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I. INTRODUCTION

A. Background, motivation, and setup description F OR many decades the control problem associated with drillstring torsional vibrations has been considered in the control community, see [START_REF] Patil | A comparative review of modelling and controlling torsional vibrations and experimentation using laboratory setups[END_REF]. For more than twenty years, researchers model the drillstring behavior as a wave partial differential equation (PDE), see [START_REF] Saldivar | A control oriented guided tour in oilwell drilling vibration modeling[END_REF]. In this paper an experimental setup is considered to study these vibrations. The identification problem associated with the model is necessary to fit the parameters with the experimental observation. It is also useful for the diagnosis of drilling system. In order words, one estimates the parameters of the model and therefore one provides a physical description of the drillstring. Note that the wave equation has been also used to model other physical behaviors, as for example overhead crane [START_REF] Conrad | Strong stability of a model of an overhead crane[END_REF], [START_REF] Andréa-Novel | Control of an overhead crane: Stabilization of flexibilities[END_REF]. In short, we address the parameter identification of a one-dimensional wave equation with space-depending velocity coefficient and distributed viscous terms subject to second order dynamical boundary conditions.

In Figure 1, a schematic view of the experimental setup is given. See also Figure 2, where the actual platform considered in this paper is depicted. In this paper, we consider a configuration in which the bit is not in contact with the medium, i.e., the so-called bit-off bottom configuration. It prevents boundary frictions that may interfere with the identification of the system dynamics. The platform is composed of two actuators: a motor for actuating the drill itself and a motor ensuring vertical displacement of the bit. Those are denoted by M 2 and M 3 in Figure 1. As shown in Figure 1, the experimental platform is equipped with four sensors. A torque sensor and an angular position sensor located at the bit and denoted by S 1 . A speed sensor for M 2 denoted S 2 . Angular position and speed sensors for M 3 , the latter denoted by S 3 . A force sensor denoted by S 4 , which measures the weight-on-the-bit. The parameters m 1 and m 2 represent the moments of inertia at the two ends of the drillstring, while a(•) represents the distributed elasticity of the drill-string. For the identification problem, the system input is the current U driving the motor M 2 . Electrical dynamics are neglected, that is, we assume that the current driving the motor is proportional to the torque delivered by the motor. 

B. Literature Review on Wave Equation Inverse Problems

In contrast with early lumping methods, where the dynamics is first discretized and then the inverse problem is solved on the associated finite-dimensional system (e.g. [START_REF] Liao | A computational method to estimate the unknown coefficient in a wave equation using boundary measurements[END_REF], [START_REF] Fu | A wavelet multiscale method for the inverse problems of a two-dimensional wave equation[END_REF], [START_REF] Wang | A meshfree method for inverse wave propagation using collocation and radial basis functions[END_REF]), we focus on late lumping methods. This way the discretization for the numerical solver is considered in the latest stage. Note also that we restrict the literature review to offline parameter estimation procedures, as it is the scope here.

In [START_REF] Xie | A new iterative method for solving the coefficient inverse problem of the wave equation[END_REF] the one dimensional wave is considered to have a space depending velocity and subject to Neumann actuation, the space interval considered is semi-infinite, i.e., [0, +∞). In this setting, the author used the fact that, for the coefficient inverse problem with boundary impulse input, the first order Fréchet derivative of inverse problem with respect to the parameters is invertible. Therefore, Newton's method is used to solve the inverse problem. However, computing this derivative is computationally costly.

In [START_REF] Jijun | On uniqueness of an inverse problem for a 1-d wave equation from transmission data[END_REF], the uniqueness of the solution to a parameter identification inverse problem for the wave equation is proven. This result is difficult to apply to the wave equation under consideration.

In [START_REF] Hua | A new approach to inverse problems of wave equations[END_REF], an approach for parameter identification of a wave equation is proposed. In this work, the second order derivative of the distributed state is assumed to be known. This approach shares some features with the one we propose here. However, since for the problem under consideration, the experimental data are extremely noisy, getting a reliable estimate of the second derivative is challenging.

In [START_REF] Tadi | Evaluation of the elastic property based on boundary measurement[END_REF], a method for the estimation of the distributed elastic parameters of the wave equation is suggested. This approach is based on a gradient descent algorithm, but it assumes that the parameters are artificially time-dependent. This is not the case in our work.

A method based on the principle of homotopy for velocity estimation of a two-dimensional wave is presented in [START_REF] Han | A homotopy method for the inversion of a two-dimensional acoustic wave equation[END_REF]. This homotopy method has been proven to be a powerful tool to solve nonlinear inverse problems. However, the applicability of this methodology requires the computation of the Fréchet derivative of the operator associated with the parameters of the inverse problem. This operation is in general computationally costly. This motivates the approach proposed in this paper, for which the computation of that derivative is numerically less costly.

More recently, in [START_REF] Bacchelli | Parameter identification for the linear wave equation with robin boundary condition[END_REF], an inverse problem for the linear wave equation subject to Dirichlet's and Robin's boundary conditions is considered. Using the method of characteristics, the authors identify both the domain length and the Robin's parameters. Unfortunately the method of characteristic cannot be applied in the setting considered in this paper, mainly because of the dynamical boundary conditions.

C. Contribution

As opposed to the references cited so far, in this paper we focus on the solution to an inverse problem for a wave equation with second order dynamical boundary conditions.

The objective is to find the best parameters which fit real data to the considered wave equation. To solve this problem, we propose the following methodology:

• We start by computing the first variations of the cost function associated with the inverse problem of offline parameter estimation for the wave equation; • As numerical simulations show that the considered problem is non-convex, we provide a new gradient descent algorithm;

For the procedure to be relevant we show the well-posedness of the considered wave equations and the identifiability of the parameters.

The paper is organized as follows. The wave equation along with the inverse problem considered is presented in Section II. Some mathematical results are stated in Section III. Section IV presents the algorithms proposed in the paper that are instrumental to solve the identification problem. Our approach is applied on experimental results in Section V.

D. Notation

Given u : [0, 1]×R + → R, we denote the partial derivative of u with respect to its first variable values at (x, t) ∈ [0, 1] × R + by u x (x, t). Similarly we denote the partial derivative of u with respect to its second variable evaluated at (x, t) ∈ [0, 1] × R + by u t (x, t). Let I be a measure space, L 2 (I; R) denotes the class of equivalence of square integrable functions from I to R. For the sake of simplicity, L 2 ([0, 1]; R) is abusively denoted by L 2 (0, 1). Furthermore

H 1 denotes the Sobolev space W 1,2 , i.e., u ∈ H 1 ⇔ u ∈ L 2 , u ∈ L 2 , (1) 
in which u denotes the weak derivative of u. Two scalar products are used in this paper. The scalar product associated with the parameter space is

p, p ∈ L 2 (0, 1) × L 2 (0, 1) × R 5 , (2) 
p, p = 

Its associated norm is p = p, p . The other one is dedicated to the state space. It is used to prove the wellposedness of the evolution equation. It is presented in the sequel.

II. PROBLEM STATEMENT

We consider the following wave equation

         u tt (x, t) = (a(x)u x (x, t)) x -q(x)u t (x, t), (4a) m 1 u tt (1, t) = σU (t) -a(1)u x (1, t) -q 1 u t (1, t), (4b) m 2 u tt (0, t) = a(0)u x (0, t) -q 2 u t (0, t), (4c) u(•, 0) = 0, u t (•, 0) = 0, (4d) 
in which a(•) stands for the elastic rigidity. In particular, the square root of a is the space-dependent velocity, that is assumed to be strictly positive. The term q(•) is a distributed viscous term. The scalars m 1 , m 2 > 0 stand for the ratio of masses with respect to constant in-domain linear inertia. The scalars q 1 , q 2 are boundary viscous terms. The scalar σ is an input scaling coefficient. The system input is U and is considered to be given.

The vector of measurements is

y(t) := u(1, t) u(0, t) , t ∈ [0, T ], (5) 
where T stands for the final time of the experiment. The vector of parameters to be identified is denoted by

p := [a(•), q(•), m 1 , m 2 , q 1 , q 2 , σ]. (6) 
Let us consider the following operators

Σ u : p → u, (7) 
and

Σ y : u → y. ( 8 
)
The domains of the above variables are omitted and their definitions are presented in Section III-B. The operator Σ u maps the parameters p to the state trajectory u for t ∈ [0, T ].

The operator Σ y maps the state trajectory u to the output trajectory y for t ∈ [0, T ]. The parameter T represents the length of the horizon over which data are available.

We are now in a position to formulate the considered parameter identification problem as the following inverse problem:

Problem 2.1: Given y, find p such that

(Σ y • Σ u )(p) = y . (9) 
To solve Problem 2.1, we recast it into an optimization problem of a suitable cost function. Such a cost function captures the error between the measurement y and its estimate ŷ, which is obtained using an estimate of the parameters. More explicitly, the vector of estimated parameter writes:

p := [â(•), q(•), m1 , m2 , q1 , q2 , σ]. (10) 
The estimated output is

ŷ(t) := û(1, t) û(0, t) , (11) 
and û = Σ u (p). Inspired by [START_REF] Nguyen | Calculus of variations approach for state and parameter estimation in switched 1d hyperbolic pdes[END_REF], let us define the following cost function:

J(p L ) =J 1 (y, ŷ) + J 2 (p L ), (12) 
in which

J 1 (y, ŷ) := 1 2 T 0 [(u(0, t) -û(0, t)) 2 + (u(1, t) -û(1, t)) 2 ]dt, (13) 
J 2 (p L ) := T 0 1 0 λ(x, t)(û tt (x, t) -(â(x)û x (x, t)) x + q(x)û t (x, t))dx + λ 1 (t)( m1 ûtt (1, t) (14) + â(1)û x (1, t) + q1 ût (1, t) -σU (t)) +λ 2 (t)( m2 ûtt (0, t) -â(0)û x (0, t) + q2 ût (0, t)) dt,
The terms λ, λ 1 , and λ 2 are the Lagrange multipliers corresponding to the constraint û = Σ u (p). The vector p L is defined as

p L = [y, û, p, λ, λ 1 , λ 2 ]. (15) 
The term J 1 corresponds to the error between the estimated output and the actual measurements. The term J 2 is for the constraint û = Σ u (p).

The identification problem we consider can be turned into the following optimization problem.

Problem 2.2: Given y, find p solution to the following optimization problem

min p J(p L ). (16) 
The following property is direct

p = p ⇒ J(p L ) = 0, (17) 
whereas the next one

J(p L ) = 0 ⇒ p = p, (18) 
is related to the uniqueness of solution to the inverse problem [START_REF] Han | A homotopy method for the inversion of a two-dimensional acoustic wave equation[END_REF], which is equivalent to the identifiability of (4). More information about inverse problems for partial differential equations can be found in [START_REF] Isakov | Inverse problems for partial differential equations[END_REF]. See also [START_REF] Lesnic | Identifiability of distributed parameters for high-order quasi-linear differential equations[END_REF], [START_REF] Ha | Identifiability for linearized sine-gordon equation[END_REF], for recent contributions on parameter identification of infinite dimensional systems. Next, we present our approach to solve [START_REF] Lesnic | Identifiability of distributed parameters for high-order quasi-linear differential equations[END_REF].

A. Outline of the proposed methodology

With the objective of solving [START_REF] Lesnic | Identifiability of distributed parameters for high-order quasi-linear differential equations[END_REF], we determine the derivative of J with respect to the system parameters to be estimated. Specifically, we determine the first variation of J defined as:

δJ(p L , δp L ) = J(p L + δp L ) -J(p L ) + O( δp L 2 ). (19) 
We can interpret δp L as a test function. In our case, and under suitable conditions that are given in the sequel, the first variation is linear with respect to the estimated parameters' variation. Then, by relying on [START_REF] Nguyen | Calculus of variations approach for state and parameter estimation in switched 1d hyperbolic pdes[END_REF], the search of local minima of ( 12) can be performed by employing a gradient decent algorithm. To achieve this goal, there are two main difficulties to be tackled. First, one should make sure that the algorithm does not get stuck in a local minimum. This is achieved by one the descent algorithms we propose in Section IV-C. Second, the algorithm needs to ensure the nonnegativity of parameters estimates; this is done augmenting the cost function by a Tikhonov's term.

III. MAIN RESULTS

This section illustrates how the gradient of the cost functional defined in [START_REF] Jain | Non-convex Optimization for Machine Learning[END_REF] can be determined analytically and assesses the well-posedness of the considered wave equation. Parameters identifiability issues are discussed at the end of this section.

A. Computation of the Gradient of the Cost Functional

The following result provides, under suitable conditions, an expression of the derivative of the cost functional.

Theorem 3.1: Assume that:

(i) û = Σ u (p), (ii) λ = Σ λ (p, û), (iii) λ 1 (t) = λ(1, t), ( 
iv) and λ 2 (t) = λ(0, t), where λ = Σ λ (p, û) is the solution to the following system

                   λ tt (x, t) -(λ x (x, t)â(x)) x -λ t (x, t)q(x) = 0, (20a) m1 λ tt (1, t) = -â(1)λ x (1, t) + q1 λ t (1, t) + (u(1, t) -û(1, t)), (20b) m2 λ tt (0, t) = â(0)λ x (0, t) + q2 λ t (0, t) + (u(0, t) -û(0, t)), (20c) λ(•, T ) = λ t (•, T ) = 0. (20d)
Then, the first variation of J(p L ) defined in ( 12) is given by

δJ(p L , δp L ) = dJ 1-2 , δ p , (21) 
in which

dJ 1-2 (x) :=                 T 0 λ x (x, t)û x (x, t)dt T 0 λ(x, t)û t (x, t)dt - T 0 λ t (1, t)û t (1, t)dt - T 0 λ t (0, t)û t (0, t)dt T 0 λ(1, t)û t (1, t)dt T 0 λ(0, t)û t (0, t)dt - T 0 λ(1, t)U (t)dt                 , (22) 
is the derivative of the cost functional and belongs to the parameter space defined in (2). Remark 1: Notice that the adjoint system (20) represents a wave equation backward in time. The proof of Theorem 3.1 is given in Appendix A.

• Once the derivative of the cost function is available, one can use gradient descent technique to find a minimum of the cost functional. If the cost functional is convex this minimum is unique. In general, parameters identification from noisy data gives rise to a ill-posed problems. A common technique used to solve ill-posed problems is the so-called Tikhonov regulation. This main idea underlying this technique consists of introducing some additional constraints to achieve the convergence of the optimization algorithm. In our setting, when using experimental data, the use of a gradient descent algorithm may give rise to negative values for the estimates of the parameter. This is not consistent with the physical description of the system (see [START_REF] Roman | Boundary control of a wave equation with in-domain damping[END_REF]Chapter 9] for more details). To overcome this drawback, we add constraints on the minimization problem to penalize the cost function when parameter estimates get close to zero. There exist several methods to perform constrained optimization (see e.g. [START_REF] Byrd | A trust region method based on interior point techniques for nonlinear programming[END_REF] and references within). In this paper, to limit the resulting computational complexity, we consider the following additional penality term when parameters get close to zero: Proposition 3.1:

Consider J 3 (p) :=c a 1 0 e 1 â(x) dx + c q 1 0 e 1 q(x) dx + c m1 e 1 m1 + c m2 e 1 m2 + c q1 e 1 q1
+ c q2 e

1 q2 + c σ e 1 σ . (23) 
The first variation of J 3 is

δJ 3 (p) = dJ 3 , δ p , (24) 
in which

dJ 3 (x) :=               c a (-1 â(x) 2 )e 1 â(x) c q (-1 q(x) 2 )e 1 q(x) c m1 (-1 m2 1 )e 1 m1 c m2 (-1 m2 2 )e 1 m2 c q1 (-1 q2 1 )e 1 q1 c q2 (-1 q2 2 )e 1 q2 c σ (-1 σ2 )e 1 σ               . ( 25 
)
The proof of this result follows from a direct computation of the first variation of J 3 .

By combining Theorem 3.1 and Proposition 3.1, one obtain the following result.

Corollary 3.1: Let J r (p L ) := J 1 (y, ŷ) + J 2 (p L ) + J 3 (p), (26) 
in which J 1 , J 2 , and J 3 are defined in (13), [START_REF] Kato | Perturbation theory for linear operators[END_REF], and (23).

Assume that items (i)-(iv) in Theorem 3.1 hold. Then the first variation of J r is equal to

δJ r (p L ) = dJ 1-2 + dJ 3 , δ p . (27) 

B. Well-posedness of considered wave equations

In this section, we state that the systems ( 4) and ( 20) are well-posed. Therefore, the formal computation of the cost J defined in ( 12) is meaningful.

Let us consider the following wave equation

         v tt (x, t) = (a(x)v x (x, t)) x -q(x)v t (x, t), (28a) m 1 v tt (1, t) = U 1 (t) -a(1)v x (1, t) -q 1 v t (1, t), (28b) m 2 v tt (0, t) = a(0)v x (0, t) -q 2 v t (0, t) + U 2 (t), (28c) v(•, 0) = v 0 , v(•, 0) = v t0 , (28d) 
and observe that, up to a change of variable, both systems (4), and (20) can be rewritten as [START_REF] Xie | A new iterative method for solving the coefficient inverse problem of the wave equation[END_REF]. More specifically, (4) corresponds to [START_REF] Xie | A new iterative method for solving the coefficient inverse problem of the wave equation[END_REF] with U 1 (t) = U (t) and U 2 (t) = 0, while (20) corresponds to [START_REF] Xie | A new iterative method for solving the coefficient inverse problem of the wave equation[END_REF] with

U 1 (t) = u(1, T -t)-û(1, T - t) and U 2 (t) = u(1, T -t) -û(1, T -t).
Let us consider the following space

H := H 1 (0, 1) × L 2 (0, 1) × R 2 .
(29)

It is straightforward to check that H is an Hilbert space for the following scalar product, ∀z, g ∈ H,

z, g H := 1 0 [z 1 (x)g 1 (x) + a(x)z 1 (x)g 1 (x) + z 2 (x)g 2 (x)]dx + m 1 z 3 g 3 + m 2 z 4 g 4 . ( 30 
)
We recall that a(•), m 1 , and m 2 are strictly positive. Let us define the following unbounded operator,

∀z :=     z 1 z 2 z 3 z 4     ∈ D(A), Az :=          -z 2 -(az 1 ) + qz 2 a(1) z 1 (1) + q 1 z 3 m 1 q 2 z 4 -a(0) z 1 (0) m 2          , (31) 
where

D(A) := z ∈ H 2 (0, 1) × H 1 (0, 1) × R 2 ; z 3 = z 2 (1), z 4 = z 2 (0) . (32) 
and consider the following abstract Cauchy problem:

ż(t) + Az(t) = U(t) (33a) z(0) = z 0 , (33b) 
where

U(t) := 0 0 U 1 (t) U 2 (t) T . ( 34 
)
The abstract Cauchy problem (33) is an alternative representation of [START_REF] Xie | A new iterative method for solving the coefficient inverse problem of the wave equation[END_REF]. In particular, the regularity of z and v(•, t) is illustrated in the result given next. Theorem 3.2: Consider H, A, and D(A) defined respectively in (29), (31), and (32) with m 1 , m 2 ∈ (0, ∞), q 1 , q 2 ∈ R. The following items hold:

(a) Consider (i) U 1 , U 2 ∈ C 1 ([0, ∞); R), (ii) a ∈ H 1 ([0, 1]; (0, ∞)), (iii) q ∈ L 2 ([0, 1]; R).
For all initial data z 0 ∈ D(A), there exists a unique solution to the abstract problem (33), z(t) ∈ D(A), ∀t 0. Moreover, denoting v = z 1 , one has:

v ∈ C 0 ([0, ∞); H 2 (0, 1)) ∩ C 1 ([0, ∞); H 1 (0, 1)), v(1, •), v(0, •) ∈ C 2 ([0, ∞); R). (b) Consider (i) U 1 , U 2 ∈ L 2 ([0, ∞); R), (ii) a ∈ L 2 ([0, 1]; (0, ∞)), (iii) q ∈ L 2 ([0, 1]; R).
For all initial data X 0 ∈ H, there exists a mild solution z(t) ∈ H to the abstract problem (33) given by

z(t) = S(t)z 0 , ( 35 
)
in which S is the C 0 -semigroup generated by the unbounded operator A. Moreover, it holds

v ∈ C 0 ([0, ∞); H 1 (0, 1)) ∩ C 1 ([0, ∞); L 2 (0, 1)).

C. Identifiability of the parameters

This section deals with the identifiability of the parameters from boundary measurements. To establish this property, we rely on the uniqueness of the solutions to the considered inverse problem. As a first step towards this goal, next we show that parameters are identifiable from state measurements.

Theorem 3.3: System (33) is state identifiable from non-zero initial conditions. More precisely, if uû = 0, (u 0 , u 1 ) = (0, 0), then p = p. Moreover, (33) is state identifiable for zero initial conditions under excitation. Namely, if uû = 0, (u 0 , u 1 ) = (0, 0), σ = 0,

∃t 0 ∈ [0, T ], U (t 0 ) = 0, then p = p .
The proof of Theorem 3.3 is given in Appendix C.

Definition 3.1: Let z 0 ∈ H and y 0 (•, z 0 ) be the output of (33) from the initial condition z 0 with zero input. System (33) is said to be observable if z 0 = ž0 implies that there exists t 1 ∈ [0, ∞) such that y 0 (t, z 0 ) = y 0 (t, ž0 ). The result given next provides some insights on the observability of (33).

Theorem 3.4: System (33) is observable from the output y defined in [START_REF] Cyrus | A robust accelerated optimization algorithm for strongly convex functions[END_REF]. The proof of Theorem 3.4 is given in Appendix D.

Building upon the above results, the following corollary can be established.

Corollary 3.2: Under the assumptions of Theorems 3.3 and 3.4, the parameters of the wave equation are identifiable from the position measurement at any boundary. More precisely

J(p L ) = 0 ⇒ p = p. ( 36 
)
Proof : The proof is a direct application of Theorems 3.3 and 3.4. In particular, by building upon the following obvious implication

J = 0 ⇒ y -ŷ = 0 (37) from Theorem 3.4 one gets y -ŷ = 0 ⇒ u = û. (38) 
Finally, from Theorem 3.3, it holds

u = û ⇒ p = p. (39) 
This concludes the proof.

IV. GRADIENT DESCENT ALGORITHMS

In this part, we present three algorithms that can be used to carry out the proposed parameter identification procedure. These algorithms are based on gradient descent methods; see [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] for an introduction on these methods. The first two are not used on the experimental data but only on the numerical simulations; see Section IV-D for more details on that.

By discretizing [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], one gets

J(p L [k + 1]) -J(p L [k]) = dJ, ∆p[k] . (40) 
Thus, the update of the parameter estimation follows

p[k + 1] = ∆p[k] + p[k]. (41) 
All optimization problems can be reduced to the computation of ∆p

[k] such that J(p L [k + 1]) -J(p L [k]) < 0.
Several sophisticated optimization algorithms exist to achieve this goal. In particular, accelerated/momentum algorithm, e.g. Heavy ball method and Nesterov acceleration (see, e.g., [START_REF] Cyrus | A robust accelerated optimization algorithm for strongly convex functions[END_REF]).

In this paper, first we present the common gradient descent algorithm. Then, an algorithm refereed to as Adagrad is illustrated. Finally, we suggest a new descent strategy, this third algorithm is referred to as Geograd. A comparative study of the behavior of these three algorithms is given in Section IV-D through numerical simulations for the considered wave equation.

A. Batch gradient descent [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] For the batch gradient descent, the update of the parameters is

∆p[k] = -αdJ. ( 42 
)
in which α is a positive constant. Note that in this case (40) becomes

J(p L [k + 1]) -J(p L [k]) = -α dJ 2 . (43) 
B. Adagrad algorithm [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] The idea behind the Adagrad algorithm is to adapt α to each parameter. The update law is

∆p[k] = - α G[k] + ε dJ, (44) 
in which

G[k + 1] = µG[k] + (1 -µ)diag(dJ) 2 , (45a) G[0] = 0. (45b) 
In (44), ε is a term to avoid the division by zero (equal to 10 -8 in this paper), diag(dJ) is the diagonal matrix representation of the vector dJ, µ is taken equal to 1 for the Adagrad algorithm, otherwise the algorithm with µ = 1 is actually referred to as RMSprop (see [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF]).

C. The suggested heuristic: Geograd

The idea of the algorithm we suggested is to impose the decay rate of the cost function to decrease geometrically. Namely

J(p L [k + 1]) = κJ(p L [k]), (46) 
in which κ ∈ (0, 1). This is associated with the following update law

∆ g p[k] = - (1 -κ)J(p L [k])dJ dJ 2 . ( 47 
)
Similarly as to the Adagrad algorithm presented in Section IV-B, one can avoid any division by zero by adding a positive term in the denominator of (47). We suggest an alternative, which is to bound ∆ g p[k] using the following function

N (x) = x 1 + ε x ∞ . ( 48 
) For x ∈ R it holds N (x) ∈ [-1 ε , 1 ε ]. Defining ∆p[k] = N (∆ g p[k]) yields to ∆p[k] = - (1 -κ)J(p L [k])dJ dJ 2 + ε(1 -κ)J dJ ∞ . ( 49 
)
What is interesting about this update law is the fact that ε defines the interval where the step belongs, and κ is the decay rate of the cost function we desire. When dJ goes to zero and J does not, the algorithm can leave the minimum (or maximun). Moreover, if the global minimum is not zero, the algorithm jump endlessly. Remark 2: When considering multiple parameters, it is important to tune the different values of ε for each parameter. This can be done by taking ε to be a vector, with the only caveat of interpreting the division in (49) in a element-wise fashion.

• Next, we present the classical descent algorithm based on the adjoint system. This is presented in Algorithm 1. Note however that Algorithm 1 might not converge when using Geograd algorithm. This is typically the case when one has no a priori knowledge of the cost function (e.g. it can be nonconvex, with nonconvex local minima,...). To overcome this problem, we provide an alternative algorithm, i.e., Algorithm 2 that is structurally stable. In order words, the algorithm imposes that J[p[i]] J[p[0]] and that the set of global minima is Lyapunov stable. The idea is simple: at each iteration we test if

J[p[i]] J[p[0]
] if not, we rescale the step parameter ∆p by dividing it by two and recompute J[i]. This structurally imposes Lyapunov stability with J as Lyapunov functional. The main drawback of having imposed structural stability is that at least a test at each iteration is required. This leads to a computationally greedier algorithm.

D. Parameter estimations on simulated data

This section illustrates the estimation of the parameter a(•) on simulated data, when all the remaining parameters are known. This allows us to compare the proposed approach with respect to existing other approaches focusing on the estimation of a(•), e.g. [START_REF] Tadi | Evaluation of the elastic property based on boundary measurement[END_REF] and [START_REF] Na | On the inverse problem of soil profile reconstruction: a comparison of time-domain approaches[END_REF]. Numerical simulations are carried out via a simple finite difference scheme in space and a classic ODE solver for the time.

Remark 3: Notice that the strength of proposed methodology is that the computation of the derivative of the cost function does not depend on the numerical scheme. On the other hand, the use of more sophisticated numerical schemes might lead to better results.

•

The input is taken as

U (t) = e -400(t-0.1) 2 . ( 50 
)
In this numerical simulation, we estimate a(•), which is selected as

a(x) = 1 + e -25(x-0.5) 2 . ( 51 
)
The number of spatial points for the estimation and adjoint system is N = 100. The number of spatial points, for the estimated parameter a, is N 0 = 600. The time horizon is T = 3, the number of time points for all systems is M = 3000. We consider the case where only measurements at x = 1 are available, yielding the adjoint system [START_REF] Patil | A comparative review of modelling and controlling torsional vibrations and experimentation using laboratory setups[END_REF] with the input u(1, t)û(1, t). The other parameters are known and equal to q( 

•) = q 1 = q 2 = 0, m 1 = m 2 = σ = 1.
6 for i ← 1 to n -1 do 7 p[i] = ∆p[i -1] + p[i -1]; 8 û[i] = Σ u (p[i], U )); 9
We compute the value of the cost J[i]; In Figure 6 the evolution of the cost function logarithm is displayed with respect to the iteration. Considering the minimum value, Geograd algorithm is outperforming both other algorithms see Figure 3. With this set of experiment we can conclude that the optimization problem considered in this part is nonconvex. Indeed let us compare Figure 3 to Figure 4 or Figure 5 final estimation. Adagrad and Gradient have a smaller misfit value that Geograd algorithm, but the estimation of a(•) is better for Geograd algorithm even for its last value.

10 m = 1; 11 while J[i] > J[0] & m < M do 12 ∆p[i -1] = ∆p[i -1]/2 ; 13 p[i] = ∆p[i -1] + p[i -1]; 14 û[i] = Σ u (p[i], U ));
Comparing our result with respect to [START_REF] Tadi | Evaluation of the elastic property based on boundary measurement[END_REF] and [START_REF] Na | On the inverse problem of soil profile reconstruction: a comparison of time-domain approaches[END_REF], we obtain a closer result for the estimation of a(•) with in less iteration.

V. EXPERIMENTAL RESULTS

In this section we illustrate the application of the proposed methodology on the experimental platform. The experimental data are obtained from a step response of 1.7 magnitude.

It corresponds to the largest input that experimental setup can tolerate. The measured output is the position at both ends, in other words, the table position and the bit position, see Figure 1. The position of the bit is directly measured by an incremental encoder, while the position of the table is obtained by direct integration of speed measurements provides by a tachometer. In the experiments, measurements sampling rate is set to 1 ms. Specifically, we execute the proposed estimation algorithm on data obtained for a step response with amplitude 1.7 Ampere between t ∈ [0, 5] s. The procedure is applied for two initial guesses of the parameters. The values of the initial guesses are given respectively in Table I and Table II. We consider the cost function in Corollary 3.1. The regulation parameter values (penalty terms) are given in Table III. The Geograd tuning parameters are given in Table III. The number of spatial points used for the numerical scheme is N = 60. The time evolution of the input U is given in Figure 7. The velocity responses of the actual system and of their estimates are depicted in Figures 10 and11 for the first setup of initial parameters, and in Figures 17 and18 for the second setup of initial parameters. The associated position responses are given in Figures 13,[START_REF] Kato | Perturbation theory for linear operators[END_REF][START_REF] Patil | A comparative review of modelling and controlling torsional vibrations and experimentation using laboratory setups[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. The parameter estimation associated with these responses are given in Figures 8,9, 15, and 16, and also in Tables I andxII. For each initial guess, the proposed estimation algorithm has been applied using data associated with two intervals of time [0, T ], one with T = 5 and one for T = 10. The time evolution of the cost function for different iterations of the algorithms is given in Figures 14 and21. For all these simulations, Algorithm 2 has been used. x q(•)

q[n](•), T = 5 q[b](•), T = 5 q[0](•) q[n](•), T = 10 q[b](•), T = 10
Fig. 9. Estimation of parameter q(•), for initial guess 1. x a(•) x q(•)

â[n](•), T = 5 â[b](•), T = 5 â[0](•) â[n](•), T = 10 â[b](•), T = 10
q[n](•), T = 5 q[b](•), T = 5 q[0](•) q[n](•), T = 10 q[b](•), T = 10
Fig. 16. Estimation of parameter q(•), for initial guess 2. 

Time [s] Table velocity [rad/s]

ût [0](1) u t (1) ût [b](1) T = 5 ût [b](1) T = 10
Fig. 17. Real data on the velocity of the table and identified system responses, for initial guess 2. 

ût [0](0) u t (0) ût [b](0) T = 5 ût [b](0) T = 10
û[0](1) u(1) û[b](1), T = 5 û[b](1), T = 10
Fig. 20. Real data on the position of the table and identified system responses, for initial guess 2. 

Initial guess 1 t ∈ [0, 5] t ∈ [0, 10] [0] [b] [n] [b] [n] â[i](•) 400 Fig 8 Fig 8 q[i](•)
Initial guess 2 t ∈ [0, 5] t ∈ [0, 10] [0] [b] [n] [b] [n] â[i](•) 300 Fig 8 Fig 15 q[i](•) 0.
û[0](0) u(0) û[b](0), T = 5 û[b](0), T = 10
ε = εa1 N εq1 N εm 1 εm 2 εq 1 εq 2 εσ , κ = 0.5.
where 1 N is a vector full of 1 of length N . The position responses in Figures 13,[START_REF] Kato | Perturbation theory for linear operators[END_REF][START_REF] Patil | A comparative review of modelling and controlling torsional vibrations and experimentation using laboratory setups[END_REF], and 21 for t ∈ [START_REF] Hua | A new approach to inverse problems of wave equations[END_REF][START_REF] Patil | A comparative review of modelling and controlling torsional vibrations and experimentation using laboratory setups[END_REF] are not used in the estimation procedure. These data validates the estimated model a posteriori. For t ∈ [0, 5] or t ∈ [0, 10] we see that the proposed procedure allows to fit the trajectory of the considered model with experimental data. Then for t ∈ [START_REF] Hua | A new approach to inverse problems of wave equations[END_REF][START_REF] Patil | A comparative review of modelling and controlling torsional vibrations and experimentation using laboratory setups[END_REF] we see that the trajectory of the model also fit with validation data. Experimental results show that the proposed algorithm yields an accurate model of the actual system, despite the presence of nonlinear unmodeled dynamics (these nonlinearities are visible in Figure 10: the response from 0 to 10 rad/s is not symmetric compared to the one from 10 to 0). Moreover our estimation is numerically very efficient, even without performing heavy and sophisticated data filtering. The only used filters are hardware and inherent to the experiment.

VI. CONCLUSION

In this paper, we proposed an algorithm for parameter identification of a wave equation from experimental boundary data. The proposed approach relies on the use of calculus of variation and functional analysis tools. In particular, we recast the the parameter identification problem as a minimization of a misfit functional. This misfit functional represents the square of an L 2 error between data and the boundary responses of a specific wave equation. The resulting (infinite dimensional) optimization is solved via an iterative algorithm that can jump between local minima. Despite its simplicity, the proposed algorithm was shown to be very efficient for solving the parameter identification problem in numerical simulations and on actual experimental data. As a future work, we plant to explore the use of on nonconvex optimization algorithms as the so-called stochastic gradient descent algorithm; see [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF], [START_REF] Jain | Non-convex Optimization for Machine Learning[END_REF]. Example A.1: Let us consider the following scalar evolution system (see [START_REF] Kot | A First Course in the Calculus of Variations[END_REF]). ẏ(t) = ay(t) + bu(t), y(0) = y 0 .

(

) Let J(y, u, ŷ, λ,â, b) = T 0 1 2 (y(t) -ŷ(t)) 2 dt + T 0 λ(t)( ẏ(t) -âŷ(t) -bu(t))dt. ( 52 
) 53 
The definition of the first variation of J with respect to (estimate parameters) ŷ, λ, ).

â
One computes, using the previous definition and one integration by parts, that

δJ = T 0 -(y(t) -ŷ(t))δ ŷ(t)dt + T 0 δλ(t)( ẏ(t) -âŷ(t) -bu(t))dt + T 0 δ ŷ(t)(-λ(t) -λ(t)âδ ŷ(t))dt + [λ(t)δ ŷ(t)] T t=0 + T 0 λ(t)(-ŷ(t)δâ -u(t)δ b)dt. ( 55 
)
As the initial condition is fixed ŷ(0) = y 0 , then we do not study the resulting variation, i.e., δ ŷ(0) = 0. Therefore one gets that if

• ẏ(t) = âŷ(t) + bu(t), ŷ(0) = y 0 , • λ(t) = -âλ(t) -(y(t) -ŷ(t)), λ(T ) = 0, then the first variation of J is δJ = T 0 λ(t)(-ŷ(t)δâ -u(t)δ b)dt = dJ, δâ δ b . (56) 
with dJ

= T 0 -λ(t)ŷ(t)dt T 0 -λ(t)u(t)dt
.

Similar arguments are used to obtain the following proof. Abusively we called the first variation simply the variation.

Proof of Theorem 3.1: Let us compute the variation of J defined in [START_REF] Jain | Non-convex Optimization for Machine Learning[END_REF] δJ =δJ 1 + δJ 2 .

(57)

From this point we drop the obvious dependence of the different variables. One gets

δJ 1 = T 0 -[(u(0, t) -û(0, t))δ û(0, t) + (u(1, t) -û(1, t))δ û(1, t)]dt. (58) 
Note that δu(•, t) = 0. One computes the variations of J 2

δJ 2 = T 0 1 0 [(û tt -(âû x ) x + qû t )δλ + λδ ûtt -λδ(âû x ) x + λqδ ût + λû t δ q]dx + ( m1 ûtt (1, t) + â(1)û x (1, t) + q1 ût (1, t) -σU )δλ 1 + λ 1 ( m1 δ ûtt (1, t) + ûtt (1, t)δ m1 + â(1)δ ûx (1, t) + ûx (1, t)δâ(1) + q1 δ ût (1, t) + ût (1, t)δ q1 -U δσ)
+ ( m2 ûtt (0, t)â(0)û x (0, t) + q2 ût (0, t))δλ 2 + λ 2 ( m2 δ ûtt (0, t) + ûtt (0, t)δ m2â(0)δ ûx (0, t)

ûx (0, t)δâ(0) + q2 δ ût (0, t) + ût (0, t)δ q2 ) dt. 

T 0 λ 1 δ ûtt (1, t)dt = λ 1 δ ût (1, t) -λ1 δ û(1, t) T t=0 + T 0 λ1 δ û(0, t)dt, (61) 
T 0 λ 1 q1 ût (1, t)dt = λ 1 q1 δ û(1, t) T t=0 + T 0 -(λ 1 q1 ) t δ û(1, t)dt, ( (62) 
) 1 0 -λδ(âû x ) x dx = -λδâû x 1 x=0 + 1 0 λ x δâû x dt = -λδâû x + λ x âδ û 1 x=0 + 1 0 λ x ûx δâdx + 1 0 -(λ x â) x δ ûdx. 63 
Therefore one obtains 

δJ 2 = T 0 1 0 [(û tt -(âû x ) x + qû t )δλ + λû t δ q + λ x ûx δâ + (λ tt -(λ x â) x - ( 
+ ût (1, t)δ q1 -U δσ)
+ λ 2 (û tt (0, t)δ m2â(0)δ ûx (0, t)ûx (0, t)δâ(0)

+ ût (0, t)δ q2 ) + ( m1 λ1

-(λ 1 q1 ) t )δ û(1, t) + ( m2 λ2 -(λ 2 q2 ) t )δ û(0, t) dt + 1 0 λδ ût -λ t δ û + λqδ û T t=0 dx (65) 
+ T 0 -λâδu x + λ x âδ û 1 x=0 dt + λ 1 m1 δ ût (1, t) -λ1 m1 δ û(1, t) + λ 1 q1 δ û(1, t) + λ 2 m2 δ ût (0, t) -λ2 m2 δ û(0, t) + λ 2 q2 δ û(0, t) T t=0
.

Note that due to the fact that the initial conditions are known δ û(•, 0) = δ ût (•, 0) = 0. The idea is to get the variations of J = J 1 + J 2 with respect to the variation of the parameters. Therefore we enforce the factor of other variation to be equal to zero. In other words, taking the factor of δλ, δλ 1 , and δλ 2 to be equal to zero is equivalent to û = Σ u (p). Moreover taking the factor of δ û, δ ûx (1, t), δ ûx (0, t), δ ût (•, t), and δ û(•, t) equals to zero is equivalent to

         λ tt (x, t) -(λ x (x, t)â(x)) x -(λ(x, t)q(x)) t = 0, (66a) λ 1 (t)â(1) -λ(1, t)â(1) = 0, (66b) -λ 2 (t)â(0) + λ(0, t)â(0) = 0, (66c) λ(•, T ) = λ t (•, T ) = 0. (66d) 
Imposing the factor of δ û(1, t), δ ût (1, T ), and δ û(1, T ) to be zero is equivalent to

         0 = -(u(1, t) -û(1, t)) + λ x (1, t)â(1) + m1 λ1 (t) -(λ 1 (t)q 1 ) t , (67a) λ 1 (T ) = 0, (67b) λ1 (T ) = 0. (67c) 
Ensuring that the factor of δ û(0, t), δ ût (0, T ), and

δ û(0, T ) is zero is equivalent to          0 = -(u(0, t) -û(0, t)) -λ x (0, t)â(0) + m2 λ2 (t) -(λ 2 (t)q 2 ) t , (68a) λ 2 (T ) = 0, (68b) λ2 (T ) = 0.
(68c) Consider conjointly (66)-( 68), these systems are equivalent to

(i) λ = Σ λ (p, û) (λ solution to (20)), (ii) λ 1 (t) = λ(1, t), (iii) 
and λ 2 (t) = λ(0, t). The condition λ 1 (t) = λ(1, t) implies that the factor of â( 1) is equal to zero. Moreover λ 2 (t) = λ(0, t) implies that the factor of â(0) is equal to zero. Then the variation of J can be written as

δJ =             T 0 λ x (x, t)û x (x, t)dt T 0 λ(x, t)û t (x, t)dt T 0 λ 1 (t)û tt (1, t)dt T 0 λ 2 (t)û tt (0, t)dt T 0 λ 1 (t)û t (1, t)dt T 0 λ 2 (t)û t (0, t)dt - T 0 λ 1 (t)U (t)dt             ,           δâ(x) δ q(x) δ m1 δ m2 δ q1 δ q2 δσ           . ( 69 
)
Using integrations by parts on the factor of δ m1 and δ m1 together with (4d), (67b), and (68b) one gets [START_REF] Roman | Boundary control of a wave equation with in-domain damping[END_REF]. This concludes the proof of Theorem 3.1.

B. Proof of Theorem 3.2

The idea of the proof is to decompose the operator A defined in (31) into one m-accretive part and a remaining part, then to perform a bijective change of variable which cancels the remaining part. Finally, we conclude using the following theorem Theorem A. 

(t) = f (t), (70a) 
X(0) = X 0 . ( 70b 
)
Assume that A is m-accretive (equivalent to maximal monotone in a Hilbert space). Then for every X 0 ∈ D A and every f ∈ C 1 ([0, T ]; E), there exists a unique solution X to (70) with

X ∈ C 1 ([0, T ]; E) ∩ C([0, T ]; D A ). (71) 
Now consider the following operator

∀z ∈ D(G), Gz =          -z 2 -(az 1 ) + z 2 -z 1 a(1) z 1 (1) m 1 -a(0) z 1 (0) m 2          , (72) 
and the following matrix

H =     0 0 0 0 1 -q -1 0 0 0 0 -q1 m1 0 0 0 0 -q2 m2     . (73) 
The domain of G is equal to the domain of A. One gets

A = G + H. (74) 
G is the m-accretive part, this is established in the following lemma Lemma A.1: The linear unbounded operator G defined in (72) is maximal monotone on H defined in (29).

Proof : Considering the definition of the scalar product (30), one gets

z, Gz H = 1 0 [z 1 z 2 -z 1 z 2 + z 2 (-(az 1 ) + z 2 -z 1 )]dx + a(1)z 3 z 1 (1) -a(0)z 4 z 1 (0), (75) 
using the fact that z ∈ D(A), one obtains

z, Gz H = 1 0 z 2 2 dx 0. (76) 
Thus the operator G is monotone (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] Chapter 7 on Page 181). In addition if we establish that

R(I + G) = H, (77) 
then the operator G is maximal monotone (see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] Chapter 7 on Page 181, R stands for the range of the operator). Let y ∈ H, we have to solve

z ∈ D(A), z + Gz = y, (78) 
which means that

z 1 -z 2 =y 1 , (79) z 2 -(az 1 ) + z 2 -z 1 =y 2 , ( 80 
) m 1 z 3 + a(1)z 1 (1) =m 1 y 3 , (81) m 2 z 4 -a(0)z 1 (0) =m 2 y 4 , (82) 
using the fact that z ∈ D(A) one gets

z 1 -(az 1 ) = 2y 1 + y 2 , (83) a(1)z 1 (1) + m 1 z 1 (1) = m 1 (y 3 + y 1 (1)), (84) -a(0)z 1 (0) + m 2 z 1 (0) = m 2 (y 4 + y 1 (0)). (85) 
This is a classical stationary problem (e.g. see [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]) with Robin's boundaries conditions, using standard result (as done in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] p. 226 Example 6) one gets that as 2y 1 +y 2 ∈ L 2 (0, 1), (83)-(85) has a unique solution z 1 ∈ H 2 (0, 1). Now one can check that the element z = (z 1 , z 2 , z 3 , z 4 ) with

              
z 1 is solution to (83)-( 85), (86a)

z 2 = z 1 -y 1 , (86b) 
z 3 = y 3 + -a(1)z 1 (1) m 1 , (86c) 
z 4 = y 4 + a(0)z 1 (0) m 2 , (86d) 
satisfies ( 79)-(82). Moreover using ( 83)-( 85) on (86) one gets that z satisfying (86) is in D(A). Now, we are ready to state the proof of the well-posedness of (33). Note that the fact that G is maximal monotone implies that D(A) is dense in H (i.e., D(A) = H).

Proof of Theorem 3. 

where H is defined in (73) and G is defined in (72). From Lemma A.1, using Theorem A.1 on (88), and the change of variable (87), one establishes (i). Using argument of density of D(A) in H, and C 0 -semigroups theory one obtains (ii).

Note that we refer the reader to [START_REF] Kato | Perturbation theory for linear operators[END_REF], [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] for the notion mild solutions. Moreover part of the proof are inspired from [START_REF] Conrad | Strong stability of a model of an overhead crane[END_REF] and [START_REF] Andréa-Novel | Control of an overhead crane: Stabilization of flexibilities[END_REF] which in turn originates form [START_REF] Slemrod | Feedback stabilization of a linear control system in hilbert space with an a priori bounded control[END_REF].

C. State identifiability

We only prove the second assertion (ii) of Theorem 3.3, the other item can be established by following similar arguments.

Proof of Theorem 3.3 (ii): The proof is based on showing the converse. Consider that p = p.

(89)

We study the dynamics of the difference, ũ(x, t) = u(x, t)û(x, t). 

We recall that σ = 0, this implies that z = 0, i.e., there exist several time t i such that z(t i ) = 0. We take the first one, and denote it t 1 , by continuity one gets ż(t 1 ) + Ã(p, p)z(t 1 ) = 0, This concludes the first case. Now consider that σ = σ, we still have that z = 0 as σ = 0 and ∃t 0 ∈ [0, T ], U (t 0 ) = 0. We consider the first time such that U is not equal to zero, we denote it t 2 , by continuity of the C 0 -semigroups, we have ż(t 2 ) = Ũ(σ, σ, t 2 ).

It is easy to show that Ũ(σ, σ, t 2 ) := U(σ, t 2 )-U(σ, t 2 ) = 0 is equivalent to σ = σ. This concludes the second and last case, and also the proof of Theorem 3.3.

D. Boundary observability

Proof of Theorem 3.4: Pick two solutions u and ǔ to (28) and assume that y(t)y(t) = 0, ∀t ∈ [0, ∞), where y is defined in [START_REF] Cyrus | A robust accelerated optimization algorithm for strongly convex functions[END_REF]. Let us consider the dynamics of the difference ȗ(x, t) = u(x, t)ǔ(x, t) which is driven by the following over-determined system of PDEs

            
ȗtt (x, t) = (a(x)ȗ x (x, t)) xq(x)ȗ t (x, t), (98a) m 1 ȗtt (1, t) = -a(1)ȗ x (1, t)q 1 ȗt (1, t), (98b) m 2 ȗtt (0, t) = a(0)ȗ x (0, t)q 2 ȗt (0, t), (98c) ȗ(1, t) = 0, (98d) ȗ(0, t) = 0.

(98e)

Next, we prove that the unique solution to the above system is zero. To this end, we consider the associated first order hyperbolic system. Define f (x, t) = ȗt (x, t) + a(x)ȗ t (x, t) ȗt (x, t)a(x)ȗ t (x, t)

where a(•) > 0. Since ȗ is solution to (98), then f is solution to the following system f t (x, t) = a(x) 0 0 a(x) f x (x, t) + B(x)f (x, t) f (0, t) = 0 f (1, t) = 0 (100)

where B(x) ∈ R 2×2 . Let us consider the following invertible change of variable: g(x, t) : = e -x 0 B(s)ds f (x, t). Then, (100) turns into

         g t (x, t) = a(x) 0 0 -a(x) g x (x, t) (101a) 
g(0, t) = 0 (101b) g(1, t) = 0 (101c)

This shows that, since g(•, 0) = 0, g ≡ 0. This concludes the proof.
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 145678 Adjoint method for finding a minimumInput : A set of measured data Y and the associate input U Output: An optimized value of the parameters p[b] We define two functions corresponding to solving the forward and backward systems;2 Function Σ u is 3 û = Σ u (p, U ));/ * Forward system * / = Σ λ (p, Y, û)); / * Backward system * / We set an initial guess p[0] and a fixed number of iteration n > 1;9 for i ← 0 to n -1 do 10 û[i] = Σ u (p[i], U ); 11We compute the value of the cost J[i];12 λ[i] = Σ λ (p[i], Y, û[i]); 13According to the chosen strategy (batch gradient, Adagrad, Geograd,...)14We compute the value of the step ∆p[i]; 15 p[i + 1] = ∆p[i] + p[i]; / * We update. * / 16 We get the argmin of the cost b = argmin(J); 17 return p[b];
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 2 Adjoint method for finding a minimum with enforced stability Input : A set of measured data Y and the associate input U Output: An optimized value of the parameters p[b] We set an initial guess p[0], a fixed number of iteration n > 1 and a fixed number M > 1 of loops to enforce the stability; 2 û[0] = Σ u (p[0], U )); 3 We compute the value of the cost J[0]; 4 λ[0] = Σ λ (p[0], Y, û[0])); 5 We compute the value of the step ∆p[0];
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 193 Fig. 3. Estimation of parameter a(•) using the algorithm (49) for 200 iterations.
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 4546 Fig. 4. Estimation of parameter a(•) using the algorithm (42) for 200 iterations.
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 108 Fig.8. Estimation of parameter a(•), for initial guess 1.
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 1013 Fig.[START_REF] Jijun | On uniqueness of an inverse problem for a 1-d wave equation from transmission data[END_REF]. Real data on the position of the table and identified system responses, for initial guess 1.
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 18 Fig.[START_REF] Na | On the inverse problem of soil profile reconstruction: a comparison of time-domain approaches[END_REF]. Bit velocity real data and identified system responses, for initial guess 2.
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 1019 Fig. 19. Evolution of the cost function versus the procedure iteration, for initial guess 2.
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 21 Fig. 21. Bit position real data and identified system responses, for initial guess 2.
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APPENDIXA.

  Calculus of variations and proof of Theorem 3.1Before proving Theorem 3.1, let us first consider an example of calculus of variations.

  and b is δJ(y, u, ŷ, δ ŷ, λ, δλ, â, δâ, b, δ b) = J(y, u, ŷ + δ ŷ, λ + δλ, â + δâ, b + δ b) (54) -J(y, u, ŷ, λ, â, b) + O( δ ŷ 2 + δλ 2 + δâ 2 + δ b 2

λδ

  ûtt dt = λδ ûtλ t δ û ) t δ ûdt,

2 :

 2 Using the bijective change of variable z e (t) = z(t)e Ht ,(87)z is solution to (33) is equivalent to, z e ∈ D A is solution to    d dt z e (t) + Gz e (t) = U(t)e Ht ,(88a)z e (0) = z 0 ,

( 90 )

 90 In the abstract form, we get     ż(t) + A(p)z(t) -A(p)ẑ(t) = U(p, t) -U(p, t), (91a) z(0) = 0. (91b)One gets using the linearity of the operator A:ż(t) + Ã(p, p)z(t) + A(p)z(t) = Ũ(σ, σ, t). (92)By continuity of the C 0 -semigroup associated with the difference dynamics, we have thatz = 0 ⇔ ż(t) = 0, ∀t ∈ (0, T ].(93)First consider the case where σ = σ, one gets Ũ (σ, σ, t) = 0.

therefore, z = 0

 0 is equivalent to Ã(p, p) := A(p) -A(p) = 0. It follows Ã(p, p) = 0 ⇔ p = p.(96)

Table velocity [

 velocity rad/s]

TABLE II PARAMETER

 II ESTIMATION VALUES FOR DIFFERENT ITERATION, INITIAL [0], MINIMAL COST [b], AND FINAL [n].
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