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We have performed orbital-free and quantum molecular dynamics simulations on plastic ablator along two
isochores, namely 7 and 9 g cm−3, from 5 to 40 eV. These thermodynamic conditions correspond to those
encountered during inertial confinement fusion capsule implosion when hydrodynamic instabilities can take
place. The coupling between orbital-free and quantum approaches allowed us to compute an exhaustive set of
microscopic coefficients, i.e., equation-of-state, ionic diffusion coefficients, thermal and electrical conductivities,
spanning phenomena that can mitigate the growth of classical Rayleigh-Taylor instability. Comparisons to widely
used models in hydrodynamics codes are developed.
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I. INTRODUCTION

In the indirect drive scheme of inertial confinement fusion
(ICF) [1], the fusible fuel, namely an equimolar mixture of
deuterium and tritium, is brought into low temperature and
high density through the use of an outer material called
ablator whose role is to convert radiative energy—coming from
the surrounding gold or uranium hohlraum—into mechanical
work. Compression of the fuel is performed through a
succession of finely tuned shock waves and a final implosion
of the whole capsule that comes from the interaction between
the outer ablation front and the centrifugal release wave born
in the central gaseous fuel. The implosion should at the end of
the process lead to the ignition of a small quantity of fuel that,
then, should launch a nuclear combustion wave into the outer
dense deuterium-tritium (DT) mixture.

Among the numerous phenomena that can prevent the
capsule from igniting, i.e., generate a centrifugal thermonu-
clear combustion wave through the fuel, particular attention
must be paid to hydrodynamic instabilities. One of the most
deleterious is the classical Rayleigh-Taylor one that can exist
at the ablator/fuel interface. This interface, due to fabrication
processes, contains ripples that can, for some specific con-
figurations, grow exponentially up to drilling the dense DT
shell. The ripples can also be seeded by the instabilities on the
outside ablation front by feed-through processes. To prevent
these problems during the implosion phase, the ablator,
pushing the fuel, must stay denser than the latter so that the
interface stays hydrodynamically stable.

Apart from hard x rays coming from the M band of
the hohlraum gold, the ablator at the interface is protected
from the incoming radiation. Therefore, the behavior of the
material—at the macroscopic level—is driven by hydrody-
namics, thermal and species diffusion. All these phenomena
require the knowledge of coefficients that are determined
by the underlying microscopic physics: equation-of-state,
shear viscosity, thermal conductivity and diffusion coefficients
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for the responses to, respectively, mechanical, heat, and
concentration perturbations.

The current capsule designs for the Laser Mégajoule
[2] and the National Ignition Facility [3] make use of a
polyethylene ablator whose composition—when undoped—is
close to C2H3. To conceive and predict the time evolution
of capsules, designers use hydrodynamics codes that solve
the fluid mechanics equations coupled to radiative energy
transfer. Thermodynamical conditions relevant to the growth
of hydrodynamics instabilities can be extracted from these
numerical simulations. In the case of the Laser Mégajoule
design, variations around the nominal capsule [4] showed
that instabilities could grow for plastic at 7 g cm−3, 30 eV,
and, 9 g cm−3, 10 eV in accordance with statement of
Refs. [5,6].

The prime tool to study matter in this warm dense regime
is quantum molecular dynamics (QMD) [7–9] but, as was
explained in preceding publications [10], calculations are par-
ticularly difficult to perform when the electronic temperature
become of the order of the Fermi one. Indeed, in QMD
calculations, the one-body electronic states are populated
through a Fermi-Dirac distribution so that high temperatures
commonly involve a large number of orbitals. In a previous
work [11,12], we circumvent this limitation by doing a
two-step calculation:

(i) molecular dynamics is performed in the orbital-free
scheme. Long runs allow to have access to structural
properties—i.e., positions of the nuclei—as well as static
(equation-of-state) and dynamical (diffusion coefficient, vis-
cosity) properties;

(ii) a few nuclear positions are extracted from the previous
simulations and are used as input for a complete quantum
calculation to obtain electronic transport coefficients (thermal
and electrical conductivities).
In this paper, we report the computation, by the same method,
of the different coefficients along the two isochores from 5 to
40 eV.

After a brief description in Sec. II the theoretical and numer-
ical features of quantum and orbital-free molecular dynamics,
the evaluations of microscopic coefficients are presented in
Sec. III, emphasizing the opportunity of using approximate
models that can be implemented in hydrodynamics codes.

026405-11539-3755/2012/86(2)/026405(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.026405


FLAVIEN LAMBERT AND VANINA RECOULES PHYSICAL REVIEW E 86, 026405 (2012)

II. ORBITAL-FREE AND QUANTUM MOLECULAR
DYNAMICS

A. Theory overview

Both orbital-free [13–15] and quantum molecular dynamics
rely on the adiabatic (Born-Oppenheimer) approximation [16].
The electrons are then acting on the nuclei as a many-body
screening potential. Moreover, in the relevant thermodynamic
conditions, the nuclear De Broglie wavelength is much smaller
than the internuclei distance so that nuclei can be considered
as classical particles. In the spirit of the Hohenberg-Kohn
theorem [17] and the equivalent system of noninteracting
particles of Kohn and Sham [18], the electronic free energy
depends solely on the local electronic density n and reads as

Fe[n(r)] = F 0[n] + 1

2

∫∫
drdr ′ n(r)n(r ′)

|r − r ′|

−
Na∑
�=1

Z�

∫
dr ′ n(r ′)

|R� − r ′| +
∫

dr fxc[n], (1)

where F 0[n] and fxc[n] are, respectively, the kinetic-entropic
and exchange-correlation parts.

In the “full” quantum case, the kinetic-entropic term is
mapped into a system of noninteracting particles [19] repre-
sented by a set of orbitals and their respective eigenenergies,
{|ψ�〉 ,ε�}, through

F 0[n] =
∑

�

(
f�

∫
dr |∇ψ�|2

− 1

β
[f� ln f� + (1 − f�) ln(1 − f�)]

)
, (2)

where β is the inverse of the temperature and f� = f (ε�) is
the Fermi-Dirac distribution.

In the orbital-free world, the electronic free energy is
approximated by a direct functional of the electronic density,
in the true spirit of the Hohenberg-Kohn theorem, through a
semiclassical expansion [20] of the Mermin functional, Eq. (2).
The leading and next-to-leading order expansion, in terms of
the Planck’s constant, gives the well-known finite temperature
Thomas-Fermi-von Weizsäcker model

F 0[n] = 1

β

∫
dr

(
n(r)�(n(r)) − 2

√
2

3π2β
3
2

I 3
2
[�(n(r))]

)

+
∫

dr h(n)
|∇n(r)|2

n(r)
, (3)

where the function h has a polynomial fit [21] and � is defined
by

n(r) =
√

2

π2β
3
2

I 1
2
[�(n(r))]. (4)

with Iν the Fermi integral of degree ν.

B. Numerical features

The gradient correction in the orbital-free functional,
Eq. (3), was only evaluated for equation-of-state purposes,
Sec. III A. Its impact on transport coefficients was negligible
in the thermodynamic regime of interest and within the

statistical errors inherent to the method, Sec. III C. The
exchange-correlation free energy fxc was treated in the local
density approximation [22] in orbital-free simulations and in
the generalized-gradient approximation [23] in quantum cal-
culations without taking into account any explicit temperature
dependence [24].

The orbital-free simulations are performed with the OFMD

code [13,25]. The 250 nuclei (100 carbon atoms and 150
hydrogen ones) were propagated in the isokinetic ensemble
[26] during 50000 time steps after 5000 steps used for structure
relaxation. The time step is chosen as a fraction of the plasma
period [25]. Five snapshots of nuclear positions are extracted
from the orbital-free calculations and are used for the full
quantum simulation [11,12] carried out with the ABINIT [27]
package.

III. MICROSCOPIC COEFFICIENTS

In this paragraph are shown the results of calculations
coming either from orbital-free or quantum simulations.
Comparisons are made to models that are or could be used in
hydrodynamics codes providing a benchmark for microscopic
coefficients.

A. Equation of state

Figure 1 presents the pressure versus temperature along the
two isochores. Pressure is averaged on five different nuclear
configurations. The average procedure performed over 5 or
50000 steps in the orbital-free simulations indicates that the
values differ from less than a percent. Both orbital-free, with
and without gradient correction, and quantum simulations
are compared to the tabulated equation-of-state used in the
nominal Laser Mégajoule capsule design. This latter is based
on a modification of the quotidian equation of state (QEOS)
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FIG. 1. (Color online) Pressure versus temperature along the two
isochores obtained from quantum and orbital-free simulations as well
as QEOS model.
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model [28] where the thermal ionic part is replaced by the
Yukawa results [29].

Except for the two lowest temperatures, the agreement
between OFMD and QMD pressures is excellent, the difference
being lower than 3%. The OFMD results are slightly lowered
by a few Mbar by introducing the gradient correction allowing
a better agreement between the two simulations at 5 and 10 eV
in accordance with Ref. [30]. Furthermore, the agreement
of the QEOS table over the entire range of temperature is
excellent.

B. Effective ionization and coupling constant

Although ionization is not an observable, this notion is
exhaustively used in plasma physics [31,32] and is often the
free parameter in models of transport coefficients [33–38].

In orbital-free simulations, the charge of the nucleus is the
atomic number, corresponding to an all-electron simulation.
Consequently, OF calculations can be used to gauge the validity
of prescription of both effective ionization and transport
model. This procedure has already been used for pure elements
[25,39,40], as well as for mixtures [15,41].

As previously described in Ref. [15], the OF average atom
model (AAM) [42,43] can be used in conjunction with a
mixing rule based on pressure matching [15,44] to provide
the effective charge state. The results for both carbon and
hydrogen are summarized in Table I. It is important to note that,
when using a purely local functional (Thomas-Fermi + LDA
exchange correlation), the pressure matching mixing rule is
equivalent to equalize the free electron density of each element
[13,15].

From the partial ionizations of Table I, several choices
of average ionization of the mixture can be made. The
first, labeled Z	

1 comes straightforwardly from the pressure
matching mixing rule, see Appendix,

Z	
1 =

∑
�

x�Z	
� , (5)

where x� are the atomic fractions. In the spirit of the ion-sphere
model [45], another definition of average ionization, labeled

TABLE I. Effective charge states Z	
i and partial density ρi of

carbon and hydrogen inside the plasma obtained by coupling the OF

average atom model and a mixing rule based on pressure matching.

ρ kTe ρC ρH

(g cm−3) (eV) Z	
C (g cm −3) Z	

H (g cm−3)

9 5 2.77 11.26 0.75 3.45
10 2.79 11.25 0.76 3.46
20 2.89 11.22 0.77 3.49
30 3.03 11.16 0.80 3.54
40 3.18 11.09 0.82 3.59

7 5 2.59 8.85 0.73 2.62
10 2.62 8.84 0.74 2.62
20 2.77 8.80 0.76 2.66
30 2.94 8.73 0.79 2.70
40 3.12 8.67 0.82 2.76

TABLE II. Effective charge calculated from the average atom
model.

ρ kTe Z	
1 Z	

2 Z	
3

9 5 1.56 1.68 1.90
10 1.57 1.70 1.91
20 1.62 1.75 1.95
30 1.69 1.83 2.01
40 1.76 1.91 2.07

7 5 1.47 1.59 1.83
10 1.49 1.61 1.85
20 1.56 1.69 1.90
30 1.65 1.78 1.97
40 1.74 1.88 2.05

Z	
2 , can be defined as

Z	
2 =

√∑
n

xn(Z	
n)

1
3 ×

∑
�

x�(Z	
� )

5
3 . (6)

Finally, as done in many hydrodynamics codes—since this
procedure is the fastest—an average element defined as Z =∑

� x�Z� andA = ∑
� x�A� (3 and 5.4, respectively, for C2H3)

can be introduced in the AAM to get an evaluation of effective
charge state, labeled Z	

3 .
The different values are reported in Table II.
For all temperatures, Z	

2 and Z	
3 are greater than Z	

1
by, respectively, 10 and 20 %. From the different values of
ionization can be calculated an effective coupling constant of
the plasma through

�	 =
(

3

4π

) 1
3 Z	2

n
1
3 kT

, (7)

with n the number density.
The third definition of ionization always provide a higher

coupling constant but the order of magnitude stays the same.
The coupling constant as well as the average charge state—
which are not straightforwardly defined in mixtures—are
nevertheless key ingredients in describing plasma behavior and
in models, like the one component plasma [46]. It allows to
compute easily but approximately some transport coefficients
like viscosity [34] or diffusion coefficient [33], see Sec. III C.
Considering the “limited” differences between the choices
of ionizations, the impact on transport coefficients is lower
than the precision required by using these coefficients in
hydrodynamics codes.

C. Dynamical properties

Both ionic self-diffusion D�, interdiffusion DHC and shear
viscosity η are obtained through correlation functions.

The self-diffusion coefficient is calculated from the nuclear
velocities,

D� = 1

βM�

∫
R+

〈v�(t) · v�(0)〉
〈v�(0) · v�(0)〉 dt, (8)

v�, and M� being, respectively, the velocity and the mass of
an atom of specie �.
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From the current [47] is evaluated the interdiffusion
coefficient through

DHC = g

β

xHMH + xCMC

MHMC

∫
R+

〈 j (t) · j (0)〉
〈 j (0) · j (0)〉 dt, (9)

with

j = xC

∑
�∈H

v� − xH

∑
�∈C

v� (10)

and g a thermodynamic factor taken equal to 1.
The shear viscosity is computed from the off-diagonal

elements of the microscopic stress tensor ςμν ,

η = β

�

∫
R+

〈ςμν(t)ςμν(0)〉 dt, (11)

with � the volume of the system.1 It is important to note that,
in the case of OFMD, the stress tensor contains nuclear [48] and
electronic [49,50] contributions.

Since the self-diffusion coefficient is averaged over the
particles, convergence is reached much faster than for inter-
diffusion coefficient and viscosity. Considering the number
of time steps involved in OFMD simulations, the self-diffusion
coefficients are obtained within less than 5% error whereas the
two others are evaluated within an error of 20% [51].

1. Diffusion coefficients

In recent studies [52], species separation due to barodif-
fusion, i.e., diffusion driven by pressure gradients, has been
brought to light as a potential threat to ignition since it modifies
drastically the properties of the ablator material. In order
to model and simulate such a phenomena in hydrodynamics
codes, the knowledge of the self-diffusion coefficient of each
species inside the mixture and the interdiffusion is required.
These quantities are given in molecular dynamics simulations
through Eqs. (8) and (9). Table IV records the diffusion
coefficients along the two isochores. It should be noted that
these coefficients are a direct output of OFMD simulations that
are particularly computationally efficient in comparison to its
orbital-based counterpart. Therefore these techniques could
be used in thermodynamic conditions not restricted to the two
isochores of this paper, providing the diffusion coefficients for
the entire thermodynamics path followed by the ablator.

The comparison between the computed interdiffusion co-
efficient and the linear mixing [34,47] is very good. Equation
(9) shows that, since xCMC � xHMH, the factor in front
of the correlation function reduces to xC/MH. Furthermore,
hydrogen at a given temperature has a behavior much more
“kinetic” than carbon so that the hydrogen velocities are
greater than the carbon ones and stay correlated longer.
Therefore, the terms involving carbon velocities can be, as
a first approximation, neglected. Eq. (9) is then rewritten
xCDH, explaining the behavior of Table IV. The interdiffusion
coefficient is dominated by the light element.

2. Shear viscosity

Transition from laminar to turbulent flow is also a key ques-
tion on NIF since doping material inside the fuel at the end of the

1This formulation is valid for a stationary and uniform fluid.
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FIG. 2. (Color online) Shear viscosity obtained from the OFMD

simulations and the OCP fit from Ref. [34] using the effective coupling
constant �	

2 of Table III.

implosion phase is experimentally characterized for several MJ
experiments [53]. The purpose of this paragraph is to provide
a rule of thumb to evaluate rapidly the order of magnitude of
the viscosity so that designers would be able to characterize
the state of the plasma in terms of Reynolds number.

As previously stated, the one component plasma (OCP) is
a key model used in the plasma community since most of its
properties depends only on the coupling constant of the system
and fits obtained from numerical simulations are available
either for equation of state [46] or transport coefficients [34]. In
a previous work, comparisons had been made on the viscosity
of a D/Cu mixture between a direct calculation of the viscosity
by OFMD and a mixing rule based on OCP [15]. The model, in
the following paragraph, is slightly different and simpler. OFMD

viscosity is compared to the OCP one, Fig. 2, evaluated for an
hypothetical plasma whose coupling constant is �	

2, Table III.
This rule was already used for a deuterium-tritium mixture
[41] and the conclusions drawn stay valid in our plastic case.

TABLE III. Effective coupling constant calculated from effective
charges of Table I.

ρ kTe �	
1 �	

2 �	
3

9 5 11.3 13.2 16.9
10 5.7 6.7 8.5
20 3.1 3.6 4.4
30 2.2 2.6 3.2
40 1.8 2.1 2.5

7 5 9.3 10.8 14.4
10 4.8 5.5 7.3
20 2.6 3.0 3.9
30 1.9 2.3 2.8
40 1.6 1.9 2.2
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TABLE IV. Self- and interdiffusion coefficients extracted from
OFMD simulations. The interdiffusion is compared to a linear mixing
of self-diffusion coefficient.

ρ kTe DHC

(g cm−3) (eV) DH DC (10−3cm2 s−1) xCDH + xHDC

9 5 9.6 2.6 6 5.4
10 23.1 4.9 14 12.2
20 57.7 9.3 31 28.7
30 96.8 13.3 55 46.7
40 140.4 18.0 76 67.0

7 5 11.8 3.1 7 6.6
10 28.5 5.8 17 14.9
20 70.4 11.3 37 34.9
30 121.8 16.5 55 58.6
40 174.1 22.0 94 82.8

Although the effective OCP results underestimate the OFMD

viscosity by a factor of 2, the simple rule allows to obtain
the right trend in terms of dependency on both density and
temperature.

D. Electronic transport coefficients

As explained in the previous paragraphs, OF methods are
based on eliminating the Kohn-Sham orbitals in computing the
electronic free energy by using a direct approximation of the
latter. Despite its accuracy in calculating the equation of state,
this technique presents a serious drawback when dealing with
electronic transport coefficient. Indeed, most of the transport
coefficients are expressed in terms of scattering cross sections,
i.e., transitions between many-body electronic states which, in
the case of one-body equivalent system like the Kohn-Sham
theory, can be mapped into transitions between single-electron
quantum states. Therefore, OF techniques, dealing only with
the local electronic density, are not well suited to tackle such
problems.

On the other hand, mean field quantum methods, like the
Kohn-Sham scheme for example, have proved to be well suited
to evaluate electronic coefficients, like electrical [7,54,55] and
thermal [9,56] conductivities. Indeed, with the notations of
Sec. II, linear response theory from Kubo and Greenwood [57,
58] leads to the following expression for the elastic scattering
cross section:

s(ε) = 1

�

∑
�,�′

∑
α

| 〈ψ�′ | vα |ψ�〉 |2δ(ε�′ − ε)δ(ε� − ε), (12)

where ε is the electron energy, � stands for the volume of the
system and vα is the α component of the velocity operator.
Although, in the Kohn-Sham theory, one body quantum states
are only mathematical tools to obtain the local electronic
density, they can be successfully introduced as {|ψ�〉 ,ε�}
in Eq. (12) as was shown by comparison to experiments,
see for example [54,55,59,60]. The generic Onsager kinetic
coefficients can be computed from the scattering cross section
s(ε),

Lij = (−1)i+j+1
∫

dε
∂f (ε,μ)

∂ε
(ε − μ)i+j−2s(ε), (13)

with f the Fermi-Dirac distribution and μ the chemical
potential from which the electronic transport coefficients [61]
are evaluated, namely the electrical conductivity

σ = L11, (14)

and the thermal conductivity

κ = 1

T

(
L22 − L12 × L21

L11

)
. (15)

By using the properties of the Dirac functions, Eq. (13) can
be rewritten as [62]

Lij = (−1)(i+j ) 1

�
lim

�ε→0

∑
k

W (k)

×
∑
�,�′

∑
α

f
(
εk
�′
) − f

(
εk
�

)
εk
�′ − εk

�

(
εk
�′ − μ

)i−1(
εk
� − μ

)j−1

× ∣∣〈ψ k
�′
∣∣ vα

∣∣ψ k
�

〉∣∣2
δ
(
εk
�′ − εk

� − �ε
)
. (16)

Equations (14) and (15) are applied to the energy dependent
form of the kinetic coefficient. Then, by extrapolating to zero
energy, electrical and thermal conductivities are obtained.
It is important to note that the previous derivation of the
transport coefficients is valid for a given static nuclear
configuration and, consequently, an average must be done
over several configurations to be representative of the nuclear
structure, which is disordered in the case of the plasmas
we are dealing with. The probability density used is the
Maxwell-Boltzmann one, since in our Born-Oppenheimer
approximation (Sec. II), the nuclei are treated as classical
particles. Nevertheless, calculations show a weak dependence
of the thermal conductivities on the nuclear structure.

The quantum calculations were performed with up to 6000
bands for the highest temperatures which correspond to a
thermal occupancy of 10−4.

The QMD thermal conductivities along the two isochores
are presented in Figs. 3 and 4. Comparisons are performed to
models used in either ICF or astrophysics, namely Hubbard-
Spitzer [35,63] and Ichimaru [36]. These models have been
developed for single element and, consequently, an additional
mixing rule has to be exhibited to compute the thermal
conductivities for a multispecies material like plastic. Two
choices can be made:

(i) define an average material, mixture of H and C, through
effective atomic number and mass and compute the thermal
conductivity of this average element. This procedure is used
in hydrodynamics codes for ICF;

(ii) compute conductivities of H and C, requiring partial
densities as an input, and mix the conductivities.

The two methods have been tested and are plotted on
Fig. 3. We have defined an average plastic element whose
atomic mass is 3.5 and effective ionization is determined by
Z	

3 , Table I (labeled Hubbard-Spitzer, orange line) or by the
pressure-matching mixing rule, Z	

1 (labeled Hubbard-Spitzer
Z	

1 , orange dots, or Ichimaru Z	
1 , purple dots). In the case

of mixing conductivities, we have used a Faber-Ziman like
mixing rule [6] in conjunction with the pressure matching
mixing rule for determining partial densities (white dots).
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FIG. 3. (Color online) Thermal conductivities along the 7 g cm−3

isochore from QMD simulations and various models coupled to
mixing rules.

As can be seen on Fig. 3, the choice of ionization—
Hubbard-Spitzer Z	

1 and Z	
3 —does not generate important

modifications on the conductivities. Let us recall here that the
Hubbard-Spitzer model is in fact composed of two models, the
Hubbard one that was developed for degenerate plasmas and
the Spitzer one that is well suited for the kinetic regime. The
total thermal conductivity is computed by a quadratic mean of
the two aforementioned conductivities. In the regime studied
in this paper, both conductivities play a role in the total one
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FIG. 4. (Color online) Thermal conductivities along the 9 g cm−3

isochore from QMD simulations and various models coupled to
mixing rules.

so that the QMD calculations allow to check the transition
between the two models.

The Ichimaru’s values, with the two methods previously
defined, are always greater than the Hubbard-Spitzer ones
and are close whatever the method of mixing. The agreement
between Ichimaru’s model and QMD is good except at
low temperatures where QMD provide lower conductivities.
Nevertheless, the trend in temperature is correctly reproduced
by all the models and a quantitative agreement of 10% with
QMD at intermediate temperature is reached which is highly
sufficient considering other sources of errors in hydrodynamics
simulations.

IV. CONCLUSION

We have performed first-principles simulations to compute
a complete set of microscopic coefficients for plastic in a
regime relevant to hydrodynamic instabilities of ICF capsules.
It has been shown that the QEOS recovers the QMD results and
that conductivity models with a suitable choice of ionization
provide results in good agreement with linear-response theory.
Rules of thumb for other transport coefficients have been also
exhibited.
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APPENDIX : AVERAGE CHARGE STATE OF THE PLASMA
WITH THE PRESSURE MATCHING MIXING RULE

The plasma is represented by the total volume � and
number of nuclei N , defining the number density by n = N/�.
The effective free electron number is labeled Ne	 so that the
average effective charge state is written Z	 = Ne	/N .

If the partial quantities associated with each element in the
mixture are labeled � with the previous notation, the pressure
matching mixing rule states

p� = p�′ ,∀ �,�′ (A1)

and

� =
∑

�

�� ↔ 1

n
=

∑
�

x�

n�

, (A2)

where p� and x� are the partial pressure and atomic fraction of
element �. It can be shown [15] that the pressure of the system
is in fact p�.

In the context of a purely local functional, the pressure
obtained with the orbital-free average atom model depends
solely on the free electron density. Consequently, the mixing
rule can be expressed as

ne	
� = ne	

�′ = ne	,∀ �,�′ (A3)

with ne	
� the partial free electronic density of element �.
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From Eq. (A3), the total number of free electron can be
written

Ne	 =
∑

�

ne	
� �� = ne	�, (A4)

so that the common value ne	 is indeed the total free electron
density. The effective charge state reads therefore as

Z	 = ne	

n
=

∑
�

x�n
e	

n�

=
∑

�

x�Z	
� . (A5)
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