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ABSTRACT
We present analytic flux prescriptions for broad-band spectra of self-absorbed and optically
thin synchrotron radiation from gamma-ray burst afterglows, based on 1D relativistic hydro-
dynamic simulations. By treating the evolution of critical spectrum parameters as a power-law
break between the ultrarelativistic and non-relativistic asymptotic solutions, we generalize the
prescriptions to any observer time. Our aim is to provide a set of formulas that constitutes
a useful tool for accurate fitting of model parameters to observational data, regardless of the
dynamical phase of the outflow. The applicability range is not confined to gamma-ray burst
afterglows, but includes all spherical outflows (also jets before the jet-break) that produce syn-
chrotron radiation as they adiabatically decelerate in a cold, power-law medium. We test the
accuracy of the prescriptions and show that numerical evidence suggests that typical relative
errors in the derivation of physical quantities are about 10 per cent. A software implementation
of the presented flux prescriptions combined with a fitting code is freely available on request
and online.1 Together they can be used in order to directly fit model parameters to data.

Key words: hydrodynamics – radiation mechanisms: non-thermal – radiative transfer – shock
waves – gamma-ray burst: general.

1 IN T RO D U C T I O N

Gamma-ray bursts (GRBs) are believed to be produced by powerful
relativistic outflows resulting from the catastrophic death of massive
stars (Woosley 1993) or the merger of two compact objects (Eichler
et al. 1989). The burst itself (prompt emission) likely arises from
internal shocks occurring due to the variability of the central engine
(Rees & Mészáros 1994; Sari & Piran 1997), while the afterglow
emission comes from the interaction of the same outflow with the
medium surrounding the burster (Rees & Mészáros 1992; Paczyński
& Rhoads 1993). Although the dominant radiation process behind
the prompt emission is not yet clear, it is well established that
the afterglow radiation is dominated by synchrotron emission from
shock-accelerated electrons (Mészáros & Rees 1993; van Paradijs,
Kouveliotou & Wijers 2000).

The prompt emission is typically very brief and concentrated at
high energies. On the other hand, afterglows are often visible over
many more orders of magnitude both in time and frequency space
(see Mészáros 2006 for an extensive review of GRB research).

�E-mail: k.leventis@uva.nl
1The URL is http://www.astro.uva.nl/research/cosmics/gamma-ray-bursts/
software/

Thus, studying the afterglow radiation allows us to put a multi-
tude of constrains both on the microphysics (e.g. the fraction of
internal energy going to the magnetic fields and the power-law
accelerated electrons) governing the shocked plasma (Spitkovsky
2008; Sironi & Spitkovsky 2009), as well as on the basic physi-
cal parameters describing the phenomenon macroscopically, such
as blast-wave energy, density and structure of the surrounding
medium.

It is these macroscopic parameters that determine the dynamical
evolution of the outflow. However, a full analytic description of
the dynamics is only possible when the spatial component of the
four-velocity of the outflow βγ is either much greater (Blandford &
McKee 1976) or much smaller (Sedov 1959) than 1. Therefore, rela-
tivistic hydrodynamic (RHD) simulations (Kobayashi, Piran & Sari
1999; Meliani et al. 2007; Zhang & MacFadyen 2009; De Colle et al.
2012) are the most accurate means of studying the intermediate dy-
namical regime linking the ultrarelativistic and Newtonian solutions
(see however Huang, Dai & Lu 1999). Van Eerten et al. (2010a) have
numerically studied the light curves of outflows advancing through
all three dynamical regimes and have shown that the transition is
slow, i.e. deviations from the expected relativistic behaviour appear
well before the Newtonian asymptotes are reached, mainly due to
the changing adiabatic index of the shocked gas. For typical burst
parameters (isotropic blast-wave energy Eiso = 1052 erg, ambient
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medium number density n0 = 1 cm−3) the Sedov–Taylor scalings
set in at a few thousand days, observer time, implying that an appre-
ciable portion of the afterglow (typically around hundreds of days)
emanates from outflows with dynamics that cannot be described
analytically by either of the two asymptotic solutions.

Soon after the discovery of the first afterglows (Costa et al. 1997;
Groot et al. 1997) efforts were made to calculate broad-band syn-
chrotron spectra and light curves as a function of burst parame-
ters (Wijers, Rees & Meszaros 1997; Sari, Piran & Narayan 1998;
Panaitescu & Kumar 2000). The common way to do this is by tying
the dynamical evolution of the blast wave in regimes where this is
feasible to radiation models that, according to the jump conditions
at the shock front, calculate the resulting spectra. Despite the suc-
cess of early efforts in capturing general features of the observed
spectra, the progressive refinement of the used models has led to
very different estimates of the physical parameters of individual
bursts. For example, Wijers & Galama (1999) and Granot & Sari
(2002) have both fitted GRB 970508 and their derived values differ
by up to three orders of magnitude. Furthermore, the applicability
of most of these models is restricted to a particular dynamical phase
and only recently have there been a few attempts at addressing the
entire evolution of spectra and light curves through the performance
of simulations (Zhang & MacFadyen 2009; Wygoda, Waxman &
Frail 2011; De Colle et al. 2012; van Eerten, van der Horst &
MacFadyen 2012). Even so, these models do not contain a treat-
ment of self-absorption (apart from van Eerten et al. 2012), neces-
sary to model low-frequency observations with e.g. Expanded Very
Large Array (EVLA, Perley et al. 2011), Low-frequencey Array
(LOFAR, Morganti et al. 2011) and the upcoming Karoo Array
Telescope (MeerKAT, Booth et al. 2009) and Square Kilometre
Array (SKA, Carilli & Rawlings 2004), and do not provide flux
prescriptions. van Eerten et al. (2012) do provide a broad-band fit
code, but it requires the use of a parallel computer network.

The purpose of this work is to provide accurate analytic flux
prescriptions, based on 1D RHD simulations, that are applicable to
both the ultrarelativistic and Newtonian phase but also, and perhaps
more importantly, to observer times when the outflow is transi-
tioning from the former to the latter. Apart from the typical, ini-
tially ultrarelativistic outflows of GRBs, the formulas we present
are applicable to Newtonian as well as relativistic (Soderberg et al.
2010) outflows from supernova explosions in the adiabatic phase
(Chevalier 1977, 1982; Draine & McKee 1993) and mildly rela-
tivistic outflows originating from binary neutron star (NS) mergers,
expected to produce detectable electromagnetic (EM) counterparts
to gravitational wave detections (Nakar & Piran 2011; Metzger &
Berger 2012). They can also be applied to relativistic outflows re-
sulting from the tidal disruption of stars by a supermassive black
hole (Bloom et al. 2011; Metzger, Giannios & Mimica 2012), under
the limiting assumption of quasi-spherical outflow. The presented
model naturally accounts for the exact shape of the synchrotron
spectrum (including self-absorption, but ignoring cooling) and the
structure of the blast wave. Furthermore, it can be applied to a range
of power-law density structures of the circumburst medium, a pos-
sibility previously studied by van Eerten & Wijers (2009) and De
Colle et al. (2012). This allows for modelling of more complex envi-
ronments, expected on a theoretical basis (Ramirez-Ruiz et al. 2005)
and deduced observationally (Curran et al. 2009). With such a tool
a light curve can be fitted without the need of costly simulations
and the restrictions of models specialising in specific dynamical
phases, or preset structures of the circumburst medium. In order to
obtain the flux prescriptions we combine three elements: (1) ana-
lytic formulas for flux scalings during the Blandford–McKee and

the Sedov–Taylor phases, (2) 1D hydrodynamic simulations, using
the adaptive mesh refinement code AMRVAC (Meliani et al. 2007;
Keppens et al. 2012), that span the whole range of the dynamics
(from ultrarelativistic to Newtonian velocities) and (3) a radiative-
transfer code that uses simulation snapshots and a parametrization
of the microphysics to calculate instantaneous spectra.

This paper is organized as follows. In Section 2 we briefly de-
scribe the setup of the performed simulations and the subsequent
calculations of spectra and light curves. In Section 3 we present
formulas that describe the flux as a function of physical parameters
in both the relativistic and the Newtonian phase of the outflow. That
includes specifying the flux at any given power-law segment, as well
as a description of the sharpness of the spectral breaks that occur
at critical frequencies. We then proceed in Section 4 to connect the
two dynamical regimes (relativistic and Newtonian) by treating the
transition from the former to the latter as a prolonged temporal break
the characteristics of which can be linked to the physical parameters
of the burst and its environment. In Section 5 we describe how one
can make use of the flux prescriptions to obtain spectra at any given
time. We also show comparisons between spectra based on sim-
ulations and spectra constructed using the provided prescriptions.
Finally, we present an application of this model to mildly relativis-
tic outflows from binary NS mergers in order to assess the recent
predictions of Nakar & Piran (2011) concerning the detectability of
the produced radio signals. In Section 6 we discuss our results and
the implications of this work for GRB afterglow models.

2 N U M E R I C A L T R E AT M E N T

2.1 Simulations

We have made use of the AMRVAC adaptive-mesh-refinement nu-
merical code to run a series of simulations for different values of
physical parameters. These simulations span a wide range of the
four-velocity at the shock front, from ultrarelativistic values (∼70)
down to ∼0.05.

In total, seven different simulation runs were used to arrive at
the presented prescriptions. They can be characterized by the blast-
wave energy E52 (in units of 1052 erg), starting Lorentz factor of
the shock, �in, maximum radius of the simulation box, Rmax, slope
of the power-law density distribution of the surrounding medium,
k, and value of the number density at 1017 cm, n0. In Table 1 we
present the values of these parameters for each run.

2.1.1 Resolution

The 1D simulation box typically extends from 1016 cm up to a
few ×1019 cm, although both limits were modified accordingly
for physical models with different external density profiles and

Table 1. Parameters of simulations used to derive the flux
prescriptions. First column enumerates the performed simu-
lations.

Simulation E52 k n0 �in Rmax (cm)

1 1.0 0.0 1.0 60 3 × 1019

2 0.04 0.0 4.0 60 1019

3 1.0 0.5 1.0 60 4 × 1019

4 0.4 0.75 0.5 28 5 × 1019

5 1.0 1.0 1.0 60 4 × 1019

6 1.0 2.0 1.0 70 1019

7 0.01 2.0 1.0 10 7 × 1019
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blast-wave energies. Utilizing the adaptive-mesh-refinement ap-
proach in AMRVAC we have used a maximum of 20 refinement levels
which set the effective resolution of the grid. For 120 cells at the
lowest refinement level, this amounts to a resolution of ∼4.77 ×
1011 cm per cell. For comparison, the corresponding width of the
initial BM shell for Simulation 1 is (van Eerten, Zhang & Mac-
Fadyen 2010b) Rin/(6�2

in) = 5 × 1012 cm, with Rin denoting the
radius of the shock.

We have checked for convergence against runs of different refine-
ment levels (see also van Eerten et al. 2011; De Colle et al. 2012)
and have also checked our results against theoretically predicted
values in the early part of the outflow when the resolution demands
are the highest. They have been found in good agreement.

2.1.2 Equation of state

In all the simulations we have used a ‘realistic’ equation of state
(EOS) with an effective adiabatic index (Meliani et al. 2004) that
lies between the ultrarelativistic and non-relativistic limits (4/3 and
5/3, respectively):

�ad,eff = 5

3
− 1

3

(
1 − ρ ′2c4

u′2

)
. (1)

In the above equation ρ ′c2 is the comoving rest-mass energy
density and is weighed against the total energy density (including
rest-mass) of the gas u′.

This Synge-type (Synge 1957) EOS has also been used in van
Eerten et al. (2010a), where the effects have been analysed and
comparisons to constant �ad,eff have been made. In short, its effect
on the observed flux is that of a very gradual transition from values
close to (but not at) those corresponding to an ultrarelativistic EOS
to values approaching those of a non-relativistic EOS.

2.2 Radiative-transfer code

The snapshots generated by the simulation runs were post-processed
using a radiative-transfer code (van Eerten & Wijers 2009; van
Eerten et al. 2010a). During post-processing an array of beams is
created and propagated at the speed of light through the 3D gener-
alization of the 1D snapshots towards the observer. The elements of
this array take the value of the specific intensity Iν . At each step the
solution to the equation of radiative transfer is applied to each beam
and the value for the intensity is updated through the equation

Iν = I0 e−τν + Sν (1 − e−τν ), (2)

where I0 is the value of the intensity at the previous step, τ ν is the
optical depth and Sν is the source function. We note that the optical
depth of a single simulation cell can be larger than unity.

The array of intensities is constructed so that the positions of its
elements lie on the surface from which light signals arrive at the
observer simultaneously. The density of the beams is determined
through an adaptive-mesh approach ensuring sufficient resolution.
Once all beams have crossed the entire blast-wave integration of the
intensity over the surface yields the flux

Fν = (1 + z)

d2

∫
A

Iν dA, (3)

where d is the luminosity distance to the observer, (1 + z) the
cosmological correction and A the surface defined by the beams.

In the case of on-axis jets and spherical outflows, such as the
ones considered in this study, equation (3) can be reduced to a 1D
integral due to the axisymmetry of the source (Granot, Piran & Sari

1999). Our approach makes use of that symmetry and a 1D integral
is solved numerically to calculate the observed flux.

3 FL U X PR E S C R I P T I O N S I N T H E
ASYMPTOTI C DY NA MI CAL REGI MES

In this section we demonstrate how to combine blast-wave dynamics
in each of the self-similar regimes with synchrotron radiation theory
to arrive at scalings that describe the observed flux as a function of
frequency and time.

3.1 Shock dynamics

We first outline the dynamics of the outflow. As mentioned in Sec-
tion 1, one can obtain power-law scalings for the four-velocity as
well as the mass and energy densities right behind the shock front as
a function of blast-wave radius and time in the two extreme regimes
of dynamical behaviour of the afterglow.

3.1.1 Ultrarelativistic phase

In the ultrarelativistic (also known as Blandford–McKee, hereafter
BM) phase these scalings take the form (Blandford & McKee 1976)

γ2 ∝ �sh ∝ t−(3−k)/2, (4)

e2 ∝ �2
sh n1, (5)

n2 ∝ �sh n1, (6)

where γ 2 is the Lorentz factor of the shocked plasma measured in
the lab frame (which coincides with the frame of the surrounding
medium), e2 describes its internal energy density and n2 its number
density. Here and throughout this paper the quantities e and n will be
measured in the comoving frame of the fluid they are describing. �sh

is the Lorentz factor of the propagating shock wave, while n1(r) =
n0 (r/r0)−k is the density of the unshocked medium surrounding
the burster as a function of radius. In all the results presented the
characteristic distance r0 is put at 1017 cm. The time ‘t’ appearing
in equation (4) is the lab-frame time and is to be distinguished from
the observed arrival time of light signals which is affected by light
travel-time effects. While in the BM phase we can assume r ∼ c t
for the radius of the shock.

3.1.2 Newtonian phase

At the phase where the outflow has become Newtonian (also known
as Sedov–Taylor phase, hereafter ST) a similar approach can be
taken to describe its kinetic and thermodynamic evolution. Dimen-
sional analysis implies

r(t) ∝
(

E t2

n1(r)

)1/5

(7)

for the scaling of the radius of the shock as a function of time,
blast-wave energy and structure of the surrounding medium. This
leads to

β(t) ∝ t−(3−k)/(5−k), (8)

e2 ∝ t−6/(5−k), (9)

n2 ∝ n1, (10)

where β = dr

c dt
is the bulk velocity of the shock, in units of c.
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3.2 Optically thin and self-absorbed synchrotron radiation

The next step is to combine these scalings with formulas that calcu-
late optically thin as well as self-absorbed synchrotron radiation. We
assume that electrons are the primary radiating particles and express
their post-shock energy distribution as a power law N(E) ∝ E−p. The
lower limit of the distribution Em = γ m mec2 corresponds to a co-
moving synchrotron frequency ν ′

m = 3
4π

γ 2
m

Qe B ′
me c

sinα, where Qe and
me are the electron charge and mass, respectively, B′ is the comov-
ing value of the magnetic field and α is the pitch angle between
magnetic field and velocity of the electron. In the case of optically
thin radiation the flux at a given frequency ν ′, in the comoving
frame, will be

F ′
ν′ ∝ (p − 1) N B ′ Q(ym), (11)

where N is the total number of power-law accelerated electrons,
ym = ν ′/ν ′

m and

Q(x) ≡ x(1−p)/2
∫ x

0
y(p−3)/2 P(y) dy. (12)

The functionQ contains all the spectral information. The functionP
appearing in equation (12) is the synchrotron function F(x) (Rybicki
& Lightman 1986) integrated over all pitch angles, for an isotropic
pitch-angle distribution.

In the case of optically thick synchrotron radiation the comoving
flux is given by

F ′
ν ∝ j ′

ν

α′
ν

r ′2, (13)

where j ′
ν and α′

ν are the comoving emissivity and absorption coeffi-
cient, respectively, and r2 is a measure of the radiating surface. The
expressions for j ′

ν and α′
ν have the form

j ′
ν ∝ (p − 1) ξ n2 B ′ Q(ym), (14)

α′
ν ∝ (p − 1)2(p + 2)

p − 2
ξ 2 n2

2 ε−1
e e−1

2 B ′ ν ′−2 Q(p + 1, ym), (15)

where ξ is the fractional number of electrons accelerated to a power-
law distribution, εe is the fraction of internal energy carried by the
accelerated electrons and Q(p + 1, ym) is evaluated using equa-
tion (12) by replacing p with (p + 1). The effect of absorption is
the introduction of another critical frequency in the spectrum, νa.
The ordering of νm and νa determines the shape of the spectrum. In
Figs 1 and 2 the two different spectra are represented schematically
in order to illustrate the break frequencies as well as the slopes of
the power laws that they connect.

Figure 1. Spectrum 1. Normalized form of the spectrum when νa < νm.

Figure 2. Spectrum 2. Normalized form of the spectrum when νm < νa.

To arrive at the relations above we have demanded that the dis-
tribution of the electrons obeys∫ ∞

Em

N (E) dE = ξ n2 (16)

and∫ ∞

Em

N (E) E dE = εe e2, (17)

where we have used the implicit condition that p > 2.
In this study we ignore the effect of electron cooling on the

spectra since the fast time-scales associated with it translate to
distances much shorter than the typical size of a simulation cell.
This work focuses on observer times when the influence of cooling
on the observed spectra is negligible.

3.3 General form of flux scalings

Equations (4)–(10) allow us to calculate the conditions right behind
the shock front as a function of time. From these equations we can
compute instantaneous spectra by utilizing standard formulas for
synchrotron radiation. However, equation (4)–(10) do not specify
the structure of the shocked plasma well behind the shock. Such a
specification would have allowed us to convolve the different parts
of the outflow that contribute to the observed radiation at any given
observer time. Such an approach has been taken, for example, by
Granot & Sari (2002).

Our approach is based on the fact that in the self-similar regimes
the scaling behaviour of the emitted radiation can be calculated
by considering a homogeneous slab that obeys the scalings of the
shocked fluid right behind the shock. However, in order to correctly
calibrate the scalings (i.e. provide the correct flux levels) one has to
capture the shock structure behind the front and the most reliable
way to do this is by simulations.

The calibration is done by introducing a polynomial in terms of
p and k – the spectral index of the power-law accelerated electrons
and the index describing the structure of the surrounding medium,
respectively. The former quantity (p) determines the electron dis-
tribution, everywhere behind the shock front, for a given set of
thermodynamic parameters, while the latter (k) affects the structure
of the decelerating blast wave. Two standard values for k are of-
ten assumed in the literature, namely 0 (constant density medium)
and 2 (constant stellar wind environment). However, fits to k (Yost
et al. 2003; Curran et al. 2009) often indicate different conditions,
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motivating us to use it as a free parameter. Values for the factors of
the calibrating polynomial are then derived by demanding that they
satisfy the system of equations resulting from runs of models with
different p and k. The range of values we have explored are [2.1, 3]
for p and [0, 2] for k. Therefore this is also the range under which
the presented prescriptions are applicable.

Having put all of the ingredients together, the equation describ-
ing the flux at any given power-law segment of the synchrotron
spectrum, in either the BM or the ST phase, has the general form

Fν = Cpol h(p) ξqξ εqe
e ε

qB
B n

qn

0 E
qE

52 ν
qν

obs t
qt

obs (1 + z)qzd−2
28 , (18)

where

log Cpol = g0 + gp p + gpp p2 + gk k + gkk k2 (19)

and h(p) is a function of p, which is different for each power-law
segment. It takes the following values:

h(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−2)
(p−1)(p+2)

3p+2
3p−1 , Fν ∝ ν2

1
(p+2)

G(p)
G(p+1) , Fν ∝ ν5/2

p−1
3p−1

(
p−2
p−1

)−2/3
, Fν ∝ ν1/3

(p − 1) G(p)
(

p−2
p−1

)p−1
, Fν ∝ ν(1−p)/2

(20)

where

G(p) = �
(

5
4 + p

4

)
�

(
p

4 + 19
12

)
�

(
p

4 − 1
12

)
�

(
7
4 + p

4

)
(p + 1)

. (21)

G(p) as well as other factors appearing in equation (20) originate
from the limiting behaviour of Q(x). For details see van Eerten &
Wijers (2009).

Equation (18) shows all the possible physical dependencies of
the flux that this model is taking into account. We have introduced
the fraction of internal energy carried by the magnetic field εB. This
quantity, along with εe, ξ and p constitute a group describing the
microphysics of the shocked electrons and enter via synchrotron
theory. Therefore, the exponents qξ , qe, qB and the prefactor h(p)
remain the same regardless of the dynamics of the outflow. On
the other hand there are two quantities describing the burster and
its environment: n0 and the blast-wave energy E52 (measured in
units of 1052 erg), two quantities describing the frequency (νobs)
and the time (tobs) of the observation and two more describing the
cosmological distances usually associated with GRBs: the redshift
z and the luminosity distance d28 (in units of 1028 cm).

We note that the inclusion of ξ in our description of the micro-
physics has the implication that one cannot uniquely determine the
values of all model parameters at once. This is a consequence of the
degeneracy of the used model which for a set of primed parameters,
E′

52 = E52/f , n′
0 = n0/f , ε′

e = f εe, ε′
B = f εB, ξ ′ = f ξ , pro-

duces the same spectrum as the set of unprimed parameters. This
degeneracy was first pointed out by Eichler & Waxman (2005) and
can also be seen in equations (24) and (25) and Tables 9–12 pre-
sented in Section 4. As a result, a value for one of the parameters
must be assumed during fitting in order to determine the others.

All the q-exponents appearing in equation (18) are determined
analytically. They are in general unique for a particular power-
law segment in a given dynamical phase of the outflow. This also
holds for all the g-factors appearing in equation (19). Their values,
however, are determined by matching them to numerical results
[for a variety of (p, k) values] and solving the resulting systems of
equations. They are in fact the calibration of the flux scalings.

3.4 Flux scalings

3.4.1 Flux scalings during the BM phase

A very similar approach has been taken by van Eerten & Wijers
(2009). These authors have explored optically thin synchrotron
radiation from relativistic outflows, taking into account all the
possible spectra that result from either fast or slow cooling (Sari
et al. 1998). Here we expand on that by including self-absorption.
Table 2 contains the values of the q-exponents (analytically derived
dependencies), while Table 3 contains the values of the g-factors
(numerically determined calibration).

The values of the q-exponents are in agreement with the formulas
presented in Granot & Sari (2002), apart from the fact that we have
chosen to include an extra parameter ξ . The normalization of the
flux scalings results in slightly lower fluxes (of the order of 30 per
cent) compared to Granot & Sari (2002), a difference which can
be attributed to the varying adiabatic index of the simulations (van
Eerten et al. 2010a). Below νm we have ignored stimulated emission
associated with a population inversion of the electron distribution at
the low-energy limit, something which Granot & Sari (2002) have
included in their model. That accounts for a factor of approximately
[3(p + 2)/4] difference in flux between those predictions and the
present ones.

3.4.2 Flux scalings during the ST phase

For the Newtonian phase of the outflow, we repeat the same pro-
cedure as in the BM phase. The analytically derived dependencies

Table 2. q-exponents in the BM phase. Analytically derived
q-exponents for self-absorbed and optically thin synchrotron
radiation in the BM phase. The quantities on the first column
correspond to the different physical parameters on which the
flux depends (see equation 18). Each column describes their
values for a given power-law segment.

F 2 F5/2 F1/3 F(1−p)/2

qξ −1 0 5
3 2 − p

qe 1 0 − 2
3 p − 1

qB 0 − 1
4

1
3

p+1
4

qn − 2
4−k

− 2
4−k

2
4−k

2
4−k

qE
2

4−k
4+k

4(4−k)
10−4k
3(4−k)

12+4p−kp−5k
4(4−k)

qν 2 5
2

1
3

1−p
2

qt
2

4−k
20−3k
4(4−k)

2−k
4−k

12+3kp−5k−12p
4(4−k)

qz
10−3k
4−k

36−11k
4(4−k)

10−k
3(4−k)

12+4p−k−kp
4(4−k)

Table 3. g-factors in the BM phase. Numerically determined
g-factors for self-absorbed and optically thin synchrotron
radiation in the BM phase. The quantities on the first column
correspond to different factors of the normalizing polynomial
(see equation 19). Each column describes their values for a
given power-law segment.

F 2 F5/2 F1/3 F(1−p)/2

g0 −18.350 −26.170 −3.232 −6.689
gp 0 0 0 7.810
gpp 0 0 0 0.075
gk 0.237 0.185 −0.262 −0.286
gkk 0.133 0.120 −0.014 0.020
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Table 4. q-exponents in the ST phase. Analytically
derived q-exponents for self-absorbed and optically thin
synchrotron radiation in the ST phase. The quantities
on the first column correspond to the different physical
parameters on which the flux depends (see equation 18).
Each column describes their values for a given power-
law segment.

F 2 F5/2 F1/3 F(1−p)/2

qξ −1 0 5
3 2 − p

qe 1 0 − 2
3 p − 1

qB 0 − 1
4

1
3

p+1
4

qn − 4
5−k

− 11
4(5−k)

13
3(5−k)

19−5p
4(5−k)

qE
4

5−k
6+k

4(5−k)
7−4k

3(5−k)
10p+6−k(p+5)

4(5−k)

qν 2 5
2

1
3

1−p
2

qt
2k−2
5−k

11
2(5−k)

24−10k
3(5−k)

3(7−5p)+4k(p−2)
2(5−k)

qz
17−5k
5−k

24−7k
2(5−k)

6k−4
3(5−k)

5(2p+k)−3(2+kp)
2(5−k)

Table 5. g-factors in the ST phase. Numerically determined
g-factors for self-absorbed and optically thin synchrotron
radiation in the ST phase. The quantities on the first column
correspond to different factors of the normalizing polynomial
(see equation 19). Each column describes their values for a
given power-law segment.

F 2 F5/2 F1/3 F(1−p)/2

g0 −16.510 −25.645 −5.513 −8.789
gp 0 0 0 8.528
gpp 0 0 0 0.230
gk 0.126 −0.017 −0.044 0.157
gkk −0.009 −0.014 0.008 0.070

are presented in Table 4 while the factors of the calibrating poly-
nomials are presented in Table 5. We note that the values of qν

and qt are in agreement with those presented in Frail, Waxman &
Kulkarni (2000), apart from their equation (A18) where the scaling
for νobs � νm is in error. This error appears also in van Eerten et al.
(2010a).

3.5 The sharpness of spectral breaks

In practice the spectral breaks are not infinitely sharp as shown in
Figs 1 and 2 but show a gradual transition from one power-law index
to another. To complete our description of instantaneous spectra, we
need to provide a formula for the sharpness of spectral breaks.

An approach commonly used (Granot & Sari 2002; van Eerten &
Wijers 2009) is to describe the flux close to a break by the following
equation (Beuermann et al. 1999):

Fν(νobs) = A

[(
νobs

ν0

)−a1 s

+
(

νobs

ν0

)−a2 s
]−1/s

, (22)

where (ν0, A) are the coordinates of the meeting point of the two
power laws associated with the break, a1 and a2 are the asymptotic
power-law indices before and after the break, respectively, and s
is the so called ‘sharpness parameter’. We have performed χ2-
minimization fitting in logarithmic space to obtain values of s for
specific runs and used those to arrive at a description of the sharpness
in terms of a polynomial of p and k. This polynomial has the general

Table 6. s-factors in the BM phase. Numerically determined
s-factors (see equation 23) for all possible breaks in the BM
phase. Each column describes a specific break, with the two
associated spectral indices denoted on top.

2 → 5
2

5
2 → 1−p

2 2 → 1
3

1
3 → 1−p

2

s0 −2.91 1.24 1.64 1.83
sp −0.11 −0.145 0 −0.41
sk 0.04 0 −0.18 0
skk 0 0 0 0

Table 7. s-factors in the ST phase. Numerically determined
s-factors (see equation 23) for all possible breaks in the ST
phase. Each column describes a specific break, with the two
associated spectral indices denoted on top.

2 → 5
2

5
2 → 1−p

2 2 → 1
3

1
3 → 1−p

2

s0 −5.50 3.50 2.63 1.88
sp 0.73 −0.71 −0.24 −0.46
sk 0.10 −0.07 −0.31 0.11
skk 0 −0.11 −0.07 −0.02

Figure 3. The effect of sharpness on the flux close to a spectral break.
This fragment of the simulation-based spectrum focuses on the flux around
νm. The best fit is shown along with two more curves that have the same
parameters but different sharpness. Simulation-based spectrum has the fol-
lowing model parameters: E52 = 1, n0 = 1, p = 2.5, k = 0, ξ = 10−2, εe =
10−1, εB = 10−2, d28 = 1, z = 0.56, tobs = 100 d.

form

s = s0 + sp p + sk k + skk k2. (23)

Its factors have been determined by solving the system of equations
resulting from the application of equation (22) to models with dif-
ferent p and k parameters. In Tables 6 and 7 we present the values
of s0, sp, sk and skk in the BM and the ST phase, respectively.

In Fig. 3 a best fit to the shape of the spectrum around νm is
shown, for one of the run models. We also plot the flux for two
different values of s to illustrate the notable effect it can have on
flux levels.

4 THE TRANSRELATI VI STI C REGI ME

The results of the previous section constitute a full description of
the possible synchrotron spectra (ignoring cooling) during the ultra-
relativistic and non-relativistic dynamical phases of the afterglow
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Flux prescriptions for GRB afterglows 1335

evolution. However, we have not yet addressed a large portion of the
afterglow’s overall behaviour, namely the transrelativistic regime.
During this stage the dynamics deviates considerably from the BM
solution, without having settled yet into the ST solution. As men-
tioned in Section 1, this phase of the afterglow typically spans a
few orders of magnitude in observer time, while there is no full
description of its dynamics, even in the simple, spherical case.

An approach we have investigated and found useful is that of
treating the transrelativistic phase as a ‘break’ during which the
temporal evolution of the spectrum’s critical parameters displays a
smooth transition from the relativistic power-law behaviour to the
non-relativistic one. These parameters could be, for example, the
values of the flux at every possible power-law segment. However,
the same level of accuracy can be achieved by using the positions of
the critical frequencies and the flux at one of them, instead. Based
on values for these parameters one can construct the spectrum (Sari
et al. 1998; Wijers & Galama 1999) because the slopes of the power-
law segments are known for a given ordering of νa and νm.

4.1 Peak flux

A convenient frequency to measure the flux is at νm of spectrum
1. This is because we can assume that the bulk of the electrons
radiate most of their power at that frequency. Using equation (11)
in combination with the scalings for the dynamics in each of the
two extreme phases of the outflow, we find for the flux at νm

Fm−BM = Cpol ξ ε
1
2
B n

4
2(4−k)
0 E

8−3k
2(4−k)

52 t
−k

2(4−k)
obs (1 + z)

8−k
2(4−k) d−2

28 , (24)

in the BM phase and

Fm−ST = Cpol ξ ε
1
2
B n

7
2(5−k)
0 E

8−3k
2(5−k)

52 t
3−2k
5−k

obs (1 + z)
2+k
5−k d−2

28 , (25)

in the ST phase. The g-factors of Cpol for both dynamical phases
are presented in Table 8.

4.2 Critical frequencies

The behaviour of the critical frequencies can easily be deduced (in
either the BM or ST phase) by equating the flux formulas on both
sides of a spectral break. For each of νm and νa there will be two
such expressions corresponding to the two possible spectra for the
two different orderings of the frequencies. In general, the value of
a critical frequency will be given by the following formula

νcr = fn ξqξ εqe
e ε

qB
B n

qn

0 E
qE

52 ν
qν

obs t
qt

obs (1 + z)qz . (26)

The numerical factors f n result from equating the fluxes of the power
laws at each side of the spectral break. Tables 9 and 10 summarize
the formulas for the critical frequencies in the BM phase for the
two different possible spectra. For the ST phase we repeat the same
procedure and summarize our results in Tables 11 and 12.

Table 8. g-factors for Fm−BM and Fm−ST. Numerically
determined g-factors for Fm (measured at νm1), both in
the BM and ST phase.

Fm−BM Fm−ST

g0 0.531 −0.674
gp 0.487 0.305
gpp −0.060 −0.019
gk −0.291 −0.055
gkk 0.004 0.015

Table 9. f n and q-exponents for critical frequencies in
the BM phase, while νa < νm (spectrum 1). The q-
exponents carry the analytically derived dependencies,
while the f n-factors carry the flux-calibrating Cpol and
h(p) (see equation 18, 19 and 20).

νa1 νm1

f n

(
C1/3 h1/3

C2 h2

)3/5 (
C(1−p)/2 h(1−p)/2

C1/3 h1/3

) 6
3p−1

qξ
8
5 −2

qe −1 2

qB
1
5

1
2

qn
12

5(4−k) 0

qE
4−4k

5(4−k)
1
2

qt − 3k
5(4−k) − 3

2

qz
8k−20
5(4−k)

1
2

Table 10. f n and q-exponents for critical frequencies
in the BM phase, while νm < νa (spectrum 2).

νm2 νa2

f n

(
C2 h2

C5/2 h5/2

)2 (
C(1−p)/2 h(1−p)/2

C5/2 h5/2

) 2
4+p

qξ −2 4−2p
4+p

qe 2 2(p−1)
4+p

qB
1
2

p+2
2(4+p)

qn 0 8
(4+p)(4−k)

qE
1
2

8+4p−kp−6k
2(4+p)(4−k)

qt − 3
2

3kp−2k−12p−8
2(4+p)(4−k)

qz
1
2

10k+4p−24−kp
2(4+p)(4−k)

Table 11. f n and q-exponents for critical frequencies
in the ST phase, while νa < νm (spectrum 1). The
expressions contained in f n need to be evaluated using
the formulas applicable to the ST regime.

νa1 νm1

f n

(
C1/3 h1/3

C2 h2

)3/5 (
C(1−p)/2 h(1−p)/2

C1/3 h1/3

) 6
3p−1

qξ
8
5 −2

qe −1 2

qB
1
5

1
2

qn
5

5−k
− 5

2(5−k)

qE − 5+4k
5(5−k)

10−k
2(5−k)

qt
30−16k
5(5−k)

4k−15
5−k

qz
21k−55
5(5−k)

10−3k
5−k
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Table 12. f n and q-exponents for critical frequencies
in the ST phase, while νm < νa (spectrum 2).

νm2 νa2

f n

(
C2 h2

C5/2 h5/2

)2 (
C(1−p)/2 h(1−p)/2

C5/2 h5/2

) 2
4+p

qξ −2 4−2p
4+p

qe 2 2(p−1)
4+p

qB
1
2

p+2
2(4+p)

qn − 5
2(5−k)

30−5p
2(4+p)(5−k)

qE
10−k

2(5−k)
10p−kp−6k
2(4+p)(5−k)

qt
4k−15
5−k

10−8k−15p+4kp
(4+p)(5−k)

qz
10−3k
5−k

12k+10p−30−3kp
(4+p)(5−k)

For clearer presentation we have labelled as νa1 and νm1 the
critical frequencies νa and νm, respectively, when νa < νm (i.e.
when spectrum 1 applies), while they are labelled as νa2 and νm2 in
the opposite case when spectrum 2 applies.

4.3 Evolution of critical parameters

A practical way of describing the temporal evolution of the pa-
rameters needed to construct a spectrum at any point is that of a
smoothly broken power law. We can use equation (22), this time
characterizing a temporal break in the following manner:


(tobs) = A

[(
tobs

t0

)−a1 st

+
(

tobs

t0

)−a2 st
]−1/st

, (27)

where (t0, A) is the meeting point of the asymptotes and 
 is the
value of any of the critical parameters. In this version of equa-
tion (22), a1 and a2 are the BM and ST slopes, respectively. We can
rewrite the above equation in the following way:


(tobs) = (



−st
BM + 


−st
ST

)−1/st
, (28)

where both 
BM and 
ST have to be evaluated at tobs.
In the previous sections we have established not only the scalings

of the critical parameters we wish to follow, but also their actual
values as a function of observer time in both extreme dynamical
regimes. This allows us to insert them directly into equation (28),
where the only unknown left is the sharpness st. As in the case
of spectral breaks we have performed χ2-minimization fitting in
logarithmic space and have arrived at a description of ‘st’ in terms
of a polynomial of the following form:

st = s0 + sp p + spp p2 + sk k + skk k2. (29)

Results for the values of these st-factors are presented in Table 13.
An example fit of Fm is shown in Fig. 4. The behaviour of Fm

displays clear deviations from the BM scalings already before 100 d
observer time, for Eiso = 1052 erg, n0 = 1 and k = 0. It settles to
values sufficiently close (within 10 per cent) to the ST solution
at around 5000 d. The duration of the transrelativistic regime is
represented in st, for a given set of physical parameters. Table 13
demonstrates that the sharpness of every parameter is generally
unique. Based on that we conclude that duration and features of
the transrelativistic phase will be manifested differently across the
spectrum.

Table 13. st-factors for the evolution of critical
parameters. Numerically determined st-factors (see
equation 29) describing the evolution of critical pa-
rameters (break frequencies and maximum flux) from
the BM to the ST phase. Each column describes a
specific parameter, the name of which is denoted on
top.

Fm νa1 νa2
a νm1 νm2

s0 −1.49 −0.61 22.50 −0.89 0.43

sp 0.09 0 −5.00 1.12 0

spp 0 0 0 −0.21 0

sk −0.76 −0.12 −2.00 0.14 0

skk 0.12 −0.02 0 0 0

aThe s-factors for νa2 have not been determined by
solving the system of equations resulting from mea-
suring its value in different models but comprise a
rather heuristic approach that minimizes the devia-
tions from the numerically determined values.

Figure 4. A broken power-law fit to the evolution of Fm. Plotted are the
BM and ST asymptotes. Simulation-based data have the following model
parameters: E52 = 1, n0 = 1, p = 2.5, k = 0, ξ = 10−2, εe = 10−1, εB =
10−2, d28 = 1, z = 0.56.

4.4 Evolution of the sharpness of spectral breaks

Our findings so far enable us to determine the values of the critical
frequencies and Fm at any given time for a burst of given physical
properties. This allows for an accurate calculation of the flux at any
given power-law segment of the spectrum. What is left to specify is
the flux close to a spectral break for a general tobs. To achieve that
we need to provide a quantitative description for the evolution of
the sharpness of spectral breaks from the BM to the ST phase.

As it turns out the sharpness of every spectral break follows
a ‘characteristic path’ as it evolves from the relativistic values to
the Newtonian ones. This path is qualitatively independent of the
physical properties of the burst and is unique for every spectral
break. In Fig. 5 we present these paths for all possible breaks.
From the data gathered we have identified three time-scales that are
represented in this figure: ti, tNR and tf . In fact, we can simplify
things further by setting ti = tNR/100 and tf = 10 tNR which is
generally valid up to a few per cent, regardless of the physical
parameters of a burst.

Determination of tNR carries (as in the case of fluxes and critical
frequencies) an analytic and a numerical component. The analytic
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Flux prescriptions for GRB afterglows 1337

Figure 5. Evolution of sharpness for all possible spectral breaks. Before
ti and after tf , s resumes its standard BM and ST values. The sharpness
of the break around νm1 shows the most complex pattern, by declining
initially during the transrelativistic regime and then rising again to meet its
ST asymptote. The value of sm1 at tNR is ∼0.18 smaller than the BM value.

part is motivated by considerations of the dynamics and is similar
to other estimates of an observer time marking the transition to the
Newtonian phase (Livio & Waxman 2000; Piran 2004). Specifically
it is identified as the observer time at which the shock Lorentz factor
drops to the value of 2, following the BM solution:

tNR ∼ 8
k−4
3−k

4 − k
A

1
3−k

NR (1 + z), (30)

where ANR =
[(

17
8 π mp

)
ck−5 E52 n−1

0

]
.

Including the numerical calibration the expression for tNR takes
the form

tNR = 1013.66 8
k−4
3−k

4 − k
A

1
3−k

NR (1 + z) d. (31)

Like all other time-scales describing a transition from BM to ST,
tNR scales as (E52/n0)1/(3−k) (1 + z), as we expect from dimensional
analysis (van Eerten & MacFadyen 2012). The same holds for t0

appearing in equation (27) for all critical spectrum parameters.
However, the actual value of t0 for every parameter is influenced by
the flux-calibrating polynomials Cpol (equation 19) and is therefore
in general unique.

The equations, tables and plots of Sections 3 and 4 carry all the
information necessary to construct a spectrum at any given time,
based on given values for the relevant physical parameters that we
have discussed in this work. In the following section we demonstrate
how these results can be used to calculate the observed flux at any
given frequency and time.

5 U S I N G T H E PR E S C R I P T I O N S

In this section we focus on the practical side of this work which is
to construct spectra at any given observer time based on values for
the physical parameters of a burst. These parameters we repeat here
for clarity: E52 (isotropic blast-wave energy in units of 1052 erg),
n0 (number density at 1017 cm), p (index of the electron power-
law distribution), k (index of the density distribution of the matter
surrounding the burster), ξ (fraction of accelerated electrons), εe and
εB (fractions of internal energy assigned to the relativistic electrons
and magnetic field, respectively), νobs and tobs (frequency and time of
observation), and d28 and z (luminosity distance in units of 1028 cm
and redshift).

The task of constructing a spectrum out of the presented formulas
can be divided into four parts. The first is to obtain the values of
the critical frequencies and the maximum flux at a given observer
time. The next step is to determine the shape of the spectrum and its
general characteristics, i.e. values of the flux away from the breaks,
for each of the two possible spectra. The third step is to assign the
appropriate sharpness parameters to all spectral breaks. The fourth
and final step is to use equations (32) and (37) in order to calculate
the observed flux at a given frequency.

Each of the two spectra is described by a single equation, at a
given observer time. This equation should essentially represent a
mathematical formulation of a double-broken power law. One of
the ways to achieve that (Granot & Sari 2002) is to use a heuristic
formula that combines equation (22) with a factor that assigns a
second break at a different frequency. Then the whole spectrum can
be described by the following expression:

Fν(νobs) = A

[(
νobs

ν0

)−a1 s

+
(

νobs

ν0

)−a2 s
]−1/s

×
[

1 +
(

νobs

ν1

)h(a2−a3)
]−1/h

. (32)

The first two terms on the right-hand side of the above equation
describe the first break as usual, while the third term describes the
second break. We have introduced ν1, the frequency of the second
break, a3, the slope of the third power-law segment, and h, the
sharpness of the second break.

Equation (32) is exact only when the two breaks of the spectrum
are sufficiently away from each other so that the power law connect-
ing them is apparent, even for a small range of frequencies. When
this is not the case, this equation provides an approximation to the
real spectrum (Granot & Sari 2002).

In Fig. 6 we present a flowchart of the basic steps towards creating
a spectrum of the emitted radiation at any given observer time. The
details of each step can be found in the following subsections of the
text.

Figure 6. Flowchart showing the basic steps of the presented method. Refer-
ences are given to specific sections of the paper where the steps are described
in more detail.
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5.1 Values of Fm, νm and νa

In order to decide which of the two possible synchrotron spectra
is valid (see Figs 1 and 2) one needs to calculate νa1, νa2, νm1

and νm2. While all these frequencies can in principle be calculated
independently, we opt for a different method. Requiring that the flux
at both ends of the spectrum (in the power laws ν2 and ν1 −p/2) be
the same regardless of the type of spectrum, one can show that only
three of the four frequencies are independent. The relation between
them is

νa2 = ν
10

3(4+p)
a1 ν

3p−1
3(4+p)

m1 ν
1

4+p

m2 . (33)

We have expressed νa2 in terms of the others because its transrela-
tivistic profile is the one deviating more from the broken power-law
approach. This way inconsistencies that may arise during a spectral
transition, due to the overspecification of the evolution of the spec-
trum, are avoided and the fluxes in the leftmost and rightmost power
laws are independent of the ordering of the critical frequencies.

Equation (28) should be used to calculate νa1, νm1 and νm2 for
a given set of physical parameters and for the same observer time,
before applying equation (33) to obtain νa2. 
BM(tobs) and 
ST(tobs)
assume the corresponding forms of the critical frequencies, as those
are expressed in equation (26) and Tables 9–12. The value of st is
given by equation (29) and the relevant entries of Table 13.

Equation (28) should also be used to calculate Fm at the same ob-
server time as the critical frequencies. The asymptotic expressions
are presented in equation (24) and (25) and are to be evaluated
using equation (19) and Table 8. Having found the values of all
five critical parameters at the same observer time, we can now start
constructing the spectrum.

5.2 Shape and flux normalization of the spectrum

In the case of spectrum 1 the characteristic synchrotron frequency
νm1 lies on the optically thin part of the spectrum. Consequently,
its value is affected by radiation from the whole blast wave. In
the case of spectrum 2 self-absorption allows only for the front to
contribute to the flux close to νm2. In practice the values of νm1

and νm2 are always close to each other (within the same order of
magnitude). Therefore, we conclude that the location of νm on the
spectrum is mostly determined by the conditions at the front and is
only slightly affected by what the optical depth of the blast wave is
at that frequency.

On the other hand, values of νa1 and νa2 can differ substantially
with respect to each other. However, in most cases they will both
be either smaller or bigger than νm1 and νm2. We will be referring
to these cases as definite ordering, whereas all other cases will
be referred to as indefinite ordering. When νa1, νa2 < νm1, νm2 the
spectrum will have the form of Fig. 1 (spectrum 1), while if νm1, νm2

< νa1, νa2 the spectrum will have the form of Fig. 2 (spectrum 2). In
the case of indefinite ordering, the actual positions of the two critical
frequencies on the spectrum are very close to each other signalling
a spectral transition, typically from spectrum 1 to spectrum 2. In
terms of observer time, the time-span of this transition is relatively
small. Let ttr be the observer time when indefinite ordering sets in.
The duration of this transition (time-span of indefinite ordering) is
typically a fraction of ttr. During that time the choice of critical
frequencies affects the flux across the spectrum by factors of the
order of unity.

In practice, it is preferable to always take the values suggested by
both spectra into account, through a consistent weighing method.
This way glitches that may appear in the produced light curves

when switching from one spectrum to another are avoided. Instead,
the light curves’ behaviour smoothly progresses from the early-
time spectrum 1 configuration to the late-time spectrum 2. The
weight of each spectrum is represented by a power-law dependence
in time that contains a characteristic time-scale tflip related to the
observer time at which the spectrum is transitioning from spectrum
1 to spectrum 2. This characteristic time-scale can be estimated
numerically by solving equation (27) for both tT1 (the time at which
νm1 = νa1) and tT2 (the time at which νm2 = νa2), and defining

tflip = fflip × max(tT1, tT2). (34)

We have found that the value of f flip that results in smaller deviations
across the parameter space of [p, k] is 1.6.

The weights of spectra 1 and 2 can be written as

W1 = (tobs/tflip)−1

(tobs/tflip)−1 + (tobs/tflip)
, (35)

W2 = (tobs/tflip)

(tobs/tflip)−1 + (tobs/tflip)
. (36)

The flux at a given frequency will then be

log F = W1 × log F1 + W2 × log F2 , (37)

where F1 and F2 are the fluxes calculated at that frequency through
spectra 1 and 2 (see Sections 5.2.1 and 5.2.2), respectively.

5.2.1 Spectrum 1: νa < νm

This is the asymptotic case where both νa1 and νa2 are smaller than
νm1 and νm2. Consequently the positions of the critical frequencies
are given by νa = νa1 and νm = νm1. The parameters of equation (32)
get the following values:

(i) ν0 = νa1

(ii) ν1 = νm1

(iii) A = Fm(ν0/ν1)1/3

(iv) a1 = 2
(v) a2 = 1/3
(vi) a3 = (1 − p)/2

5.2.2 Spectrum 2: νm < νa

For spectrum 2 in the asymptotic limit both νa1 and νa2 are bigger
than νm1 and νm2. Thus, the positions of the critical frequencies are
given by νm = νm2 and νa = νa2. However, in spectrum 2 the flux
at νm is not Fm; that would be the case if it were not for absorption.
We can use this fact to first calculate the flux at νa. Although in the
present spectrum configuration the actual position of νm is given by
νm2, it is νm1 that we should use for obtaining the flux at νa. The
variables become:

(i) ν0 = νm2

(ii) ν1 = νa2

(iii) A = Fm

(
νa2
νm1

)(1−p)/2 (
νm2
νa2

)2.5

(iv) a1 = 2
(v) a2 = 2.5
(vi) a3 = (1 − p)/2
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Flux prescriptions for GRB afterglows 1339

5.3 Sharpness parameters of spectral breaks

The only two parameters left to specify in equation (32) are s and
h, the sharpness of the first and the second break in the spectrum,
respectively. In order to assign the proper sharpness to each break
we first have to compare tobs to tNR (see equation 31). There are four
distinct cases, as illustrated in Fig. 5.

5.3.1 tobs < ti

In this case all sharpness parameters attain their BM values as these
are given in Table 6.

5.3.2 tobs > tf

In this case all sharpness parameters attain their ST values as these
are given in Table 7.

5.3.3 ti < tobs < tNR

In this case breaks νm2 and νa2 retain their BM sharpness. The other
two exhibit some evolution towards the corresponding ST values.
The sharpness around νm1 will be

sm1 = 0.09 log

(
ti

tobs

)
+ si, (38)

where si is the sharpness of the particular break in the BM regime.
The sharpness around νa1 will be

sa1 = (sf − si)

3
log

(
tobs

ti

)
+ si, (39)

where si and sf are the sharpness parameters at the BM and ST
phases, respectively.

5.3.4 tNR < tobs < tf

In this final case all breaks exhibit a sharpness evolving towards its
ST value. For νm1 the sharpness will be given by

sm1 = (sf − si + 0.18) log

(
tobs

tf

)
+ sf, (40)

while for νa1 the value of the sharpness is still given by equation (39).
The sharpness around νa2 will be given by

sa2 = (sf − si) log

(
tobs

tNR

)
+ si, (41)

while for νm2 we find a similar result:

sm2 = (sf − si) log

(
tobs

tNR

)
+ si. (42)

5.4 Examples of results

We have described a practical implementation of our results to
construct spectra at any given time, based on values for the physi-
cal quantities characterizing the burst. We now show comparisons
between simulation-generated spectra and spectra that have been
constructed using the provided flux prescriptions.

In Fig. 7 a comparison between a simulation-based spectrum and
an analytic one is shown. In all power-law segments and the link-
ing breaks, the flux prediction is never more than 10 per cent off

Figure 7. A typically good match between an analytically constructed spec-
trum and one based on a simulation. Both are taken at 100 d. νa lies at
∼107 Hz and νm at ∼1012 Hz. Model parameters for both spectra are as fol-
lows: E52 = 1, n0 = 1, p = 2.3, k = 0, ξ = 10−2, εe = 10−1, εB = 10−2, d28 =
1, z = 0.56.

compared to the simulation-based data. We can translate these devi-
ations into relative errors for the values of the physical parameters.
This we do by adjusting their values so that those deviations vanish
in particular regimes of the spectrum. For the blast-wave energy
(E52) the error ranges from 3 to 15 per cent depending on which
power-law segment (or spectral break) one uses for the comparison.
In the case of n0 the maximum error is 15 per cent. For p the dif-
ference is of the order of 0.05, while for k it is of the order of 0.08.
For εe and εB the error is of the order of 10 per cent while for ξ it
reaches up to 30 per cent.

In Fig. 8 we present another comparison between a simulation-
based spectrum and a constructed one. This one was chosen for
exhibiting one of the largest deviations we have encountered. While
the self-absorbed part of the spectrum is matched well by the con-
structed spectrum, flux in the ν(1−p)/2 segment differs by ∼25 per
cent. The corresponding errors in the derivation of values for phys-
ical quantities are the following: up to 16 per cent for E52, up to
10–90 per cent for n0 (flux in the ν(1−p)/2 segment depends very
weekly on n0 for these model parameters), up to 35 per cent for ξ ,

Figure 8. An example of a constructed spectrum that shows relatively large
deviations from the numerical result in the optically thin part of the spectrum.
Both spectra are taken at 500 d. νm lies at ∼1 Hz and νa at ∼107 Hz. Model
parameters are as follows: E52 = 1, n0 = 1, p = 2.5, k = 0.5, ξ = 1, εe =
10−4, εB = 10−2, d28 = 1, z = 0.56.
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15 per cent for εe and 30 per cent for εB, while for p and k we find
differences up to 0.1 and 0.2, respectively.

We stress that these deviations are not with respect to a best-
fitting value but are indicative of how much every parameter should
be tweaked to match fluxes in individual power-law segments of the
spectrum. More often than not such a tweak would actually produce
a rather bad fit overall. Thus the deviations we have listed may be
viewed as an upper limit to what a broad-band fit would produce.

5.5 Application to mildly relativistic outflows

Recently Nakar & Piran (2011) have discussed the radio signal
following the ejection of spherical, Newtonian or mildly relativistic
outflows expected from binary NS mergers. They estimate that due
to the low initial Lorentz factors of these outflows, their deceleration
(and entry to the ST phase) will be manifested at tdec ∼ 60 d observer
time, for E52 = 0.01, n0 = 1, k = 0, β i ∼ 1 (initial velocity). This is
also the time at which optically thin emission at νobs = 5 GHz will
peak in the range 0.01–0.1 mJy, for a distance of the source in the
range 1–3 Gpc. Here, we test these estimates using the prescriptions
presented in this paper.

The model we have developed in this study is based on (and
therefore, applicable to) outflows that are initially ultrarelativistic.
Thus, it is not obvious that it can be used to model non-relativistic
outflows. Order-of-magnitude calculations in the lab frame can il-
lustrate the limitations. A relativistic outflow of coasting Lorentz
factor �i will slow down after sweeping mass �i times smaller than
the mass of the ejecta (Rees & Mészáros 1992). This will happen
at a time

tBM =
(

3E

4πρ1c5

)1/3

�−2/3
i . (43)

From that point onwards the outflow will decelerate according to
the BM solution (� ∝ t−3/2) becoming Newtonian (� ∼ 1) at

tN =
(

3E

4πρ1c5

)1/3

. (44)

The corresponding radius is

rN = tN c. (45)

Equations (44) and (45) effectively mark the onset of the ST phase.
In the case of subrelativistic and mildly relativistic outflows the

deceleration time (also marking the transition to the ST phase)
occurs when the swept mass is comparable to the rest mass of the
ejecta:

tdec =
(

3E

2πρ1c5

)1/3

β−5/3
i . (46)

At tdec the shock is at a radius

rdec = βi tdec c. (47)

From equations (44)–(47) it is clear that as β i → 1 the onset
of the ST phase for Newtonian outflows approaches that of the
relativistic analogue with the same energy. This implies that fast
(v ∼ c) outflows (regardless of the Lorentz factor) have no memory
of their history from tdec onwards. Therefore we can apply the ST
scalings of the flux prescriptions to a mildly relativistic outflow (as
the one considered by Nakar & Piran 2011) at observer times tobs ≥
tdec. In the subrelativistic case (β i � 1) equations (46) and (47)
imply that the outflow will decelerate later and at a greater radius.
Nevertheless, the ST scalings of the flux prescriptions apply at

Figure 9. Synchrotron spectra of a mildly relativistic outflow at distances of
1 and 3 Gpc, taken at 60 d observer time. The grey shaded area represents the
5 GHz band of the EVLA with a bandwidth of 3.5 GHz and a 4σ detection
threshold of ∼10 μJy for 1-h integration (Perley et al. 2011). The value of
p for both spectra is 2.5. The other physical parameters have the following
values: E52 = 0.01, n0 = 1, k = 0, ξ = 1, εe = εB = 0.1.

observer times tobs � tdec, i.e. sufficiently later than the deceleration
time.

For the application to mildly relativistic outflows we have set
E52 = 0.01, n0 = 1, k = 0 for the macroscopic parameters of the
blast wave and its environment and ξ = 1, εe = εB = 0.1, for the
microphysics, while νobs = 5 GHz and tobs = 60 d. The electron
spectral index p is varied within the range 2.1–3.0, while for the
distance we have taken the two extreme values of 1 and 3 Gpc.

In accordance with Nakar & Piran (2011) we find that νobs is in
the optically thin part of the spectrum for all cases. In this regime
the flux increases monotonically for an increasing p and for p =
3.0 it is about four times higher than the p = 2.1 case. For d28 =
0.31 (∼1 Gpc) the flux at 5 GHz lies in the range 0.015–0.06 mJy,
depending on the value of p. At d28 = 0.93 (∼3 Gpc) we find the
flux to be always below 0.01 mJy, albeit marginally for relatively
high values of p. This is illustrated in Fig. 9 where two spectra are
shown corresponding to distances of 1 and 3 Gpc. They are both
taken at tobs = 60 d, for a characteristic value of p = 2.5.

Binary NS mergers are believed to be the progenitors of short
GRBs (see Nakar 2007 and references therein) and are observed
in a variety of environments, such as elliptical, spiral and irregular
galaxies (Berger 2009). A considerable fraction of them, however,
appear to be hostless, occurring in the intergalactic medium and thus
surrounded by a much more tenuous gas than that commonly found
inside galaxies (Berger 2010). We have repeated the calculation
of the spectrum from a spherical outflow resulting from a NS–
NS merger for a surrounding medium of density n0 = 10−3 cm−3,
where the lower density results in a later onset of the ST phase at
∼400 d. Keeping all other parameters constant we find that the radio
signal at 5 GHz will be detectable by the EVLA up to a distance of
∼100 Mpc.

The implication of these results is that moderately energetic
outflows (E = 1050 erg) expected to accompany NS–NS mergers
(Rezzolla et al. 2011) can produce synchrotron radiation detectable
by the EVLA from distances up to ∼1 Gpc, larger than the detection
horizon of the upcoming versions of gravitational-wave detectors
(Nakar & Piran 2011). This assumes that the density of the matter
surrounding the merger is of the order of 1 cm−3. These radio signals
will peak at time-scales of the order of a few months, if the corre-
sponding outflows have initial velocities close to the speed of light.
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In the case of more tenuous circumburst media the ST time-scale
grows and the detection horizon of the EM signal drops accordingly.
The presented flux prescriptions are applicable throughout the ST
phase of these outflows.

6 D ISC U SSION

We present analytic flux prescriptions for broad-band synchrotron
spectra originating from GRB outflows, suitable for fast and detailed
modelling of the afterglow phase. They are applicable through-
out the evolution of observed afterglows, during which external
shocks are the dominant source of particle acceleration, and account
for the exact shape of the synchrotron spectrum, including self-
absorption, but ignoring cooling. These prescriptions are based on
high-resolution, 1D hydrodynamic simulations performed using the
adaptive-mesh-refinement code AMRVAC. To obtain spectra we have
employed a radiation code that solves the equation of radiative trans-
fer through the evolving blast wave as this is determined by the sim-
ulations. The presented formulas carry two components. The first
is derived analytically and expresses the dependence of the flux on
relevant physical parameters (E52, n0, p, k, ξ , εe, εB, νobs, tobs, d28, z),
while the second component reflects the calibration that the results
of simulations have introduced to the flux levels.

For each asymptotic dynamical regime (BM and ST) we provide
prescriptions for the flux at every power-law segment but also at
frequencies close to spectral breaks. These are modelled as smoothly
broken power laws with the sharpness of the break given in terms
of the structure of the surrounding medium (k) and the electron
distribution (p). During the transrelativistic regime we find that
the values of critical frequencies (νm, νa) and peak flux (Fm) of the
synchrotron spectrum show a gradual transition from the asymptotic
power-law behaviour in the BM phase to the corresponding one in
the ST phase. This fact has allowed us to model their temporal
profiles as smoothly broken power laws. For every parameter (Fm,
νm and νa) we provide formulas describing the sharpness of these
breaks in terms of p and k. In order to model the evolution of a
spectral break’s sharpness, we have recognized the unique pattern
that each break exhibits. We have introduced tNR whose derivation
is based on considerations of the outflow dynamics. The result is a
set of analytic expressions that extend the applicability of the flux
prescriptions to any given observer time.

An element of this study worth emphasizing is the inclusion
of k (representing the structure of the circumburst medium) as a
fitting parameter. This is motivated by the fact that environments
of stars with variable mass-loss rates (such as massive stars, prime
candidates for long GRB progenitors) can have structures more
complex than the usually assumed k = 0 or 2 (Ramirez-Ruiz et al.
2005) and fits using k as a free parameter do not exclude such a
possibility (Yost et al. 2003; Curran et al. 2009). As can be seen in
Tables 3 and 5 the impact of k on flux values is modest and varies
smoothly across a plausible range of k-values [0, 2]. Nevertheless, its
effect is measurable in light of the provided formulas, contributing
an extra tool to afterglow fitting and addressing the nature of GRB
progenitors.

Beyond the context of GRBs, the provided prescriptions are use-
ful for modelling synchrotron emission from spherical adiabatic
blast waves of arbitrary velocity (with the limitations analysed in
Section 5.5) as long as they have swept up enough mass to be
decelerating. Obvious applications include Type Ibc supernovae
(Soderberg et al. 2010), often associated with GRBs (Woosley &
Bloom 2006) and mildly relativistic or subrelativistic spherical out-
flows from binary NS mergers. The latter are candidates for provid-

ing the EM counterpart (peaking at radio frequencies) to a possible
signal of gravitational waves (Metzger & Berger 2012). By apply-
ing the ST scalings of the presented flux prescriptions on mildly
relativistic outflows we show that prospects of detecting such ra-
dio signals from within the horizon of gravitational-wave detectors,
LIGO (Abbott et al. 2009) and Virgo (Acernese et al. 2008), are
realistic (Nakar & Piran 2011).

It is interesting to note that apart from the dependence on p and
k, we have also found that the sharpness of a spectral break can be
influenced to some extent by the microphysical parameters εe, εB

and ξ . This has been particularly seen in spectral breaks that involve
absorption. The reason for this is the dependence of the absorption
coefficient on the chosen microphysics through equation (15). The
microphysical parameters in effect regulate the physical depth of
the blast wave corresponding to a given value of the optical depth.
Therefore an increase/decrease of α′

ν results in a less/more diverse
sample of local electron distributions contributing to the flux across
a spectral break and thus a sharper/smoother transition. We have
chosen not to include the effect of the microphysics on the sharpness
formulas, as it typically influences s by no more than 10–15 per
cent (the flux to a lesser extent) and it would greatly complicate the
heuristic equations we present.

Contrary to the approach on the evolution of a spectral break’s
sharpness, where the introduction of tNR is useful, when describing
the temporal evolution of the spectrum’s critical parameters we
deliberately choose not to use such a time-scale. The reason is that,
as it turns out, there is no such thing as a single global time-scale
applicable to the behaviour of all observable quantities. Instead,
every critical parameter of the spectrum is characterized by its
own break time, the meeting point of the BM and ST asymptotes.
One can verify that by computing t0 of equation (27) for a few
critical parameters of the same model, by equating the asymptotic
expressions. They will be found to differ by factors up to a few. This
happens because at any given observer time all these parameters
are affected by contributions of radiation from various parts of
the outflow, emitted within a range of lab-frame times. For each
parameter the weight of these contributions will differ, leading to the
inference of contrasting time-scales by an observer. This stresses the
need for models that can naturally account for this kind of features,
by implementing accurate calculations of the blast-wave dynamics
and the shape of the spectrum.

By inspection of Fig. 4 one can realize that the broken power-
law approach is an approximation to the actual behaviour of any
critical spectrum parameter during the transrelativistic phase. The
parameter that exhibits the strongest deviation from this description
is νa2. The reason for this can be traced to the behaviour of the flux in
the optically thin part of the spectrum. An example of this behaviour
is shown in Fig. 10, where a feature readily apparent is a smooth
bump centred at ∼500 d (this can also be seen in fig. 10 of van
Eerten et al. 2010a). This introduces a similar feature in the temporal
profile of νa2. As a result, the actual values of that frequency can
deviate as much as ∼15 per cent from the fitting function (smooth
power-law break) at observer times relatively close to tNR. This can
have an effect on constructed light curves if the self-absorbed part
of spectrum 2 is used and only during the transrelativistic phase.
The impact on flux levels is stronger than the deviations shown in
Fig. 10 because the flux at the ν2 and ν5/2 segments of spectrum
2 scales as ν

−(p+4)/2
a2 . We therefore recommend using equation (33)

in all cases as this method provides a more accurate and consistent
way of constructing spectra and light curves.

By now there are a number of studies in the literature that present
formulas calculating spectra from GRB afterglows. The importance
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1342 K. Leventis et al.

Figure 10. Simulation-based light curve taken at 1020 Hz (no cooling taken
into account). A bump at ∼500 d is apparent. For comparison we have
plotted the constructed light curve based on the presented flux prescriptions.
Model parameters are as follows: E52 = 1, n0 = 1, p = 2.3, k = 0, ξ = 1, εe =
10−4, εB = 10−2, d28 = 1, z = 0.56.

of taking into account the blast-wave structure and the exact shape
of the spectrum has been stressed by discrepancies in the derived
values of physical parameters between simple (Wijers & Galama
1999) and more elaborate (Granot & Sari 2002; van Eerten & Wijers
2009) models. Inclusion of details regarding the shock structure can
be done either analytically (in either of the two asymptotic regimes
of the dynamics) or through the performance of simulations, as is
done in the present work. The advantage of numerical simulations
is that they cover the transrelativistic phase of the outflow and the
level of detail they provide in all cases. The disadvantage is the
price they come at, both in terms of time and resources.

In this paper we provide an efficient way of utilizing the bene-
fits of simulations, as those are reflected on the presented analytic
prescriptions. A similar approach has been taken by van Eerten &
MacFadyen (2012), whose fitting method is based on the scale in-
variance of light curves. This method naturally accounts for features
like sideways spreading of the jet and off-axis observation angles,
features that only arise in simulations of at least two dimensions
and cannot be captured in the context of this research. However,
it requires the use of a large data base of light curves which does
not yet exist. So far no study of the afterglow radiation using 2D
hydrodynamic simulations (Zhang & MacFadyen 2009; Wygoda
et al. 2011; De Colle et al. 2012) has resulted in the derivation of
flux prescriptions. In fact this is the first time, even for the simple
spherical case, that simulation-based flux prescriptions beyond the
BM phase are presented. The box-fit method of van Eerten et al.
(2012) does provide a fitting code but requires the use of a parallel
computer network in order to fit data by iterating through a ‘box’
of simulations. Therefore, analytic flux prescriptions based on 1D
simulations, as the ones presented here, can be the base for compar-
isons with future work in that direction based on 2D simulations.
Moreover, 1D models are always relevant both at observer times
before the jet-break (when most parts of the outflow are causally
disconnected) and at late times when the outflow is roughly spher-
ical and allow for accurate calorimetry of jetted outflows after the
jet-break but well before spherical symmetry has been reached, as
long as the observer is not far off-axis (Wygoda et al. 2011).

In all the simulations that we have performed to arrive at the pre-
sented flux prescriptions, the microphysical parameters have been
kept constant throughout the run and at every part of the outflow.
This is by no means guaranteed and therefore introduces an un-
certainty in our results. An interesting topic for further study is

the implementation of evolving microphysical parameters and their
effect on the flux prescriptions. Such an evolution is expected on
theoretical grounds for some of those parameters (Granot, Königl
& Piran 2006). A qualitative study of the evolution of ξ at the
shock front and the evolution of εB downstream has already been
presented in van Eerten et al. (2010a). Meanwhile, there is also
growing amount of observational evidence for this process taking
place in GRB afterglows (Panaitescu et al. 2006; Kong et al. 2010;
Filgas et al. 2011). Incorporating effects like time dependence of the
microphysics into flux prescriptions can extend the predictions of
the standard fireball model and thus broaden the theoretical frame-
work within which observations are currently being interpreted.

7 C O N C L U S I O N S

We have used high-resolution 1D hydrodynamic simulations to cal-
ibrate flux scalings of synchrotron, self-absorbed radiation for GRB
afterglows in the relativistic and Newtonian dynamical phases (BM
and ST, respectively). The transition from the former to the latter
is well described by approximating the evolution of spectral pa-
rameters (maximum flux and positions of critical frequencies) by
power-law breaks connecting the two asymptotic behaviours. The
properties of these breaks have been modelled in terms of the values
of the physical parameters describing the blast wave. This way we
have managed to encapsulate the precision of the performed simu-
lations into a set of analytic formulas that trace the full evolution of
GRB afterglows, from the ultrarelativistic to the Newtonian phase.
Due to the general nature of the prescriptions, they are applicable
to any source characterized by emission of synchrotron radiation
from an adiabatic blast wave.

A numerical code containing a practical implementation of the
results presented in this paper combined with a fitting code is
freely available on request and online at http://www.astro.uva.nl/
research/cosmics/gamma-ray-bursts/software/.

AC K N OW L E D G M E N T S

This research was supported by NOVA and in part by NASA through
grant NNX10AF62G issued through the Astrophysics Theory Pro-
gram and by the NSF through grant AST-1009863. RAMJW ac-
knowledges support from the ERC via Advanced Investigator Grant
No. 247295. We thank SARA Computing and Networking Services
(www.sara.nl) for their support in using the Lisa Compute Clus-
ter. We thank Evert Rol and Alexander van der Horst for useful
discussions.

R E F E R E N C E S

Abbott B. P. et al., 2009, Rep. Prog. Phys., 72, 076901
Acernese F. et al., 2008, Class. Quantum Grav., 25, 184001
Berger E., 2009, ApJ, 690, 231
Berger E., 2010, ApJ, 722, 1946
Beuermann K. et al., 1999, A&A, 352, L26
Blandford R. D., McKee C. F., 1976, Phys. Fluids, 19, 1130
Bloom J. S. et al., 2011, Sci, 333, 203
Booth R. S., de Blok W. J. G., Jonas J. L., Fanaroff B., 2009, preprint

(arXiv:0910.2935)
Carilli C., Rawlings S., 2004, New Astron. Rev., 48, 979
Chevalier R. A., 1977, ARA&A, 15, 175
Chevalier R. A., 1982, ApJ, 258, 790
Costa E., Frontera F., Heise J. et al., 1997, Nat, 387, 783
Curran P. A., Starling R. L. C., van der Horst A. J., Wijers R. A. M. J., 2009,

MNRAS, 395, 580

C© 2012 The Authors, MNRAS 427, 1329–1343
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/427/2/1329/976046 by guest on 01 Septem
ber 2023



Flux prescriptions for GRB afterglows 1343
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