) finite transducers (2DFTs) – are equally expressive.

Since we took copyless SSTs as our reference definition of regular functions, this means
that 2DFTs characterize regular functions. But putting it this way is historically backwards:
the equivalence between 2DFTs and MSO transductions came first [9] and made this class
deserving of the name “regular functions” before the introduction of copyless SSTs.

Let us now show the equivalence with the definition based on composition by substitutions.
The reason for this is similar to the reason why k-pebble transducers are equivalent to the
k-nested transducers of [15], which is deemed “trivial” and left to the reader in [15, Remark 6].
But in our case, one direction (Theorem 6.5) involves an additional subtlety compared to
in [15]; to take care of it, we use the fact that the languages recognized by pebble automata
are regular (this is [19, Theorem 4.7] again) together with regular conditionals (Lemma 5.2).

I Proposition 6.4. If f is computed by a k-CFPT, and the gi are computed by l-CFPTs,
then CbS(f, (gi)i∈I) is computed by a (k + l)-CFPT.

I Theorem 6.5. If f : Γ∗ → Σ∗ is computed by a k-CFPT, for k ≥ 2, then there exist a finite
alphabet I, a regular function h : Γ∗ → I∗ and a family (gi)i∈I computed by (k − 1)-CFPTs
such that f = CbS(h, (gi)i∈I).

I Corollary 6.6. For all k ∈ N, the functions computed by (k + 1)-CFPTs are exactly the
comparison-free polyregular functions of rank at most k.

7 Definability in the λ`⊕&-calculus

We now conclude by discussing a final description of comparison-free polyregular functions as
functions definable in a simply-typed λ-calculus, building on our previous work characterizing
regular functions [21]. We give a high-level overview of the formalism; we refer the reader
to [21, Section 2.4] for details.

The calculus, which they call λ`⊕&, corresponds to proofs in intuitionistic additive
multiplicative linear logic. Its grammar of types is accordingly inductively defined to contain
an anonymous base type o, tagged unions τ ⊕ σ, cartesian products τ & σ and two distinct
kinds of function type constructors τ → σ and τ (σ. Each type constructor comes with the
expected term constructors (e.g., λ-abstraction λx.t for functions types τ (σ and pairings
〈t, u〉 for product types) and eliminators (e.g., function application t u and projections πi(t)
for cartesian products). We only consider well-typed terms, and write t : τ to mean “t is a
term of type τ”. Given types τ and σ, we write τ [σ] for the type τ where every occurrence of
the base type o is replaced with σ. It is easy to check that if t : τ , then t : τ [σ].

The two distinct arrow types serve to distinguish between unrestricted functions τ → σ

and linear functions τ (σ which are only allowed to use their argument exactly once. This

12 Comparison-free polyregular functions

linearity discipline is crucial to capture a counterpart of the copylessness restriction for SST.
We say that a type τ is purely linear if it is built without using the non-linear arrow →.

While there is no primitive constructs for strings, strings can be represented as anonymous
functions through so-called Church encodings8: typically, the string abaa will be represented
by a 7→ b 7→ e 7→ a(b(a(a(e)))). The encoding of a string over alphabet Γ can be typed as
the function type StrΓ = (o(o)→ . . .→ o→ o with |Γ| arguments of type o(o. With
this definition, regular functions can be thus characterized:

I Theorem 7.1 ([21, Theorem 1.1]). A function Γ∗ → Σ∗ is regular if and only if it is
definable by a λ`⊕&-term9 of type StrΓ[τ](StrΣ for some purely linear type τ .

The result of this section is that changing a single character in the above type gives us
a characterization of comparison-free polyregular functions instead. A possible intuition is
that while the pure linearity of τ corresponds to copylessness in SSTs, the use of a linear
function arrow corresponds to the fact that an SST performs a single traversal of its input.
We keep the former constraint, but relax the latter.

I Theorem 7.2. A function Γ∗ → Σ∗ is comparison-free polyregular if and only if it is
definable by a λ`⊕&-term of type StrΓ[τ]→ StrΣ for some purely linear type τ .

The left-to-right direction consists in a straightforward coding exercise while the converse is
much more involved; let us give a few ideas used in the proof.

Without loss of generality, we may consider functions defined by normalized terms of the
shape λs.t : StrΓ[τ] → StrΣ. The main argument then goes by induction on the number
of occurrences of s in t, using a syntactic characterization of normal forms (Lemma F.5).
This however does not answer the question of what is the exact statement of the inductive
hypothesis, as subterms containing s may have types wildly different from StrΣ. To address
this, we generalize the notion of comparison-free functions to allow for codomains of the
shape

∑
q∈Q[Rq → Σ∗]. We then call a function Γ∗ →

∑
q∈Q[Rq → Σ∗] comparison-free

when the induced function Γ∗ → Q is regular and the induced partial functions Γ∗ ⇀ Σ∗,
one for every q ∈ Q and r ∈ Rq, can be extended to a comparison-free polyregular function.

With this generalized definition and a semantic interpretation τ 7→
∑
Qτ

[Rτ → Σ∗] of
purely linear types from [21], we can thus prove an invariant entailing Theorem 7.2. The
CbS combinator is used once at each inductive step, so we may note that the rank of the
obtained comparison-free polyregular is bounded by the number of occurrences of the main
argument s in the corresponding normal λ`⊕&-term.

8 Perspectives

We demonstrated that comparison-free polyregular functions constitute a robust class of
transductions by giving three equivalent characterizations. Further, we compared this new
class of string functions with polyregular and HDT0L transductions, proving strict inclusions
where possible. We give a synthetic summary of these results in Figure 2.

This naturally leads to many further questions regarding alternative characterizations
and generalizations of comparison-free polyregular functions; we list only a few.

8 The name comes from Church’s historical representation of natural numbers (see e.g. [14]) but the
generalization to other algebraic data types came later [6].

9 To be pedantic, we should say a closed λ`⊕&-term, i.e. without free variables.

L. T. D. Nguyễn, C. Noûs and P. Pradic 13

comparison-free

polyregular

polyregular

⊂layered HDT0L

(layered HDT0L)*

HDT0L

=

⊂

⊂

⊃⊂
=

comparison-free

pebble

λ`⊕& definitions

Str[τ]→ Str
=

Figure 2 Summary of our results. Inclusions ⊂ where shown to be strict, and ⊃⊂ means that
there is no inclusion either way. Finally C∗ denotes the closure under composition of the class C.

Interpretations Regular and polyregular string functions also enjoy logical characterizations:
regular functions correspond to MSO transductions [9] while polyregular functions correspond
to MSO interpretations [5]. The basic conceit behind these definitions is that a string w may
be regarded as a finite model M(w) for MSO over a signature containing the order relation
≤ on positions and predicates encoding their labeling.

We conjecture that comparison-free polyregular functions enjoy a similar characterization
using the direct product of structures. Given a finite model U = (U,R, . . .), we write
Uk for the kth power (Uk, R1, . . . , Rk, . . .) where Ri(x1, . . . , xm) of arity m is defined as
R(πi(x1), . . . , π1(xm)) for 1 ≤ i ≤ k.

B Conjecture 8.1. A function f : Σ∗ → Γ∗ is comparison-free polyregular if and only if there
exist a regular function g : Σ∗ → ∆∗, k ∈ N and a one-dimensional first-order (not MSO!)
interpretation ϕ such that M(f(w)) = ϕ

(
M(g(w))k

)
for every w ∈ N.

Our proposed class of interpretations is easily seen to be contained in MSO interpretations
and rich enough to encode CbS. On an intuitive level, it seems to capture the inability of
comparing the positions of two heads of comparison-free pebble transducers.

Polynomial tree transductions Interestingly, our notion of comparison-free polyregular
functions gracefully extends to the setting of ranked trees in two equivalent ways. For
this discussion, let us write Σ = (Σ, ar) for ranked alphabet, where Σ is an alphabet and
ar : Σ→ N, and T (k)

Σ for the set of trees with k holes with nodes in Σ. We write TΣ for the
set of trees over Σ

(
= T (0)

Σ

)
.

First, the notion of λ`⊕&-definability readily extends to trees; there is a type of Church
encoding of trees TreeΣ. The λ`⊕&-terms of type TreeΣ[τ](TreeΓ (with τ purely linear)
correspond to regular tree functions [21, Theorem 1.2]. By analogy with the case of strings, one
may consider the corresponding class of functions implemented by terms TreeΣ[τ]→ TreeΓ.

The notion of composition by substitution also readily extends to trees (with holes):
given a function f : TΣ → TI and a family gi : TΣ → T (ar(i))

Γ , one may form a function
CbS(f, (gi)i∈I) : TΣ → TΓ using the same procedure as for strings: on a given input t,
substitute every node in f(t) by gi(t). The closure of regular functions over trees (with holes)
by this extended CbS operator is another natural class of tree functions to consider.

The proof of Theorem 7.2 can be adapted to show that these two classes coincide. However,
we do not have equivalent logical or transducer-based characterizations.

Relationship to polyregular functions We presented comparison-free polyregular functions
as a strict subclass of polyregular functions. This leads to a natural membership problem:

14 Comparison-free polyregular functions

B Problem 8.2. Is there an algorithm taking as input a (code for a) pebble transducer which
decides whether the corresponding function Σ∗ → Γ∗ is comparison-free or not?

There are many similar problems of interest on the frontier between general and comparison-
free polyregular functions. We believe that investigating such issues may also lead to
machine/syntax-free characterizations of the containment between the two classes. One
might for instance hope to generalize Definition 5.7 to obtain such a characterization.

Polyregular functions and λ-calculus A natural question is whether it is possible to give a
characterization of general polyregular functions in terms of λ-terms and Church encodings.
Theorem 7.2 implies that terms t : StrΓ[τ]→ StrΣ with τ purely linear are not enough while
simply lifting the linearity restriction on τ can lead to outputs of hyperexponential size [23].

We conjecture that polyregular functions can be captured by terms t : StrΓ[τ]→ StrΣ
for general τ in (a variant of) the parsimonious λ-calculus [17, 18]. The difference with λ`⊕&

is that terms of type τ → σ are subject to a stricter tiering discipline, which seems closely
related to that of layered SSTs.

References

1 Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers. In IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2010), pages 1–12, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.1.

2 Michael Benedikt, Timothy Duff, Aditya Sharad, and James Worrell. Polynomial automata:
Zeroness and applications. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–12, Reykjavik, Iceland, June 2017. IEEE. doi:10.1109/LICS.2017.
8005101.

3 Mikołaj Bojańczyk. Polyregular Functions. CoRR, abs/1810.08760, October 2018. arXiv:
1810.08760.

4 Mikołaj Bojańczyk and Wojciech Czerwiński. An automata toolbox. Lecture notes for a
course at the University of Warsaw, 2018. URL: https://www.mimuw.edu.pl/~bojan/paper/
automata-toolbox-book.

5 Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-String Interpretations With
Polynomial-Size Output. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 106:1–106:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.106.

6 Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed λ-programs on
term algebras. Theoretical Computer Science, 39:135–154, January 1985. doi:10.1016/
0304-3975(85)90135-5.

7 Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. Aperiodic String Transducers. In-
ternational Journal of Foundations of Computer Science, 29(05):801–824, August 2018.
doi:10.1142/S0129054118420054.

8 Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Paul Gastin. Register Transducers Are Marble
Transducers. In Javier Esparza and Daniel Kráľ, editors, 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 29:1–29:14, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.29.

9 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Transactions on Computational Logic, 2(2):216–254,
April 2001. doi:10.1145/371316.371512.

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://doi.org/10.1109/LICS.2017.8005101
https://doi.org/10.1109/LICS.2017.8005101
http://arxiv.org/abs/1810.08760
http://arxiv.org/abs/1810.08760
https://www.mimuw.edu.pl/~bojan/paper/automata-toolbox-book
https://www.mimuw.edu.pl/~bojan/paper/automata-toolbox-book
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.1142/S0129054118420054
https://doi.org/10.4230/LIPIcs.MFCS.2020.29
https://doi.org/10.1145/371316.371512

L. T. D. Nguyễn, C. Noûs and P. Pradic 15

10 Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. Tree transducers, L systems,
and two-way machines. Journal of Computer and System Sciences, 20(2):150–202, 1980.
doi:10.1016/0022-0000(80)90058-6.

11 Julien Ferté, Nathalie Marin, and Géraud Sénizergues. Word-Mappings of Level 2. Theory of
Computing Systems, 54(1):111–148, January 2014. doi:10.1007/s00224-013-9489-5.

12 Emmanuel Filiot and Pierre-Alain Reynier. Transducers, Logic and Algebra for Functions of
Finite Words. ACM SIGLOG News, 3(3):4–19, August 2016. doi:10.1145/2984450.2984453.

13 Emmanuel Filiot and Pierre-Alain Reynier. Copyful Streaming String Transducers. To appear
in Fundamenta Informaticae (long version of a paper in Proc. of 11th International Workshop
on Reachability Problems (RP 2017)), 2017. URL: http://pageperso.lif.univ-mrs.fr/
~pierre-alain.reynier/files/copyful_submitted.pdf.

14 Oleg Kiselyov. Many more predecessors: A representation workout. Journal of Functional
Programming, 30, 2020. doi:10.1017/S095679682000009X.

15 Nathan Lhote. Pebble minimization of polyregular functions. In Holger Hermanns, Lijun Zhang,
Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages 703–712. ACM,
2020. doi:10.1145/3373718.3394804.

16 Aristid Lindenmayer. Mathematical models for cellular interactions in development II. Simple
and branching filaments with two-sided inputs. Journal of Theoretical Biology, 18(3):300–315,
March 1968. doi:10.1016/0022-5193(68)90080-5.

17 Damiano Mazza. Simple Parsimonious Types and Logarithmic Space. In 24th EACSL Annual
Conference on Computer Science Logic (CSL 2015), pages 24–40, 2015. doi:10.4230/LIPIcs.
CSL.2015.24.

18 Damiano Mazza. Polyadic Approximations in Logic and Computation. Habilitation à diriger
des recherches, Université Paris 13, November 2017. URL: https://lipn.fr/~mazza/papers/
Habilitation.pdf.

19 Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers. Journal of
Computer and System Sciences, 66(1):66–97, 2003. doi:10.1016/S0022-0000(02)00030-2.

20 Anca Muscholl and Gabriele Puppis. The Many Facets of String Transducers. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 2:1–2:21. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019. doi:10.4230/LIPIcs.STACS.2019.2.

21 Lê Thành Dũng Nguyễn, Camille Noûs, and Pierre Pradic. Implicit automata in typed
λ-calculi II: streaming transducers vs categorical semantics. CoRR, abs/2008.01050v1, 2020.
arXiv:2008.01050v1.

22 Gabriel Scherer. Which types have a unique inhabitant? : Focusing on pure program equivalence.
PhD thesis, Paris Diderot University, France, 2016. URL: https://tel.archives-ouvertes.
fr/tel-01309712.

23 Helmut Schwichtenberg. Complexity of normalization in the pure typed lambda–calculus. In
Studies in Logic and the Foundations of Mathematics, volume 110, pages 453–457. Elsevier,
1982. doi:10.1016/S0049-237X(09)70143-0.

24 Tim Smith. A pumping lemma for two-way finite transducers. In Erzsébet Csuhaj-Varjú,
Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations of Computer
Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29,
2014. Proceedings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 523–534.
Springer, 2014. doi:10.1007/978-3-662-44522-8_44.

25 Géraud Sénizergues. Sequences of level 1, 2, 3, ..., k , .. In Volker Diekert, Mikhail V.
Volkov, and Andrei Voronkov, editors, Computer Science - Theory and Applications, Second
International Symposium on Computer Science in Russia, CSR 2007, Ekaterinburg, Russia,
September 3-7, 2007, Proceedings, volume 4649 of Lecture Notes in Computer Science, pages
24–32. Springer, 2007. doi:10.1007/978-3-540-74510-5_6.

https://doi.org/10.1016/0022-0000(80)90058-6
https://doi.org/10.1007/s00224-013-9489-5
https://doi.org/10.1145/2984450.2984453
http://pageperso.lif.univ-mrs.fr/~pierre-alain.reynier/files/copyful_submitted.pdf
http://pageperso.lif.univ-mrs.fr/~pierre-alain.reynier/files/copyful_submitted.pdf
https://doi.org/10.1017/S095679682000009X
https://doi.org/10.1145/3373718.3394804
https://doi.org/10.1016/0022-5193(68)90080-5
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://lipn.fr/~mazza/papers/Habilitation.pdf
https://lipn.fr/~mazza/papers/Habilitation.pdf
https://doi.org/10.1016/S0022-0000(02)00030-2
https://doi.org/10.4230/LIPIcs.STACS.2019.2
http://arxiv.org/abs/2008.01050v1
https://tel.archives-ouvertes.fr/tel-01309712
https://tel.archives-ouvertes.fr/tel-01309712
https://doi.org/10.1016/S0049-237X(09)70143-0
https://doi.org/10.1007/978-3-662-44522-8_44
https://doi.org/10.1007/978-3-540-74510-5_6

16 Comparison-free polyregular functions

A Technical preliminaries on SSTs

We recall here some classical objects and constructions related to streaming string transducers,
that will be helpful for the various proofs involving SSTs. Most of the propositions are
straightforward consequences of the definitions.

A.1 Transition monoids
Register assignments (Definition 2.2) can be given a monoid structure as follows.

I Definition A.1. LetMR,Σ = R→ (Σ∪R)∗ for R∩Σ = ∅. We endow it with the following
composition operation, that makes it into a monoid:

α • β = α� ◦ β where α� ∈ Hom((Σ ∪R)∗, (Σ ∪R)∗), α�(x) =
{
α(x) for x ∈ R
x for x ∈ Σ

The monoidMR,Σ thus defined is isomorphic to a submonoid of Hom((Σ ∪R)∗, (Σ ∪R)∗)
with function composition. It admits a submonoid of copyless assignments.

I Definition A.2. We writeMcl
R,Σ for the set of all α ∈MR,Σ such that each letter r ∈ R

occurs at most once among all the α(r′) for r′ ∈ R.

I Proposition A.3. Mcl
R,Σ is a submonoid ofMR,Σ. In other words, copylessness is preserved

by composition (and the identity assignment is copyless).

The following proposition ensures that this composition does what we expect. Recall from
Definition 2.2 that (−)† interprets register assignments as functions on tuples of strings, i.e.
it sendsMR,Σ to (Σ∗)R → (Σ∗)R.

I Proposition A.4. For all α, β ∈MR,Σ, we have (α • β)† = β† ◦ α†.

To incorporate information concerning the states of an SST, we define below a special
case of the wreath product of transformation monoids.

I Definition A.5. Let M be a monoid whose multiplication is denoted by m,m′ 7→ m ·m′.
We define M o Q as the monoid whose set of elements is Q → Q ×M and whose monoid
multiplication is, for µ, µ′ : Q→ Q×M ,

(µ • µ′) : q 7→ (π1 ◦ µ′ ◦ π1 ◦ µ(q), (π2 ◦ µ(q)) · (π2 ◦ µ′ ◦ π1 ◦ µ(q)))

where π1 : Q×M → Q and π2 : Q×M →M are the projections.

For instance, if M is the trivial monoid with one element, Q oM is isomorphic to Q → Q

with reverse composition as the monoid multiplication: f • g = g ◦ f .

I Proposition A.6. Let (Q, q0, R, δ, ~uI , F) be an SST that computes f : Γ∗ → Σ∗ (using the
notations of Definition 2.3). For all c ∈ Γ, we have δ(−, c) ∈ MR,Σ o Q, and the SST is
copyless if and only if {δ(−, c) | c ∈ Γ} ⊆ Mcl

R,Σ oQ. Furthermore, for all w1 . . . wn ∈ Γ∗,

f(w1 . . . wn) = F (g(q0))†(α†(~v)) where (g, α) = δ(−, w1) • · · · • δ(−, wn)

Finally, it will sometimes be useful to consider monoids of assignments over an empty output
alphabet. This allows us to keep track of how the registers are shuffled around by transitions.

L. T. D. Nguyễn, C. Noûs and P. Pradic 17

I Proposition A.7. Let R and Σ be disjoint finite sets. There is a monoid morphism
MR,Σ →MR,∅, that sends the submonoid Mcl

R,Σ to Mcl
R,∅. For any Q, this extends to a

morphismMR,Σ oQ→MR,∅ oQ that sendsMcl
R,Σ oQ toMcl

R,∅ oQ. We shall use the name
eraseΣ for both morphisms (R and Q being inferred from the context).

I Remark A.8. Consider an SST with a transition function δ. Let ϕδ ∈ Hom(Γ∗,Mcl
R,∅ oQ) be

defined by ϕδ(c) = eraseΣ(δ(−, c)) for c ∈ Γ. The range ϕδ(Γ∗) is precisely the substitution
transition monoid (STM) defined in [7, Section 3].

I Proposition A.9. For any finite R, the monoid Mcl
R,∅ is finite. As a consequence, the

substitution transition monoid of any copyless SST is finite.

Proof idea. For all α ∈Mcl
R,∅ and r ∈ R, observe that |α(r)| ≤ |R|. J

A.2 Details for Remark 2.6
We recall the “natural” translation of HDT0L systems into single-state SSTs, which is relevant
to some proofs in Section 3. Let (Γ,Σ,∆, d, (hc)c∈Γ, h

′) be a HDT0L system. It is equivalent
to the SST specified by the following data:

a singleton set of states: Q = {q};
the working alphabet as the set of registers: R = ∆ (minor technicality: if ∆ ∩ Σ 6= ∅,
one should take R to be a copy of ∆ that is disjoint from Σ);
hc ∈ Hom(∆∗,∆∗) ∼= (∆→ ∆∗) ⊆ (∆→ (Σ ∪∆)∗) as the register assignment associated
to an input letter c ∈ Γ – in other words, the transition function is δ : (q, c) 7→ (q, (hc)�∆);
(h′(r))r∈∆ ∈ (Σ∗)R as the initial register values;
F : q 7→ d as the final output function (d ∈ ∆∗ ⊆ (Σ ∪∆)∗).

The cases of the transition and output functions involve a codomain extension from ∆∗ to
(Σ∪∆)∗. This reflects the intuition that a HDT0L system is the same thing as a single-state
SST that “cannot access the output alphabet” (except in the initial register contents).

To prove the equivalence, the key observation is that hc is turned into δ(−, c) by a
morphism from Hom(∆∗,∆∗) to M∆,∅ o {q} ⊂ M∆,Σ o {q}, using the notations from the
previous subsection. We leave the details to the reader.

B Proofs for Section 3

B.1 Proof of Theorem 3.2
Proof of (⇒). The translation from SSTs to HDT0L systems given by [13] turns out to work.
For the sake of clarity, we give an alternative presentation that decomposes it into two steps.

Let Γ be the input alphabet and Σ be the output alphabet. Let T be a SST with a
k-layered set of register variables R = R0 t · · · tRk. First, we build a (k + 1)-layered SST
T ′ that computes the same function, with the set of registers

R′ = Σ ∪R = R′0 t · · · tR′k+1 R′0 = Σ ∀i ∈ {1, . . . , k + 1}, R′i = Ri−1

assuming Σ ∩R = ∅, and whose register assignments are without fresh letters: the range of
every α′ : R′ → (Σ ∪ R′)∗ is included in R′∗, which allows us to write α′ : R′ → R′∗. This
already brings us closer to the definition of HDT0L systems, since (R→ R∗) ∼= Hom(R∗, R∗).
Similarly, we will ensure that the range of the output function of T ′ is included in R′.

Let underlineΣ ∈ Hom((Σ ∪ R)∗, (Σ ∪ R)∗) be defined in the expected way, and note
that its codomain is equal to R′∗. We specify T ′ as follows (and leave it to the reader to
check that this works):

18 Comparison-free polyregular functions

the state space Q, initial state and state transitions are the same as those of T ;
the initial value of r′ ∈ R′ is the same as for T if r′ ∈ R, or the single letter c if r′ = c ∈ Σ;
every assignment α : R→ (Σ ∪R) that appears in some transition of T becomes, in T ′,

α′ : R′∗ → R′∗ α′ : c ∈ Σ 7→ c α′ : r ∈ R 7→ underlineΣ(α(r))

its output function is F ′ = underlineΣ ◦ F where F : Q → (Σ ∪ R)∗ is the output
function of T .

Thus, the idea is to store a copy of c ∈ Σ in the register c. Since this register may feed in
a copyful way all other registers (in a SST, there are no restrictions on the use of output
alphabet letters), it must sit at the lowest layer, hence R′0 = Σ and the resulting offset of
one layer.

Next, we turn T ′ into an equivalent HDT0L system with (k+ 1)-layered working alphabet

∆ = R′ ×Q = ∆0 t . . . t∆k+1 ∀i ∈ {0, . . . , k + 1}, ∆i = R′i ×Q

For q ∈ Q, let pairq ∈ Hom(R′∗,∆∗) be such that pairq(r′) = (r′, q) for r′ ∈ R′.
Let Q = {q(1), . . . , q(n)} be the states of T ′ (which are also those of T), with q(1) being

its initial state10. Using the fact that T ′ is without fresh letters, let F ′ : Q→ R′∗ be its final
output function. The initial word of our HDT0L system is then

d = pairq(1)

(
F ′
(
q(1)
))
· . . . · pairq(n)

(
F ′
(
q(n)

))
∈ ∆∗

From the initial register values (uI,r′)r′∈R′ ∈ (Σ∗)R′ of T ′, we define the final morphism:

h′ ∈ Hom(∆∗,Σ∗) ∀r′ ∈ R′,
[
h′
(
r′, q(1)

)
= uI,r′ and ∀q 6= q(1), h′(r′, q) = ε

]
Finally, let δ′st : Q → Q and δ′reg : Q → (R′ → R′∗) be the components of the transition
function of T ′. The morphisms hc ∈ Hom(∆∗,∆∗) for c ∈ Γ send (r′, q) ∈ ∆ to

hc(r′, q) = pairq(i1)(δ′reg(q(i1), c)(r′)) · . . . · pairq(im)(δ′reg(q(im), c)(r′))

where i1 < . . . < im and {q(i1), . . . , q(im)} = {q(?) ∈ Q | δ′st(q(?), c) = q}.
Checking that this HDT0L system computes the right function is a matter of mechanical

verification, that has already been carried out in [13]. To wrap up the proof, we must
justify that it is (k + 1)-layered. To do so, let us fix a letter c ∈ Γ and two layer indices
i, j ∈ {0, . . . , k + 1}, and count the number Nr′,q of occurrences of (r′, q) ∈ ∆i among all the
hc(r̃′, q̃) for (r̃′, q̃) ∈ ∆j . The letter (r′, q) can only appear in hc(r̃′, q̃) when q̃ = δ(q, c), and
in that case, its occurrences (if any) are in the substring pairq(δ′reg(q, c)(r̃′)). So Nr′,q counts
the occurrences of r ∈ R′i among the δ′reg(q, c)(r̃′) for r̃′ ∈ R′j . Since T ′ is a (k + 1)-layered
SST, we are done. J

Proof of (⇐). The translation from HDT0L systems to single-state SSTs mentioned in
Remark 2.6 (see Appendix A.2) is not enough: starting from a (k+1)-layered HDT0L system,
it gives us a (k + 1)-layered SST. But we can bring this down to k layers by adding states.

Let (Γ,Σ,∆, d, (hc)c∈Γ, h
′) be a HDT0L system (with d ∈ ∆∗, hc ∈ Hom(∆∗,∆∗) for c ∈ Γ,

and h ∈ Hom(∆∗,Σ∗)). Suppose that it is (k + 1)-layered with ∆ = ∆0 t · · · t∆k+1. This
entails that hc(∆0) ⊆ ∆∗0, and furthermore that (hc)�∆0 : ∆0 → ∆∗0 satisfies a copylessness
condition, that may succinctly be written as (hc)�∆0 ∈Mcl

∆0,∅ (cf. Definition A.2).
We define a k-layered SST with:

10Except for that, this enumeration of Q is arbitrary. We write q(i) instead of qi to avoid confusion with
the run of an automaton.

L. T. D. Nguyễn, C. Noûs and P. Pradic 19

Mcl
∆0,∅ as the set of states (finite by Proposition A.9), with the monoid identity as its

initial state;
the set of registers R = ∆ \∆0 = ∆1 t · · · t∆k+1, whose i-th layer is the (i+ 1)-th layer
of the original HDT0L system (0 ≤ i ≤ k);
the initial register contents (h′(r))r∈R – recall that h′ is the final morphism;
the transition function (α, c) 7→ (α • (hc)�∆0 , (h′�∆∗0 ◦ α)� ◦ (hc)�R) where (−)� extends
functions ∆0 → Σ∗ into morphisms in Hom((∆ ∪ Σ)∗, (R ∪ Σ)∗) that map each letter in
R ∪ Σ to itself (since ∆ = ∆0 tR, the domain of these morphisms is (∆0 tR t Σ)∗);
the final output function α 7→ (h′�∆∗0 ◦ α)�(d).

The layering condition for this SST is inherited is a direct consequence of the layering of
the original HDT0L system, and one can check the functions computed by the two are the
same. J

B.2 Proof of Corollary 3.3
Any regular function is definable by some copyless SST, i.e. 0-layered SST. By Theorem 3.2, it
can be turned into a 1-layered HDT0L system. The latter can be translated to a single-state
SST by the construction of Appendix A.2. As can readily be seen from the definitions, this
construction preserves the 1-layered property.

B.3 Proof of Proposition 3.5
Consider any single-state copyless SST computing some g : {a, b, c}∗ → {a, b}∗ with a set
of registers R. We wish to show g does not coincide with the function computed by the
sequential transducer of Figure 1. Let ω ∈ ({a, b}∪R)∗ be the image of the single state by the
output function, and for x ∈ {a, b, c}, let αx : R→ ({a, b} ∪R)∗ be the copyless assignment
performed by the SST when it reads x (that is, using the notations of Definition 2.3, ω = F (q)
and αx = δreg(q, x) with Q = {q}). Let ~u be the initial register contents. Then

∀x ∈ {a, b, c}∗, ∀n ∈ N, g(x · cn) = ω† ◦ (α†c)n ◦ α†x(~u)

Any register assignment β : R→ ({a, b, c} ∪R)∗ admits a unique extension into a monoid
morphism β� ∈ Hom(({a, b, c} ∪R)∗, ({a, b, c} ∪R)∗) that maps every letter in {a, b, c} to
itself. Let ωn =

(
α�c
)n (ω) (so that ω0 = ω). One can check that, for all n ∈ N:

ω†n = ω† ◦ (α†c)n;
since αc is copyless, |ωn|r ≤ |ω|r for all r ∈ R, writing |w|x for the number of occurrences
of x in w ∈ Σ∗ for x ∈ Σ.

Let (vx,r)r∈R = α†x(~u) for x ∈ {a, b, c}; that is, vx,r the value stored in the register r ∈ R
after the SST has read the single letter x. We can rewrite the above equation as

∀x ∈ {a, b, c}∗, ∀n ∈ N, g(x · cn) = ω†n((vx,r)r∈R)

and derive a numerical (in)equality

∀x ∈ {a, b, c}∗, ∀n ∈ N, |g(x · cn)|a = |ωn|a +
∑
r∈R
|ωn|r|vx,r|a =

n→+∞
|ωn|a +O(1)

using the fact that |ωn|r, as a non-negative quantity lower than the constant |ω|r, is O(1).
From this, it follows that as n increases, the difference between |g(a · cn)|a and |g(b · cn)|a

stays bounded. This property distinguishes g from the f : {a, b, c}∗ → {a, b}∗ computed by
the transducer given in Figure 1, since

∀n ∈ N, |f(a · cn)|a =
∣∣an+1∣∣

a
= n+ 1 and |f(b · cn)|a =

∣∣bn+1∣∣
a

= 0

20 Comparison-free polyregular functions

B.4 Proof of Proposition 3.6
It is stated in the introduction to [3] that all regular functions are polyregular. One way
to see this is discussed in Section 6: the characterization by pebble transducers given in [3]
generalizes the classical definition of regular functions using two-way finite state transducers.
This takes care of one direction of the equivalence; for the converse, observe that:

sequential functions are regular, as already mentioned;
since the SST of Example 2.9 is copyless, the iterated reverse function is regular.

B.5 Proof of Theorem 3.7
Proof of (i) ⇒ (iii). Thanks to Proposition 3.6, we know that any polyregular functions
can be written as a composition of a sequence of functions, each of which is either regular or
equal to squaringΓ for some finite alphabet Γ. It suffices to show that each function in the
sequence can in turn be expressed as a composition of single-state 1-layered SSTs.

We decompose squaringΓ as

1234 7→ 4321321211 7→ 1234123412341234

The first step is performed by the SST of Example 2.4, which has a single state and, as
mentioned in Section 2.3, is 1-layered. The second step can be implemented using a SST
with a single state q (that we omit below for readability), two registers X (at layer 0) and Y
(at layer 1) with empty initial values, an output function F (q) = Y , and

∀c ∈ Γ, δ(c) = (X 7→ X, Y 7→ cY) and δ(c) = (X 7→ cX, Y 7→ cXY)

As for regular functions, Corollary 3.3 takes care of them. J

Proof of (iii) ⇒ (ii). Immediate by definition. J

Proof of (ii) ⇒ (i). All functions computed by k-layered SSTs are polyregular; this applies
in particular to single-state 1-layered SSTs. Therefore, their composition is also polyregular
(according to Definition 2.10, polyregular functions are closed under composition). J

C Proofs for Section 4

C.1 Proof of Theorem 4.5
We start by briefly recalling the definition of polynomial list functions from [3, Section 4].
The explanation is geared towards a reader familiar with the simply typed λ-calculus, which
this system extends. The λ-terms defining polynomial list functions are generated by the
grammar of simply typed λ-terms enriched with constants, whose meaning can be specified
by extending the β-rule. For instance, given a finite set S and a ∈ S, every element of S can
be used as a constant, another allowed constant is isSa and we have

isSa b =β true if a = b isa b =β false if b ∈ S \ {a}

The grammar of simple types and the typing rules are also extended accordingly. For instance,
any finite set S induces a type also written S, such that every element a ∈ S corresponds to
a term a : S of this type. There are also operations expressing the cartesian product (×)
and disjoint union (+) of two types; and, for any type τ , there is a type τ∗ of lists whose
elements are in τ . So the constant isSa receives the type

isSa : S → {true}+ {false} for any finite set S

L. T. D. Nguyễn, C. Noûs and P. Pradic 21

See [3, Section 4] for the other primitive operations that are added to the simply typed
λ-calculus; we make use of is, case, map and concat here. Bojańczyk’s result is that if Γ
and Σ are finite sets, then the polynomial list functions of type Γ∗ → Σ∗ correspond exactly
the polyregular functions.

I Lemma C.1. Let I = {i1, . . . , i|I|}. Then the function matchI,τ : I → τ → . . . → τ → τ

which returns its (k+ 1)-th argument when its 1st argument is ik is a polynomial list function.

Proof idea. By induction on |I|, using isIi (i ∈ I) and case{true},{false},τ . J

Proof of closure by CbS. Let f : Γ∗ → I∗, and for i ∈ I, gi : Γ∗ → Σ∗ be polyregular
functions. Assuming that f and gi (i ∈ I) are defined by polynomial list functions of the
same name, the λ-term

λw. concatΣ (mapI,Σ
∗

(λi. matchI,Σ
∗
i (gi1 w) . . . (gi|I| w)) (f w))

computes CbS(f, (gi)i∈I). J

C.2 Proof of Proposition 4.6
This is equivalent to claiming that the class of comparison-free polyregular function is the
least class containing regular functions and such that for every regular function f : Γ∗ → I∗,
if the class contains gi : Γ∗ → Σ∗, we have CbS(f, (gi)i) in the class. This can be shown by
induction using the equation

CbS(CbS(f, (gi)i), (hj)j) = CbS(f, (CbS(gi, (hj)j))i)

D Proofs for Section 5

D.1 Proof of Theorem 5.1
As a corollary of Theorem 7.1 Before giving a direct proof, let us note that Theorem 5.1
also follows as a straightforward corollary of Theorem 7.1.

Proof of Theorem 5.1 from Theorem 7.1. Suppose that we have comparison-free polyreg-
ular functions f : Γ∗ → Σ∗ and h : Σ∗ → ∆∗. By the easy direction of Theorem 7.1,
we know that we have purely linear types τ, κ and λ`⊕&-terms t : StrΓ[τ] → StrΣ and
u : StrΣ[κ] → Str∆ implementing f and h respectively. Then, λ!w. t (u w) : StrΓ[τ [κ]]
implements h ◦ f , which is thus comparison-free polyregular by Theorem 7.1. J

We point this out because we provide a proof of Theorem 7.1 which does not rely
on Theorem 5.1; together with the argument above, this yields an alternative proof of
Theorem 5.1. We give a more direct argument below, not going through λ-calculus, for
clarity’s sake; another advantage of the proof below is that it is self-contained.

Direct proof of Theorem 5.1 First, by induction on the rank of the left-hand side of the
composition, we can reduce to the case where that side is a mere regular function, using the
straightforward identity

CbS(f, (gi)i∈I) ◦ h = CbS(f ◦ h, (gi ◦ h)i∈I)

We then treat this case by another induction, this time on the rank of the right-hand side.
The base case is handled by invoking the closure under composition of regular functions.
Therefore, what remains is the following inductive case.

22 Comparison-free polyregular functions

I Lemma D.1. Let f : Γ∗ → I∗ be a regular function and let (gi)i∈I be a family of
comparison-free polyregular functions Γ∗ → Σ∗. Suppose that for all regular h : Σ∗ → ∆∗
and all i ∈ I, the composite h ◦ gi is comparison-free polyregular.

Then, for all regular h : Σ∗ → ∆∗, h ◦ CbS(f, (gi)i∈I) is comparison-free polyregular.

Our proof of the above lemma relies on some properties of the transition monoids
introduced in Appendix A.1.

I Proposition D.2. Let β ∈Mcl
R,∆. For each r ∈ R, one can write β(r) = w0r

′
1w1 . . . r

′
nwn

with w0, . . . , wn ∈ ∆∗ and r′1 . . . r′n = erase∆(β)(r) ∈ R∗ (cf. Proposition A.7). Hence

Mcl
R,∆

∼=

{(
α, ~̀
) ∣∣∣∣∣ α ∈Mcl

R,∅,
~̀ ∈

∏
r∈R

(∆∗)|α(r)|+1

}

In other words, register assignments inMcl
R,∆ can be decomposed into a “shape” inMcl

R,∅
plus finitely many string labels. Through this bijection, erase∆ ∈ Hom(Mcl

R,∆ oQ,Mcl
R,∅ oQ)

can be seen as simply removing the labels, i.e. the ~̀ component.

I Lemma D.3. Let δ be the transition function of some copyless SST Σ∗ → ∆∗ whose sets
of states and registers are Q and R respectively, so that δ(−, c) ∈Mcl

R,∆ oQ for c ∈ Σ. Let

ψδ ∈ Hom(Σ∗,Mcl
R,∆ oQ) such that ∀c ∈ Σ, ψδ(c) = δ(−, c)

and ϕδ = erase∆ ◦ ψδ as in Remark A.8, q ∈ Q, r ∈ R, α ∈Mcl
R,∅ and j ∈ {0, . . . , |α(r)|}.

Then the following function Σ∗ → ∆∗, defined thanks to Proposition D.2, is regular:

s 7→

{
wj where π2(ψδ(s)(q))(r) = w0r

′
1w1 . . . r

′
nw
′
n if π2(ϕδ(s)(q)) = α

ε otherwise

(recall that π2 : Q×M →M is the second projection and M oQ = Q→ Q×M).

Proof. We consider during this proof that the names q, r, α and j introduced in the above
statement are not in scope, so that we can use those variable names for generic elements of
Q, R,Mcl

R,∅ and N instead. Those data will be given other names when we need them.
We build a copyless SST whose set of states is Q×Mcl

R,∅. This is made possible by the
finiteness ofMcl

R,∅ (Proposition A.9). As for the set of registers, we would like it to vary
depending on the current state for the sake of conceptual clarity, i.e. to have a family of
finite sets indexed by Q×Mcl

R,∅; when the SST moves from state (q, α) to (q′, α′), it would
perform a register assignment from Rq,α to Rq′,α′ (described by a map Rq′,α′ → (∆∪Rq,α)∗).
Such devices have been called state-dependent memory copyless SSTs in [21], and they are
clearly equivalent in expressive power to usual copyless SSTs.

The idea is that we want the configuration (current state plus register contents) of our
new SST, after reading s = s1 . . . sn, to faithfully represent

ψδ(s)(q0) = (δ(−, s1) • · · · • δ(−, sn))(q0) ∈ Q×Mcl
R,∆

where δ and ψδ are given in the lemma statement, and q0 is the given state that was called q
in that statement. Following Proposition D.2, since we already have the “shape” stored in
the second componentMcl

∆,∅ of the set Q×Mcl
∆,∅ of new states, it makes sense to use the

register to store the “labels”, hence Rq,α = Rα with

Rα = {(r, j) | r ∈ R, j ∈ {0, . . . , |α(r)|}} so that (∆∗)Rα ∼=
∏
r∈R

(∆∗)|α(r)|+1

L. T. D. Nguyễn, C. Noûs and P. Pradic 23

The configurations of our SST are thus in bijection with Q ×Mcl
R,∆ via Proposition D.2,

and we would like the transition performed when reading c ∈ Σ to correspond through this
bijection to (using the notations of Definition 2.3)

(q, β) ∈ Q×Mcl
R,∆ 7→ (δst(q), β • δreg(q))

For a fixed β′ ∈Mcl
R,∆, let us consider the right multiplication β 7→ β • β′ inMcl

R,∆. Since
erase∆ : Mcl

R,∆ →Mcl
R,∅ is a morphism, the “shape” of β • β′ can be obtained from the

“shape” of β by multiplying by α′ = erase∆(β′). The important point is to show that we
can obtain the new labels from the old ones by a copyless assignment – formally speaking,
that for any α ∈Mcl

R,∆ there exists a copyless

γα,β′ : Rα•α′ → (∆ ∪Rα)∗

such that for any β ∈Mcl
R,∆ such that erase∆(β) = α, which therefore corresponds to(

α, ~̀
)

for some ~̀ ∈ (∆∗)Rα ∼=
∏
r∈R

(∆∗)|α(r)|+1

the shape-label pair that corresponds to β • β′ is (α • α′, γ†α,β′(~̀)) (cf. Definition 2.2).
Our next task is to analyze the composite assignment β • β′ in order to derive a γα,β′

that works. Let r′′ ∈ R. First, if α′(r′′) = r′1 . . . r
′
n ∈ R∗, then

β′(r′′) = w′0r
′
1w
′
1 . . . r

′
nw
′
n for some w′0, . . . , w

′
n ∈ ∆∗

and by applying the unique morphism β� ∈ Hom((∆ ∪R)∗, (∆ ∪R)∗) that extends β and
sends letters of ∆ to themselves, we have

(β • β′)(r′′) = β�(β′(r)) = w′0 · β(r′1) · w′1 · . . . · β(r′n) · w′n

Let us decompose further, for i ∈ {1, . . . , n}:

β(r′i) = wi,0ri,1wi,1 . . . wi,nirni for some wi,0, . . . , wi,ni ∈ ∆∗

By plugging this into the previous equation, we have (β • β′)(r′′) = w0r1w1 . . . rmwm where

{r1, . . . , rm} =
n⋃
i=1
{ri,1, . . . , ri,ni}

Furthermore, each wk for k ∈ {0, . . . ,m} is a concatenation of some w′i and some wi,j , and
from the formal expression of wk depending on these w′i and wi,j – which only depends on
the shape α and α′ – we can derive a definition of γα,β′(r′′, k). For instance,

w42 = w3,2w
′
3w4,0 γ(r′′, 42) = (r′3, 2) · w′3 · (r′4, 0) ∈ (∆ ∪Rα•α′)∗

Observe that this does not refer to the wi,j ; therefore, γα,β′ does not depend on β, as required.
One can check that defined this way, γα,β′ is indeed a copyless assignment and that the
desired property of γ†α,β′ holds.

What we have just seen is the heart of the proof. We leave it to the reader to finish the
construction of the copyless SST. J

With this done, we can move on to proving Lemma D.1, which suffices to finish the proof
of Theorem 5.1.

24 Comparison-free polyregular functions

Proof of Lemma D.1. Let w ∈ Γ∗ be an input string. In the composition, we feed to a
copyless SST Th that computes h the word CbS(f, (gi)i∈I)(w) = gi1(w) . . . gik(w) where
f(w) = i1 . . . ik. A first idea is therefore to tweak Th into a new copyless SST that takes
I∗ as input and which executes, when it reads i ∈ I, the transition of Th induced by
gi(w). If we call h′w the regular function computed by this new SST, we would then have
h′w(f(w)) = h ◦ CbS(f, (gi)i∈I)(w). The issue is of course that h′w depends on the input w.

More precisely, the data that h′w depends on is the family of transitions

(ψδ ◦ gi(w))i∈I ∈ (Mcl
R,∅ oQ)I (see Lemma D.3 for ψδ)

where Q, R and δ are respectively the set of states, the set of registers and the transition
function of Th. We will be able to disentangle this dependency by working with

(ϕδ ◦ gi(w))i∈I = (erase∆ ◦ ψδ ◦ gi(w))i∈I ∈ (Mcl
R,∅ oQ)I

Concretely, we claim that for each ~µ ∈ (Mcl
R,∅ oQ)I , there exist:

a finite alphabet Λ~µ equipped with a function ι~µ : Λ~µ → I;
a regular function h′′~µ : I∗ → (∆ ∪ Λ~µ)∗;
and regular functions lλ : Σ∗ → ∆∗ for λ ∈ Λ;

such that for i1 . . . in ∈ I∗ and w ∈ Γ∗, if (ϕδ ◦ gi(w))i∈I = ~µ, then

h(gi1(w) · . . . · gin(w)) = replace each λ ∈ Λ~µ in h′′~µ(i1 . . . in) by lλ ◦ gι(λ)(w)

Let us deduce the conclusion from this claim. First of all, since the letters of Λ~µ only
serve as placeholders to be eventually substituted, they can be renamed at our convenience.
That means that we can take the Λ~µ to be disjoint for ~µ ∈ (Mcl

R,∅ oQ)I , and define Λ to be
their disjoint union. We also take ι : Λ→ I to be the unique common extension of the ι~µ. In
the same spirit, we glue together the functions h′′~µ ◦ f into

H : w ∈ Γ∗ 7→ h′′(ϕδ◦gi(w)|i∈I)(f(w)) ∈ (∆ ∪ Λ)∗

From the above equation on h′′~µ, one can then deduce for all w ∈ Γ∗ without condition that

h(CbS(f, (gi)i∈I)(w)) = CbS(H, (lλ ◦ gι(λ))λ∈Λ)(w)

(strictly speaking, one should have a family indexed by ∆ ∪ Λ on the right-hand side – to
comply with that, just extend the family with constant functions equal to x for each x ∈ ∆).

Using the above equation, we can rephrase our goal: we want to prove that the function
CbS(H, (lλ◦gι(λ))λ∈Λ) is comparison-free polyregular. This class of functions is – by definition
– closed under composition by substitutions, so we can reduce this to the following subgoals:

H is comparison-free polyregular: in fact, it is regular, because regular functions are
closed under composition and regular conditionals (Lemma 5.2). This argument relies on
the finiteness of the indexing set (Mcl

R,∅ oQ)I – a consequence of Proposition A.9 – and
on the regularity of the language {w ∈ Γ∗ | (ϕδ ◦ gi(w))i∈I = ~µ} for any ~µ. The reasons
for the latter are as follows:
ϕδ is a morphism whose codomainMcl

R,∅ oQ is finite, so ϕ−1
δ ({µi}) is regular for i ∈ I;

the functions gi for i ∈ I are assumed to be comparison-free polyregular, so they
preserve regular languages by inverse image, as all polyregular functions do [3];
regular languages are closed under finite intersections, and I is finite.

lλ ◦ gι(λ) is comparison-free polyregular for all λ ∈ Λ: because our main existence claim
states that lλ is regular for all λ ∈ Λ, and one of our assumptions is that any gi (for i ∈ I)
postcomposed with any regular function gives us a comparison-free polyregular function.

L. T. D. Nguyễn, C. Noûs and P. Pradic 25

Proof of the existence claim. Proposition D.2 says that every β = ψδ(gi(w)) ∈Mcl
R,∆ can

be decomposed into a shape α = erase∆(β) ∈Mcl
R,∅ and a finite family ~̀ of strings in ∆∗.

Each β(r) for r ∈ R can then be reconstituted as an interleaving of letters in α(r) with labels
in ~̀, a process that can be decomposed into two steps:

first, interleave the letters of α(r) with placeholder letters, taken from an alphabet disjoint
from both ∆ and R;
then substitute the labels for those letters.

Roughly speaking, this will allow us to manipulate an assignment with placeholders without
knowing the labels, and then add the labels afterwards.

Let ~µ ∈ (Mcl
R,∅ o Q)I . We define a copyless SST T~µ with the same sets of states and

registers as Th, namely Q and R. Its initial register values and final output function are also
the same. It computes a function I∗ → (∆ ∪ Λ~µ)∗, and its transition function is

δ~µ : (q, i) 7→
(
π1 ◦ µi(q),

(
r 7→ interleave

(
λq,i,r0 . . . λq,i,r|π2(µi(q))(r)|, π2(µi(q))(r)

)))
where interleave(u0 . . . un, v1 . . . vn) = u0v1u1 . . . vnun for letters u0, . . . , un, v1, . . . , vn over
some alphabet (recall also that µi : Q→ Q×Mcl

R,∅ for i ∈ I). Thus, we take

Λ~µ =
{
λq,i,rj

∣∣∣ q ∈ Q, i ∈ I, r ∈ R, j ∈ {0, . . . , |π2(µi(q))(r)|}
}

ι(λq,i,rj) = i

and h′′~µ to be the function computed by T~µ. (Note that although δ~µ does not involve
letters from ∆, the final output function and the initial register contents do.) Finally, given
λ = λq,i,rj ∈ Λ~µ, we define lλ to be the regular function provided by Lemma D.3 for the
transition function δ of Th, the state q0 (which is the initial state of both Th and T~µ), the
register r, the assignment shape α = π2(µi(q)) and the position j ∈ {0, . . . , |α(r)|}.

Let w ∈ Γ∗ be such that (ϕδ ◦ gi(w))i∈I = ~µ. Consider χw ∈ Hom((∆ ∪ Λ~µ)∗,∆∗) which
maps each letter of ∆ to itself and each λ ∈ Λ~µ to lλ ◦ gι(λ)(w). It lifts to a morphism
χ̂w ∈ Hom(Mcl

R,∆∪Λ~µ ,M
cl
R,∆), and we have χ̂w(δ~µ(−, i)) = ψδ ◦ gi(w). This leads to the

following invariant: the configuration of Th after reading gi1(w) · . . . · gin(w) is, in a suitable
sense, the “image by χw” of the configuration of T~µ after reading i1 . . . in. (In other words,
the “image of the SST T~µ by χw” is the copyless SST computing h′w that we sketched at the
very beginning of this proof of Lemma D.1.) This directly implies the property relating h,
h′′~µ and (lλ)λ∈Λ~µ that we wanted. J

D.2 Proof of Theorem 5.3
These examples are comparison-free. We have seen in Example 4.3 that w 7→ w|w| is a
comparison-free polyregular function. For the other examples:

(an 7→ (anb)n+1) = CbS((an 7→ an+1), (an 7→ anb)i∈{a}) is obtained as a composition by
substitutions of sequential functions, i.e. functions computed by sequential transducers
(cf. Section 2.2), which are in particular regular;
for an alphabet Σ with a, ‖ ∈ Σ, there exist sequential functions f : Σ∗ → {a}∗ and
g : Σ∗ → Σ∗ such that f(an‖w) = an and g(an‖w) = w‖ for n ∈ N and w ∈ Σ∗, so that
CbS(f, (g)i∈{a})(an‖w) = (w‖)n.

(i) is not HDT0L. Let us fix a HDT0L system ({a}, {a, b},∆, d, (h)i∈{a}, h′) and show that
it does not compute an 7→ (anb)n+1. Let letters(w) be the set of letters occurring in the
string w at least once. By the infinite pigeonhole principle, there exists an infinite X ⊆ N
such that letters(hn(d)) has the same value ∆′ for all n ∈ X. Let us do a case analysis:

26 Comparison-free polyregular functions

Suppose first that for some r ∈ ∆′ and some m ∈ N, the letter b appears twice in
h′ ◦ hm(r); in other words, that the latter contains a factor bakb for some k ∈ N. Then
for all n ∈ X, h′ ◦ hm+n(d) ∈ Σ∗bakbΣ∗. Since X is infinite, this holds for some n such
that m+ n > k, so that this word – i.e. the output of the HDT0L system for am+n – is
different from (am+nb)m+n+1 /∈ Σ∗bakbΣ∗.
Otherwise, for all r ∈ ∆′ (that includes the degenerate case ∆′ = ∅) and all m ∈ N,
there is at most one occurrence of b in h′ ◦ hm(r). Then for all m ∈ N, the length of
hmin(X)(d) bounds the number of occurrences of b in h′ ◦hm+min(X)(d), and this bound is
independent of m. On the contrary, in the sequence ((anb)n+1)n≥m+min(X), the number
of occurrences of b is unbounded.

(ii) is not HDT0L. The second counterexample, namely w 7→ w|w|, reduces to the first one:
indeed, (anb)n+1 = (anb)|anb| for all n ∈ N, which can also be expressed as

(w 7→ w|w|) ◦ (u ∈ {a}∗ 7→ ub) = (an 7→ (anb)n+1)

Suppose for the sake of contradiction that there is a HDT0L system (Σ,Σ,∆, d, (hc)c∈Σ, h
′)

that computes w 7→ w|w| with |Σ| ≥ 2; we may assume without loss of generality that a, b ∈ Σ.
Then ({a}, {a, b},∆, hb(d), (ha)c∈{a}, h′) computes an 7→ (anb)n+1.

Note that the assumption |Σ| ≥ 2 is necessary: in the unary case, an 7→ (an)|an| = an
2 is

comparison-free polyregular.

(iii) is not HDT0L. (This is claimed without proof in [8, Section 6].)
Let Σ ⊇ {a, ‖} be an alphabet and let (Σ,Σ,∆, d, (hc)c∈Σ, h

′) be a HDT0L system. We
reuse the a similar argument to our treatment of the counterexample (i). Let the sets ∆′ ⊆ ∆
and X ⊆ N with X infinite be such that letters(hna(d)) = ∆′ for all n ∈ X.

Suppose first that for some r ∈ ∆′ and some m ∈ N, the string h′ ◦ hma ◦ h‖(r); contains
a factor ‖ · ak · ‖ for some k ∈ N. Then for all n ∈ X, the given HDT0L system maps
am‖an to a string in Σ∗ · ‖ · ak · ‖ ·Σ∗. For n > k, this language does not contain (an‖)m;
such a n ∈ X exists because X is infinite.
Otherwise, for any m ∈ N, since ‖ occurs at most once in h′ ◦ hma ◦ h‖(r) for r ∈ ∆′,
the output of the HDT0L system has at most |hmin(X)(d)| occurrences of ‖ on input
am‖amin(X). Therefore, for large enough m, this output is different from (amin(X)‖)m.

D.3 Proof of Lemma 5.5
We consider a copyless SST computing f : {a} → Σ∗ whose set of states, set of registers
and transition function we call Q, R and δ respectively. We use the monoid Mcl

R,∅ o Q
introduced in Appendix A.1, which contains µ = eraseΣ(δ(−, a)). SinceMcl

R,∅ oQ is finite
(Proposition A.9), there is an exponent m ∈ N \ {0} such that µ•m = µ • . . . (m times) . . . • µ
is idempotent, i.e. µ•m = µ•2m. This m is the one put forth in the lemma statement.

Let us fix p ≥ m. Let (q, α) = µ•p(q0) where q0 is the initial state of the SST. Since
p−m ≥ 0, we have µ•p • µ•m = µ•(p+m) = µ•(p−m) • µ•2m = µ•(p−m) • µ•m = µ•p as usual.
Therefore, µ•m(q) = (q, β) with α•β = α and β •β = β (the latter is because of µ•2m = µ•m).
Thus, q is the state reached by the SST after reading amn+p for any n ∈ N. We also have
(δ(−, a))•m(q) = (q, γ) with γ ∈Mcl

R,Σ and eraseΣ(γ) = β.
Given r ∈ R, we distinguish two cases.
First, suppose that β(r) = ε or equivalently that γ(r) ∈ Σ∗ (in general, the codomain of
γ is (Σ ∪R)∗). When the SST is in state q and reads am, it executes the assignment γ;

L. T. D. Nguyễn, C. Noûs and P. Pradic 27

when β(r) = ε, the new value of the register r is this γ(r) ∈ Σ∗ which does not depend
on the old value of any register. Therefore, for all n ∈ N, the content of the register r
after having read am+mn+p (starting from the initial configuration) is the constant γ(r).
We now treat the case where β(r) is non-empty. By definition, β • β = β∗ ◦ β where
β∗ ∈ Hom(R∗, R∗) extends β : R → R∗. Since we know, as a consequence of the
idempotency of µ•m, that β • β = β, we have β∗(β(r)) = β(r) 6= ε.
Let us study in general the situation β∗(ρ) = β(r) 6= ε for ρ ∈ R∗. A first observation
is that the letters in β(r) cannot be found in any other β(r′) for r′ ∈ R \ {r} because
β is copyless, so ρ /∈ (R \ {r})∗. We therefore have n ≥ 1 occurrences of r in ρ, so
ρ = ρ0r . . . rρn with ρ0, . . . , ρn /∈ (R \ {r})∗. By coming back to β∗(ρ) = β(r), into which
we plug this expression for ρ, and using the fact that β(r) has non-zero length, we can
see that n = 1 and β∗(ρ0) = β∗(ρ1) = ε.
Let us apply this to ρ = β(r) = eraseΣ(γ)(r) and lift the result to γ(r):

γ(r) = urrvr for some ur, vr ∈ (Σ ∪ β−1({ε}))∗

In the previous case (β(r′) = ε for r′ ∈ R), we saw that γ(β−1({ε})) ⊆ Σ∗. Therefore
γ�(ur), γ�(vr) ∈ Σ∗, where γ� ∈ Hom((Σ ∪R)∗, (Σ ∪R)∗) extends γ : R→ (Σ ∪R)∗ by
being the identity on Σ. Since Σ∗ is fixed by γ�, when we iterate, we obtain

γ•(n+1)(r) = (γ�)n ◦ γ(r) = (γ�(ur))n · urrvr · (γ�(vr))n

Now, let F be the final output function of the SST that computes f , and ~wp be the register
values after it has read a prefix ap. Then after reading amn+m+p, the new register values are
(γ•(n+1))†(~wp). More precisely, the register r contains:

γ(r) ∈ Σ∗ if β(r) = ε;
(γ�(ur))n · ((urrvr)†(~wp)) · (γ�(vr))n otherwise.

These values are combined by F (q)† – where q is the recurrent state we have been working
with all along, and F is the final output function – to produce the output f(amn+m+p).
This yields the desired shape: an interleaved concatenation of finitely many factors that are
either constant, (γ�(ur))n or (γ�(vr))n for some r ∈ R. Note that the number of factors
is O(|R|), so the k from the lemma statement can indeed be chosen independently from p.
(Furthermore, what plays the role of the p in that statement is m+ p here; since we took
p ≥ m, we should set p0 = 2m.)

D.4 Proof of Lemma 5.8
Before giving the proof, let us have a couple of auxiliary definitions and lemmas. For any
pair of integers m > 0 and p ∈ N, call φp,m : {a}∗ → {a}∗ the function an 7→ amn+p.

B Claim D.4. Letm > 0 and p be natural numbers. A function f : {a}∗ → Σ∗ is poly-uniform
if and only if f ◦ φl,m is poly-uniform for every p ≤ l < m.

Proof. For the direct implication, assuming that we have a finite set Af,c ⊆ Q[X], we may
take Af◦φl,m,c = {P (mX + l) | P ∈ Af,c}. For the converse, we may take

Af,c =
⋃

p≤l<m

{
P

(
X − l
m

)
| P ∈ Af◦φl,m,c

}
∪
⋃
n<p

βc(f(an))

which is finite whenever the Af◦φl,m,c are. J

28 Comparison-free polyregular functions

B Claim D.5. Given two poly-uniform functions f and g, the pointwise concatenation
an 7→ f(an)g(an) is poly-uniform.

Proof. Calling h the pointwise concatenation of f and g, we may take

Ah,c = {P +Q | P ∈ Af,c, Q ∈ Ag,c}

J

B Claim D.6. Fix a word w. For any family of poly-uniform functions gi and function,
CbS((an 7→ wn), (gi)i∈I) is poly-uniform.

Proof. Suppose that we have finite sets Agi,c ⊆ Q[X] for i ∈ I and c ∈ Σ witnessing that the
gis are poly-uniform. For any word u ∈ I∗, define the finite sets Au,c ⊆ Q[X] by induction on
the length of u by Aε,c = {0} and Aui = {P +Q | P ∈ Au, Q ∈ Agi,c} ∪Au. It can be then
be checked that Ah,c = Aww ∪ {X · P (X) | P ∈ Aw} witnesses that CbS((an 7→ wn), (gi)i∈I)
is poly-uniform. J

We are now ready to prove Lemma 5.8 by induction over the rank of the comparison-free
polyregular function under consideration. First, let us prove it for regular functions (rank 0).

I Lemma D.7. If f : {a}∗ → Σ∗ is regular, then it is poly-uniform.

Proof. We apply Lemma 5.5 to get p ∈ N and a period m ∈ N, as well as families of words
ul,0, . . . , ul,k and vl,1, . . . , ul,k for l < m (we can take ul,i or vl,i empty to get k independent
from l) such that

f(amn+p+l) = (f ◦ φp+l,m)(an) = ul,0(vl,1)n . . . (vl,k)nul,k

By Claim D.4, it suffices to show that for every (ui)Ki=0 and (vi)ki=1, the map

an 7→ u0v
n
1 . . . v

n
kuk

is poly-uniform. This can be done by induction over k, applying Claim D.5 and noticing
that the maps an 7→ wn are poly-uniform (this is a corollary of Claim D.6). J

Now we can proceed similarly for the inductive step.

Proof of Lemma 5.8. Suppose that we have a comparison-free polyregular function f . We
have just treated the case where it is of rank 0, so suppose it is of rank k > 0 and we have
f = CbS(h, (gi)i) with h regular and the gis poly-uniform. Apply Lemma 5.5 to obtain p ∈ N
and a period m ∈ N, as well as families of words ul,0, . . . , ul,k and vl,1, . . . , ul,k for l < m

such that
h(amn+p+l) = (h ◦ φp+l,m)(an) = ul,0(vl,1)n . . . (vl,k)nul,k

By Claim D.4, it suffices to show that f ◦ φl,m = CbS(h ◦ φl,m, (gi ◦ φl,m)i) is poly-uniform
for every p ≤ l < p+m. By a simple induction over k and using Claim D.5, it suffices to
show that CbS((n 7→ (vl,j)n), (gi ◦φi)i) and CbS((n 7→ ul,j), (gi ◦φi)i) are poly-uniform. The
latter case is also treated using repeatedly Claim D.5, while the former corresponds exactly
to Claim D.6. J

L. T. D. Nguyễn, C. Noûs and P. Pradic 29

E Proofs for Section 6

E.1 Proof of Proposition 6.4
First note that any k-CFPT can be transformed into an equivalent k-CFPT whose transition
functions δ : Q × (Γ ∪ {., /})p → Q × (Np → Stackk) × Σ∗ are such that, for every input
(q,~b), we have either π3(δ(q,~b)) = ε (in which case we call δ(q,~b) a silent transition) or
π3(δ(q,~b)) ∈ Σ and π2(δ(q,~b)) is the identity. So, without loss of generality, suppose that
we have a k-CFPT Tf implementing f is of this shape, with state space Qf and transition
function δf Similarly, we may assume without loss of generality that the current height of
the stack is tracked by the state of CFPTs if we allow multiple final states; assume that we
have such height-tracking l-CFPT and that we have l-CFPTs Ti implementing gi with state
spaces Qi and transition functions δi.

We combine these CFPTs into a single k + l CFPT T ′ with state space

Q′ = Qf t Qf ×
⊔
i∈I

Qi

The initial and final states are those of Tf . The high-level idea is that T ′ behaves as Tf
until it produces an output i ∈ I; in such a case it “performs a call” to Ti that might spawn
additional heads to perform its computations. At the end of the execution of Ti, we return
the control to Tf . Formally speaking, the transition function δ′ of T ′ behaves as follows:

δ′(q,~b) = δf (q,~b) if q ∈ Qf and δf (q,~b) is silent.
otherwise we take, we have π3(δf (q,~b)) = i for some i ∈ I. Calling ri the initial state of
Ti, we set π1(δ′(q,~b)) = (q, ri) and π2(δ′(q,~b)) corresponds to push a new pebble onto
the stack. We make δ′(q,~b) silent in such a case.
δ′((q, r),~b~b′) then corresponds to δi(r,~b′) if we are not in the situation where the stack
height is 1 and the stack update function is pop.
otherwise we take π1(δ′((q, r),~bb′)) = π1(δf (q,~b)), π2(δ′(q, n+ 1,~bb′)) to be a pop action
and π3(δ′((q, r),~bb′)) = π3(δi((q, r),~bb′)).

E.2 Proof of Theorem 6.5
Assume we have f : Γ∗ → Σ∗ computed by a k-CFPT T with state space Q and transition
function δ that we assume to be disjoint from Σ. For each q ∈ Q, we describe a k − 1 CFPT
Tq with the same state space, initial state q and transition function δq such that, for every
b′ ∈ N, ~b ∈ Stackl for l ≤ k − 1 and q′ ∈ Q, δ(q′, b′~b) and δq(q′,~b) coincide on the first and
last component; on the second component, we require they also coincide up to the difference
in stack size. If we fix r ∈ Q, by [19, Theorem 4.7], the language consisting of those w ∈ Γ∗
such that Tq halts on r is regular. Since regular languages are closed under intersection,
for any map γ ∈ QQ, the language Lγ ⊆ Γ∗ of those words w such that Tq halts on γ(q) is
regular.

Now fix γ ∈ QQ and let us describe a 1-CFPT transducer Tγ intended to implement the
restriction of a function h : Γ∗ → (Σ ∪Q)∗ to Lγ . Tγ has the same state space and initial
state as T , but has a transition function δγ defined by

δγ(q, b) =
{
δ(q, b) if π2(δ(q, b)) is not a push
(γ(r), (p 7→ p), r) otherwise, for r = π1(δ(q, b))

Since Γ∗ =
⋃
γ∈QQ Lγ , by applying repeatedly Lemma 5.2, this determines the regular

function h : Γ∗ → (Σ ∪ Q)∗. We can then check that f = CbS(h, (gi)i∈Σ∪Q) where ga is

30 Comparison-free polyregular functions

the constant function outputting the one-letter word a for a ∈ Σ (which can certainly be
implemented by a 1-CFPT) and gq is the function Γ∗ → Σ∗ implemented by the (k−1)-CFPT
Tq.

E.3 Proof of Corollary 6.6
The proof goes by induction over k ∈ N. By Theorem 6.3, the result holds for k = 0 since
2DFTs characterize regular functions; let us detail each direction of the inductive case k > 0:

for the left-to-right inclusion, assume we are given a (k + 1)-CFPT computing f and
apply Theorem 6.5 to obtain h and gis such that f = CbS(h, (gi)i∈I) with h regular and
the gis computable by k-CFPTs. The induction hypothesis implies that the gis have rank
< k, and thus f has rank ≤ k.
conversely, if f has rank k, it can be written as CbS(h, (gi)i∈I) with h regular and the
gis with rank < k; the induction hypothesis implies that the gis can be computed by
k-CFPTs. By Theorem 6.3, h is computable by a 1-CFPT, so by Proposition 6.4, f is
computed by a (k + 1)-CFPT

F Proof of Theorem 7.1

F.1 Extensional completeness
The easy direction, i.e., the fact that every comparison-free polyregular function is im-
plemented by a λ`⊕&-term is proven by induction on the rank. For rank 0, this is a
consequence of [21, Theorem 1.1]: every regular function Σ∗ → Π∗ corresponds to a term of
type t : StrΣ[τ](StrΠ for some purely linear τ , so it is also implementable by the term
λ!x.t x : StrΣ[τ] → StrΠ. We may further assume that τ is inhabited, i.e., that there is a
closed term t : τ ; we shall maintain that invariant inductively.

The inductive step of the argument is then captured in the following lemma:

I Lemma F.1. If f is computed by t : StrΣ[τ]→ StrI and gi is computed by ui : StrΣ[σi]→
StrΠ then CbS(f, (gi)i∈I) is computed by some term of type StrΣ[κ]→ StrΠ (where τ, σi, κ
all purely linear and inhabited).

We first prove Lemma F.1 in the particular case where τ = σi for every i ∈ I.

I Proposition F.2. If f is computed by t : StrΣ[τ] → StrI and gi is computed by ui :
StrΣ[τ] → StrΠ then CbS(f, (gi)i∈I) is computed by some term of type StrΣ[τ [o(o]] →
StrΠ (where τ is purely linear and inhabited).

Proof. Write κ for τ [o(o]; by the substitution lemma, we have ui : StrΣ[κ]→ StrΠ[o(o]
and t : StrΣ[κ]→ StrI [o(o] that allows us to define the term

λ!s.λ!h1 . . . λ
!h|Π|.λ

!ε. t (û1 s h1 . . . h|Π|) . . . (û|I| s h1 . . . h|Π|) (λy. y) ε : Str[κ]→ StrΠ

where the terms ûi : Str[κ]→ (o(o)→ . . .→ (o(o)→ ((o(o)((o(o)) (for i ∈ I)
defined as ûi = λ!s.λ!h1. . . . λ

!h|Π|.λx. ui s (λf.λy. h1 (f y)) . . . (λf.λy. h|Π| (f y)) (λy. y).
The above term implements CbS(f, (gi)i∈I). J

Now we need to account for the general case where A and the Bis might differ. We
reduce it to Proposition F.2 using a few auxiliary claims. Given arbitrary terms s : τ (σ

and r : σ(τ , write casts,r : StrΣ[σ](StrΣ[τ] for

λw.λ!a1. . . . λ
!a|Σ|.λ

!ε. r (w (λx.s (a1 (r x))) . . . (λx.s (a|Σ| (r x))) (s ε))

L. T. D. Nguyễn, C. Noûs and P. Pradic 31

We call a type τ a λ`⊕&-definable retract of σ if there are terms s : τ (σ and r : σ (τ

such that λa. r (s a) be βη equivalent to the identity function; in such a case, we call (s, r) a
λ`⊕&-section-retraction pair from τ to σ.

B Claim F.3. If (s, r) is a λ`⊕&-section-retraction pair and w is the Church encoding of
some word w ∈ Σ then casts,r w =βη w.

Proof. Easy induction over w. J

This means in particular that if a function f has a λ`⊕&-definition t : StrΣ[A]→ StrΠ,
and (s, r) witnesses that A is a retract of B, then λ!w.t (casts,r w) : StrΣ[B] → StrΠ is
also a valid definition of f .

To reduce Lemma F.1 to Proposition F.2, it is then sufficient to note that if τ and the
σis are all purely linear and inhabited, then so is κ = (τ & I) ⊗ (σ1 & I) & . . . ⊗ (σ|I| & I).
Further, τ is a retract of κ. The retraction is given by discarding every component of the
tensor but the first and then projecting. The section is obtained by pairing the input with ()
and the default elements of the σi witnessing that they are inhabited. Similarly, every σi is
a retract of κ, so we may conclude.

F.2 Soundness
We prove that all definable functions in the sense of Theorem 7.2 are comparison-free
polyregular using a combination of a syntactic analysis of normal forms for λ`⊕&-terms
and semantic evaluation. We only give key results for the former in the body of the paper,
with proofs deferred to the appendix. Using these results, we explain how to derive our
characterization, leveraging our previous work [21] on semantic interpretation of purely linear
λ`⊕&-terms in terms of generalized SSTs.

Syntactic analysis The first step toward syntactic analysis is to normalize λ`⊕&-terms. In
fact, in order to make the subsequent proofs easier, it will be convenient to have a refined
version of normal forms which does not only eliminate all β-redexes, but also orders the use
of eliminators (term applications t u, case, . . .) in a principled way according to a notion of
polarity. In proof theory, this is called focusing. We give the precise definition of partially
focused normal forms in Appendix F.3 and argue that the following holds:

I Theorem F.4. Any typed term t is βη-equivalent to a term in focused normal form.

Once this is done, we write Ψ; ∆ `NFf
t : A to mean that t is a focused normal form with

type A in the context Ψ; ∆. With this refined characterization, we then prove the following
lemma that allows use to isolate occurrences of the first argument of normal terms of type
StrΣ[A]→ StrΓ.

I Lemma F.5. Let τ = κ1 → . . . → κk → κ′ be a type with κ′ purely linear and s a
distinguished variable of type τ . Let ∆ and Ψ be purely linear contexts and t be a term such
that Ψ, s : τ ; ∆ `NFf

t : σ for some purely linear σ. Suppose further that there is at least one
occurrence of s in t. Then, there are terms o, d1, . . . , dk such that t =βη o 〈s d1 . . . dk, ()〉
and

Ψ, s : τ ; ∆ `NFf
o : (κ′ & I)(σ Ψ, s : τ ; · `NFf

di : κi for i ∈ {1, . . . , k}

Furthermore, there are no more occurrences of s in o 〈s d1 . . . dk, ()〉 than in t.

32 Comparison-free polyregular functions

The counting of the number of occurrences of the main argument s : τ in this lemma is
important, as this number of occurrences is not invariant under βη. Further, this param-
eter will turn out to be a bound on the rank of the comparison-free polyregular function
implemented by a λ`⊕&-definition.

For the rest of the proof, we fix ΨΣ = {c : o (o | c ∈ Σ} ∪ {ε : o}. Any λ`⊕&-term
of type StrΓ[τ]→ StrΣ can be normalized into a focused normal form (Theorem F.4) and
η-expanded into

λ!s. λ!c1. . . . λ
!c|Σ|. λ

!ε. t where ΨΣ, s : StrΓ[τ]; · `NEf
t : o

This fits the assumption of Lemma F.5 for κ1 = · · · = κ|Σ| = o(o and κ|Σ|+1 = κ′ = o.

Semantic evaluation We rely on the semantic interpretation of the purely linear fragment
of λ`⊕& described in [21]: for every alphabet Σ, we have a category SR(Σ)⊕& in which
purely linear types τ are interpreted by objects JτK and λ`⊕&-terms ΨΣ; · ` t : τ (σ may
be interpreted as morphisms in a way which is compatible with βη conversion; this amounts
to the fact that SR(Σ)⊕& has a symmetric monoidal closed structure, as well as finite sums
and products.

Formally speaking, the objects of SR(Σ)⊕& are triples (Q, (Xq)q∈Q, (Rq,x)q∈Q,x∈Wq)
where Q, Xq and Rq,x are finite sets. Let us take the convention that when we have an object
A of SR(Σ)⊕&, we write Q(A), X(A) and R(A) for the set and families of sets such that

A =
(
Q(A), (X(A)q)q∈Q(A), (R(A)q,x)q∈Q(A),x∈X(A)q

)
To simplify matters, assume that the Rq,x are always disjoint from each other and Σ, and
set Rq to be

⋃
x∈Xq Rq,x. Morphisms from A to B can be regarded as pairs (f, (αq)q∈Q(A))

where f : Q(A) → Q(B) is a set-theoretic map and αq : R(B)f(q) → (Σ ∪ R(A)q)∗ is a
register assignment satisfying an additional single-use restriction relative to X(A)q and
X(B)f(q): a register x ∈ R(A)q,x is only allowed to occur at most once in each component
αq(R(B)f(q),x′) for x′ ∈ X(B)f(q). Write A→Σ B for the set of such pairs. The composition
(g, (βq′)q′) ◦ (f, (αq)q) is defined as (c ◦ f, (γq)q) with γq such that γ†q = β†f(q) ◦ α

†
q.

We leave checking that the above can be extended to a category, and that additionally,
this category is isomorphic to SR(Σ)⊕& as defined in [21], to the reader. The reason why
this is not the exact same category is because we opted for a slightly different description of
the homsets A→Σ B which is more convenient for our purposes. We also refer to [21] for
the details of the interpretation of purely linear types τ 7→ JτK and associated λ`⊕& terms in
SR(Σ)⊕&. The object part of the symmetric monoidal structure, which serves to interpret
⊗ and I at the type level, is given by I = ({•}, {•}, ∅) and

A⊗B =
(
Q(A)×Q(B), (X(A)q ×X(B)q′)(q,q′), (R(A)q,x tR(B)q′,x′)(q,q′),(x,x′)

)
These data, along with the obvious natural isomorphisms (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C),
I⊗A ∼= A⊗ I ∼= A and A⊗B ∼= B ⊗A fully describe the monoidal structure of SR(Σ)⊕&.
The products A & B, coproducts A ⊕ B and the closed structures A(B are completely
determined up to unique isomorphism thanks to their universal properties; we refer to [21] for
proofs that they do exist. The non-trivial result there is the existence of the closed structure
A(B, which relies on combinatorics similar to those involved in Lemma D.3 (they also
appear in the proof of [21, Lemma 3.32]).

Regarding the interpretation of purely linear types, we fix JoK = ({•}, {•}, {•}) and thus
I→Σ JoK ∼= Σ∗ via a canonical isomorphism. The rest is determined by a chosen monoidal
closed structure, products and coproducts in SR(Σ)⊕&.

L. T. D. Nguyễn, C. Noûs and P. Pradic 33

For any A, q ∈ Q(A) and r ∈ R(A)q, we have maps π̃q,r : A→Σ JoK “reading” the value
of the register r. Its second component is a Q(A)-indexed family of functions {•} → {r}∗;
the component q takes the single-lettered word r as value and the other the empty word.
For any object A of SR(Σ)⊕&, note that I→Σ A injects into

∑
q∈Q(A)(Σ∗)R(A)q ; write ι for

that injection and call bAcΣ its image. For any function f : Γ∗ → bAcΣ, write L[f]q ⊆ Γ∗
for the language (f ◦ π1)−1(q) when q ∈ Q(A). For r ∈ R(A)q, write ρ[f]q,r for the function
w 7→ π̃†q,r(w)(•).

I Definition F.6. We say that f : Γ∗ → bAcΣ is comparison-free polyregular when:
L[f]q is regular for all q ∈ Q(A);
ρ[f]q,r is a comparison-free polyregular function for all q, r.

With this notion, we can tweak the interpretation of λ`⊕& terms to state our inductive
invariant. Note that we cannot just use J−K which only interprets terms typable in ΨΣ for a
fixed Σ, while we need an interpretation for terms typable in ΨΣ, s : StrΓ[τ].

I Definition F.7. Suppose we are given a term ΨΣ, s : StrΓ[τ]; · ` t : σ. For each
word w ∈ Γ∗, write w for the corresponding Church encoding. For every such w, we have
ΨΣ; · ` t[w/s]; we define the interpretation 〈|t|〉 : Γ∗ → bAcΣ so that 〈|t|〉 (w) = Jt[w/s]K

With these definition in mind, we can state the suitable generalization of Theorem 7.1.

I Theorem F.8. Let t be a λ`⊕&-term typable in ΨΣ, s : StrΓ[τ] ` t : σ 〈|t|〉 : Γ∗ → bAcΣ is
comparison-free polyregular.

Theorem 7.1 is then obtained as a corollary (taking σ = o). The heart of the argument is
contained in the following lemma.

I Lemma F.9. Let fc : Γ∗ → bA(AcΣ for c ∈ Γ and g : Γ∗ → bAcΣ. Suppose that L[g]q′
and L[fc]q′′ are regular for all c, q′, q′′, and let h : Γ∗ → bAcΣ by defined as the map

w = w[1] . . . w[n] 7−→ ι(Λ′(fw[n](w)) ◦ · · · ◦ Λ′(fw[1](w)) ◦ (ι−1(g(w))))

where, for ϕ ∈ bA (AcΣ, we write Λ′(ϕ) for the corresponding morphism A → A (i.e.,
evA,A ◦ (ι−1(ϕ)⊗ idA) ◦ λ−1

A where evA,B : (A(B)⊗A→Σ B is the evaluation morphism
and λ−1

A is the inverse of the left unitor λA : I ⊗ A →Σ A given by the monoidal closed
structure of SR(Σ)⊕&).

For any q ∈ Q(A) and r ∈ R(A)q:
the language L[h]q is regular;
the function ρ[h]q,r can be written as a composition by substitutions CbS(h′, (γi)i∈I) where
h′ : Σ∗ → I∗ is a regular function with

I =
∑

q′∈Q(A)

R(A)q′ t Γ×

 ∑
q′′∈Q(A(A)

R(A(A)q′′

γq′,r′ = ρ[g]q′,r′ for q′ ∈ Q(A) and r′ ∈ R(A)q′
γc,q′′,r′′ = ρ[fc]q′′,r′′ for c ∈ Γ, q′′ ∈ Q(A(A) and r′′ ∈ R(A(A)q′′ .

Proof. This proof is split into two independent components: we first show that L[h]q is regular
for every q ∈ Q(A), and then how to implement ρ[h]q,r using composition by substitutions.

34 Comparison-free polyregular functions

Regularity of L[h]q. Let us write Finset for the category of finite sets and functions between
them. The notation Q(A) that we adopted for objects A of SR(Σ)⊕& extends to a forgetful
functor Q : SR(Σ)⊕& → Finset by setting Q(f, (βq)q) = f on morphisms. Recalling that ι
is a bijection (I →Σ) ∼= bAcΣ, we have L[h]q = {w | Q((ι−1 ◦ h)(w))(•) = q} by definition.
Unraveling the definition of h and applying the functoriality of Q, we also have

Q((ι−1 ◦ h)(w)) = Q(Λ′(fw[n](w))) ◦ · · · ◦Q(Λ′(fw[1](w))) ◦Q((ι−1 ◦ g)(w))

By hypothesis, for each q′ ∈ Q(A), the language Lε,q′ = {w | Q((ι−1 ◦ g)(w))(•) = q′} is
regular. Further, for every c ∈ Γ and δ ∈ Q(A)Q(A), the language Lc,δ = {w | Q(Λ′(fc(w))) =
δ} is also regular because we have

Lc,δ =
⋃

q′′∈Q(A(A)
δ=Q(evA)(q′′,−)

L[fc]q′′

and each L[fc]q′′ is regular by assumption. Therefore, we know that there is a finite monoid
M , a monoid morphism ϕ : Γ∗ → M and subsets Fε,q′ , Fc,δ (for q′ ∈ Q(A), c ∈ Σ and
δ ∈ Q(A)Q(A)) such that Lε,q′ = ϕ−1(Fε,q′) and Lc,δ = ϕ−1(Fc,δ). Let us build a monoid
morphism recognizing L[h]q from M . The target will be the monoid (N, ∗) whose carrier is
defined as

N = [Γ→ Q(A)→ Q(A)]→M ×Q(A)Q(A)

and whose multiplication is lifted pointwise from M × (Q(A)→ Q(A)): if n(∂) = (m, δ) and
n′(∂) = (m′, δ′), we have (n ∗ n′)(∂) = (mm′, δ ◦ δ′). Define the morphism ψ : Γ∗ → N as
being generated by ψ(c)(∂) = (ϕ(c), ∂(c)) and Fq ⊆ N as the union

Fq =
⋃
q′

⋃
∂

Fq,∂,q′ where

Fq,∂,q′ =
{
n | n(∂) = (m, δ) ∧

(
∀c ∈ Γ m ∈ Fc,∂(c)

)
∧m ∈ Fε,q′ ∧ δ(q′) = q

}
It can then be checked that we have L[h]q = ψ−1(Fq), so we may conclude that L[h]q is a
regular language. J

ρ[h]q,r as a CbS. Let q0 ∈ Q(A) and (qc)c∈Γ ∈ Q(A (A)Γ. We will show that we can
define using such a composition by substitutions a function that coincides with ρ[h]q,r on
the regular language L ⊆ Γ∗ defined as

L = L[g]q0 ∩
⋂
c∈Γ

L[fc]qc

From this, one can derive the desired conclusion concerning ρ[h]q,r using the closure of regular
functions under regular conditionals (Lemma 5.2): combine the functions obtained for every
combinations of q0 and (qc)c, leveraging the fact that

CbS((w 7→ if w ∈ L′ then α(w) else β(w)), (γi)i∈I)

= (w 7→ if w ∈ L′ then CbS(α, (γi)i∈I)(w) else CbS(β, (γi)i∈I)(w))

For any w ∈ Γ∗, let Fw : SR(I)⊕& → SR(Σ)⊕& be the letter substitution functor induced
by i 7→ γi(w). There exists ĝ(q0) : I→I A that does not depend on w such that, if w ∈ L[g]q0 ,
then Fw(ĝ(q0)) = g(w). The explicit expression is

ĝ(q0) = ι−1(q0, ((q0, r))r∈R(A,q0))

L. T. D. Nguyễn, C. Noûs and P. Pradic 35

Similarly, for each c ∈ Γ, there exists f̂c(qc) : I→I (A(A) such that for any w ∈ L[f]qc , we
have Fw(f̂c(qc)) = ι−1(fc(w)). The functor Fw also preserves the monoidal closed structure
on the nose, so we have Fw(Λ′(ι(f̂c(qc)))) = Λ′(fc(w)).

By definition of L, all those conditions on w are implied by w ∈ L. By functoriality,

∀w ∈ L, Fw(π̃q,r ◦ Λ′(ι−1(f̂w[n](qw[n]))) ◦ · · · ◦ Λ′(ι−1(f̂w[1](qw[1]))) ◦ (ĝ(q0))︸ ︷︷ ︸
corresponds to a string h′(w)∈ I∗ via I∗∼= (I→IJoK)

) = ρ[h]q,r(w)

Concerning the left-hand side, the function h′ : Γ∗ → I∗, defined by the subexpression
emphasized by the brace, has precisely the shape of a function of w computed by a single-state
SR⊕&-SST, in the sense of [21]. As shown in [21, Section 3], such devices only compute regular
functions. To conclude, observe that applying Fw amounts to performing a composition by
substitutions: we obtain ρ[h]q,r(w) = CbS(h′, (γi)i∈I)(w) for w ∈ L as advertised. J

J

A couple of further lemmas stating that comparison-free polyregular functions play well
with the categorical structure of SR(Σ)⊕& are also helpful. The first one allows to combine
two functions f : Γ∗ → bAcΣ and g : Γ∗ → bBcΣ into a single function Γ∗ → bA⊗BcΣ that
we write abusively f ⊗ g. Its formal definition is

w 7→ ι((ι−1(f(w))⊗ ι−1(g(w))) ◦ λ−1
I) (where λI is the unitor I⊗ I→Σ I)

At the level of set-theoretic functions, this corresponds to a pairing seen through a canonical
isomorphism bA⊗BcΣ ∼= bAcΣ × bBcΣ.

I Lemma F.10. If f : Γ∗ → bAcΣ and g : Γ∗ → bBcΣ are comparison-free polyregular, so is
f ⊗ g.

Proof. Recall that Q(A⊗B) = Q(A)×Q(B); it is easy to check that we have L[f⊗g](q,q′) =
L[f]q ∩L[g]q′ , so L[f ⊗ g]q,q′ is regular. For r ∈ R(A)q, we have ρ[f ⊗ g](q,q′),r = ρ[f]q,r and
for r′ ∈ R(B)q, we have ρ[f ⊗ g](q,q′),r′ = ρ[g]q′,r′ ; hence, for every r ∈ R(A⊗B), we know
that ρ[f ⊗ g](q,q′),r is comparison-free polyregular, so we may conclude. J

Our second lemma pertains to the action of SR(Σ)⊕& on the sets bAcΣ. For a morphism
h : A→Σ B, call h◦ : bAcΣ → bBcΣ the map defined by h◦(e) = ι(h ◦ (ι−1(e))).

I Lemma F.11. Suppose that we have h : A →Σ B. If f : Γ∗ → bAcΣ is comparison-free
polyregular, then so is h◦ ◦ f .

Proof. Fix q ∈ Q(B) and suppose that h = (δ, α) (recall that by definition we have
δ : Q(A)→ Q(B) and α : R(B)→ (Σ ∪R(A))∗). Then we have

L[h◦ ◦ f]q =
⋃

q′∈δ−1(q)

L[f]q′

so L[h◦ ◦ f]q is regular. Now, fix r ∈ R(B)q and consider the family (fi)i∈Σ∪R(A) such
that fa(w) = a for a ∈ Σ and fr′(w) = ρ[f]q,r′ for r′ ∈ R(A); all of these functions are
comparison-free polyregular. Therefore, ρ[h◦ ◦ f]q,r = CbS((w 7→ α(r)), (fi)i)11 is also
comparison-free polyregular. J

11 Since w 7→ α(r) is a constant function Γ∗ → (Σ∪R(A))∗, this use of CbS is actually somewhat spurious;
it can be shown that we have rk(CbS(cr, (fi)i)) ≤ maxi∈R(A) rk(fi) by induction over the length of
cr(w), using that the pointwise concatenation of comparison-free polyregular functions does not increase
the rank. This is a crucial observation for arguing that the rank of the function built in our proof is
bounded by the number of occurrences of s occurring in a normalized input λ-term (as opposed to twice
the number of occurrences of s).

36 Comparison-free polyregular functions

We are now ready for the inductive proof.

Proof of Theorem F.8. As announced, we proceed by induction on the number of occur-
rences of s : StrΓ[τ] in t. In the base case where s does not occur in t, the function 〈|t|〉 is
constant and therefore comparison-free polyregular. Suppose that we have k occurrences of
s for some k > 0. By Lemma F.5, we can suppose that t has shape

o
〈
s d1 . . . d|Σ| dε, ()

〉
with o : τ & I(σ. There are strictly less than k occurrences of s in o, the dis and dε, to we
may apply the inductive hypothesis to deduce that 〈|o|〉, the 〈|di|〉s and dε are comparison-free
polyregular. By unraveling the definition of 〈|−|〉 and Lemma F.9, we may thus conclude that〈∣∣s d1 . . . d|Σ| dε

∣∣〉 is comparison-free polyregular. Now, it can be checked that we have〈∣∣o 〈s d1 . . . d|Σ| dε, ()
〉∣∣〉 = ev◦JτK&I,JσK ◦

(
〈|o|〉 ⊗

(
p◦ ◦

〈∣∣s d1 . . . d|Σ| dε
∣∣〉))

where p is the canonical morphism JτK→Σ JτK& I pairing its input with the empty tuple. We
may thus conclude the argument by applying successively Lemmas F.11, F.10 and F.11. J

F.3 Theorem F.4 and Lemma F.5
This section is devoted to establishing the required properties of βη-equivalence in the
λ`⊕&-calculus to make the proof of Theorem 7.1 go through. We build on some material
from [21, Appendices B & C], where similar analyses were carried out. A central technique
that we use here, which was not present in [21], is focusing (we briefly mentioned it at
the beginning of Appendix F.2). A detailed exposition of focusing in the context of giving
canonical normal forms to λ-terms may be found in [22].

First, we need to describe the shape of focused normal forms. These terms are split into
three categories defined by mutual recursion:

the general focused normal forms (NFf). We write Ψ; ∆ `NFf
t : A to say that t is a

focused normal form such that Ψ; ∆ ` t : A.
the focused neutral terms (NEf). We write Ψ; ∆ `NEf

t : A to say that t is a focused
neutral form such that Ψ; ∆ ` t : A.
the focused negative neutral terms (NE−f). We write Ψ; ∆ `NE−

f
t : A to say that t is a

negative focused neutral form such that Ψ; ∆ ` t : A.
Typed focused normal and neutral terms are defined by the inductive clauses in Figures 3, 4
and 5 in the following pages.

Proof sketch for Theorem F.4. We must prove that for every term t such that Ψ; ∆ ` t : τ ,
we have some βη-equivalent t′ such that Ψ; ∆ `NFf

t′ : τ .
Focusing and normalization can be done simultaneously, but let us sketch how to get

focused forms from normal forms for λ`⊕&; this allows to conclude using [21, Theorem B.1].
Reusing the notations of [21, Appendix B], suppose that we have Ψ; ∆ `NF t : τ . We first
claim that we have t′ such that t→∗ε t′ and t′ 6→ε; this can be shown by noticing that the
following N-valued complexity measure ‖ − ‖ on λ`⊕&-terms is strictly decreasing along →ε:

‖x‖ = 0 ‖()‖ = 0
‖ 〈〉 ‖ = 0 ‖in1(t)‖ = ‖t‖
‖in2(t)‖ = ‖t‖ ‖π1(t)‖ = ‖t‖
‖π2(t)‖ = ‖t‖ ‖t u‖ = ‖t‖+ ‖u‖
‖t⊗ u‖ = ‖t‖+ ‖u‖ ‖ 〈t, u〉 ‖ = ‖t‖+ ‖u‖
‖abort(t)‖ = 1 + 2‖t‖ ‖let x⊗ y = t in u‖ = 1 + 2‖t‖+ ‖u‖
‖case(t, x.u, y.v)‖ = 1 + 2‖t‖+ ‖u‖+ ‖v‖

L. T. D. Nguyễn, C. Noûs and P. Pradic 37

Ψ; ∆ `NEf
t : τ

Ψ; ∆ `NFf
t : τ

Ψ; ∆, x : τ `NFf
t : σ

Ψ; ∆ `NFf
λx.t : τ (σ

Ψ, x : τ ; ∆ `NFf
t : σ

Ψ; ∆ `NFf
λ!x.t : τ → σ

Ψ; ∆ `NFf
t : τ Ψ; ∆′ `NFf

u : σ
Ψ; ∆, ∆′ `NFf

t⊗ u : τ ⊗ σ

Ψ; ∆′ `NE−
f
t : τ ⊗ σ Ψ; ∆, x : τ, y : σ `NFf

u : κ

Ψ; ∆, ∆′ `NFf
let x⊗ y = t in u : κ Ψ; · `NFf

() : I

Ψ; ∆′ `NE−
f
t : I Ψ; ∆ `NFf

u : κ

Ψ; ∆, ∆′ `NFf
let () = t in u : κ

Ψ; ∆ `NFf
t : τ Ψ; ∆ `NFf

u : σ
Ψ; ∆ `NFf

〈t, u〉 : τ & σ

Ψ; ∆ `NFf
t : τ

Ψ; ∆ `NFf
in1(t) : τ ⊕ σ

Ψ; ∆ `NFf
t : σ

Ψ; ∆ `NFf
in2(t) : τ ⊕ σ

Ψ; ∆ `NE−
f
t : σ ⊕ τ Ψ; ∆′, x : σ `NFf

u : κ Ψ; ∆′, y : τ `NFf
v : κ

Ψ; ∆, ∆′ `NFf
case(t, x.u, y.v) : κ

Ψ; ∆ `NFf
〈〉 : >

Figure 3 Focused normal forms for λ`⊕&-terms.

By [21, Lemma B.2], we have that Ψ; ∆ `NF t′ : τ . This combined with the fact that we
have t′ 6→ε allows to show that we have Ψ; ∆ `NFf

t′ : τ by induction on the derivation. J

We now turn to the proof of Lemma F.5.

I Definition F.12 (See also [21, Definition C.1]). Write v+ for the least preorder relation
over types satisfying the following for every types τ and σ

τ, σ v+ τ ⊗ σ τ, σ v+ τ ⊕ σ τ, σ v+ τ & σ σ v+ τ (σ σ v+ τ → σ

We say that τ is a strictly positive subtype of σ whenever τ v+ σ.

I Lemma F.13. If Ψ; ∆ `NE−
f
t : τ , then there is a variable in Ψ; ∆ of type σ with τ v+ σ.

Proof. By induction over the derivation, much like [21, Lemma C.4]. J

I Lemma F.14. Let τ = κ1 → . . . → κk → κ′ be a type and s a distinguished variable of
type τ and l < k. Let Ψ; ∆ be a purely linear contexts such that and t be a term such that
Ψ, s : τ ; ∆ `NE−

f
t : σl+1 → . . . → σk → σ′ for some purely linear σ′. Then σ′ = κ′ and

σi = κi for i ≥ l there are d1, . . . , dl such that

t =βη s d1 . . . dk−1 and Ψ; · `NFf
di : κi for i ∈ {1, . . . , k − 1}

Furthermore, there are no more occurrences of s in s d1 . . . dk−1 than in t.

38 Comparison-free polyregular functions

Ψ; ∆ `NE−
f
t : τ

Ψ; ∆ `NEf
t : τ

Ψ; ∆′ `NE−
f
t : τ ⊗ σ Ψ; ∆, x : τ, y : σ `NEf

u : κ

Ψ; ∆, ∆′ `NEf
let x⊗ y = t in u : κ

Ψ; ∆ `NE−
f
t : σ ⊕ τ Ψ; ∆′, x : σ `NEf

u : κ Ψ; ∆′, y : τ `NEf
v : κ

Ψ; ∆, ∆′ `NEf
case(t, x.u, y.v) : κ

Ψ; ∆ `NE−
f
t : 0

Ψ; ∆, ∆′ `NEf
abort(t) : σ

Figure 4 Focused neutral forms for λ`⊕&-terms.

Ψ; ∆, x : τ `NE−
f
x : τ Ψ, x : τ ; ∆ `NE−

f
x : τ

Ψ; ∆ `NE−
f
t : τ & σ

Ψ; ∆ `NE−
f
π1(t) : τ

Ψ; ∆ `NE−
f
t : τ & σ

Ψ; ∆ `NE−
f
π2(t) : σ

Ψ; ∆ `NE−
f
t : τ (σ Ψ; ∆′ `NFf

u : τ

Ψ; ∆, ∆′ `NE−
f
t u : σ

Ψ; ∆ `NE−
f
t : τ → σ Ψ; · `NFf

u : τ

Ψ; ∆ `NE−
f
t u : σ

Figure 5 Focused negative neutral forms for λ`⊕&-terms.

Proof. Straightforward induction on the judgment Ψ, s : τ ; ∆ `NE−
f
t : σl+1 → . . . → σ′.

This is a simplification of [21, Lemma C.5]; the hypotheses can be simplified since we restrict
to negative neutral forms. J

Proof of Lemma F.5. We proceed by induction over the derivation of Ψ, s : τ ; ∆ `NFf
t : σ

to produce

Ψ, s : τ ; ∆, α : κ′ & I `NFf
o : σ Ψ, s : τ ; · `NFf

di : κi

such that o[〈s d1 . . . dk), ()〉 /α] =βη t and that there be the same number of occurrences of
s in both t and (λα.o) 〈s d1 . . . dk, ()〉. Since we shall need to often emulate the weakening
of the variable α, we write wα(u) for the term let () = π2(α) in u, noting that it is focused
normal as long as u is either NFf or NE−f . For brevity, we use the notations o′, d1 . . .

throughout for data obtained by applying the induction hypotheses without recalling all of
the relevant property and merely explain how to build a suitable o.

If the last rule applied is a variable lookup, then the term in question must be s itself.
Furthermore, we must have k = 0, so we may simply take o = α to conclude.
If the last rule considered is the following instance of the application rule

Ψ, s : τ ; ∆ `NE−
f
t : σ′(σ Ψ, s : τ ; ∆′ `NFf

u : σ′

Ψ, s : τ ; ∆, ∆′ `NE−
f
t u : σ

L. T. D. Nguyễn, C. Noûs and P. Pradic 39

then, we have two subcases, according to whether there is an occurrence of s in t or not.
If there is an occurrence of s in t, we apply the induction hypothesis to t to obtain
some o′ and dis and set o = o′ u to conclude.
Otherwise, we may apply the induction hypothesis to u to obtain some o′ and dis and
set o = t o′ to conclude.

If the last rule considered is the following instance of the application rule

Ψ, s : τ ; ∆ `NE−
f
t : σ′ → σ Ψ, s : τ ; · `NFf

u : σ′

Ψ, s : τ ; ∆ `NE−
f
t u : σ

then, we use Lemma F.14 to obtain d1, . . . , dk−1, set dk = u and o = α to conclude.
If the last rule applied is a linear λ-abstraction

Ψ; ∆, x : σ′ `NFf
t : σ

Ψ; ∆ `NFf
λx.t

we may apply the induction hypothesis to obtain o′, d1, . . . such that t = o′[s d1 . . .].
Note that x does not occur in any of the di and that we have Ψ; ∆, x : σ′ ` o′ : κ′(σ.
So we may set o = λx.o′ to conclude.
t cannot be non-linear λ-abstraction as σ′ is assumed to be purely linear.
If the last rule applied is a ⊗-introduction

Ψ, s : τ ; ∆ `NFf
t : σ Ψ, s : τ ; ∆′ `NFf

t′ : σ′

Ψ, s : τ ; ∆, ∆′ `NFf
t⊗ t′ : σ ⊗ σ′

then apply the induction hypothesis to the first premise if possible to get o′, d1, . . . and
set o = o′ ⊗ t′; otherwise, do the analogous operation with the second premise.
If the last rule applied is a ⊗-elimination

Ψ, s : τ ; ∆ `NE−
f
t : σ ⊗ σ′ Ψ, s : τ ; ∆′, x : σ, y : σ′ `NFf

u : σ′′

Ψ, s : τ ; ∆ `NFf
let x⊗ y = t in u : σ′′

first note that we have we have σ and σ′ purely linear because of Lemma F.13 applied
to the first premise. We have then two subcases, according to whether s occurs in t

or not. If it does, apply the induction hypothesis to the first premise to get o′, d1, . . .

and set o = let x⊗ y = o′ in u, otherwise apply it to the second premise and set
o = let x⊗ y = t in o′.
If the last rule applied is a pairing

Ψ, s : τ ; ∆ `NFf
t : σ Ψ, s : τ ; ∆ `NFf

t′ : σ′

Ψ, s : τ ; ∆ `NFf
〈t, t′〉 : σ & σ′

then apply the induction hypothesis to the first premise o′, d1, . . . and set o = 〈o′, wα(t′)〉.
If not possible because there is no occurrences of s in t, do the analogous thing with t′.
If the last rule applied is a projection

Ψ, s : τ ; ∆ `NE−
f
t : σ1 & σ2

Ψ, s : τ ; ∆ `NE−
f
t : σi

we apply the induction hypothesis to obtain o′, d1, . . . and set o = πi o
′.

The last rule applied cannot be an introduction of > because we need an occurrence of s.

40 Comparison-free polyregular functions

If the last rule applied is an introduction of ⊕

Ψ, s : τ ; ∆ `NFf
t : σi

Ψ, s : τ ; ∆ `NFf
ini(t) : σ1 ⊕ σ2

we may simply apply the induction hypothesis to get o′ and set o = ini(o′).
If the last rule applied is an elimination of ⊕

Ψ; ∆ `NE−
f
t : σ ⊕ σ′ Ψ; ∆′, x : σ `NF u : σ′′ Ψ; ∆′, y : σ′ `NF v : σ′′

Ψ; ∆, ∆′ `NF case(t, x.u, y.v) : σ′′

first note that σ and σ′ are necessarily purely linear because of Lemma F.13. We then
try to apply the induction hypothesis to one of the premise (at least one of them has an
occurrence of s) to get some o′, d1, . . .

If we can apply it to the first premise so that t =βη o
′[〈s d1 . . . dk, ()〉 /α], we can

conclude by setting o = case(o′, x.u, y.v).
If it is applicable to the second premise so that u =βη o

′[〈s d1 . . . dk, ()〉 /α], we set
o = case(t, x.o′, y.wα(v)).
Otherwise, v =βη o

′[〈s d1 . . . dk, ()〉 /α] and we set o = case(t, x.wα(u), y.o′).
J

L. T. D. Nguyễn, C. Noûs and P. Pradic 41

Contents

1 Introduction 1

2 Preliminaries 3
2.1 HDT0L transductions and streaming string transducers 3
2.2 Regular functions . 5
2.3 Polynomial growth transductions . 5

3 Complements on HDT0L systems, SSTs and polyregular functions 6

4 Composition by substitution 7

5 Closure under composition and separation properties 8

6 Comparison-free pebble transducers 10

7 Definability in the λ`⊕&-calculus 11

8 Perspectives 12

A Technical preliminaries on SSTs 16
A.1 Transition monoids . 16
A.2 Details for Remark 2.6 . 17

B Proofs for Section 3 17
B.1 Proof of Theorem 3.2 . 17
B.2 Proof of Corollary 3.3 . 19
B.3 Proof of Proposition 3.5 . 19
B.4 Proof of Proposition 3.6 . 20
B.5 Proof of Theorem 3.7 . 20

C Proofs for Section 4 20
C.1 Proof of Theorem 4.5 . 20
C.2 Proof of Proposition 4.6 . 21

D Proofs for Section 5 21
D.1 Proof of Theorem 5.1 . 21
D.2 Proof of Theorem 5.3 . 25
D.3 Proof of Lemma 5.5 . 26
D.4 Proof of Lemma 5.8 . 27

E Proofs for Section 6 29
E.1 Proof of Proposition 6.4 . 29
E.2 Proof of Theorem 6.5 . 29
E.3 Proof of Corollary 6.6 . 30

F Proof of Theorem 7.1 30
F.1 Extensional completeness . 30
F.2 Soundness . 31
F.3 Theorem F.4 and Lemma F.5 . 36

	Introduction
	Preliminaries
	HDT0L transductions and streaming string transducers
	Regular functions
	Polynomial growth transductions

	Complements on HDT0L systems, SSTs and polyregular functions
	Composition by substitution
	Closure under composition and separation properties
	Comparison-free pebble transducers
	Definability in the -calculus
	Perspectives
	Technical preliminaries on SSTs
	Transition monoids
	Details for rem:hdt0l-single-state

	Proofs for sec:complements
	Proof of thm:layered-hdt0l-equiv
	Proof of cor:regular-single-state-1-layered
	Proof of prop:single-state-copyless-weak
	Proof of prop:polyreg-reg-squaring
	Proof of thm:polyreg-layered

	Proofs for sec:cbs
	Proof of thm:polyreg-cbs
	Proof of prop:CbS-ind

	Proofs for sec:properties
	Proof of thm:composition
	Proof of thm:cf-not-hdt0l
	Proof of lem:reg-nat-pumping
	Proof of lem:comparisonfree-polyuniform

	Proofs for sec:cfpebble
	Proof of prop:cfpebble-easy
	Proof of thm:cfpebble-hard
	Proof of cor:cfpebble

	Proof of thm:laml
	Extensional completeness
	Soundness
	Theorem F.4 and Lemma F.5

