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In stellar core-collapse events matter is heated and compressed to densities above nuclear matter saturation
density. For progenitor stars with masses above roughly 25M�, which eventually form black holes, the
temperatures and densities reached during the collapse are so high that a traditional description in terms of
electrons, nuclei, and nucleons is no longer adequate. We present here an improved equation of state containing,
in addition, pions and hyperons. They become abundant in the high-temperature-and-density regime. We study
the different constraints on such an equation of state, coming from both hyperonic data and observations of
neutron-star properties. To test the zero-temperature versions of our new equations of state, we perform numerical
simulations of the collapse of a neutron star to a black hole. We discuss the influence of the additional particles
on the thermodynamic properties within the hot versions of the equation of state and we show that, in regimes
relevant to core-collapse and black-hole formation, the effects of pions and hyperons on pressure, internal energy,
and sound speed are not negligible.
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I. INTRODUCTION

Supernovae and hypernovae figure among the most
spectacular events observed in the universe because of the
immense amount of energy involved. In general, one can
distinguish between thermonuclear and core-collapse events.
Here we are interested in the latter, which occur at the end of the
life of massive (M � 8M�) stars: When the iron core exceeds
the Chandrasekhar mass, a gravitational collapse is induced.
At the center a compact star is formed, which is a neutron star
in the classical gravitational supernova. Depending on the
progenitor mass, metalicity, and rotation, a black hole can be
formed as well. These events are known as hypernovae or col-
lapsars. For about 30 years, simulations have been performed
to explore these events and to answer related questions, for
example, on the precise conditions for formation of a neutron
star or a black hole. The simulations are extremely complex,
because they involve many different ingredients: multidimen-
sional hydrodynamics, neutrino transport, general relativity,
and complicated microphysics. Despite all these efforts, many
unknowns remain, particularly concerning the engine driving a
successful supernova explosion. In addition to the observations
via electromagnetic radiation, the neutrino and gravitational
wave signal could give interesting information on the
models.

The microphysics input for the simulations concerns essen-
tially two domains, the rates for neutrino-matter interaction
and deleptonization, that is, electron capture, and the equation
of state (EOS). Here we discuss the latter. It is not an obvious
task to construct an EOS. The main difficulty arises from
the fact that very large ranges of (baryon number) densi-
ties (10−10 fm−3 � nB � 1 fm−3), temperatures (0 < T �
150 MeV), and hadronic charge fractions (0 < Yq = nq/nB �
0.7) have to be covered. nq here denotes the total hadronic
charge density, which in many cases is just given by the proton
density. Within this range, the characteristics of nuclear matter
change dramatically, from an ideal gas of different nuclei up to
uniform strongly interacting matter, containing in the simplest

case just free nucleons and potentially other components such
as hyperons, nuclear resonances, or mesons. Even a transition
to deconfined quark matter cannot be excluded. Although there
is a large variety of EOSs available for cold dense matter
relevant for the description of neutron stars (see for example [1]
and references therein), at present only a few hadronic EOSs
exist which are commonly used in core collapse simulations,
where temperature effects play a crucial role. There is the one
by Hillebrandt et al. [2], used by some groups performing
supernova simulations, that by Lattimer and Swesty [3] and
finally that by Shen et al. [4]. The two latter, publicly available,
are most commonly used in core-collapse simulations. They
use different nuclear interactions, but are based on the same
limiting assumptions: They take into account noninteracting α

particles, a single heavy nucleus and free nucleons in addition
to the electron, positron, and photon gas.

However, in particular at low densities, that is, be-
low roughly nuclear matter saturation density nB � n0 ≈
0.16 fm−3 (corresponding to a mass density of about
∼1014 g/cm3),1 the composition of matter is much more
complicated, with a large number of different nuclei. Al-
though this should not have a large impact on the purely
thermodynamic properties [6], it is important to correctly
describe the composition of matter to determine the electron
capture rates and neutrino interactions. Therefore, in the last
years, several groups have started to build EOSs mainly using
statistical approaches to improve the low-density part of the
EOS (see, e.g., [7–13]). It has been shown that especially the

1We work here exclusively with baryon number densities, because
the baryon number is a conserved quantity, notably throughout a
hydrodynamic simulation, contrary to the mass density which is not
conserved. Many codes, for dimensional reasons, work, however,
with a mass density. The latter can be obtained easily just by
multiplying the number density by a constant mass, for example,
the neutron mass mn (see the comment on this point in Ref. [5],
too).
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presence of additional light nuclei can have an influence on
the supernova dynamics and among others on the neutrino
signal [5,12,14,15]. We do not discuss this point in the present
paper because we are mainly interested in a high-density and
high-temperature extension of the EOS.

Up to now, there have been fewer attempts to improve the
high-density (nB � n0) and high-temperature (T � 20 MeV)
part of the EOS, although there are many indications that
probably the physics of the standard EOS is too poor in this
regime, too. First of all, our knowledge about the quantum
chromodynamics (QCD) phase diagram suggests a transition
to the quark-gluon plasma (QGP) within the range of densities
and temperatures reachable in core collapse events, that is,
within the range of our tables. Of course, there are lots of
uncertainties about this phase transition, so its occurrence
cannot be affirmed, but the possibility has to be kept in
mind when employing a purely nuclear EOS such as the
two EOSs by Lattimer and Swesty [3] (LS EOS) or by Shen
et al. [4] (Shen EOS) up to densities well above nuclear matter
saturation density and temperatures as high as several tens of
MeV. There is some first work including this phase transition
(see Ref. [16]). Second, even without thinking about a QCD
phase transition, other forms of (non-nucleonic) matter should
appear at high densities and temperatures. Hyperons, pions,
and kaons have already been considered for a long time in
cold EOSs for neutron stars. At temperatures above roughly
20 MeV, this point becomes even more crucial. This has been
confirmed by the first attempts to include hyperons and pions
in the Shen EOS [4] for simulations (see Refs. [17–19]). The
effect of these high-density and high-temperature extensions
of the EOS on the simulations is not negligible (see, e.g.,
Refs. [16,17,20,21]). In particular, Sagert et al. [16] found that
the QCD phase transition could induce a second shock wave
which in their simulations leads to a successful explosion.
However, the EOSs derived in Ref. [16], based on the MIT bag
model with constant bag constant (B1/4 ≈ 160 MeV) for the
description of quark matter, predict a maximum neutron-star
mass of ∼1.5M�–1.6M�, which is in disagreement with
recent observations [22]. It still remains to be investigated
whether more sophisticated quark-matter EOSs would produce
a second shock wave triggering a delayed supernova explosion.
We discuss here the construction of a new EOS including
hyperons and pions based on the Lattimer and Swesty [3]
(LS) EOS and the effects on some thermodynamic quantities
important for the simulations.

The paper is organized as follows. In Sec. II we briefly
recall the basics of the LS EOS [3] upon which our model is
based. In Sec. III we present our extension including hyperons
and pions. In the following section, Sec. IV, we discuss
the existing constraints we have on the construction of the
extended EOS. In particular, we discuss the compatibility with
the recent observation of a neutron star of almost 2M� [22],
claimed to exclude the existence of additional particles such
as hyperons, mesons, or quarks within cold neutron stars.
Section V gives an illustration of the usability of the hyperonic
EOSs at zero temperature and β equilibrium, Sec. VI is devoted
to a discussion of the results at finite temperature, and we
conclude in Sec. VII.

II. THE LATTIMER AND SWESTY EQUATION OF STATE

Let us start the description of our model for the extended
EOS with a description of the original EOS in Ref. [3].
We have chosen this EOS as a basis for our work to
have an approach for the hadronic interaction, which could
be different from the attempts to include hyperons in the
Shen EOS, employing a relativistic mean-field model [17–19].
The motivation comes, of course, from the large uncertainties
on the hadronic interaction, such that it is interesting to
compare two different types of models. In addition, the LS EOS
is one of the two commonly used EOSs in computational astro-
physics; therefore, a comparison of existing results in the litera-
ture with results from our extended model should be simplified.

As mentioned above, the LS EOS [3] models the matter
as a mixture of one (average) heavy nucleus, α particles,
free nucleons, electrons, positrons, and photons. Electrons
and positrons are treated as noninteracting relativistic gas
in pair equilibrium, neglecting electron-screening effects;
photons are treated as an ideal ultrarelativistic gas. Equilibrium
with respect to strong and electromagnetic interactions is
supposed, while no β equilibrium is assumed, as expected
during core-collapse supernovae.

Concerning the nuclear part, the LS EOS follows the
works by Lattimer et al. [23] and Lattimer and Raven-
hall [24]. Some simplifications have been made with respect to
Refs. [23,24]; for example, the neutron skin is neglected and
a simpler momentum-dependent nucleon-nucleon interaction
is employed instead of a standard nonrelativistic Skyrme
parametrization. Within the inhomogeneous phase at low
density, nuclei are supposed to arrange themselves in a
body-centered-cubic lattice which maximizes the separation of
ions. According to the Wigner-Seitz approximation, each ion
is at the center of a neutral-charged cell, surrounded by a gas of
free nucleons, α particles, and electrons. Interactions between
the outside gas and the nuclei are taken into account through
an excluded volume. Nucleons are treated as nonrelativistic
particles; α-particles are treated as hard spheres of volume
vα = 24 fm3 forming an ideal Boltzmann gas. As the density
increases, nuclei undergo geometrical shape deformations
until they dissolve in favor of homogeneous nuclear matter
above approximately saturation density. The formation of
nonspherical nuclei (“pasta-phase”) is described by modifying
the Coulomb and surface energies of nuclei, as discussed in
Sec. 2.8 of Ref. [3]. The phase transition to bulk nuclear
matter is treated by a Maxwell construction between the two
phases. The configuration of matter and the balance between
the different phases is given by the thermodynamically most
favorable state, that is, the one that minimizes the Helmholtz
free energy of the system. This procedure, minimizing the
free energy, guarantees that the LS EOS is thermodynamically
consistent.

Let us stress, however, one point concerning the description
of the transition between homogeneous and inhomogeneous
matter in the LS EOS. As discussed in Ref. [13], this treatment
is not entirely satisfactory. Indeed, for all subsaturation
densities matter can be viewed as a mixture of nuclei and
free nucleons, while the phase coexistence picture would
be an adequate description, if and only if, the density
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inhomogeneities occurred on a macroscopic scale with respect
to the typical size of nuclei. The authors of Ref. [13]
have shown that the two approaches (mixture and phase
coexistence) lead to remarkable differences in the composition
and the thermodynamic properties of the system. In particular,
the mixture picture leads naturally to a continuous transition
between homogeneous and inhomogeneous matter; that is,
all thermodynamic quantities are perfectly continuous. As
mentioned already in the context of the distribution of nuclei
in the inhomogeneous phase, our main interest here is a
discussion of the high-density and high-temperature part,
taking a consistent and commonly used EOS for the remaining
part.

A. Characteristics of the Lattimer and Swesty equation of state

The nuclear interaction in the LS EOS contains several
parameters, which have been chosen to reproduce reasonable
values for properties of symmetric (i.e., equal number of
protons and neutrons) bulk nuclear matter at saturation density,
for details see the original work [3]. These quantities are related
to a power-series expansion of the energy per baryon around
saturation density at zero temperature and for symmetric
matter:

E

A
= −B + 1

18
K x2 + 1

162
K ′ x3 + · · ·

+β2

(
J + 1

3
Lx + 1

18
Ksym x2 + · · ·

)
+ · · · , (1)

where x = nB/n0 − 1 is the deviation of the baryon number
density from saturation and β = (nn − np)/nB = 1 − 2 Yp de-
scribes the asymmetry. The properties of the EOS are thereby
given by the values of the coefficients, n0, B,K,K ′, J, L.
Of course, these coefficients can only give an indication of
the general behavior of the EOS, because they are defined
at saturation density and for symmetric matter, whereas in
the context of neutron stars and core collapse events very
asymmetric matter at very different densities is encountered.

Nuclear experiments give constraints on the properties of
the saturation density, n0, the binding energy, B, the incom-
pressibility, K , and the symmetry energy at saturation, J . Typ-
ical values for n0 lie in the range 0.15 fm−3 < n0 < 0.17 fm−3

and the binding energy is 15.6 MeV < B < 16.2 MeV. The
value of K , roughly speaking, determines the stiffness of the
EOS: The higher the value of K , the stiffer the EOS. However,
as mentioned above, it is determined at saturation density and
for symmetric matter, so this interpretation has to be regarded
with caution. Nuclear physics experiments on the breathing
modes such as the isoscalar giant monopole resonance give
a value for K at saturation density of 240 ± 10 MeV [25].
Although the obvious error is rather small, the result is not
uncontested. In particular, the extraction of this value from
data on isoscalar giant monopole resonances is a function
of the density dependence of the nuclear symmetry energy,
a quantity under intensive debate in recent years. We thus
think that a larger range of values has to be considered.
The commonly assumed range for the symmetry energy is
28 MeV < J < 34 MeV. Nuclear physics data are not really

constraining the values of the other parameters: The skewness
coefficient K ′, the symmetry energy slope coefficient L, and
the symmetry incompressibility Ksym.

The original LS EOS [3] uses n0 = 0.155 fm−3, B =
16.0 MeV, and J = 28.6 MeV, which are in reasonable
agreement with the constraints.2 With the original routines
(see [26]), three sets of boundary and Maxwell construction ta-
bles are provided, corresponding to three different values of the
nuclear incompressibility modulus, K = 180, 220, 375 MeV.
Following the above discussion, the two extreme values for
K used in the LS EOS are, in principle, disfavored and the
preferred parameter set for simulations should be that with
K = 220 MeV. We do, however, keep the two other sets for two
reasons. The first one is purely historical: In many simulations
the parameter set with K = 180 MeV has been used, so that
for comparison with the existing literature it is interesting to
have this value at hand. The second one is, as discussed above,
that the narrow range, K = 240 ± 10 MeV is not uncontested.
In that sense, the range of values of the LS EOS represents an
extreme variation of the nuclear parameter sets; that is, it can
give an indication about the uncertainties in the simulations,
coming from the uncertainties on the nuclear part of the EOS
and we, in principle, keep all three values.

Finally, for simplicity we assume that the nucleon effective
mass is equal to the bare mass: m∗ = m. In Lattimer and
Swesty [3], the (density-dependent) effective mass term is
kept in the equations, so that this assumption can be relaxed.
Indeed, mean field theories predict an average effective mass
m∗/m around 0.6–0.8 (see, e.g., Bender et al. [27] for
a review, and references therein). It has been shown that
the inclusion of a temperature-dependent nucleon effective
mass in nuclei, coming from dynamical correlations beyond
mean field, may affect the core-collapse dynamics [28–30].
However, as mentioned earlier the details of the nuclear part
are not the aim of the present work, and we keep the original
version of Lattimer and Swesty [3].

Note, however, one minor correction with respect to the
original code. It has been recognized [31,32] that the original
LS EOS underestimated the fraction of α particles. The reason
is that the α-particle binding energy Bα has to be measured
with respect to the neutron mass, as all other energies.

Let us now show the results of this correction to the LS
routine. In Fig. 1 are displayed the abundances, the entropy,
and pressure as functions of density, for K = 180 MeV,
Yq = Yp = Ye = 0.3, and for different temperatures (T =
1, 2, 3 MeV). Note that in this case the hadronic charge
fraction is given by the proton fraction and that it is equal
to the electron fraction, Ye = (ne− − ne+ )/nB owing to charge
neutrality. These are typical conditions that can be found in
core-collapse supernova simulations. We observe, as expected,
that in the original LS routine the abundance of α particles is
underestimated; as a consequence, nuclei and free nucleon
abundances are higher at a given density. The pressure of
the system (top left panel) is not very much affected by the
corrections to the LS routine, because in this density range

2The value of J slightly differs from the one given in Ref. [3]
(J = 29.3 MeV); see Table II in Ref. [5] too.
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FIG. 1. (Color online) Pressure, entropy, and abundances (nuclei, α particles, free neutrons, and protons) as functions of density, for
K = 180 MeV, Yq = 0.3, and T = 1 MeV (solid lines), 2 MeV (dotted lines), and 3 MeV (dashed lines). Thick black lines correspond to the
results of the original LS routine, while thin red lines correspond to the values obtained with the modified routine. The differences arise from
the correction to the binding energy of α particles. We have used here the mass density, defined as ρB = munB (mu being the atomic mass unit),
for better comparison with the results of Ref. [32].

the contribution from leptons is the dominant one. Figure 1
can be directly compared with Fig. 4 of Ref. [32], where
the authors plot the results obtained by the original LS EOS
and by their four-species (neutrons, protons, α-particles, and
54Mn as representative heavy nucleus) EOS derived assuming
nuclear statistical equilibrium (NSE). The results obtained
by our tables and by the NSE EOS introduced in Ref. [32]
agree. Nevertheless, differences have to be noticed, especially
for T = 1 MeV. This could be explained by the fact that in
their four-species EOS, the authors assume 54Mn to be the
representative heavy nucleus, while in LS EOS the mean
nucleus varies as a function of density to satisfy the energy
minimization condition. This affects the relative abundances
and the macroscopic properties of the system.

The lowest value of the density in the original routines
for the LS EOS is nB = 10−6 fm−3. The physical reason is
that, in principle, at low densities and temperatures below
roughly 0.5 MeV, an EOS depending only on temperature,
baryon number density, and charge fraction to describe matter
in thermodynamic equilibrium is not sufficient and a nuclear
reaction network has to be used. For many purposes, however,
a detailed description of matter in this regime is not necessary,
and it is thus interesting to have an EOS at hand for this
regime. Recently, O’Connor and Ott [33] have generated an
EOS table in which they employ the LS EOS for densities

above the limiting value of the routines and, for lower densities
the Timmes EOS [34], under the assumption that matter is
composed of an ideal gas of electrons, photons, neutrons,
protons, α particles, and heavy nuclei with the average A and
Z given by the LS EOS at the transition. We follow a slightly
different approach (see Sec. III A).

III. MODEL FOR THE EXTENDED EQUATION OF STATE

A. Low-density regime

At the densities below the limit of the LS EOS, that is,
nB = 10−6 fm−3, at low temperatures matter is composed of
a gas of nuclei and electrons. At temperatures above roughly
1 MeV, nuclei are dissolved in favor of free nucleons (see
Fig. 2), where the boundaries between homogeneous and
inhomogeneous nuclear matter are shown.

In this regime, the densities are so low that the different
particles are only very weakly interacting and a description
in terms of an ideal gas is completely sufficient. This is the
reason why the choice of O’Connor and Ott [33] to employ the
Timmes EOS in this regime (which is nothing else than an ideal
gas of different species) is well justified. We follow the same
idea; the only difference is that we make another choice for the
matter composition, in particular for the nuclei present and for
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FIG. 2. (Color online) In the left panels, boundaries between homogeneous and inhomogeneous nuclear matter (temperature versus baryon
number density) for different Yq = 0.05, 0.1, 0.2, and 0.4 are displayed. In the right panels, mass fractions (free neutrons Xn, free protons Xp ,
α particles Xα , and nuclei Xh) as functions of baryon number density are shown for different temperatures, T = 0.05, 1, 5, 10 MeV, and fixed
Yp = 0.2.

the matching with the LS EOS at higher densities. O’Connor
and Ott take one average nucleus with A and Z obtained from
the average heavy nucleus of the LS EOS at the transition
density. In this way, it is, however, not possible to describe a
potential variation in A and Z of the mean nucleus throughout
the density range covered by this low-density extension of the
EOS. We therefore use a NSE approach, allowing, in principle,
for many different nuclei to appear. The setup strongly follows
the NSE model of Hempel and Schaffner-Bielich [9], with the
only exception that we do not consider any excluded volume
correction because it is not relevant for such low densities. In
particular, we take into account the Coulomb and temperature
corrections to the binding energies of the nuclei to obtain
reasonable transition temperatures to homogeneous matter.

Concerning the matching to the LS EOS at higher densities,
we have chosen a matching density of nB = 5 × 10−8 fm−3.
Although the LS EOS reproduces well the character of
matter at this density, that is, an almost ideal gas of nuclei,
photons, and electrons, the change of the EOS induces small
discontinuities in the thermodynamic quantities, owing to the
different treatment of the nuclear part. Because the pressure
in this regime is dominated by electrons, the discontinuity in
the pressure is completely negligible. This is not the case for
the energy density and this is the reason why O’Connor and
Ott [33] introduce a constant shift in the energy density. We
judge that the discontinuity is small enough, such that this
shift, problematic in a general relativistic framework, is not
necessary.

B. High-density regime

We have added to the LS EOS pions, muons, and hyperons.
All those particles should appear in hot or dense regions
during the stellar core collapse; we therefore suppose that they
should appear in the most central regions of the star, inside
the shock once it is formed. These regions have undergone
electron capture and have rather low electron fraction Ye. We
can reasonably assume that they are not relevant in the high-Ye

range of our EOS table and we limit their study to Ye < 0.5.
For pions and muons, no interaction has been assumed

and they have just been added as a free gas, satisfying the
overall constraint of charge neutrality. There are many works
considering these additional particles in cold neutron-star
cores (see, e.g., [35–41]). As mentioned earlier, there is less
work in the context of hot and dense matter in core collapse
events, although the possibility of a delayed collapse to a
black hole induced by a transition to hyperonic matter has
been considered in Refs. [42,43]. Pions, and to a lesser extent
kaons, were considered 20 years ago as possible candidates
for the hot and dense matter in supernova cores (see, e.g.,
Ref. [44]). The authors of Ref. [44] argue that the presence
of pions could increase the temperature of the supernova core,
increasing the number of electron neutrinos, and thus leading to
a higher neutrino luminosity in favor of a successful explosion.
However, this idea has not been further pursued because there
are uncertainties about the employed pion-nucleon interaction.
It is now commonly assumed that there is an s-wave πN
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repulsion, strongly reducing the number of pions eventually
present in supernova cores, thus decreasing the effect described
in Ref. [44]. This repulsive interaction probably prevents
pions from condensing in cold dense matter, as discussed
for neutron stars, too. However, it is known that the pion
gas is one of the main components for matter in heavy-ion
collisions. The difference is, of course, that for heavy-ion
collisions much higher temperatures (of the order of 100 MeV
or more) are reached and the baryon number densities are
much lower than in the core of neutron stars. Core collapse
events with massive progenitors are situated somewhat in
between; temperatures can reach the order of 100 MeV, but
densities of several times nuclear matter saturation density are
encountered. Here, we mainly discuss the effect of pions on
the EOS at high temperature where the pion gas should be
a reasonable approximation. Obviously, without interaction,
we cannot prevent a π− condensate to form below some
critical temperature, depending on the density, but we consider
introducing a realistic pion-nucleon interaction for cold dense
matter to be beyond the purpose of the present paper.

Concerning the muons we have to mention the follow-
ing point. Because lepton flavor conversion via neutrino
oscillations is most probably negligible for core collapse
during the first few seconds [45,46], muon lepton number is
conserved independently of electron lepton number. There-
fore, in principle, a muon fraction, Yμ = (nμ− − nμ+)/nB

should be added as a variable to the EOS, in addition to
the electron fraction Ye = (ne− − ne+ )/nB , temperature, and
baryon number density. However, this would mean that the
simulation codes should evolve muon number, too. For the
moment, this has not been done for several reasons. One is,
of course, the technical difficulty in adding another evolved
quantity together with an additional dimension for the EOS.
The second is that one expects the number of muons to be
much smaller than the number of electrons owing to the mass,
which is higher by about a factor 200, such that the influence of
the muons should not be very important. With these remarks of
caution we show in Sec. VI, under the assumption that muons
are in thermal equilibrium, some examples where the densities
and temperatures are high enough for the effects of muons to
be not negligible.

The contribution of pions, muons, electrons, and photons
to the pressure are obtained from the expression for an ideal
gas,

p(μi, T ) =
∫

d3p

(2π )3

p

E

1

exp[β (E − μi)] ± 1
, (2)

where β = 1/T denotes the inverse temperature, μi is the
chemical potential for particle i, and E =

√
m2

i + �p2 is the
single-particle energy. The upper sign corresponds to bosons
and the lower to fermions.

Hyperons are added by extending the model by Balberg and
Gal [47] to finite temperature. This model is a nonrelativistic
potential model with the contribution of the interaction
between particles of types i and j to the energy density given

by

εpot(ni, nj ) =
(

1 − δij

2

)[
aijninj + bij ti tj ninj

+ cij

1

ni + nj

(
n

γij +1
i nj + n

γij +1
j ni

)]
, (3)

where ni denotes the baryon number density of species i

and the factor 1/2 has been introduced to avoid double
counting for the interaction between particles of the same
type. ti represents the third component of the isospin of the
respective particle. aij , bij , cij , and γij are the parameters
defining the interaction.

The total baryonic energy density is given by the sum of
the potential energy, the mass energy,

εmass =
∑

i

nimi, (4)

and the kinetic energy,

εkin =
∑

i

τi

2mi

. (5)

Note that, to remain consistent with the LS EOS, we do not
take an effective baryon mass into account.

To extend the model to finite temperature we did not
change the structure of the interaction, but we only replaced
the expression for calculating the densities with its finite-
temperature version,

ni =
∫

d3p

(2π )3

1

exp[β(Ei − μi)] + 1
. (6)

Ei = p2/(2mi) + Ui + mi here denotes the single-particle
energy for particle i. The kinetic energy densities are written
in an analogous way,

τi =
∫

d3p

(2π )3

p2

exp[β(Ei − μi)] + 1
(7)

(see Eq. (8) in Ref. [47]). This simple approach, of course,
neglects possible effects of the temperature on the (phe-
nomenological) interaction. However, the investigation of
these effects is beyond the scope of the present paper.

The single-particle potentials Ui are obtained from the
energy density as ∂εpot/∂ni . The chemical potentials for the
different particles are obtained from the following relation:

μi = BiμB + Qiμq + Le
i μle + L

μ

i μlμ + Siμs, (8)

with Bi,Qi, L
e/μ

i , Si denoting, respectively, the baryon num-
ber, charge, lepton number, and strangeness of particle i.
Note that we use the relativistic definition of the chemical
potentials; that is, the particle rest mass is included in the
chemical potential. This is the reason why we have added the
rest mass to the energy Ei , too. We assume that the reaction
processes involving hyperons, for example, the dominant �

production reaction, n + n → n + K + � are in equilibrium.
In addition, we assume equilibrium for strangeness changing
(weak) interactions, such that we can take the strangeness
chemical potential μs = 0.

We have slightly modified the values of the parameters
for the hyperon-nucleon (YN) and hyperon-hyperon (YY)
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interaction with respect to the work by Balberg and Gal [47] to
be compatible with current experimental data on hypernuclei
(see Sec. IV A). This model has the great advantage that hy-
perons are added on a nuclear interaction which is exactly the
same as in the original LS EOS by Ref. [3]. Thus, an otherwise
completely unphysical “artificial phase transition,” induced by
the matching of one nuclear model to another, is avoided.

IV. CHOICE OF THE PARAMETERS

This section is devoted to the discussion of the existing
constraints on the choice of the parameters for the extended
EOS. We start with hyperonic data and then have a look at cold
neutron stars.

A. Hyperonic data

In contrast with nuclear data, hyperonic data are extremely
scarce, so that there are large uncertainties on the hyperonic
interactions. Starting with the description of the fundamental
hyperon-nucleon (YN ) interaction, it is a long way off
having reached the same precision as the nucleon-nucleon
(NN ) interaction, mainly because of the very limited amount
of scattering data. On the theoretical side, chiral effective
field theory calculations have been performed, too [48,49],
improving on the reliability of the YN potentials, but still
being far from giving conclusive results. First results from
lattice QCD simulations of the YN interaction have become
available [50].

Concerning the properties of hyperons in dense nuclear
matter, there are on the one hand many-body calculations,
starting from the fundamental interaction. In addition to the
traditional G-matrix calculations [51–53], a Hartree-Fock cal-
culation based on a Vlowk potential has recently been presented
in Ref. [54]. The results are in reasonable agreement between
the different approaches, but large uncertainties remain owing
to the not very well known fundamental interaction (see,
e.g., the discussion in Ref. [54]). It has been shown, too,
that the inclusion of hyperonic three-body forces (YNN ) do
not strongly change the results [55]. However, we should
mention that there are very large uncertainties on the hyperonic
three-body force. The authors of Ref. [55] assume an effective
phenomenological form similar to the interaction in the model
by Balberg and Gal [47] we are employing here. However,
they limit the strength of the three-body force arguing that
it should be less important than the nuclear one. Here we
follow a slightly different philosophy: We think that the
hyperonic three-body force is not known well enough to put
any constraint on it ad hoc. We thus limit it only by data and
by neutron-star observations (see the next section).

On the other hand, single-particle potentials VYN in
symmetric nuclear matter have been extracted from data on
hypernuclei. In that way the empirical value for the �N

potential at saturation density (nB = n0), V�N ≈ −30 MeV,
has been obtained. This value is in agreement with an analysis
of (π−,K+) inclusive spectra on different target nuclei [56]
and reproduced by most many-body calculations, so it is
commonly accepted. Balberg and Gal [47] have adjusted

their parameters to this value, too. For �−, the situation
is somewhat ambiguous. The observation of a 4

�He bound
state [57] requires an attractive potential, whereas the analysis
of the (π−,K+) inclusive spectra [56,58] indicate a repulsive
potential, possibly up to a value of V�N = 100 MeV at
saturation density. Theoretical many-body calculations show
a large variety of results, too (see, e.g., [54]), ranging from
slightly less attractive values as the �N case to strongly
repulsive values of up to several tens of MeV. Balberg and
Gal [47] adopt two different versions: one with an attractive
potential of the same form as for the � and another local
potential form giving rise to a repulsive potential. We here
take the form given in Eq. (3), but choosing the parameters to
obtain a repulsive single-particle �N potential. Concerning
the N single-particle potential, fewer data are available.
Only a few events of  hypernuclei have been observed, so
that it is much more difficult to reliably fix the depth of the
single-particle potential. Balberg and Gal [47] take a range
VN = (−20)–(−25) MeV, whereas newer data indicate a less
attractive potential of VN ≈ −14 MeV [59].

Concerning the hyperon-hyperon YY interaction, the sit-
uation is rather difficult. Early experiments interpreted in
terms of production of several double � hypernuclei indicate
a rather strong attractive potential of the order of V�� ≈
−40 MeV [47]. More recent measurements [60] are in favor
of much lower values, V�� ≈ −10 MeV. For other hyperons,
no data are available. In view of the faint knowledge, we take
either no YY interaction at all or a universal YY interaction
with different values for the potential depth. For the isospin-
dependent terms we follow Balberg and Gal [47].

B. Neutron stars

In the center of neutron stars densities of several times
nuclear matter saturation density are reached, such that they
present an important test for the EOS of matter above n0. In
contrast to the hot core-collapse environment, neutron stars
older than several minutes can be regarded as cold from the
EOS point of view because the temperature reached is well
below 1 MeV. In addition, β equilibrium is achieved and
neutrinos can freely leave the system, so the EOS in this case
is only a function of baryon number density.

In particular, observed masses put constraints on the
EOS. There are a number of precise mass measurements
from neutron stars in binary systems (for a compilation, see,
e.g., Ref. [1]). For a given EOS and a given central density,
the mass and radius of a nonrotating neutron star can be
obtained by solving the equations for hydrostatical equilibrium
together with Einstein’s equations. In this case of a spherical
star it just gives the TOV system. It is known for a long
time that theoretical many-body EOSs with hyperons predict
maximum masses of the order 1.4M� or below, incompatible
with many precisely known neutron-star masses [61–63]. The
recent precise measurement of PSR 1614-2230 with a mass
of 1.97 ± 0.04M� [22] thus completely excludes those EOSs.
The authors of Ref. [22] claim that their observation excludes
any type of EOS with “exotic” contributions, that is, other
particles than nucleons and electrons. The argument is obvious
and well known: Adding new degrees of freedom to the
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TABLE I. Properties of the different equations of state discussed in the text. The cold neutron-star maximum mass is given for a nonrotating
spherical star.

Name K (MeV) Mmax/M� V�N (MeV) V�N (MeV) VN (MeV) VYY (MeV)

180BG 180 1.15 −28.2 16.8 −24.3 0.0
220BG 220 1.70 −26.6 28.5 −22.8 −38.0
220g2.8 220 1.93 −29.6 65.7 −23.0 −55.1
220g3 220 1.95 −26.8 73.0 −15.3 −10.3
220pm 220 1.94 −26.8 24.1 −24.5 −10.3

EOS softens it and thus the maximum mass decreases. This
simple argument is, however, only true without interaction.
As it has already been shown for EOSs with a transition
to quark matter [64,65], a repulsive interaction can cure
the problem and allow for neutron-star maximum masses of
2M� or even above. For hyperons, this seems more difficult,
and within the microscopic approaches, the origin of the
necessary repulsion at high densities has not yet been found.
Recently different RMF models have been presented which
successfully reconcile hyperonic matter with PSR J1614-2230
(see Refs. [39,40,66–68]).

Here, we take a phenomenological point of view and we
choose parameters for the model by Balberg and Gal [47]
compatible on the one hand with hyperonic data and on
the other hand with PSR J1614-2230, without looking for a
deeper understanding of the repulsion. Thus, we show that it is
possible to reconcile the data, in particular a neutron-star mass
of 2M�, with the existence of hyperons in dense matter, but
without answering the question why theoretical many-body
calculations, predicting the existence of hyperons at densities
of about 2n0–3n0, cannot reproduce the 2M� neutron star.
The values of the different single-particle potentials and
the maximum mass of a spherical neutron star for different
parameter sets are listed in Table I . The first three digits in
the name of the parameter set thereby indicate the value of the
incompressibility modulus of nuclear matter. In Table II we list
the corresponding parameters for the hyperonic interaction. On
the left panel of Fig. 3 we show the nonvanishing hyperonic
particle fractions for the different equations of state for cold
neutron-star matter. The neutron-star masses as a function of
central density are displayed in Fig. 3 (right panel), together
with the constraint from PSR J1614-2230 and the curves
obtained with the LS EOS for K = 180 and K = 220 MeV.
Pions and muons have only been included for 220pm.

Parameter set 180BG takes the softest version of the original
Balberg and Gal paper [47] with two exceptions: We modified

the � parameters to obtain a slightly repulsive V�N and we
neglected any YY interaction. This parameter set, of course,
gives a far too low neutron-star maximum mass. However, we
include it for comparison as it can be seen as an extreme case,
representing a very soft EOS (possibly too soft). Set 220BG
takes the version with the strongest high-density repulsion
for YN and YY parameters from Ref. [47], with, again, one
exception: V�N is chosen repulsive. The other three sets
show three examples of parameters compatible with PSR
J1614-2230, still giving reasonable values for the potential
depths at saturation density. Let us, however, remark that
we did not find any viable parameter set with an attractive
potential for V�N . For 220g2.8 and 220g3, V�N is even
strongly repulsive, at the limit of what is compatible with the
estimates discussed in Sec. IV A. In these models, only �−
appear in cold neutron-star matter, and at a rather high density
of roughly 5n0 compared with most other models. This is also
the reason why hyperons appear only in the very center of very
massive neutron stars, close to the maximum mass. 220pm
has a weaker �− repulsion, but in that case, no hyperons are
present in cold neutron-star matter. The deviation from the
LS EOS case with K = 220 MeV, visible in Fig. 3, thereby
arises only from the presence of pions and muons. It should
be stressed that from the present results, we cannot claim that
the solution to the hyperon problem in neutron stars comes
either from their appearance at very high densities or from
their absence, because no real systematic parameter study has
been performed. These are only examples of possible EOSs.
Let us mention, too, that the RMF models of Refs. [39,40,68]
show possible EOSs for cold neutron-star matter with hyperons
appearing at lower densities.

V. COLLAPSE OF A COLD NEUTRON STAR
TO A BLACK HOLE

The goal of this section is to show the numerical usability
of the cold version of the EOS by implementing cold EOSs

TABLE II. Parameter values of the different equations of state discussed in the text.

Name a�N c�N aN cN a�N c�N b�N aYY cYY b�� γ

(MeV fm3) (MeV fm3γ ) (MeV fm3) (MeV fm3γ ) (MeV fm3) (MeV fm3γ ) (MeV fm3) (MeV fm3) (MeV fm 3γ ) (MeV fm3)

180BG −505.2 605 −434.4 520.1 10 175 214.2 0 0 0 4/3
220BG −340 1087.5 −291.5 932.5 130 300 214.2 −486.2 1553.6 430 2
220g2.8 −270 2300 −170 2000 500 200 214.2 −400 1500 430 2.8
220g3 −270 4000 −170 2900 450 250 214.2 −90 1000 430 3
220pm −270 4000 −240 3400 130 800 214.2 −90 1000 430 3
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FIG. 3. (Color online) (Left) Hyperon fractions as a function of density for cold neutron-star matter. (Right) Gravitational mass of
nonrotating spherical neutron stars as a function of central baryon number density for the different equations of state discussed in the text.

presented in Sec. IV B into a numerical code and studying
the collapse of a cold neutron star to a black hole. It is not
fully relevant to try and measure the effects of the presence
of hyperons or additional particles in this case because it is
difficult to find comparable physical settings: From Fig. 3 it
is clear that the maximal masses with or without hyperons
are quite different. Therefore, initial (unstable) neutron-star
models used as initial conditions are too different with different
EOSs to provide comparable collapses to a black hole. The
comparison can be performed in the case of a stellar core
collapse, starting from the same main-sequence massive star
initial data and following then the collapse, bounce, stalling of
the shock, and collapse of the proto-neutron star to a black hole,
with different EOSs at finite temperature. As this is beyond
the scope of the current paper, it shall be the subject of a
forthcoming study.

A. Transition to a quark phase

The physical model that we study here is the collapse to a
black hole of an unstable neutron star, that is, with a central
density higher than that corresponding to the maximal mass.
During the collapse, the densities reached inside the neutron
star can be much higher than several times the saturation
density (see Fig. 4 and Ref. [69]). Because the LS model
for the EOS is nonrelativistic, it can, in principle, allow for a
sound speed greater than the speed of light. With the numerical
code we are using (see Sec. V B hereafter), such a situation
can lead to spurious oscillations and instabilities destabilizing
the whole simulation. This happens in the LS EOS or in most
of the extended EOSs for high densities, typically beyond
5–10 fm−3, that is at more than 20 times nuclear matter
saturation density. At these high densities, the nature of matter
is far from being well known. It seems rather natural to assume
that there is a transition to a quark matter phase at some
density and this is what we do here. Therefore, we have used
in our EOS a transition to a simple model for quark matter, the
MIT bag model [70] with massless quarks, implying a sound
speed always lower than the speed of light. The transition is
constructed using a Maxwell construction. Within this very

simple model the density for the transition can be adjusted by
tuning the value of the bag constant. Because the aim of our
paper is not to investigate the transition to quark matter (see,
e.g., [16] for such a study in the context of core collapse),
we try to push the transition density as far as possible without
having superluminal sound speeds. This means that we choose
values of the bag constant much above commonly used values,
leading to the appearance of quark matter at a density of about
nB = 2 fm−3; the exact density thereby depends on the specific
parametrization of the EOS used.

With the quark phase transition presented here for the zero-
temperature EOS, the sound speed always remains lower than
the speed of light, suppressing all the possible instabilities
coming from superluminal characteristics. In principle, this
problem could have been avoided by other prescriptions. For
example, a causal EOS, that is, a maximally stiff EOS has been
used in this context, too. We, however, think that a transition to
quark matter better reflects the physics, although it should be
kept in mind that in this high-density region we do not know
much about the real physics and that our quark model is a very
simplistic one.

B. Model setup

We use a general-relativistic hydrodynamics code CO-
CONUT [71], solving the continuity equation and the relativistic
Euler equations for a perfect fluid by means of high-resolution
shock-capturing methods [72]. Einstein equations, in isotropic
gauge and maximal slicing, are solved on a different grid with
spectral methods [73]. This code, although able to perform
three-dimensional simulations, is run in spherical symmetry
because we are interested here only in illustrating that the zero-
temperature versions of the different EOSs can be successfully
used in simulations of a collapse to a black hole. The EOS
is tabulated, read from a file, and interpolated for every grid
point. Static, spherically symmetric neutron-star initial data are
obtained with the same EOS as the one used for the evolution,
and with the same gauge, using the nonrotating version of
the code described in Ref. [74] and the LORENE library [75].
The initial star is chosen to be a spherical configuration on
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FIG. 4. Profiles of central density (solid line) and central lapse
(dashed line) as functions of time during the collapse of a perturbed
unstable neutron star to a black hole. Panel (a) was obtained with the
LS EOS [3] with K = 220 MeV; panels (b) and (c) were obtained by
EOSs described in Tables I and II . Vertical dotted lines give the time
of the formation of the apparent horizon.

the unstable branch, with a gravitational mass decreasing if
one increases central density. An unstable neutron star is not
bound to collapse to a black hole: It can expand to “migrate”

to the stable branch, that is, reach a lower density with the
same baryon mass, such that it is stable with respect to radial
oscillations (see also Ref. [76]).

The star is then perturbed by amplifying the radial density
profile by 1%. This procedure ensures that the star will collapse
to a black hole and not migrate to the stable branch. The
standard picture of such a numerical model is that the star
collapses until general-relativistic effects become dominant
(see, e.g., Ref. [69] for a complete description). Among these
is the “frozen-star” effect which comes from our choice of
time gauge (maximal slicing), avoiding the appearance of a
central singularity. It implies that several quantities do no
longer evolve near the center of the star, whereas some of
the metric coefficients develop huge gradients, limiting the
simulation in time. One sign that evolution is frozen near the
center of the star is given by the fact that one metric coefficient,
the lapse α, representing the ratio between the physical time
measured by the Eulerian observer and the coordinate time,
is tending toward zero. The second general relativistic effect
is the formation of an apparent horizon at a finite distance,
growing further outward until including all the neutron-star
matter. This is an evidence of the formation of a black hole.
The two-surface defining the horizon is tracked in our code by
an apparent horizon finder [77], which enables us to compute
the baryon mass inside the black hole, too.

C. Results of simulations

We have run our code on six different tabulated EOSs
displayed in the left column of Table III. In this table, LS180
and LS220 stand for the Lattimer-Swesty EOS with the
incompressibility K = 180 and K = 220 MeV, respectively.
The properties of the four other EOSs are given in Tables I
and II. The EOS labeled 220BG in these tables could not
give any reliable result in the simulations, because too much
numerical noise appeared already in the initial data. Neutron
star collapses with any of the six EOSs listed in Table III
would lead to the formation of a black hole in a time of a few
tenth of a millisecond. Time evolution profiles for the density
and the central value of the lapse α are given in Fig. 4 for
EOSs LS220, 220pm, and 220g2.8. On each of these plots the
central density is increasing, eventually with some oscillations
coming from the focusing of the initial perturbation before
reaching a maximum value and then decreasing. This decrease
is mostly attributable to the finite resolution at the star center,
as the density should tend toward a given value (frozen-star
picture). This spurious decrease is not an issue because it
appears after (or about the same moment as) the formation
of the apparent horizon and, therefore, in a region inside the
black hole that cannot influence the matter still falling onto
it. This problem can, in principle, be cured using the excision
technique (removing a neighborhood of the center, replacing it
with boundary conditions [78]), which we plan to implement
in our code in the near future.

In Fig. 4, the lapse is decreasing toward zero, as expected,
and the apparent horizon forms sufficiently soon to let most
of the matter remaining outside the black hole to enter it.
The simulations are ended when the radial gradients of the
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TABLE III. Characteristics of the six collapses to a black hole studied here. EOS names are detailed in the text, tAH is the apparent horizon
formation time (since the starting of the collapse), t99 the time at which 99% of the baryon mass has gone into the black hole. nmax

B is the
maximum central density reached during the collapse, and �MB and �Mg are the relative conservations of baryon and gravitational masses,
respectively.

EOS tAH (ms) t99 (ms) nmax
B (fm−3) �MB �Mg

LS180 0.223 0.23 18.6 2 × 10−6 4 × 10−3

180BG 0.188 0.216 114 7 × 10−6 2 × 10−2

LS220 0.209 0.216 6.19 2 × 10−6 4 × 10−3

220g2.8 0.387 0.396 20.8 5 × 10−6 6 × 10−3

220g3 0.327 0.334 9.51 6 × 10−6 5 × 10−3

220pm 0.215 0.22 3.24 10−6 6 × 10−3

gravitational fields become too high to be well described with
spectral methods. As seen from the values of t99 in Table III,
this happens after all matter has been swallowed by the appar-
ent horizon and therefore one is left with a static Schwarzschild
black hole, with no evolution outside the horizon. From
Fig. 4 and Table III, one can notice that the maximal density
reached during the collapse strongly depends on the EOS.
In particular, the EOSs with an incompressibility modulus
K = 180 MeV being softer, matter is more compressed. The
addition of hyperons makes the EOS even softer and, at
the end the collapse with EOS 180BG, it reaches such high
densities that they no longer seem realistic (beyond 100 fm−3).
Finally, Table III also gives some error indicators: �MB is
the relative variation of the baryon mass (number of particles
times their rest mass); �Mg is the variation of the system’s
gravitational mass (as deduced from the asymptotic behavior
of the gravitational field). The conservation of baryon mass is
directly imposed by solving the equation for the conservation
of the baryon current, whereas the conservation of gravitational
mass is only an indirect consequence of the solved equations
and of the spherical symmetry (no gravitational waves).
Therefore, this last indicator is a good estimate of the overall
accuracy of a run. From all these results, we can claim that,
apart from EOS 220BG and 180BG, the cold EOSs derived
here are suitable for numerical simulations in the demanding
model of the collapse to a black hole.

VI. RESULTS AT FINITE TEMPERATURE

Let us now discuss the behavior of the EOS with the
different parametrizations at finite temperature. As mentioned
earlier, simulations of core collapse with massive progenitors
show that rather high temperatures of several tens of MeV
or more are reached at proto-neutron-star densities (see,
e.g., [17,79]). It is clear that the thermal energy is in favor of the
production of additional particles such as hyperons and mesons
or nuclear resonances. The abundances of hyperons, pions,
and kaons measured from heavy-ion collisions indeed indicate
that they are produced during the collisions. One should, of
course, insist on the fact that the conditions in heavy-ion
collisions are different from core collapse events: The baryon
densities are lower and the temperatures are probably slightly
higher, the time scales are such that no weak equilibrium for

strangeness is achieved, and the difference in neutron and
proton densities is much less pronounced than in core collapse
events or in neutron stars. However, the results show clearly
that the thermal production of those additional particles is
important.

At finite temperature and without assuming β equilibrium,
the EOS is a function of three variables which are generally
chosen to be T , nB, Ye. We now discuss the properties of the
EOS as a function of these variables. Of course we cannot cover
the whole range, but we choose some particular conditions. In
Fig. 5 we show the different hyperon fractions as functions
of electron fraction for a temperature of T = 60 MeV and
two different densities, nB = 0.15 fm−3 and nB = 0.3 fm−3.
In the simulations of Sumiyoshi et al. [17] the first density
corresponds to the conditions of a collapse with a 40M�
progenitor at bounce at about 10 km from the center. Of
course, the exact thermodynamic conditions in a simulation
depend on the EOS, so that this is just to say that this is
a typical situation within a proto-neutron star after bounce.
High densities are typically reached in the postbounce phase.
Let us mention at this point that the hyperon fractions are, in
principle, determined by the hadronic charge fraction Yq and
not Ye, which are equal if electrons are the only leptons present
owing to global charge neutrality. We have nevertheless chosen
to show the results as a function of Ye, because the electron
fraction is the quantity which is evolved in core-collapse
simulations.

We only show the fractions of �, �−, and − hyperons
because the fractions of the other hyperons are very small,
between 1� and 1%. These are the neutral hyperons �0, 0

and the positively charged �+. In a free gas picture, this
can easily be understood: The abundance of a particle is
determined, for a given mass, by the degeneracy factor, the
ratio of chemical potential and temperature. The relevant
temperatures are low compared with the chemical potentials,
so that the latter strongly influences the abundance. Therefore,
the argument follows essentially the same lines as for cold
neutron-star matter, where in most models �+, �0, and 0

are completely absent. We are looking here mainly at small
Yq , which means that we have, in general, relatively large
negative charge chemical potentials. This, of course, favors
negatively charged particles because their chemical potential
is increased. Increasing the charge fraction leads obviously
to an increase in the charge chemical potential. This means
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FIG. 5. (Color online) Fractions of different hyperons as a function of the electron fraction at a temperature of 60 MeV and for nB =
0.15 fm−3 (right) and nB = 0.3 fm−3 (left), corresponding roughly to once and twice nuclear matter saturation density. The fractions of �0,+, 0

are not shown because they are below 1%. For comparison, the fraction of the � hyperon is displayed for the version of the EOS by Shen
et al. [19] including them (indicated by HShen + L).

that the fraction of negatively charged hyperons decreases and
that of positively charged ones increases. However, within
the relevant conditions for core-collapse events, the electron
fraction does not exceed ≈0.7, so that the fraction of positively
charged hyperons remains small. Concerning the neutral ones,
the � is populated contrary to �0 and 0 because of its lower
mass. The lower mass to some extent compensates the favoring
of negatively charged hyperons owing to the negative charged
chemical potential. The higher abundance of �− or � depends,
therefore, on their interaction. The � fraction decreases with
increasing Yq . The reason is that not only the charge chemical
potential increases (which has no influence on the neutral �),
but at the same time the baryon number chemical potential de-
creases owing to the fact that the total baryon number remains
constant.

At nB = 0.15 fm−3, the � and − fractions show clearly
two groups: the parametrizations without pions and muons
and the one including them. The reason for the different
behavior of the EOS if pions and muons are included is
mainly attributable to the presence of muons. This can be
understood rather easily. Without muons, the hadronic charge
fraction is equal to the electron fraction owing to global
charge neutrality. Under the present conditions muons are,
however, almost equally abundant as electrons, so that to
conserve global charge neutrality, the hadronic charge fraction
for a given Ye is increased by almost a factor of two with
respect to matter without muons; that is, we have Yq ≈ 2Ye.
Because it is Yq and not Ye which determines the hyperon

fractions, as a function of Ye, the drop of the hyperon
fractions in 220pm is shifted to lower Ye compared with the
parametrizations without muons. This is clearly reflected in the
curves.

Let us stress, however, that the muon fraction is determined
by the degeneracy factor μμ/T so that it depends on the ratio of
chemical potential and temperature. The curves are calculated
assuming the same chemical potential for electrons and muons.
In the case where neutrinos can freely leave the system,
we have μμ− = μe− = μq , but in the hot proto-neutron-star
neutrinos are trapped so that there are nonzero lepton number
chemical potentials which are not necessarily the same for
electrons and muons, as mentioned already earlier. In general,
electron neutrinos are the most abundant ones, so, assuming
an equilibrium Fermi-Dirac distribution, the lepton number
chemical potential for electrons is expected to be higher than
that of the other leptons. We therefore expect that in a realistic
simulation, the chemical potential for muons is lower than
that for electrons, reducing the number of muons. However,
it is difficult to estimate quantitatively the reduction. We can
only say that we think that our results represent an upper
limit for the importance of the effects muons can have on the
EOS.

The �− fraction shows a stronger dependence on the
hyperonic interaction. Recall that the two parametrizations
220g3 and 220g2.8 contain a rather strong repulsion for the �−
single-particle potential (see Table I), whereas the repulsion
is much weaker for the others. This observation explains the
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FIG. 6. (Color online) Thermodynamic quantities as a function of the electron fraction at a temperature of 60 MeV and for nB = 0.15 fm−3

(right) and nB = 0.3 fm−3 (left), corresponding roughly to once and twice nuclear matter saturation density. The top panels show the pressure,
the middle ones the internal energy per baryon with respect to the proton mass (see text for the definition), and the bottom ones the sound speed
squared.

reduction of the �− fraction in these two models with respect
to the others. The overall increase in the �− fraction with
decreasing Ye is the well-known effect that in neutron-rich
nuclear matter negatively charged hyperons are favored. To
a smaller extent the same is observed for the −, which
is, however, less abundant overall owing to its higher mass.
Altogether, the hyperon fractions reach maximum values of
about 2%–8%.

For comparison we show the �-fraction in the recent EOS
by H. Shen et al. [19], too. This model is an extended version
of the widely used Shen EOS [4] including � hyperons as
additional particles. The overall behavior is very similar to
our models, even if the � fraction is higher. The difference
increases with decreasing Ye. A possible interpretation is that
the higher � fraction in the model by H. Shen et al. at this rather
high temperature of 60 MeV can be explained by the absence
of other hyperons (�−, −) within their model. Indeed, the
total hyperon fraction is of the same order in our models and
in the extended Shen EOS.

In Fig. 6 the pressure, the sound speed, and the internal
energy per baryon with respect to the proton mass mp are
displayed for the same densities and temperature. The latter
quantity is defined as

ε = ε

nBmp

− 1, (9)

with ε denoting the total energy density. These three quantities
are key ingredients for the hydrodynamic simulations. We
show the results for the different parametrizations of the
hyperonic interactions as well as, for comparison, the LS EOS
with K = 180 MeV and K = 220 MeV, too.

We again observe that the EOS including muons behaves
differently from all the others. The reason has been explained
above. In particular, the usual softening of the EOS from
additional degrees of freedom by adding different types of
particles is not seen. The point is that this softening is
overcompensated by the effect of the increased hadronic
charge fraction induced by the presence of muons (see above).
For the other EOS including only hyperons the softening is
indeed seen; as expected, it is more pronounced at higher
density (left panels). Compared with the purely nuclear EOS
ε is higher when including hyperons. This is not very surprising
because the hyperons are more massive than nucleons and,
therefore, replacing a nucleonic state with a hyperonic one,
in general, increases the energy density. The modifications of
pressure and energy density owing to the presence of additional
particles is reflected in the sound speeds, too. As mentioned
above, the hyperon fractions increase with decreasing electron
fraction, so that the effects on the thermodynamic quantities
increase with decreasing Ye, too.

At nB = 0.15 fm−3 (right panels) the interaction has only
little effect on the thermodynamic quantities; three groups
of EOS can clearly be distinguished: the two LS ones, those
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FIG. 7. (Color online) Same as Fig. 5 but as a function of temperature for nB = 0.15 fm−3 (right) and nB = 0.3 fm−3 (left) and an electron
fraction of Ye = 0.1.
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FIG. 8. (Color online) Same as Fig. 6, but as a function of temperature for nB = 0.15 fm−3 (right) and nB = 0.3 fm−3 (left) and an electron
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055806-14



EXTENDED EQUATION OF STATE FOR CORE-COLLAPSE . . . PHYSICAL REVIEW C 85, 055806 (2012)

 0

 0.2

 0.4

 0.6

x Λ

(a)

180BG
220BG

220g2.8
220g3

220pm
HShen+L

 0

 0.2

 0.4

 0.6

(b)

 0

 0.02

 0.04

 0.06

 0.08

x Σ
-

(c)
 0

 0.02

 0.04

 0.06

 0.08

(d)

 0

 0.02

 0.04

 0.06

 0.08

 0  0.2  0.4  0.6  0.8  1

x Ξ
-

nB [fm-3]

(e)
 0

 0.02

 0.04

 0.06

 0.08

 0  0.2  0.4  0.6  0.8  1

nB [fm-3]

(f)

FIG. 9. (Color online) Same as Fig. 5 but as a function of baryon number density for an electron fraction Ye = 0.1 at a temperature of
25 MeV (left) and 40 MeV (right).

with hyperons, and the EOS including in addition pions and
muons. The differences arising from the different interaction
between the two LS ones and between the four hyperonic
ones are only very small. This can be understood because
at high temperature and low density the kinetic energy
should dominate and the interaction terms should, in turn,
be less important. Indeed, the influence of the interaction is
stronger at higher densities, as can be seen from the figures
at nB = 0.3 fm−3 (left panels). The difference in pressure
between the two LS ones is of the order of 10% and between
the four hyperonic ones of the order of 15%. However, it should
be stressed that the softest one, 180BG, gives a maximum
mass for a cold spherical neutron star below 1.2M� and that
it is thus not very realistic (see Sec. IV B). The difference
between the three remaining hyperonic EOSs is much smaller.

For the pressure [panels (a) and (b)] we display in addition
the Shen EOS and the extended one with � hyperons. Again, as
expected, the inclusion of � hyperons diminishes the pressure.
Compared with the LS models, the behavior as a function of
Ye is rather similar.

At which temperatures do the additional particles in the
EOS start to play a role? To answer this question we display in
Fig. 7 the fractions of �, �−, and − and in Fig. 8 the pressure,
ε and the sound speed as functions of temperature. The
densities are the same as before, nB = 0.15 fm−3 on the right
and nB = 0.3 fm−3 on the left. We have chosen a relatively
low electron fraction, Ye = 0.1, because we want to show an
upper limit case, that is, an optimistic estimation of the effect
of the additional particles on the EOS. At the smaller density
hyperons appear at about 25 MeV, independently of the EOS

used. The first one to appear is the � hyperon. As expected, the
hyperon fractions rise with temperature, reaching about 10%
for � and �− and 5% for − at a temperature of 100 MeV. The
differences in the parametrization of the hyperonic interaction
does not induce large differences. However, let us make two
remarks. First, the particular features of the EOS with pions
and muons have already been explained and it is thus clear
why the hyperon fractions are systematically lower for this
EOS than for the others. Second, for the �− fraction, the
two parametrizations by Balberg and Gal, 180BG and 220BG,
clearly show a higher �− fraction than the other ones. The
reason is again the strong �− repulsion in the parametrizations
220g2.8 and 220g3.

At nB = 0.3 fm−3, hyperons appear at lower temperatures,
depending on the EOS between roughly 15–25 MeV. The
differences between the EOS are more pronounced than at
lower density. As mentioned earlier, this can be understood
from the fact that, for sufficiently low density, the kinetic
energy should be dominant owing to thermal effects, rendering
the details of the interaction less important. For this higher
density the � hyperon is clearly the most abundant one,
attaining between 10% and 17% at T = 100 MeV. The �−
fraction at this temperature lies between 4% and 8% and for
the −, slightly less abundant, the fraction reaches 2%–6%.

We again display the � fraction within the extended Shen
EOS [19] for comparison. The main difference is that for the
latter, at nB = 0.3 fm−3 hyperons are present already at zero
temperature, which is not the case for the models we are dis-
cussing here. In Sec. IV B we have discussed the high transition
density to hyperonic matter at zero temperature within our new
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FIG. 10. (Color online) Same as Fig. 6 but as a function of baryon number density for an electron fraction Ye = 0.1 at a temperature of
25 MeV (left) and 40 MeV (right).

parametrizations, but even the two parametrizations of Balberg
and Gal [47] have higher transition densities than the EOS in
Ref. [19]. In this context, it should be mentioned, too, that
the EOS by Ref. [19] gives a maximum neutron-star mass of
≈1.8M�, slightly below the constraint from PSR J1614-2230;
that is, the hyperonic interaction can probably be improved.

The thermodynamic quantities, in particular pressure and
sound speed, clearly show the appearance of hyperons,
inducing a softening in the EOS. For the lower density, the
modifications in the pressure owing to the presence of hyperons
remains relatively small up to T = 100 MeV, whereas ε and
the sound speed show more important deviations between the
purely nuclear case and the different cases with additional
particles. Again the particle content of the EOS has more
influence on the behavior of the thermodynamic quantities than
the details of the interaction. This is, as noticed before, not true
at twice this density, where the different parametrizations give
different results for pressure and sound speed. For the energy
density the differences are smaller.

We again compare our results for the pressure with those of
Shen et al. [4,19]. At nB = 0.3 fm−3, the stronger repulsion
in the nuclear interaction of the RMF model at high densities
compared with the LS model is clearly seen from the higher
pressure at low temperatures. This is a feature known from
RMF equations of state for neutron stars; in general, they
become very stiff at high densities. At nB = 0.15 fm−3 the
difference is less pronounced because this corresponds roughly
to nuclear matter saturation density, where there are several
constraints on the EOS.

We recover most of the features discussed up to now as a
function of density, too. This can be seen from Fig. 9, where
the hyperon fractions are shown and from Fig. 10, where the
thermodynamic quantities are displayed for Ye = 0.1. On the
left panels T = 25 MeV; on the right panels T = 40 MeV. An
interesting point which we have not seen before because the
density has been too low is that at about 2.5n0 a transition
takes place, strongly increasing the hyperon fraction and with
a strong effect on the thermodynamics. The � fraction, for
instance, can in certain models be larger than 30%. The
thermodynamic quantities, in particular the pressure, reflect
this transition. A thorough discussion of the thermodynamics
of this transition together with a detailed analysis of the
stability is in order but beyond the scope of the present paper.

The comparison of the � fraction with that in the EOS in
Ref. [19] (see Fig. 9) shows two points. First, at T = 25 MeV,
the earlier onset of hyperons in this EOS is clearly visible.
Second, the � fraction continues to increase with density,
whereas in our models (except 180BG), it saturates or even
slightly decreases. This is again attributable to the presence of
other hyperons, �− and −, in our models. The comparison
of the pressure (Fig. 10) does not reveal any new features. The
pressure is higher in the Shen EOS than in the LS EOS owing
to the strong nuclear repulsion and the onset of � hyperons
considerably reduces the pressure, in agreement with what we
find for the EOS models based on the LS EOS.

From the EOS alone we cannot answer the question of
whether the modifications in the thermodynamic quantities
owing to the presence of hyperons, pions, and muons are
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FIG. 11. (Color online) Pressure, energy density, and sound speed (left) for different EOS as a function of radius for a proto-neutron-star
profile (right) about 400 ms after bounce with a 40M� progenitor. Data (right) are from a simulation by M. Liebendörfer employing the LS
EOS with K = 180 MeV.

relevant for the dynamics of a core collapse event or a
neutron-star merger. Here, we do not want to try to answer this
question, but to get an idea we compare the pressure, energy
density, and sound speed profiles for a hot proto-neutron star.
The data for this profile, thus, T , nB, Ye, are shown on the right
panels of Fig. 11 as a function of the radius. They are issued
by a one-dimensional simulation of the collapse of a 40M�
progenitor with full Boltzmann neutrino transport employing
the LS EOS with K = 180 MeV (see Refs. [80,81]) at about
400 ms after bounce. The left panels show the pressure, ε, and
the sound speed as a function of the radius for the different
EOSs corresponding to the given values of temperature, baryon
density, and electron fraction at this radius. Of course, this
procedure does not give correct proto-neutron-star profiles
because these depend on the EOS. However, we think that
with this remark of caution in mind, the comparison of the
profiles is interesting and can give hints on the importance
of the modifications in the high-density and high-temperature
part of the EOS.

Let us first examine the data. The temperature is about
40 MeV at the center, rising to more than 80 MeV at about
10 km from the center and decreasing then rapidly to a value
between 5 and 10 MeV. The density is maximal at the center
with a value slightly above 3n0 decreasing below saturation
density at about 10 km from the center. Ye has a value of
about 0.3 at the center. It decreases until about 15 km, where
the value is about 0.1 and rises then, reaching 0.5 at about 30
km from the center.

From the behavior of T , nB , and Ye we would expect
sensible modifications of the thermodynamic quantities only

within a radius of about 15 km from the center of the
proto-neutron star. This is indeed the case as can be seen from
the left panels. Let us start by comparing the two different
versions of the LS EOS. In the region very close to the center,
up to roughly 8 km, the pressure and the sound speed show
differences between the two LS EOS. This is understandable
because only in this region the density is high enough to
allow for the differences in the nuclear interaction to play a
significant role. Below saturation density at low temperatures
the nuclear EOS is relatively well constrained so that, in this
region, it would be surprising to see large differences. For
high temperature and low density the kinetic part becomes
dominant, so that no large differences owing to the details of
the nuclear interaction are to be expected. Therefore, different
nuclear EOSs can possibly show different behavior only in
the high-density region. Remember that we are not interested
here in the details of the nuclear composition, which can have
an influence on the thermodynamics and on the dynamics of
a core collapse event, too (see Ref. [5]). These occur mainly
below saturation density and temperatures below 10 MeV, so
they cannot be resolved on the scales we are examining here.

Concerning the comparison with the extended EOS,
we can see differences up to a radius of about 15 km. These
differences are, in general, more pronounced than those
between the two version of the LS EOS. The pressure at the
center varies between 60 and 100 MeV/fm3 from the “softest”
to the “stiffest” EOS. The lowest pressure is obtained for
180BG, the second lowest for the LS EOS with K = 180 MeV;
all the others give values above 90 MeV/fm3. This means
that the influence of the additional particles on the pressure
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in this proto-neutron star is less important than the value of
the nuclear incompressibility. We expect this conclusion to no
longer hold if the central density, only about 3n0 at the stage
we are examining here, increases. Of course, as mentioned
before, we have to be careful because we should recalculate
the proto-neutron-star profile with having a new EOS.

For ε we clearly have three groups of EOSs, the LS
ones, those with hyperons, and those with hyperons, pions,
and muons. The differences are more pronounced at the
temperature maximum. This latter point is related to the
fact that the energy density strongly depends on temperature.
Moreover, the profile in ε closely follows the temperature
profile. The previous discussion has already shown why ε has a
distinct behavior depending on the particle content. The sound
speed reflects the differences in pressure and energy density
and can vary at the center between roughly 0.45c and 0.6c.

The results for 220pm shown in Fig. 11 have again been
calculated assuming the same chemical potential for electrons
and muons. As discussed above, this represents probably an
upper limit for the muonic effects on the EOS. Here, we
have in principle the muon neutrino fraction at hand. Thus,
assuming that the muon neutrinos are in thermal equilibrium,
that is, that they are described by a Fermi-Dirac distribution,
we can determine the muon lepton chemical potential, and
from this the muon chemical potential. We have computed the
profiles with this muon chemical potential and, as expected,
the differences are smaller, but the general trends are the same
and in particular the results for 220pm are still very different
from the other EOSs.

Up to now we have assumed that weak equilibrium with
respect to strangeness is achieved. If, on the contrary, we
assume that we have no weak strangeness changing reactions,
which would correspond to having reaction time scales
much longer than the hydrodynamic time scale of 10−6 s,
strangeness becomes a conserved quantum number. We do not
consider this as a realistic scenario because the time scales
estimated for the relevant processes are of the order of 10−6

or below (see, e.g., [82]). However, we find it instructive to
compare our results with this extreme case. The hyperons
have all negative strangeness, so that populating hyperonic
states leads to a net negative strangeness. Typical production
reactions for hyperons via the strong interaction, for example
n + n → n + K + �, are strangeness conserving and kaons
are produced with positive strangeness. Thus, kaons are the
natural candidates for assuring vanishing net strangeness in
thermal equilibrium. However, their mass of mK ≈ 500 MeV
is rather high compared with the relevant chemical potentials
and temperatures so they are not very abundant3 if they are
considered as an ideal gas. This, in turn, strongly suppresses
the hyperon fractions and therefore the effects on the EOS
compared with the more realistic scenario of strangeness
changing weak equilibrium.

3Note that we are not discussing here possible medium modi-
fications of the kaon properties which could lead to higher kaon
abundances.

VII. SUMMARY

At densities above roughly nuclear matter saturation and
temperatures above several tens of MeV, an EOS based
uniquely on nucleonic degrees of freedom and electrons is no
longer realistic because many other states will appear. We have
presented here an extended version of the LS EOS [3] including
as additional particles hyperons, pions, and muons intended
to improve on the high-density and high-temperature part. For
zero-temperature high-density matter this question has already
been studied for many years but up to now only very few work
exists for finite temperature. The main problem in this type of
exercise is that the interaction, which is already not well known
for nucleons, is even less known for hyperons. We have adapted
here a very simple phenomenological approach based on the
hyperonic model of Balberg and Gal [47]. The parameters
of the model have been readjusted to be compatible with
available hyperonic data and in particular the observation of an
almost 2M� neutron star, PSR J1614-2230 [22]. Taking these
constraints into account, there still remains some freedom,
and we have discussed several parametrizations of the EOS
to get an idea of the uncertainty. The ultimate goal should
be, of course, to have a reliable microscopic approach to
hyperonic matter compatible with data, but awaiting this step,
we can phenomenologically study the effect of these additional
particles on the thermodynamics of the system. The results
show that key thermodynamic quantities as pressure, energy
density, and sound speed are influenced by the additional
degrees of freedom in a non-negligible way. The threshold
temperature for the appearance of hyperons at saturation
density lies at about 25 MeV, depending on the particular
model applied. Owing to the shift in the hadronic charge
fraction for a given electron fraction, muons seem to strongly
influence the EOS in the regions where they become abundant.

We have concentrated here mainly on hyperons as addi-
tional particles. Nuclear resonances have not been considered
for the moment. A study of this point is kept for future work.
In another respect our EOS could be improved: We should
not treat pions as a free gas but include interactions. At high
temperatures this should not be very important, but for the
low-temperature and high-density regime we expect it to have
some influence.

The main application of our EOS should be astrophysical
systems, first of all core collapse events of massive progenitors,
collapsing eventually to a black hole. Neutron-star mergers
could be another application. We have demonstrated that the
cold part of our EOS can be successfully used in a numerical
simulation of the collapse of a neutron star to a black hole.
Of course, the effect on realistic simulations including finite
temperature has to be tested.
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APPENDIX: SOME TECHNICAL ISSUES ON THE
CONSTRUCTION OF THE EOS TABLES

Complete EOS tables, including the extended versions, will
be prepared and made publicly available. In this Appendix
we would like to discuss some technical issues encountered
in the construction of those tables from the LS original
routine. Recall that we have modified the original routine
in two respects: (1) correcting the binding energy of the α

particle (see Fig. 1); (2) extending the routine at densities
�10−6 fm−3, by extending the validity of the Maxwell and
boundary construction files. This also makes it possible to
verify a correct matching with the low-density EOS. However,
some convergence issues at low temperatures and proton
fractions or near critical temperature and density still remain.
Convergence problems manifest in two ways: (1) no solution
of the equilibrium equations (Eqs. (3.2) in Ref. [3]) is found
(especially at low temperature and electron fraction [31]);
(2) the solution is discontinuous with respect to adjacent points
in density, temperature, and/or electron fraction. In the latter
case, the discontinuities appear as (i) a rapid change of the
regime (with/without nuclei), which comes from a crossover
of the boundaries, (ii) a convergence toward a point far from the
adjacent ones. The first kind of pathology might be attributable
to the fact that a phase coexistence (and not a phase mixing)
is considered to model the phase transition. The second
one might be attributable to the sensitivity of the solution
with respect to the starting point values in the minimization
routine.

The construction of a table partially overcomes these
discontinuities, because, when looking up the table, an
interpolation is done and “critical” points in between the grid
points are usually avoided.

Another point to bear in mind when constructing the EOS
table is the speed of sound. This is a crucial quantity in the
hydrodynamic simulations because it regulates the speed at
which the information is propagated and it determines the
time step in finite difference explicit schemes. Throughout the
calculation, owing to convergence problems, it might appear
that the speed of sound is either less than zero or superluminal.
This is, of course, nonphysical, so for those (rare) points we
have recalculated the EOS replacing the value of the speed of
sound with the one obtained in the case of a Fermi gas (in units
of the speed of light) (see, e.g., [83]):

c2
s = (h̄c)2

3(mec2)2
(3πnbYe)2/3. (A1)

This replacement does, of course, not concern the region at
high densities where the sound speed becomes superluminal
owing to the nonrelativistic character of the LS EOS (see
Sec. V A).

We have compared our tables to the O’Connor and Ott
ones [84]. However, even if there is an agreement in the range
where the LS routine is employed, it is not straightforward to
make an exact comparison because the nuclear parameters that
they employ are slightly different from the ones used in this
paper.
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