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Most birds incubate their eggs, which requires time and energy at the expense of other activities. Birds generally have two incubation strategies: biparental 
where both mates cooperate in incubating eggs, and uniparental where a single parent incubates. In harsh and unpredictable environments, incubation is 
challenging due to high energetic demands and variable resource availability.
We studied the relationships between the incubation behaviour of sandpipers (genus Calidris) and two environ-mental variables: temperature and a proxy of 
primary productivity (i.e. NDVI). We investigated how these rela-tionships vary between incubation strategies and across species among strategies. We also 
studied how the relationship between current temperature and incubation behaviour varies with previous day's temperature. We monitored the incubation 
behaviour of nine sandpiper species using thermologgers at 15 arctic sites between 2016 and 2019. We also used thermologgers to record the ground surface 
temperature at conspecific n e s t s i t e s  and extracted NDVI values from a remote sensing product.
We found no relationship between either environmental variables and biparental incubation behaviour. Con-versely, as ground-surface temperature 
increased, uniparental species decreased total duration of recesses (TDR) and mean duration of recesses (MDR), but increased number of recesses (NR). 
Moreover, small species showed stronger relationships with ground-surface temperature than large species. When all uniparental species were combined, an 
increase in NDVI was correlated with higher mean duration, total duration and number of re-cesses, but relationships varied widely across species. Finally, some 
uniparental species showed a lag effect with a higher nest attentiveness after a warm day while more recesses occurred after a cold day than was predicted 
based on current temperatures. 
We demonstrate the complex interplay between shorebird incubation strategies, incubation behaviour, and en-vironmental conditions. Understanding how 
species respond to changes in their environment during incubation helps predict their future reproductive success.

1. Introduction

Most bird species maintain egg temperature through contact incu-
bation to ensure embryo development (Deeming, 2002). Moreover, in-
cubation also protects the eggs against environmental hazards (e.g.
overheating or solar radiation; Brown and Downs, 2003) and predators
(Weidinger, 2002). However, incubation is an energetically costly be-
haviour preventing adults from performing other activities, such as for-
aging (Yom-Tov and Hilborn, 1981). Because a parent's body condition
can in turn influence both its ability to care (McNamara and Houston,
1996) and its probability of surviving until the next breeding event
(Williams, 1966), the time devoted to incubation may have negative
consequences for its fitness. To solve this trade-off, birds evolved a di-
versity of incubation strategies from biparental incubation where both
mates cooperate to uniparental incubation, where only one adult incu-
bates. Hence, the extent towhich eggs are incubated depends on the in-
cubation strategy but is also flexible and may vary with predation risk
(Conway and Martin, 2000a; Fontaine and Martin, 2006; Ghalambor
and Martin, 2002) and other environmental factors. Two main

environmental factors known to partly explain the variability in incuba-
tion behaviour are temperature and food availability (Chalfoun and
Martin, 2007; Conway and Martin, 2000b; Londono et al., 2008;
Weathers and Sullivan, 1989). Sharing incubation duties may buffer
the effect of such environmental factors on the pair's incubation behav-
iour but comeswith coordination challenges (Bulla et al., 2016). By con-
trast, incubation behaviour of uniparental speciesmay vary importantly
with environmental conditions (e.g. Reneerkens et al., 2011; Tulp and
Schekkerman, 2006).

In birds, the genus Calidris (Charadriiform, Scolopacids; henceforth
referred to as “Calidris species”) has been studied intensively as they
show a diversity of breeding strategies (Pitelka et al., 1974; Reynolds
and Székely, 1997; Székely and Reynolds, 1995).Male and female adults
within pairs of Calidris species can either incubate nests cooperatively
(henceforth referred to as “biparental species”) or alone (henceforth re-
ferred to as “uniparental species”), and in a few species a mix of both
strategies can be found within populations (see e.g. Bulla et al., 2017;
Moreau et al., 2018; Reneerkens et al., 2011). Biparental incubation al-
lows a quasi-continuous heat input into the eggs and gives both mates
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substantial time to forage (Bulla et al., 2014; Norton, 1972). Conversely,
uniparental species have a constrained schedule as they must leave the
nest unattended during foraging bouts (Tulp and Schekkerman, 2006).
Moreover, uniparental species may incur higher incubation costs as
some have been shown to maintain a higher incubation temperature,
presumably to compensate for their decreased overall attentiveness
(Reneerkens et al., 2011). However, nests of biparental species are
also left unattended for short periods several times a day (e.g. during pa-
rental exchanges or when the attending adult is flushed from its nest).
Such periods during which nests are left unattended are called incuba-
tion recesses (hereafter referred as “recesses”). Hence, both strategies
may result in intermittent incubation with detectable recesses, but in-
cubation patterns (e.g. number and duration of recesses) greatly vary
between strategies (Meyer et al., 2020; Norton, 1972; Reneerkens
et al., 2011; Smith et al., 2012b).

Many hypotheses have been formulated to describe the possible ad-
vantages that breeding in the Arctic might offer to birds (e.g., reduced
parasite loads: Alerstam et al., 2003; Piersma, 1997; increased food
availability during continuous daylight: Schekkerman et al., 2003;
lower predation risk: Gilg and Yoccoz, 2010; McKinnon et al., 2010;
but see Bulla et al., 2019). Yet, the harsh arctic weather can also nega-
tively impact breeding activities (Martin and Wiebe, 2004; Mayfield,
1978; McKinnon et al., 2013; Meltofte et al., 2007; Reneerkens et al.,
2016; Schmidt et al., 2019). For example, local conditions may have
multiple and interacting negative effects on the adult and its clutch. In
harsh conditions, breeding adults experience additional energetic
costs to sustain their increasing metabolic rate (Piersma and Morrison,
1994; Tinbergen and Williams, 2002; Wiersma and Piersma, 1994), to
keep their eggs warm during incubation bouts or to rewarm them
after recesses (i.e. increased egg-cooling rate; Biebach, 1986; Conway
andMartin, 2000b). Moreover, Calidris species cannot draw on substan-
tial reserves, but instead rely on local resources, forcing them to feed
regularly to sustain incubation and body maintenance (Drent and
Daan, 1980; Klaassen, 2003; Klaassen et al., 2001; but see Morrison
and Hobson, 2004). In addition, Calidris species feed on arthropods,
the availability (i.e. abundance and activity) of which varies from day
to day with local temperatures but also throughout the season and
across years and sites according to e.g. the local climate, plant phenol-
ogy or the timing of snowmelt (Bolduc et al., 2013; Hodkinson et al.,
1996; Høye and Forchhammer, 2008; Kwon et al., 2019; Saalfeld et al.,
2019).

To investigate the effect of local conditions on bird incubation be-
haviour, we needed proxies for thermal conditions aswell as food avail-
ability.We used the temperature near the ground-surface as a proxy for
the temperature experienced by incubating birds and their unattended
eggs. We also used the ground-surface temperature to account for the
day to day variability in arthropod availability. At a broader scale,
arthropod's biomass and tundra vegetation are driven by the same en-
vironmental factors such as the local climate or the timing of snowmelt
(Sweet et al., 2015). The NDVI (Normalized Difference Vegetation
Index) is a widely used proxy for primary productivity and varies with
such environmental variables (Jia et al., 2003; Raynolds et al., 2006;
Reed et al., 1994). Hence,we used theNDVI as a proxy of secondary pro-
duction (i.e. arthropods biomass) to account for the variability in arthro-
pod availability throughout season and across years and sites (Sweet
et al., 2015). We predicted that uniparental species would show stron-
ger relationships between incubation behaviour and both environmen-
tal variables as compared to biparental species that experience lower
individual energetic constraints (Bulla et al., 2015). We also predicted
that, when foraging efficiency is reduced (low prey availability under
low NDVI and/or low temperature) and/or the adult's energetic needs
increase (low temperature), uniparental species would increase the
time spent off the nest. This behaviour would likely enhance their
own survival at the expense of their embryos. Finally, we predicted
that uniparental species could use their modest body reserves during
harshweather episodes to sustain a higher attentiveness than expected

under the current conditions. This increased parental effort (i.e. the rel-
ative amount of time and energy allocated to parental care) would par-
tially buffer deleterious effects on the developing embryos but adults
may experience an energetic deficit. Consequently, a lag effect may
emerge since the energetic deficit of a harsher day (“historical factor”
sensus Cartar and Montgomerie, 1987) must be “paid back” in the
near future to avoid impairing the adult's survival or its ability to attend
its nest (McNamara et al., 1994). Conversely, we predicted that biparen-
tal species would not show such a lag effect as they cooperate to cope
with bad conditions andwould always have enough time to forage dur-
ing off-bouts. Studying such lag effects offers an interesting insight into
adult management of energy constraints during incubation. Although
we could have expected the incubation behaviour to be driven only by
adult's needs for survival (e.g. decreased attentiveness when cold) or
only by the needs of embryos (strong lag effect), we assumed that incu-
bation behaviour varies in a complex way due to the trade-off between
current and future reproduction that intensifies in poor conditions.

In this study, wemonitored the incubation behaviour of nine Calidris
species, with different incubation strategies, during four consecutive
summer seasons at a circumpolar arctic scale (15 sites). First, we de-
scribe the variability in the relationship between ground-surface tem-
perature and incubation behaviour across strategies and species.
Second, we assess how incubation behaviour varies with NDVI. Third,
we investigate the joint effects of NDVI and ground-surface temperature
on species-specific incubation behaviour. Finally, we examine the lag ef-
fects of past temperatures (i.e. during previous 24 h) on the behavioural
responses of Calidris species to current ground-surface temperatures.

2. Materials and methods

2.1. Study sites

The study was conducted at 15 study sites across the Arctic during
four consecutive summer seasons (2016–2019): Belyi Island (BELY;
73.32°N, 70.09°E), Sabetta (SABE; 71.24°N 71.80°E), Erkuta (ERKU;
68.22°N 69.15°E), Hochstetter Forland (HOCH; 75.15°N 19.70°W),
Zackenberg (ZACK; 74.28°N 20.34°W), Karupelv (KVPE; 72.50°N
24.00°W), Bylot (BYLO; 73.15°N 80.00°W), Igloolik (IGLO; 69.40°N
81.60°W), East Bay (EABA; 63.98°N 81.67°W), Churchill (CHUR;
58.70°N 94.08°W), Utqiaġvik (formerly Barrow; UTQI; 71.23°N
156.75°W), Ammarnäs (AMMA; 65.96°N 16.29°E), Burntpoint Creek
(BURN; 55.14°N 84.20°W), Canning River (CARI; 70.12°N 145.82°W)
and Longyearbyen (LONG; 78.19°N 15.83°E). This circumpolar network
of study sites (the “InteractionsWorkingGroup”) offers a large diversity
of productivity and temperature conditions within the Arctic biome
(Fig. S1; Meyer et al., 2020).

2.2. Study animals and nest detection

We monitored the incubation behaviour of nine Calidris species
(among the 18 known species in this genera; Del Hoyo et al., 1996) on
1090 nests distributed across the 15 study sites listed above (see
Table S1). Four species showed a uniparental incubation strategy, in-
cluding the little stint (Calidris minuta) and the Temminck's stint
(Calidris temminckii) where either sex may incubate, as well as the pec-
toral sandpiper (Calidris melanotos) and the white-rumped sandpiper
(Calidris fuscicollis) where only females incubate (Cramp and
Simmons, 1983; Hildén, 1975; Parmelee et al., 1968; Pitelka et al.,
1974). We also monitored four species with a biparental incubation
strategy, including dunlin (Calidris alpina), Baird's sandpiper (Calidris
bairdii), purple sandpiper (Calidris maritima) and semipalmated sand-
piper (Calidris pusilla) (Ashkenazie and Safriel, 1979; Gill and
Tomkovich, 2004; Holmes, 1966; Pierce, 1997). Finally, we monitored
one species with a mixed strategy, the sanderling (Calidris alba),
where some nests are incubated by one parent (male or female) and
others are incubated by both (Moreau et al., 2018; Reneerkens et al.,
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2014). Nests were found systematically by rope-dragging or opportu-
nistically by walking through suitable breeding habitat, flushing incu-
bating birds and/or following them visually as they walk back to their
nest. Between one and three Calidris species were monitored at each
site (Table S1; see distribution of species and location of study sites on
figure 1 in Meyer et al., 2020).

2.3. Incubation behaviour

If nests were found during laying, we assumed that one egg was laid
per day to infer the date of clutch initiation. For nests foundduring incu-
bation, we floated at least two eggs per clutch to determine incubation
stage (Hansen et al., 2011; Liebezeit et al., 2007; Mabee et al., 2006). A
temperature probe (Flylead thermistor PB 5009 with 60 cm cable)
coupled to a data logger (Tinytag Plus2 TGP-4020; Gemini Data Loggers
Inc.,West Sussex, U.K.) was placed in each nest.We attached probes to a
vertical wooden ormetal stick and placed the device at the centre of the
clutch so that the surface of the probe was levelled with the top of the
eggs. This ensures the probe made contact with the adult's brood
patch during incubation. Flotation and device deployment took approx-
imately 5 to 10 min and such automatized monitoring allowed us to
limit nest visits and so disturbances (Hansen et al., 2011; Moreau
et al., 2018). To reduce experimentally induced predation, all efforts
were made to avoid leaving scent at the nest site (e.g. nothing laid on
the ground except thermologgers) anddata loggers andwireswere bur-
ied or concealed using local vegetation and substrate. We used Tinytag
Explorer 5.2 software (Gemini Data Loggers Inc., West Sussex, U.K.) to
view and export tabular data.

Data loggers were capable of recording temperature information
throughout the full incubation period, ca. three weeks in Calidris species
(duration of storage capacity: 22.2 days; accuracy of measurement:
0.2 °C; temperature range:−40 to+125 °C). Data loggers continuously
(every 1 min) recorded the temperature inside the nest cup, which
allowed us to infer when adults were incubating the clutch (see figure
1 in Moreau et al., 2018). Incubation behaviour was documented from
the time the temperature probe was installed to the end of incubation
(i.e., abandonment, hatching or predation), except for in a few cases
when dataloggers were retrieved at the end of the field season and
the nest was still active. As ambient temperatures in the Arctic are al-
most always lower than the incubation temperature (ca. 41 °C), changes
in the temperature measurements allowed us to distinguish recesses
(i.e. periods when the nest was left unattended) from incubation
bouts. Starting and ending times of recesses were documented using a
previously used temperature threshold value (i.e. the median incuba-
tion temperature calculated over 24 h periods minus 3 °C; Bulla et al.,
2014; Meyer et al., 2020; Moreau et al., 2018), with a recess beginning
when themeasured temperature dropped below the threshold temper-
ature and ending when reaching it again (and figure 1 in Moreau et al.,
2018; see also Tulp and Schekkerman, 2006).

This technique for measuring incubation behaviour requires at least
24 h of continuous monitoring. All shorter records were therefore re-
moved from our analyses (166 nests; 15.2%). In some cases, tempera-
ture probes sank into the soft substrate or were moved by adults,
impairing our ability to record suitable temperatures. Consequently,
monitoring records with all daily median temperatures below 36 °C
were also removed from analyses (97 nests; 8.9%) to prevent misinter-
pretations. This threshold value of 36 °C was chosen as it discriminates
between good and bad records (Meyer et al., 2020). For the remaining
827 nests, we calculated three components of incubation behaviour
for each day a nest was monitored: the total duration of recesses
(TDR; directly related to attentiveness; Norton, 1972), the number of re-
cesses (NR) and the mean duration of recesses (MDR; which is equal to
TDR/NR). Note that these components describe the individual incuba-
tion behaviour of uniparental species only. For biparental species, they
reflect the incubation behaviour of both parents during their respective
incubation bouts, as we could not discern between adults.

Finally, as sanderling pairs may either display biparental or unipa-
rental incubation behaviour, we split sanderling records into two sub-
sets based on the measured total duration of recesses and number of
recesses (after Moreau et al., 2018). When a lone parent incubates, the
total duration of recesses and number of recesses are far higher than
when both parents incubate and this allows us to discriminate between
both strategies. Twenty nests (i.e., 17.4% of all sanderling nests) had
days classified as biparental followed by days with uniparental incuba-
tion, probably due to the desertion of one adult. These nests were re-
moved from the analyses (see Table S1 for more details on sample
sizes).

2.4. Ground-surface temperature

In addition to monitoring nest temperature, one or several
thermologgers were concomitantly recording the temperature in
nearby conspecific nests that were no longer being incubated. These
temperatures matched the thermal conditions within 2 cm from the
surrounding ground-surface (henceforth-called “ground-surface tem-
perature”) at a nest location and during a given period (Fig. S2). As mi-
croclimates of nesting habitat differ across species (Fig. S3) but may be
relatively consistent within species at each site, these records provide
information about the specific microclimatic conditions prevailing in a
given species' nesting habitat during a specified period of time. Such
ground-surface temperatures may better reflect the thermal conditions
birds must cope with during incubation, compared to traditional air
temperature recordings measured at least one meter above the
ground-surface (Steiger et al., 2013; Weathers and Sullivan, 1989).

To match temporally the incubation behaviour components (mea-
sured over 24-h periods in each nest) with ground-surface temperature
measurements (recorded every minute in at least one empty conspe-
cific nest), we first generated a mean ground-surface temperature per
hour by averaging all measurements available for a given species in a
given site. When no temperature data were available for a species in a
site, this population was removed (e.g. the dunlin nest monitored at
East Bay, see Table S1).We next calculated an overallmean temperature
for each 24-h period by averaging hourly temperatures across all 24 h.
When temperatures were not available for all 24 h of a corresponding
period of incubation monitoring, we did not provide that period with
a mean temperature. As the ground temperature follows a strong daily
pattern (Fig. S2 and S3; Steiger et al., 2013), this method ensured that
every hour would have the same weight in the calculation of daily
means (see Fig. S3).

At a few occasions, during the warmest hour of the day, ground-
surface temperature was close to the threshold temperature used to de-
tect recesses. Therefore, we removed all 24-h periodswhen the ground-
surface temperature exceeded 33 °C at least once (1.6% of all tempera-
ture recordings); this approach kept us from missing recesses due to
such unusually high temperatures. Our final dataset contained 666
nests that had both behavioural and ground-surface temperature data.

2.5. Primary productivity

Weused an indirect method to approximate the relative variation in
resource availability to incubating adult shorebirds. Because arthropod
abundance is driven by the same abiotic factors as primary productivity
(e.g. local climate; Bolduc et al., 2013; Danks, 1999; Tulp and
Schekkerman, 2008), we used the Normalized Difference Vegetation
Index (NDVI), reflecting primary productivity, as a proxy to grasp the
heterogeneity of resource abundance throughout the season and across
years and sites.

TheNDVI, the normalized difference between near infrared light and
red light reflected fromplants, has shown to be closely linked to primary
productivity in the Arctic (Jia et al., 2003; Raynolds et al., 2006; Reed
et al., 1994). This index varies from−1 to 1 (i.e.,−1 for water, near 0
for bare ground and above 0 for vegetated areas; Neigh et al., 2008)
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and the value becomes more positive with increasing primary produc-
tivity (Kerr and Ostrovsky, 2003; Reed et al., 1994). This index is widely
used in ecology to study trophic interactions (Pettorelli et al., 2005 and
references therein) and has been shown to be positively related to ar-
thropod abundance and biomass in arctic (Sweet et al., 2015) and
other ecosystems (Lassau and Hochuli, 2008).

Here, we used NDVI measurements from satellite optical remote
sensing. For each study site, theNDVIwas extracted from composite im-
ages of the MOD13Q1-VI product provided by the Land Processes Dis-
tributed Active Archive Center (LP DAAC) using the “extract area
sample” tool from the AρρEEARS application (https://lpdaacsvc.cr.
usgs.gov/appeears/). This product offers one NDVI measurement every
16 days with a 250 m spatial resolution. Each pixel is sensed several
times during each 16-day period and a set of algorithms then selects
the best measurement per pixel based on some quality indices (e.g.
smallest view angle) and the NDVI value (i.e. a high NDVI is more trust-
worthy than a lower value). Resulting composite images were
downloaded to cover the entire summer (from early June to late Au-
gust) each year (2016–2019) and for each study site (i.e., 420 raster im-
ages used in total).

We limited the pixels used in our study in several ways to prevent
biased estimates of NDVI. We used the summary quality index (“Pixel
Reliability Index”) and a detailed dataset (“VI Quality Assessment Sci-
ence Data Sets”) that described each pixel and the conditions during
the NDVI measurement (Didan et al., 2015). First, we only used pixels
where the Pixel Reliability Index equalled to “0”,“1” or “2” (i.e. “good
data”, “marginal data” and “snow/ice” respectively; Didan et al., 2015).
Second, the “VI Quality Assessment Science Data Sets”was used to cre-
ate a mask to isolate only useful pixels (e.g. qualified as “ocean coast-
lines and lake shorelines” and “Land [nothing else but land]”). Third,
we set the NDVI values of pixels covered by snow to zero, as they influ-
enced the calculation of themean productivity at a site. Fourth, we con-
trolled for the presence of shallow water caused by rapid snow melt to
values of zero. The presence of shallow water and snowwould result in
artificially low negative NDVI scores and by changing their pixel values
to zero we neutralized their effect on the NDVI score. Using this slightly
modified NDVI database, we estimated the average NDVI over all fil-
tered pixels at a given location for defined 16-day periods at each site
(Fig. S1).

Since NDVI increases during the plant growing season and because
algorithms select for the highest reliable NDVI measurement for every
period, we assignedNDVI value to the last day of each 16-day period be-
fore estimating daily NDVI using linear interpolations. We used this
index to characterize the overall productivity state of a study site
(delimited in order to include all nests monitored in this study) at a
given time, and not to characterize productivity at individual nest loca-
tions. This interpolated daily NDVI was significantly related to ground-
surface temperature (Linear Model, linear coefficient = 5.10−3, p-
value <10−9), but daily temperatures only explained 1.30% of the
NDVI variability.

2.6. Data analysis

Using the 666 nests that had ground-surface temperature data avail-
able (see Table S1), we first investigated how relationships between
each incubation behaviour component (i.e. TDR, NR and MDR) and en-
vironmental conditions (i.e. temperature and NDVI) varied across incu-
bation strategies. Incubation behaviour components were always used
as response variables in separate mixed effect models with incubation
strategy, ground-surface temperature and NDVI as fixed effects. Nest
identity was used as a random effect to account for repeated measure-
ments. Fromprevious studies, we predicted non-linear relationships be-
tween incubation behaviour components and ground-surface
temperature, with decreasing slopes (in absolute value) at higher tem-
peratures (Conway and Martin, 2000b; Morton and Pereyra, 1985;
White and Kinney, 1974). We therefore built a set of three candidate

mixed effect models to account for such non-linear relationships:
(1) a polynomial regression with a quadratic term for temperature,
(2) a non-linear model based on the rectangular hyperbola equation
provided by White and Kinney (1974) and (3) another non-linear
model based on a Michalis-Menten saturation equation
(i.e., predator's type II functional response). All models were built
using the “nlme” package (Pinheiro et al., 2019) in the R software (ver-
sion 3.6.2; R Core Team, 2019).We then retained the polynomial regres-
sion model for further analysis, as it fits the data the best based on its
lower AIC value (Burnham and Anderson, 2004) for both the total dura-
tion of recesses and the number of recesses (ΔAIC >100 between poly-
nomial model and either Michaelis-Mentel or White-Kinney model for
both incubation behaviour components) and was only slightly worse
than theMichalis-Mentenmodel formean duration of recesses (ΔAIC=
−13.0 between polynomial and Michaelis-Mentel models and ΔAIC
>100 between polynomial and White-Kinney models). To examine
how the relationships between each incubation behaviour component
and environmental variables varied between strategies, we used Likeli-
hood Ratio Tests to compare nestedmodels with orwithout the interac-
tion of interest. Moreover, we specified a first order autocorrelation
structure using the corAR1 argument (Pinheiro et al., 2019) and day as
the time unit to account for a higher similarity between closer days.

We then tested if the relationships between incubation behaviour
components and environmental conditions varied across species that
shared the same incubation strategy. Hence, for each strategy, we tested
interaction effects between ground-surface temperature or NDVI and
species on the response variables, using Likelihood Ratio Tests. We
then built a new set of species-specific mixed effect models with incu-
bation behaviour components as the response variable in separate
models and both NDVI and ground-surface temperature as predictors
to obtain comparable effect sizes for each species. We tested the signif-
icance of the quadratic term for temperature for each incubation com-
ponent in each species, comparing models with Likelihood Ratio Tests.
When the quadratic term for temperature significantly improved the
model, we calculated the vertex corresponding to the abscissa of the
local extrema of the equation provided by themodel. In comparing ver-
tex values across species, we were able to compare the temperature
above which species no longer showed a relationship with the incuba-
tion behaviour. Using the same model structure as previously, we then
tested the interaction effect of NDVI and ground-surface temperature
for species that showed relationships between incubation behaviour
and ground-surface temperature, comparing nestedmodels with Likeli-
hood Ratio Tests.

Finally, for each species where incubation behaviour significantly
varied with ground-surface temperature, we ran another set of models
to test the interaction effect between the current temperature and the
temperature of the previous day on each incubation behaviour compo-
nent. This allowed us to identify whether there were any lag effects
from previous conditions and decisions on the relationship between
current ground-surface temperature and each incubation behaviour
component. The relationship between current temperature and incuba-
tion behaviour components was modelled with a second order polyno-
mial when significant, and the interaction effect with past thermal
condition was tested with Likelihood Ratio Tests.

3. Results

The relationships between incubation behaviour components and
ground-surface temperature significantly differed between strategies,
with only uniparental species responding to ground-surface tempera-
ture variations (Likelihood Ratio Tests, TDR: χ2ddl=2 = 83.3, p < 0.001;
NR: χ22=208.0, p < 0.001;MDR: χ22=145.0, p < 0.001; Fig. 1A-F). Uni-
parental species made significantly fewer (i.e. lower NR), but longer re-
cesses (i.e. higher MDR) during days with colder ground-surface
temperatures, overall spending more time off the nest (i.e. higher
TDR) during these days (Figs. 1B, D, F and 2A). Similarly, the
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relationships between total duration of recesses andNDVI, and between
number of recesses and NDVI, differed between strategies (Likelihood
Ratio Tests, TDR: χ21 = 37.5, p < 0.001; NR: χ21 = 60.2, p < 0.001;
Fig. 2B), whereas the relationship between mean duration of recesses
and NDVI was not significant (Likelihood Ratio Test; χ21 = 3.12, p =
0.077). Uniparental species made significantly fewer and shorter re-
cesses under low NDVI conditions, spending less time off the nest than
when environments were more productive (but see the variability
across uniparental species; Fig. 2B). Biparental species, on the other
hand, made slightly more recesses at low NDVI, but the mean duration
of recesses and total time spent off the nest did not vary with NDVI
(Fig. 2B).

All uniparental species showed significant relationships between
their incubation behaviour and ground-surface temperature. However,
we found a high interspecific variability, as indicated by the significant
interaction effect of temperature and species on incubation behaviour
components (Likelihood Ratio Test, TDR: χ28 = 137.9, p < 0.001; NR:
χ28 = 106.0, p < 0.001; MDR: χ28 = 70.3, p < 0.001). Little and
Temminck's stints showed the strongest relationships, making about
seven times more recesses, each 8 min shorter on average, for every
one-degree temperature increase (Fig. 2A). In comparison, the relation-
ships found for uniparental sanderlings and white-rumped sandpipers
were markedly weaker with only two additional recesses, each approx-
imately 3 min shorter, for every one-degree temperature increase
(Fig. 2A). For the pectoral sandpiper, the relationship between the
TDR and ground-surface temperature did not differ from most other
uniparental species whereas they showed a similar effect size as little
and Temminck's stints for the mean duration of recesses and as white-
rumped sandpipers and uniparental sanderlings for the number of re-
cesses (Fig. 2A). In contrast to uniparental species, biparental species
showed a high interspecific consistencywithmostly non-significant re-
lationships between incubation behaviour components and ground-
surface temperature (Fig. 1A, C, E, and Fig. 2A). Only Baird's sandpipers
showed a significant negative relationship between the number of

recesses and ground-surface temperature with 1.04 fewer recesses for
every one-degree temperature increase (Likelihood Ratio Test, TDR:
χ21 = 13.6, p < 0.001).

All incubation behaviour components of uniparental species, except
for the number of recesses of pectoral sandpipers (χ21 =2.4, p=0.119)
and the incubation behaviour components of uniparental sanderlings
(TDR: χ21 < 0.1, p = 0.820; NR: χ21 = 0.2, p = 0.641; and MDR: χ21 =
0.4, p = 0.545), showed a significant quadratic relationship with
ground-surface temperature (Fig. 3). Pectoral sandpipers also showed
a significantly lower vertex for total andmeanduration of recesses over-
all (6.8 °C; CI95% = [5.3 °C; 8.2 °C] and 9.9 °C; CI95% = [8.5 °C; 11.2 °C],
respectively; Fig. 3) relative to Temminck's (16.7 °C; CI95% = [14.9 °C,
18.5 °C] and 15.4; CI95% = [14.2; 16.6]; Fig. 3) and little stints (14.3 °C;
CI95% = [12.1 °C, 16.5 °C] and 13.0 °C; CI95% = [12.0 °C; 14.0 °C];
Fig. 3). In addition, we found that white-rumped sandpipers had a
lower vertex than Temminck's and little stints for number of recesses
and mean duration of recesses (respectively 10.6 °C; CI95% = [9.3 °C,
12.0 °C] and 11.7 °C; CI95% = [11.0 °C; 12.3 °C]; Fig. 3). Using these
species-specific vertices, we could delineate a temperature that sepa-
rated a cold day (a slight change below this valuewas related to incuba-
tion behaviour variations) and a warm day (a slight change above this
valuewas not related to incubation behaviour variations).When nover-
tex could be calculated (i.e. sanderlings), we consider a cold day to be
under 12 °C (i.e., approximately the median vertex value) and a warm
day to be above.

Relationships found between incubation behaviour components and
NDVI differed between strategies. However, these relationships also
varied markedly across species that shared the same strategy, in such
a way that it prevented us from identifying strategy-specific patterns
(Fig. 2B). Moreover, we found significant interaction effects between
NDVI and ground-surface temperature as they relate to incubation be-
havioural components for some species (Fig. 4). Temminck's and little
stints showed similar trends with stronger relationships between incu-
bation behaviour and ground-surface temperature under productive
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conditions (only significant for NR in little stint: χ22 = 8.3, p = 0.016;
Fig. 4). On the other hand, in productive conditions, pectoral sandpipers
maintained a higher attentiveness (i.e. a lower total duration of

recesses) with shorter recesses in cold compared to warmer conditions,
whereas the reverse was true under low productivity conditions (TDR:
χ22 = 17.6, p < 0.001; MDR: χ22 = 34.4, p < 0.001; Fig. 4). Finally,
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components for uniparental (black font, only the first order term [i.e. not the quadratic term] is plotted in the upper panels) and biparental species (gray font). Coloured points present
the average effect size for each species and black diamonds represent the estimated average effect size for all species within each incubation strategy. (For interpretation of the
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when the temperature was low, uniparental sanderlings took more but
shorter recesses and were more attentive under low as compared to
high productivity conditions (TDR: χ21 = 9.7, p = 0.002; NR: χ21 = 6.8,
p = 0.009; MDR: χ21 = 11.0, p = 0.001; Fig. 4).

We found that the relationships between ground-surface tempera-
ture and incubation behaviour components significantly varied with
the average temperature of the previous day for some uniparental spe-
cies only (i.e. significant lag effect; Fig. 5). For example, little stint took
more recesses when the current day's ground-surface temperatures
were at intermediate values and the previous daywas cold as compared
towhen the previous daywaswarm. However, these relationshipswere
reversed when the current ground-surface temperature was high, with
little stint taking fewer and longer recesses when the previous day was
cold as compared to when the previous day was warm (NR: χ22 = 10.2
p = 0.006, MDR: χ22 = 7.26 p = 0.027; Fig. 5). Comparatively, when
the current day was cold, white-rumped sandpiper showed a strong re-
lationship between their incubation behaviour and previous conditions
with a higher nest attentiveness, more and shorter recesses after a
warm day than after a cold day, whereas the effect of past conditions
was reduced when the current day was warm (TDR: χ22 = 18.1
p < 0.001; NR: χ22 = 34.1, p < 0.001; MDR: χ22 = 68.4, p < 0.001;
Fig. 5). Neither uniparental sanderlings, nor pectoral sandpipers,
showed significant relationships involving past conditions.

4. Discussion

We found that the relationship between incubation behaviour and
ground-surface temperature varied across nine Calidris species with dif-
ferent incubation strategies. As expected, we did not detect significant

relationships between ground-surface temperature and components
of incubation behaviour in most biparental species, whereas we did
for all uniparental species. Although there was high interspecific vari-
ability among uniparental species, we found consistent negative rela-
tionships between total duration of recesses, mean duration of
recesses and ground-surface temperature, as well as positive relation-
ships between number of recesses and temperature. Moreover, most
uniparental species showed non-linear relationships (as found for pas-
serines; Morton and Pereyra, 1985; White and Kinney, 1974) with de-
creasing slopes (in absolute value) as ground-surface temperatures
increased (except for uniparental sanderlings). In this study, we also
showed that relationships between incubation behaviour and NDVI,
which was used as a proxy for secondary productivity
(i.e., arthropods), differed between incubation strategies (significant
for total duration of recesses and number of recesses). However, the
lack of significant relationships among all species prevented us fromde-
scribing a general pattern for each strategy.We also found that relation-
ships between incubation behaviour components and the ground-
surface temperature could vary with productivity for some uniparental
species. Finally, we found evidence that some uniparental species ex-
posed to harsher temperatures appeared to adjust their subsequent in-
cubation behaviour to recover their reserves.

We found that uniparental species took longer but less frequent re-
cesses when ground-surface temperatures were low as reported in ear-
lier studies (Cantar and Montgomerie, 1985; Cartar and Montgomerie,
1987; Norton, 1972; Tulp and Schekkerman, 2006; but see Reneerkens
et al., 2011; and Smith et al., 2012a). During cold weather, it appears
that adults are energetically constrained as both the amount of re-
sources needed (i.e. increased energy expenditure; Cresswell et al.,
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2004; Tinbergen and Williams, 2002) and the time required to acquire
those resources (i.e. low arthropod availability; Schekkerman et al.,
2003) increases with declining temperatures. Consequently, adults
spend more time foraging and less time incubating. However, we
could have expected adults to decrease recess length in cold conditions
(as observed for passerines; Conway andMartin, 2000b; Haftorn, 1988;
White and Kinney, 1974) to keep their eggs' temperature fromdropping
too low and to reduce the time and energy needed to rewarm them
(Biebach, 1986; Conway and Martin, 2000b). Indeed, exposing eggs to
cold temperatures slows down the development of the embryos
(Martin et al., 2007; Olson et al., 2006; Webb, 1987), negatively affects
the growth of later-hatched chicks (Olson et al., 2006; Schekkerman
et al., 2003), and has irreversible effect on their phenotype (e.g. immu-
nocompetence DuRant et al., 2012; locomotor performance Hopkins
et al., 2011; reviewed in DuRant et al., 2013). Spendingmore time forag-
ing can also increase the risk of nest predation due to lower attentive-
ness and to a lengthening of the incubation period (Bosque and
Bosque, 1995; Fontaine and Martin, 2006; Meyer et al., 2020; Tombre
and Erikstad, 1996).

Several mechanismsmay explain why adults benefit from longer re-
cesses. First, in cold conditions, egg temperature may quickly reach the
temperature at the ground surface and adults may save energy in
rewarming their eggs less often (i.e., unless the temperature reaches a
given threshold when it becomes lethal for the eggs). Second, adults
may need more time to travel to areas with higher prey availability to
increase food intake (provided that these areas differ from their pre-
ferred nesting habitat; Smith et al., 2007) and may therefore decrease
the number of recesses to avoid additional locomotion costs (Kacelnik,
1984). Other authors also reported unusually long recesses (i.e. longer

than 20min in Tulp and Schekkerman, 2006) during cold spells (also re-
ferred as “egg neglect” in Smith et al., 2012a) that might have resulted
from a low foraging efficiency in a situation of energy shortage
(Haftorn, 1988; Morton and Pereyra, 1985; Smith et al., 2012a; Tulp
and Schekkerman, 2006). Consequently, in warmer conditions, when
arthropod prey is more abundant, adults save energy and increase
their current reproductive success by performing frequent short re-
cesses, preventing the temperature of their eggs from dropping too
low while optimizing food intake (Haftorn, 1988; Vleck, 1981).

In contrast, adults of biparental species alternate at the nest and ben-
efit from more time to forage during the partner's incubation bouts
(Bulla et al., 2014), regardless of the current weather conditions
(Norton, 1972; Reneerkens et al., 2011; present study). Yet, in cold con-
ditions, basal metabolism and incubation costs also increase for bipa-
rental species, and parents are expected to alternate more often at the
nest, reducing the duration of individual incubation bouts (Cresswell
et al., 2003; but see Bulla et al., 2015) and potentially increasing the
number of exchange gaps. In the present study, only Baird's sandpiper
appeared to supports this statement as they showed an increased num-
ber of recesses in colder conditions, attributable either to an increased
number of exchanges at the nest or to an increase in the number of in-
dividual recesses.

The interaction effect of the NDVI and ground-surface temperature
was not uniform across uniparental species. For example, higher NDVI
scores were related to fewer recesses at low ground-surface tempera-
ture and more recesses at medium ground-surface temperature in little
stints. This is consistent with the idea that arthropod availability, that is
related to both NDVI and daily temperature, is positively related to for-
aging efficiency in this species: adults find food quicker and take more
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recesses when conditions are productive and when temperatures allow
arthropods to be active (Carey, 1980). In our study, only the pectoral
sandpiper maintained high nest attentiveness under cold ground-
surface conditions and high NDVI by taking short recesses, but behaved
similarly to other species under equally cold conditionswhen NDVIwas
low. Hence, higher productivity may also favour a better overall adult
body condition allowing adults to sustain a higher parental effort during
cold spells to protect their eggs (Carey, 1980). The importance of food
availability on nest attendance has also been shown in studies on
female-incubating passerine species that display mate feeding (not ob-
served in Calidris species). In this system, females that normally de-
crease their attentiveness in cold conditions were shown to maintain
a higher attentiveness when food was provided by males (Pearse
et al., 2004; Smith et al., 1989). Moreover, males were shown to deliver
more food in cold conditions (Hałupka, 1994; Nilsson and Smith, 1988;
Smith et al., 1989), allowing females to increase their nest attentiveness
and thereby enhance the male's reproductive success (Lyon and
Montgomerie, 1985). Conversely, uniparental sanderlings did not sup-
port this hypothesis (i.e. higher productivity favours greater nest atten-
tiveness with more and shorter recesses); higher productivity was
related to decreased parental care (i.e. a lower attentivenesswith longer
recesses). However, sanderling have a mixed incubation strategy and
uniparental sanderling may not behave the same as an obligatory uni-
parental species during incubation (i.e., they can compensate after
their partner's desertion). Finally, vegetation cover, which contributes
to NDVI, can also increase nest concealment and insulation for species
nesting in densely vegetated areas, whichmay ultimately affect their in-
cubation behaviour (Reid et al., 2002).

If incubation strategy modulates the trade-off between incubation
and foraging, the relationship between incubation behaviour and envi-
ronmental conditions might also vary across uniparental species due to
different life-history traits (e.g. body size or nesting habitat). Indeed, we
found two “groups” among uniparental species: the little and
Temminck's stints that had a strong relationship between incubation
behaviour and temperature, and thewhite-rumped sandpipers and uni-
parental sanderlings that showed weaker relationships. Interestingly,
pectoral sandpipers could not be distinguished from any other unipa-
rental species regarding these relationships, but the study of the vertex
provided additional insights. Indeed, pectoral and white-rumped sand-
pipers appeared to show a lower sensitivity (i.e. lower vertex) to tem-
perature than little and Temminck's stints, while the latter two species
also showed a lower attentiveness and longer recesses compared to all
other species in cold conditions (see also Fig. 2 in Meyer et al., 2020).
These differences might be related to the smaller size of both stints spe-
cies (15–44 g), compared to larger white-rumped sandpiper females
(30–60 g), pectoral sandpiper females (31–97 g) and sanderlings
(33–110 g) (Del Hoyo et al., 1996). Hence, these results suggest that
large uniparental species can sustain a higher attentiveness and are
less sensitive to cold environmental temperatures than smaller unipa-
rental species (Tulp and Schekkerman, 2006). Indeed, size and weight
are good proxies for the physiological ability of a species to build and
maintain body reserves, and they also correlate with heat loss of adults
(i.e. smaller species lose heat faster; Morrison and Hobson, 2004;
Piersma et al., 2003; Schamel and Tracy, 1987).

Like other long-distance migratory shorebirds, Calidris species store
energy (Piersma and Lindström, 1997) that may help them cope with
future unpredictable energetic challenges. After egg-laying, such re-
serves may represent an “energetic insurance” to enable consistent in-
cubation behaviour under unpredictable conditions (Soloviev and
Tomkovich, 1997; Tulp et al., 2002; Tulp and Schekkerman, 2006).
Hence, incubation behaviour varies with current conditions but may
also vary due to the way past decisions have affected body reserves
through a lag effect (“historical factor”; Cartar and Montgomerie,
1987). Here,we found that little stints and to a lesser extent Temminck's
stints showed lower nest attentiveness (less and longer recesses) even
though a day was warm if they had experienced colder conditions

during the previous day. When prior day was warm this pattern went
away. We can therefore hypothesize that little and Temminck's stints
that lose weight during a cold day will compensate for store depletion
by foraging more in subsequent days. Tulp et al. (2002) also found
that adults who lost weight during cold spells were able to recover
when conditions improved, hence maintaining a consistent body mass
throughout incubation.We also found that female white-rumped sand-
pipers were able to maintain higher nest attentiveness with more fre-
quent and shorter recesses in cold conditions when the previous day
was warm. We hence assume that energy stored during a warm day
can also allow someCalidris species to increase parental effort during fu-
ture bad conditions.

The entire community of arctic terrestrial vertebrates is currently
experiencing seasonal and long-term changes in environmental condi-
tions driven by climate change (Gilg et al., 2009, 2012; Ims and Fuglei,
2005; Post et al., 2009; Saalfeld et al., 2019; Schmidt et al., 2017). In
this context, we present new insights into the effects of ground-
surface temperature and site productivity, which closely track climate
change (Stow et al., 2004; Tape et al., 2006), on the incubation behav-
iour of ground nesting shorebirds. Although predation, rather than abi-
otic conditions or a parent's body resources, is often considered to be
the main cause of reproductive failure in birds (Martin, 1993;
Reneerkens et al., 2016; Ricklefs, 1969; Skutch, 1949; Smith et al.,
2007), several studies also indicate incubation behaviour can affect the
risk of nest predation (e.g., a negative relationship between nest atten-
tiveness and the daily predation rate; Meyer et al., 2020; Smith et al.,
2012b). Understanding how birds adjust their behaviour under chang-
ing abiotic conditions and, in turn, how these behavioural changes im-
pact predation risk, will greatly help us to predict the future
population dynamics of arctic nesting species.
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