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Parameter identification of a linear wave equation
from experimental boundary data

Christophe Roman∗†, Francesco Ferrante∗, and Christophe Prieur∗

Abstract—Parameter identification of a drill-string is studied.
The system is modeled as a hyperbolic system with dynamical
boundary conditions. The considered model is a wave equation
with spatial dependent elasticity and viscous damping terms.
The identification problem is recast as an optimization problem
over an infinite dimensional space. The developped approach
ensures that the estimates of the parameters lie in a given set.
A gradient descent-based algorithm is proposed to generate
parameters estimates based on experimental data. A thorough
comparative study with more classical algorithms is presented.

Index Terms—Parameter identification, Lagrange multiplier,
inverse problems, adjoint method, wave equation, infinite
dimensional systems.

I. INTRODUCTION

A. Background, motivation, and setup description

FOR many decades the control problem associated with
drillstring torsional vibrations has been considered in

the control community, see [20]. For more than twenty years,
researchers model the drillstring behavior as a wave partial
differential equation (PDE), see [24]. In this paper an ex-
perimental setup is considered to study these vibrations. The
identification problem associated with the model is necessary
to fit the parameters with the experimental observation. It is
also useful for the diagnosis of drilling system. In order
words, one estimates the parameters of the model and there-
fore one provides a physical description of the drillstring.
Note that the wave equation has been also used to model
other physical behaviors, as for example overhead crane
[4], [6]. In short, we address the parameter identification
of a one-dimensional wave equation with space-depending
velocity coefficient and distributed viscous terms subject to
second order dynamical boundary conditions.

In Figure 1, a schematic view of the experimental setup
is given. See also Figure 2, where the actual platform
considered in this paper is depicted. In this paper, we
consider a configuration in which the bit is not in contact
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with the medium, i.e., the so-called bit-off bottom configu-
ration. It prevents boundary frictions that may interfere with
the identification of the system dynamics. The platform is
composed of two actuators: a motor for actuating the drill
itself and a motor ensuring vertical displacement of the bit.
Those are denoted by M2 and M3 in Figure 1. As shown in
Figure 1, the experimental platform is equipped with four
sensors. A torque sensor and an angular position sensor
located at the bit and denoted by S1. A speed sensor for M2

denoted S2. Angular position and speed sensors for M3, the
latter denoted by S3. A force sensor denoted by S4, which
measures the weight-on-the-bit. The parameters m1 and m2

represent the moments of inertia at the two ends of the drill-
string, while a(·) represents the distributed elasticity of the
drill-string. For the identification problem, the system input
is the current U driving the motor M2. Electrical dynamics
are neglected, that is, we assume that the current driving the
motor is proportional to the torque delivered by the motor.

S2

M2 U(t)

S1

m2

m1

a(·)

S3M3

S4

Table

Bit

Fig. 1. Schematic view of the
platform.

Fig. 2. Picture of the experimental
platform.

B. Literature Review on Wave Equation Inverse Problems

In contrast with early lumping methods, where the dy-
namics is first discretized and then the inverse problem is
solved on the associated finite-dimensional system (e.g. [17],
[7], [27]), we focus on late lumping methods. This way the
discretization for the numerical solver is considered in the
latest stage. Note also that we restrict the literature review
to offline parameter estimation procedures, as it is the scope
here.
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In [28] the one dimensional wave is considered to have a
space depending velocity and subject to Neumann actuation,
the space interval considered is semi-infinite, i.e., [0,+∞).
In this setting, the author used the fact that, for the coefficient
inverse problem with boundary impulse input, the first order
Fréchet derivative of inverse problem with respect to the
parameters is invertible. Therefore, Newton’s method is
used to solve the inverse problem. However, computing this
derivative is computationally costly.

In [13], the uniqueness of the solution to a parameter
identification inverse problem for the wave equation is
proven. This result is difficult to apply to the wave equation
under consideration.

In [10], an approach for parameter identification of a
wave equation is proposed. In this work, the second order
derivative of the distributed state is assumed to be known.
This approach shares some features with the one we propose
here. However, since for the problem under consideration,
the experimental data are extremely noisy, getting a reliable
estimate of the second derivative is challenging.

In [26], a method for the estimation of the distributed
elastic parameters of the wave equation is suggested. This
approach is based on a gradient descent algorithm, but it
assumes that the parameters are artificially time-dependent.
This is not the case in our work.

A method based on the principle of homotopy for velocity
estimation of a two-dimensional wave is presented in [9].
This homotopy method has been proven to be a powerful
tool to solve nonlinear inverse problems. However, the
applicability of this methodology requires the computation
of the Fréchet derivative of the operator associated with
the parameters of the inverse problem. This operation is in
general computationally costly. This motivates the approach
proposed in this paper, for which the computation of that
derivative is numerically less costly.

More recently, in [1], an inverse problem for the linear
wave equation subject to Dirichlet’s and Robin’s boundary
conditions is considered. Using the method of characteris-
tics, the authors identify both the domain length and the
Robin’s parameters. Unfortunately the method of character-
istic cannot be applied in the setting considered in this paper,
mainly because of the dynamical boundary conditions.

C. Contribution

As opposed to the references cited so far, in this paper
we focus on the solution to an inverse problem for a wave
equation with second order dynamical boundary conditions.

The objective is to find the best parameters which fit real
data to the considered wave equation. To solve this problem,
we propose the following methodology:
• We start by computing the first variations of the cost

function associated with the inverse problem of offline
parameter estimation for the wave equation;

• As numerical simulations show that the considered
problem is non-convex, we provide a new gradient
descent algorithm;

For the procedure to be relevant we show the well-posedness
of the considered wave equations and the identifiability of
the parameters.

The paper is organized as follows. The wave equation
along with the inverse problem considered is presented in
Section II. Some mathematical results are stated in Sec-
tion III. Section IV presents the algorithms proposed in
the paper that are instrumental to solve the identification
problem. Our approach is applied on experimental results in
Section V.

D. Notation

Given u : [0, 1]×R+ → R, we denote the partial derivative
of u with respect to its first variable values at (x, t) ∈
[0, 1] × R

+ by ux(x, t). Similarly we denote the partial
derivative of u with respect to its second variable evaluated
at (x, t) ∈ [0, 1] × R

+ by ut(x, t). Let I be a measure
space, L2(I;R) denotes the class of equivalence of square
integrable functions from I to R. For the sake of simplicity,
L2([0, 1];R) is abusively denoted by L2(0, 1). Furthermore
H1 denotes the Sobolev space W 1,2, i.e.,

u ∈ H1 ⇔ u ∈ L2, u′ ∈ L2, (1)

in which u′ denotes the weak derivative of u. Two scalar
products are used in this paper. The scalar product associated
with the parameter space is

p, p̂ ∈ L2(0, 1)× L2(0, 1)× R5, (2)

〈p, p̂〉 =

∫ 1

0

p1(x)p̂1(x)dx+

∫ 1

0

p2(x)p̂2(x)dx+ p3p̂3

+ p4p̂4 + p5p̂5 + p6p̂6 + p7p̂7. (3)

Its associated norm is ‖p‖ =
√
〈p, p〉. The other one is

dedicated to the state space. It is used to prove the well-
posedness of the evolution equation. It is presented in the
sequel.

II. PROBLEM STATEMENT

We consider the following wave equation
utt(x, t) = (a(x)ux(x, t))x − q(x)ut(x, t), (4a)
m1utt(1, t) = σU(t)− a(1)ux(1, t)− q1ut(1, t), (4b)
m2utt(0, t) = a(0)ux(0, t)− q2ut(0, t), (4c)
u(·, 0) = 0, ut(·, 0) = 0, (4d)

in which a(·) stands for the elastic rigidity. In particular,
the square root of a is the space-dependent velocity, that is
assumed to be strictly positive. The term q(·) is a distributed
viscous term. The scalars m1, m2 > 0 stand for the ratio
of masses with respect to constant in-domain linear inertia.
The scalars q1, q2 are boundary viscous terms. The scalar σ
is an input scaling coefficient. The system input is U and is
considered to be given.



3

The vector of measurements is

y(t) :=

[
u(1, t)
u(0, t)

]
, t ∈ [0, T ], (5)

where T stands for the final time of the experiment.
The vector of parameters to be identified is denoted by

p := [a(·), q(·), m1, m2, q1, q2, σ]. (6)

Let us consider the following operators

Σu : p 7→ u, (7)

and
Σy : u 7→ y. (8)

The domains of the above variables are omitted and their
definitions are presented in Section III-B. The operator Σu
maps the parameters p to the state trajectory u for t ∈ [0, T ].
The operator Σy maps the state trajectory u to the output
trajectory y for t ∈ [0, T ]. The parameter T represents the
length of the horizon over which data are available.

We are now in a position to formulate the considered
parameter identification problem as the following inverse
problem:

Problem 2.1: Given y, find p such that

(Σy ◦ Σu)(p) = y . (9)

To solve Problem 2.1, we recast it into an optimization
problem of a suitable cost function. Such a cost function cap-
tures the error between the measurement y and its estimate
ŷ, which is obtained using an estimate of the parameters.
More explicitly, the vector of estimated parameter writes:

p̂ := [â(·), q̂(·), m̂1, m̂2, q̂1, q̂2, σ̂]. (10)

The estimated output is

ŷ(t) :=

[
û(1, t)
û(0, t)

]
, (11)

and û = Σu(p̂). Inspired by [19], let us define the following
cost function:

J(pL) =J1(y, ŷ) + J2(pL), (12)

in which

J1(y, ŷ) :=
1

2

∫ T

0

[(u(0, t)− û(0, t))2

+ (u(1, t)− û(1, t))2]dt, (13)

J2(pL) :=

∫ T

0

(∫ 1

0

λ(x, t)(ûtt(x, t)− (â(x)ûx(x, t))x

+ q̂(x)ût(x, t))dx+ λ1(t)(m̂1ûtt(1, t) (14)
+ â(1)ûx(1, t) + q̂1ût(1, t)− σ̂U(t))

+λ2(t)(m̂2ûtt(0, t)− â(0)ûx(0, t) + q̂2ût(0, t))

)
dt,

The terms λ, λ1, and λ2 are the Lagrange multipliers
corresponding to the constraint û = Σu(p̂). The vector pL
is defined as

pL = [y, û, p̂, λ, λ1, λ2]. (15)

The term J1 corresponds to the error between the estimated
output and the actual measurements. The term J2 is for the
constraint û = Σu(p̂).

The identification problem we consider can be turned into
the following optimization problem.

Problem 2.2: Given y, find p̂ solution to the following
optimization problem

min
p̂

J(pL). (16)

The following property is direct

p = p̂⇒ J(pL) = 0, (17)

whereas the next one

J(pL) = 0⇒ p = p̂, (18)

is related to the uniqueness of solution to the inverse problem
(9), which is equivalent to the identifiability of (4). More
information about inverse problems for partial differential
equations can be found in [11]. See also [16], [8], for
recent contributions on parameter identification of infinite
dimensional systems. Next, we present our approach to solve
(16).

A. Outline of the proposed methodology

With the objective of solving (16), we determine the
derivative of J with respect to the system parameters to be
estimated. Specifically, we determine the first variation of J
defined as:

δJ(pL, δpL) = J(pL + δpL)− J(pL) +O(‖δpL‖2). (19)

We can interpret δpL as a test function. In our case,
and under suitable conditions that are given in the sequel,
the first variation is linear with respect to the estimated
parameters’ variation. Then, by relying on (19), the search
of local minima of (12) can be performed by employing
a gradient decent algorithm. To achieve this goal, there
are two main difficulties to be tackled. First, one should
make sure that the algorithm does not get stuck in a local
minimum. This is achieved by one the descent algorithms
we propose in Section IV-C. Second, the algorithm needs
to ensure the nonnegativity of parameters estimates; this is
done augmenting the cost function by a Tikhonov’s term.

III. MAIN RESULTS

This section illustrates how the gradient of the cost
functional defined in (12) can be determined analytically and
assesses the well-posedness of the considered wave equation.
Parameters identifiability issues are discussed at the end of
this section.
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A. Computation of the Gradient of the Cost Functional

The following result provides, under suitable conditions,
an expression of the derivative of the cost functional.

Theorem 3.1: Assume that:
(i) û = Σu(p̂),

(ii) λ = Σλ(p̂, û),
(iii) λ1(t) = λ(1, t),
(iv) and λ2(t) = λ(0, t),

where λ = Σλ(p̂, û) is the solution to the following system

λtt(x, t)− (λx(x, t)â(x))x − λt(x, t)q̂(x) = 0, (20a)
m̂1λtt(1, t) = −â(1)λx(1, t) + q̂1λt(1, t)

+ (u(1, t)− û(1, t)), (20b)
m̂2λtt(0, t) = â(0)λx(0, t) + q̂2λt(0, t)

+ (u(0, t)− û(0, t)), (20c)
λ(·, T ) = λt(·, T ) = 0. (20d)

Then, the first variation of J(pL) defined in (12) is given by

δJ(pL, δpL) = 〈dJ1−2, δp̂〉 , (21)

in which

dJ1−2(x) :=



∫ T
0
λx(x, t)ûx(x, t)dt∫ T

0
λ(x, t)ût(x, t)dt

−
∫ T
0
λt(1, t)ût(1, t)dt

−
∫ T
0
λt(0, t)ût(0, t)dt∫ T

0
λ(1, t)ût(1, t)dt∫ T

0
λ(0, t)ût(0, t)dt

−
∫ T
0
λ(1, t)U(t)dt


, (22)

is the derivative of the cost functional and belongs to the
parameter space defined in (2). �

Remark 1: Notice that the adjoint system (20) represents
a wave equation backward in time. The proof of Theorem 3.1
is given in Appendix A. ◦

Once the derivative of the cost function is available, one
can use gradient descent technique to find a minimum of the
cost functional. If the cost functional is convex this minimum
is unique. In general, parameters identification from noisy
data gives rise to a ill-posed problems. A common technique
used to solve ill-posed problems is the so-called Tikhonov
regulation. This main idea underlying this technique consists
of introducing some additional constraints to achieve the
convergence of the optimization algorithm. In our setting,
when using experimental data, the use of a gradient descent
algorithm may give rise to negative values for the estimates
of the parameter. This is not consistent with the physical
description of the system (see [22, Chapter 9] for more
details). To overcome this drawback, we add constraints on
the minimization problem to penalize the cost function when
parameter estimates get close to zero. There exist several
methods to perform constrained optimization (see e.g. [3]
and references within). In this paper, to limit the resulting

computational complexity, we consider the following addi-
tional penality term when parameters get close to zero:

Proposition 3.1: Consider

J3(p̂) :=ca

∫ 1

0

e
1

â(x) dx+ cq

∫ 1

0

e
1

q̂(x) dx

+ cm1
e

1
m̂1 + cm2

e
1
m̂2 + cq1e

1
q̂1

+ cq2e
1
q̂2 + cσe

1
σ̂ . (23)

The first variation of J3 is

δJ3(p̂) = 〈dJ3, δp̂〉 , (24)

in which

dJ3(x) :=



ca(− 1
â(x)2 )e

1
â(x)

cq(− 1
q̂(x)2 )e

1
q̂(x)

cm1
(− 1

m̂2
1
)e

1
m̂1

cm2
(− 1

m̂2
2
)e

1
m̂2

cq1(− 1
q̂21

)e
1
q̂1

cq2(− 1
q̂22

)e
1
q̂2

cσ(− 1
σ̂2 )e

1
σ̂


. (25)

�
The proof of this result follows from a direct computation
of the first variation of J3.

By combining Theorem 3.1 and Proposition 3.1, one
obtain the following result.

Corollary 3.1: Let

Jr(pL) := J1(y, ŷ) + J2(pL) + J3(p̂), (26)

in which J1, J2, and J3 are defined in (13), (14), and (23).
Assume that items (i)-(iv) in Theorem 3.1 hold. Then the first
variation of Jr is equal to

δJr(pL) = 〈dJ1−2 + dJ3, δp̂〉 . (27)

�

B. Well-posedness of considered wave equations

In this section, we state that the systems (4) and (20) are
well-posed. Therefore, the formal computation of the cost J
defined in (12) is meaningful.

Let us consider the following wave equation
vtt(x, t) = (a(x)vx(x, t))x − q(x)vt(x, t), (28a)
m1vtt(1, t) = U1(t)− a(1)vx(1, t)− q1vt(1, t), (28b)
m2vtt(0, t) = a(0)vx(0, t)− q2vt(0, t) + U2(t), (28c)
v(·, 0) = v0, v(·, 0) = vt0, (28d)

and observe that, up to a change of variable, both systems
(4), and (20) can be rewritten as (28). More specifically, (4)
corresponds to (28) with U1(t) = U(t) and U2(t) = 0, while
(20) corresponds to (28) with U1(t) = u(1, T−t)−û(1, T−
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t) and U2(t) = u(1, T − t) − û(1, T − t). Let us consider
the following space

H := H1(0, 1)× L2(0, 1)× R2. (29)

It is straightforward to check that H is an Hilbert space for
the following scalar product, ∀z, g ∈ H,

〈z, g〉H :=

∫ 1

0

[z1(x)g1(x) + a(x)z′1(x)g′1(x)

+ z2(x)g2(x)]dx+m1z3g3 +m2z4g4. (30)

We recall that a(·), m1, and m2 are strictly positive. Let us
define the following unbounded operator,

∀z :=


z1
z2
z3
z4

 ∈ D(A), Az :=



−z2
−(az′1)′ + qz2

a(1) z′1(1) + q1z3
m1

q2z4 − a(0) z′1(0)

m2


, (31)

where

D(A) :=

{
z ∈ H2(0, 1)×H1(0, 1)× R2;

z3 = z2(1), z4 = z2(0)

}
. (32)

and consider the following abstract Cauchy problem:{
ż(t) +Az(t) = U(t) (33a)
z(0) = z0, (33b)

where
U(t) :=

[
0 0 U1(t) U2(t)

]T
. (34)

The abstract Cauchy problem (33) is an alternative represen-
tation of (28). In particular, the regularity of z and v(·, t) is
illustrated in the result given next.

Theorem 3.2: Consider H, A, and D(A) defined re-
spectively in (29), (31), and (32) with m1,m2 ∈ (0,∞),
q1, q2 ∈ R. The following items hold:
(a) Consider

(i) U1, U2 ∈ C1([0,∞);R),
(ii) a ∈ H1([0, 1]; (0,∞)),

(iii) q ∈ L2([0, 1];R).
For all initial data z0 ∈ D(A), there exists a unique
solution to the abstract problem (33), z(t) ∈ D(A),
∀t > 0. Moreover, denoting v = z1, one has:

v ∈ C0([0,∞);H2(0, 1)) ∩ C1([0,∞);H1(0, 1)),

v(1, ·), v(0, ·) ∈ C2([0,∞);R).

(b) Consider
(i) U1, U2 ∈ L2([0,∞);R),

(ii) a ∈ L2([0, 1]; (0,∞)),
(iii) q ∈ L2([0, 1];R).

For all initial data X0 ∈ H, there exists a mild solution
z(t) ∈ H to the abstract problem (33) given by

z(t) = S(t)z0, (35)

in which S is the C0-semigroup generated by the
unbounded operator A. Moreover, it holds

v ∈ C0([0,∞);H1(0, 1)) ∩ C1([0,∞);L2(0, 1)).

�

C. Identifiability of the parameters

This section deals with the identifiability of the parameters
from boundary measurements. To establish this property, we
rely on the uniqueness of the solutions to the considered
inverse problem. As a first step towards this goal, next we
show that parameters are identifiable from state measure-
ments.

Theorem 3.3: System (33) is state identifiable from
non-zero initial conditions. More precisely, if u − û =
0, (u0, u1) 6= (0, 0), then p̂ = p. Moreover, (33) is
state identifiable for zero initial conditions under excitation.
Namely, if u − û = 0, (u0, u1) = (0, 0), σ 6= 0,
∃t0 ∈ [0, T ], U(t0) 6= 0, then p̂ = p . �

The proof of Theorem 3.3 is given in Appendix C.

Definition 3.1: Let z0 ∈ H and y0(·, z0) be the output
of (33) from the initial condition z0 with zero input. System
(33) is said to be observable if z0 6= ž0 implies that there
exists t1 ∈ [0,∞) such that y0(t, z0) 6= y0(t, ž0).
The result given next provides some insights on the observ-
ability of (33).

Theorem 3.4: System (33) is observable from the output
y defined in (5). �
The proof of Theorem 3.4 is given in Appendix D.

Building upon the above results, the following corollary
can be established.

Corollary 3.2: Under the assumptions of Theorems 3.3
and 3.4, the parameters of the wave equation are identifiable
from the position measurement at any boundary. More
precisely

J(pL) = 0⇒ p̂ = p. (36)

�
Proof : The proof is a direct application of The-

orems 3.3 and 3.4. In particular, by building upon the
following obvious implication

J = 0⇒ y − ŷ = 0 (37)

from Theorem 3.4 one gets

y − ŷ = 0⇒ u = û. (38)

Finally, from Theorem 3.3, it holds

u = û⇒ p = p̂. (39)

This concludes the proof. �
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IV. GRADIENT DESCENT ALGORITHMS

In this part, we present three algorithms that can be used
to carry out the proposed parameter identification procedure.
These algorithms are based on gradient descent methods; see
[23] for an introduction on these methods. The first two are
not used on the experimental data but only on the numerical
simulations; see Section IV-D for more details on that.

By discretizing (21), one gets

J(pL[k + 1])− J(pL[k]) = 〈dJ, ∆p̂[k]〉 . (40)

Thus, the update of the parameter estimation follows

p̂[k + 1] = ∆p̂[k] + p̂[k]. (41)

All optimization problems can be reduced to the computation
of ∆p̂[k] such that J(pL[k + 1]) − J(pL[k]) < 0. Several
sophisticated optimization algorithms exist to achieve this
goal. In particular, accelerated/momentum algorithm, e.g.
Heavy ball method and Nesterov acceleration (see, e.g.,[5]).
In this paper, first we present the common gradient descent
algorithm. Then, an algorithm refereed to as Adagrad is
illustrated. Finally, we suggest a new descent strategy, this
third algorithm is referred to as Geograd. A comparative
study of the behavior of these three algorithms is given in
Section IV-D through numerical simulations for the consid-
ered wave equation.

A. Batch gradient descent [23]

For the batch gradient descent, the update of the param-
eters is

∆p̂[k] = −αdJ. (42)

in which α is a positive constant. Note that in this case (40)
becomes

J(pL[k + 1])− J(pL[k]) = −α ‖dJ‖2 . (43)

B. Adagrad algorithm [23]

The idea behind the Adagrad algorithm is to adapt α to
each parameter. The update law is

∆p̂[k] = − α√
G[k] + ε

dJ, (44)

in which{
G[k + 1] = µG[k] + (1− µ)diag(dJ)2, (45a)
G[0] = 0. (45b)

In (44), ε is a term to avoid the division by zero (equal
to 10−8 in this paper), diag(dJ) is the diagonal matrix
representation of the vector dJ , µ is taken equal to 1 for
the Adagrad algorithm, otherwise the algorithm with µ 6= 1
is actually referred to as RMSprop (see [23]).

C. The suggested heuristic: Geograd

The idea of the algorithm we suggested is to impose the
decay rate of the cost function to decrease geometrically.
Namely

J(pL[k + 1]) = κJ(pL[k]), (46)

in which κ ∈ (0, 1). This is associated with the following
update law

∆gp̂[k] = − (1− κ)J(pL[k])dJ

‖dJ‖2
. (47)

Similarly as to the Adagrad algorithm presented in Sec-
tion IV-B, one can avoid any division by zero by adding
a positive term in the denominator of (47). We suggest an
alternative, which is to bound ∆gp̂[k] using the following
function

N(x) =
x

1 + ε ‖x‖∞
. (48)

For x ∈ R it holds N(x) ∈ [− 1
ε ,

1
ε ]. Defining ∆p̂[k] =

N(∆gp̂[k]) yields to

∆p̂[k] = − (1− κ)J(pL[k])dJ

‖dJ‖2 + ε(1− κ)J ‖dJ‖∞
. (49)

What is interesting about this update law is the fact that
ε defines the interval where the step belongs, and κ is the
decay rate of the cost function we desire. When dJ goes to
zero and J does not, the algorithm can leave the minimum
(or maximun). Moreover, if the global minimum is not zero,
the algorithm jump endlessly.

Remark 2: When considering multiple parameters, it is
important to tune the different values of ε for each parameter.
This can be done by taking ε to be a vector, with the only
caveat of interpreting the division in (49) in a element-wise
fashion. ◦

Next, we present the classical descent algorithm based
on the adjoint system. This is presented in Algorithm 1.
Note however that Algorithm 1 might not converge when
using Geograd algorithm. This is typically the case when
one has no a priori knowledge of the cost function (e.g.
it can be nonconvex, with nonconvex local minima,...). To
overcome this problem, we provide an alternative algorithm,
i.e., Algorithm 2 that is structurally stable. In order words,
the algorithm imposes that J [p̂[i]] 6 J [p̂[0]] and that the set
of global minima is Lyapunov stable. The idea is simple: at
each iteration we test if J [p̂[i]] 6 J [p̂[0]] if not, we rescale
the step parameter ∆p̂ by dividing it by two and recompute
J [i]. This structurally imposes Lyapunov stability with J as
Lyapunov functional. The main drawback of having imposed
structural stability is that at least a test at each iteration is
required. This leads to a computationally greedier algorithm.

D. Parameter estimations on simulated data

This section illustrates the estimation of the parameter a(·)
on simulated data, when all the remaining parameters are
known. This allows us to compare the proposed approach
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Algorithm 1: Adjoint method for finding a mini-
mum

Input : A set of measured data Y and the
associate input U

Output: An optimized value of the parameters p̂[b]

1 We define two functions corresponding to solving
the forward and backward systems;

2 Function Σu is
3 û = Σu(p̂, U)); /* Forward system */
4 return û;

5 Function Σλ is
6 λ = Σλ(p̂, Y, û)); /* Backward system */
7 return λ;

8 We set an initial guess p̂[0] and a fixed number of
iteration n > 1;

9 for i← 0 to n− 1 do
10 û[i] = Σu(p̂[i], U);
11 We compute the value of the cost J [i];
12 λ[i] = Σλ(p̂[i], Y, û[i]);
13 According to the chosen strategy (batch gradient,

Adagrad, Geograd,...)
14 We compute the value of the step ∆p̂[i];
15 p[i+ 1] = ∆p̂[i] + p[i]; /* We update. */

16 We get the argmin of the cost b = argmin(J);
17 return p̂[b];

with respect to existing other approaches focusing on the
estimation of a(·), e.g. [26] and [18]. Numerical simulations
are carried out via a simple finite difference scheme in space
and a classic ODE solver for the time.

Remark 3: Notice that the strength of proposed method-
ology is that the computation of the derivative of the cost
function does not depend on the numerical scheme. On the
other hand, the use of more sophisticated numerical schemes
might lead to better results. ◦

The input is taken as

U(t) = e−400(t−0.1)
2

. (50)

In this numerical simulation, we estimate a(·), which is
selected as

a(x) = 1 + e−25(x−0.5)
2

. (51)

The number of spatial points for the estimation and adjoint
system is N = 100. The number of spatial points, for the
estimated parameter a, is N0 = 600. The time horizon is
T = 3, the number of time points for all systems is M =
3000. We consider the case where only measurements at
x = 1 are available, yielding the adjoint system (20) with
the input u(1, t)− û(1, t). The other parameters are known
and equal to q(·) = q1 = q2 = 0, m1 = m2 = σ = 1.

Algorithm 2: Adjoint method for finding a mini-
mum with enforced stability

Input : A set of measured data Y and the
associate input U

Output: An optimized value of the parameters p̂[b]

1 We set an initial guess p̂[0], a fixed number of
iteration n > 1 and a fixed number M > 1 of
loops to enforce the stability;

2 û[0] = Σu(p̂[0], U));
3 We compute the value of the cost J [0];
4 λ[0] = Σλ(p̂[0], Y, û[0]));
5 We compute the value of the step ∆p̂[0];
6 for i← 1 to n− 1 do
7 p[i] = ∆p̂[i− 1] + p[i− 1];
8 û[i] = Σu(p̂[i], U));
9 We compute the value of the cost J [i];

10 m = 1;
11 while J [i] > J [0] & m < M do
12 ∆p̂[i− 1] = ∆p̂[i− 1]/2 ;
13 p[i] = ∆p̂[i− 1] + p[i− 1];
14 û[i] = Σu(p̂[i], U));
15 We compute the new value of the cost J [i];
16 m = m+ 1;

17 if m 6M then
18 break; /* Security break */

19 λ[i] = Σλ(p̂[i], Y, û[i]));
20 According to the chosen strategy (batch gradient,

Adagrad, Geograd,...)
21 We compute the value of the step ∆p̂[i];

22 We get the argmin of the cost b = argmin(J);
23 return p̂[b];

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

Fig. 3. Estimation of parameter a(·) using the algorithm (49) for 200
iterations.
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Fig. 4. Estimation of parameter a(·) using the algorithm (42) for 200
iterations.
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Fig. 5. Estimation of parameter a(·) using the algorithm (44) for 200
iteration.
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Fig. 6. Evolution of the cost function for Figures 3, 4, and 5 in function
of iterations.

In Figure 6 the evolution of the cost function logarithm
is displayed with respect to the iteration. Considering the
minimum value, Geograd algorithm is outperforming both
other algorithms see Figure 3. With this set of experiment
we can conclude that the optimization problem considered
in this part is nonconvex. Indeed let us compare Figure 3 to
Figure 4 or Figure 5 final estimation. Adagrad and Gradient
have a smaller misfit value that Geograd algorithm, but the
estimation of a(·) is better for Geograd algorithm even for
its last value.

Comparing our result with respect to [26] and [18], we
obtain a closer result for the estimation of a(·) with in less
iteration.

V. EXPERIMENTAL RESULTS

In this section we illustrate the application of the proposed
methodology on the experimental platform. The experimen-
tal data are obtained from a step response of 1.7 magnitude.

It corresponds to the largest input that experimental setup
can tolerate. The measured output is the position at both
ends, in other words, the table position and the bit position,
see Figure 1. The position of the bit is directly measured
by an incremental encoder, while the position of the table
is obtained by direct integration of speed measurements
provides by a tachometer. In the experiments, measurements
sampling rate is set to 1 ms.

Specifically, we execute the proposed estimation algorithm
on data obtained for a step response with amplitude 1.7
Ampere between t ∈ [0, 5] s. The procedure is applied for
two initial guesses of the parameters. The values of the initial
guesses are given respectively in Table I and Table II. We
consider the cost function in Corollary 3.1. The regulation
parameter values (penalty terms) are given in Table III.
The Geograd tuning parameters are given in Table III. The
number of spatial points used for the numerical scheme is
N = 60. The time evolution of the input U is given in
Figure 7.

5 10 15 20

0

0.5

1

1.5

2

Time [s]

In
p
u
t

U(t)

Fig. 7. Input applied to the system.

The velocity responses of the actual system and of their
estimates are depicted in Figures 10 and 11 for the first
setup of initial parameters, and in Figures 17 and 18 for the
second setup of initial parameters. The associated position
responses are given in Figures 13, 14, 20, and 21. The
parameter estimation associated with these responses are
given in Figures 8, 9, 15, and 16, and also in Tables I and
xII. For each initial guess, the proposed estimation algorithm
has been applied using data associated with two intervals of
time [0, T ], one with T = 5 and one for T = 10. The
time evolution of the cost function for different iterations of
the algorithms is given in Figures 14 and 21. For all these
simulations, Algorithm 2 has been used.
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â[b](·), T = 10

Fig. 8. Estimation of parameter a(·), for initial guess 1.
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Fig. 9. Estimation of parameter q(·), for initial guess 1.
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Fig. 10. Real data on the velocity of the table and identified system
responses, for initial guess 1.
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Fig. 11. Bit velocity real data and identified system responses, for initial
guess 1.
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Fig. 12. Evolution of the cost function versus the procedure iteration, for
initial guess 1.
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Fig. 13. Real data on the position of the table and identified system
responses, for initial guess 1.
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Fig. 14. Bit position real data and identified system responses, for initial
guess 1.
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Fig. 15. Estimation of parameter a(·), for initial guess 2.
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Fig. 16. Estimation of parameter q(·), for initial guess 2.
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ût[0](1)
ut(1)
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Fig. 17. Real data on the velocity of the table and identified system
responses, for initial guess 2.
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Fig. 18. Bit velocity real data and identified system responses, for initial
guess 2.
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Fig. 19. Evolution of the cost function versus the procedure iteration, for
initial guess 2.
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Fig. 20. Real data on the position of the table and identified system
responses, for initial guess 2.

Initial guess 1 t ∈ [0, 5] t ∈ [0, 10]

[0] [b] [n] [b] [n]

â[i](·) 400 Fig 8 Fig 8
q̂[i](·) 10 Fig 9 Fig 9
m̂1[i] 10 10.6 10.6 8.0 8.0
m̂2[i] 10 3.9 3.9 0.1 0.1
q̂1[i] 10 0.1 0.1 1.7 1.7
q̂2[i] 10 18.2 18.2 15.2 15.2
σ̂[i] 100 162.2 162.2 145.4 145.4

TABLE I
PARAMETER ESTIMATION VALUES FOR DIFFERENT ITERATION,

INITIAL [0], MINIMAL COST [b], AND FINAL [n].

Initial guess 2 t ∈ [0, 5] t ∈ [0, 10]

[0] [b] [n] [b] [n]

â[i](·) 300 Fig 8 Fig 15
q̂[i](·) 0.1 Fig 9 Fig 16
m̂1[i] 15 11.9 11.9 11.2 11.2
m̂2[i] 1 2.7 2.8 0.1 0.1
q̂1[i] 0.1 3.4 3.4 2.6 2.6
q̂2[i] 20 21.0 20.0 26.5 26.5
σ̂[i] 200 166.5 167.4 189.0 189.2

TABLE II
PARAMETER ESTIMATION VALUES FOR DIFFERENT ITERATION,

INITIAL [0], MINIMAL COST [b], AND FINAL [n].
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Fig. 21. Bit position real data and identified system responses, for initial
guess 2.

εa 1 ca 10−10

εq 100 cq 10−10

εm1 100 cm1 10−10

εm2 100 cm2 10−10

εq1 100 cq1 10−10

εq2 100 cq2 10−10

εσ 1 cσ 0

ε =
[
εa1N εq1N εm1 εm2 εq1 εq2 εσ

]
, κ = 0.5.

where 1N is a vector full of 1 of length N .
TABLE III

GEOGRAD TUNING PARAMETER VALUES, AND REGULARIZATION
COROLLARY 3.1 PARAMETER VALUES.

The position responses in Figures 13, 14, 20, and 21 for
t ∈ [10, 20] are not used in the estimation procedure. These
data validates the estimated model a posteriori. For t ∈ [0, 5]
or t ∈ [0, 10] we see that the proposed procedure allows to
fit the trajectory of the considered model with experimental
data. Then for t ∈ [10, 20] we see that the trajectory of
the model also fit with validation data. Experimental results
show that the proposed algorithm yields an accurate model
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of the actual system, despite the presence of nonlinear
unmodeled dynamics (these nonlinearities are visible in
Figure 10: the response from 0 to 10 rad/s is not symmetric
compared to the one from 10 to 0). Moreover our estimation
is numerically very efficient, even without performing heavy
and sophisticated data filtering. The only used filters are
hardware and inherent to the experiment.

VI. CONCLUSION

In this paper, we proposed an algorithm for parameter
identification of a wave equation from experimental bound-
ary data. The proposed approach relies on the use of calculus
of variation and functional analysis tools. In particular,
we recast the the parameter identification problem as a
minimization of a misfit functional. This misfit functional
represents the square of an L2 error between data and
the boundary responses of a specific wave equation. The
resulting (infinite dimensional) optimization is solved via
an iterative algorithm that can jump between local minima.
Despite its simplicity, the proposed algorithm was shown
to be very efficient for solving the parameter identification
problem in numerical simulations and on actual experimental
data. As a future work, we plant to explore the use of on
nonconvex optimization algorithms as the so-called stochas-
tic gradient descent algorithm; see [23], [12].

APPENDIX

A. Calculus of variations and proof of Theorem 3.1

Before proving Theorem 3.1, let us first consider an
example of calculus of variations.

Example A.1: Let us consider the following scalar
evolution system (see [15]).

ẏ(t) = ay(t) + bu(t), y(0) = y0. (52)

Let

J(y, u, ŷ, λ,â, b̂) =

∫ T

0

(y(t)− ŷ(t))2dt

+

∫ T

0

λ(t)( ˙̂y(t)− âŷ(t)− b̂u(t))dt. (53)

The definition of the first variation of J with respect to
(estimate parameters) ŷ, λ, â and b̂ is

δJ(y, u, ŷ, δŷ, λ, δλ, â, δâ, b̂, δb̂) =

J(y, u, ŷ + δŷ, λ+ δλ, â+ δâ, b̂+ δb̂) (54)

− J(y, u, ŷ, λ, â, b̂) +O(‖δŷ‖2 + ‖δλ‖2 + ‖δâ‖2 +
∥∥∥δb̂∥∥∥2).

One computes, using the previous definition and one inte-
gration by parts, that

δJ =

∫ T

0

−(y(t)− ŷ(t))2dt

+

∫ T

0

δλ(t)( ˙̂y(t)− âŷ(t)− b̂u(t))dt

+

∫ T

0

δŷ(t)(−λ̇(t)− âδŷ(t))dt+ [λ(t)δŷ(t)]
T
t=0

+

∫ T

0

λ(t)(−ŷ(t)δâ− u(t)δb̂). (55)

As the initial condition is fixed ŷ(0) = y0, then we do not
study the resulting variation, i.e., δŷ(0) = 0. Therefore one
gets that if

• ˙̂y(t) = âŷ(t) + b̂u(t), ŷ(0) = y0,
• λ̇(t) = −âλ(t)− (y(t)− ŷ(t)), λ(T ) = 0,

then the first variation of J is

δJ =

∫ T

0

λ(t)(−ŷ(t)δâ− u(t)δb̂)dt

=

〈
dJ,

[
δâ

δb̂

]〉
. (56)

with dJ =

[∫ T
0
−λ(t)ŷ(t)dt∫ T

0
−λ(t)u(t)dt

]
. F

Similar arguments are used to obtain the following proof.
Abusively we called the first variation simply the variation.

Proof of Theorem 3.1: Let us compute the variation of
J defined in (12)

δJ =δJ1 + δJ2. (57)

From this point we drop the obvious dependence of the
different variables. One gets

δJ1 =

∫ T

0

−((u(0, t)− û(0, t))δû(0, t)

+ (u(1, t)− û(1, t))δû(1, t))dt. (58)

Note that δu(·, t) = 0. One computes the variations of J2

δJ2 =

∫ T

0

(∫ 1

0

[(ûtt − (âûx)x + q̂ût)δλ+ λδûtt

− λδ(âûx)x + λq̂δût + λûtδq̂]dx+ (m̂1ûtt(1, t)

+ â(1)ûx(1, t) + q̂1ût(1, t)− σ̂U)δλ1

+ λ1(m̂1δûtt(1, t) + ûtt(1, t)δm̂1 + â(1)δûx(1, t)

+ ûx(1, t)δâ(1) + q̂1δût(1, t) + ût(1, t)δq̂1 − Uδσ̂)

+ (m̂2ûtt(0, t)− â(0)ûx(0, t) + q̂2ût(0, t))δλ2

+ λ2(m̂2δûtt(0, t) + ûtt(0, t)δm̂2 − â(0)δûx(0, t)

− ûx(0, t)δâ(0) + q̂2δût(0, t) + ût(0, t)δq̂2)

)
dt.

(59)
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Using integrations by parts, it yields∫ T

0

λδûttdt =
[
λδût − λtδû

]T
t=0

+

∫ T

0

λttδûdt, (60)∫ T

0

λq̂δûtdt =

[
λq̂δû

]T
t=0

+

∫ T

0

−(λq̂)tδûdt, (61)∫ T

0

λ1δûtt(1, t)dt =

[
λ1δût(1, t)− λ̇1δû(1, t)

]T
t=0

+

∫ T

0

λ̈1δû(0, t)dt, (62)

∫ T

0

λ1q̂1ût(1, t)dt =

[
λ1q̂1δû(1, t)

]T
t=0

+

∫ T

0

−(λ1q̂1)tδû(1, t)dt, (63)∫ 1

0

−λδ(âûx)xdx =
[
− λδâûx

]1
x=0

+

∫ 1

0

λxδâûxdt

=

[
− λδâûx + λxâδû

]1
x=0

+

∫ 1

0

λxûxδâdx+

∫ 1

0

−(λxâ)xδûdx. (64)

Therefore one obtains

δJ2 =

∫ T

0

(∫ 1

0

[(ûtt − (âûx)x + q̂ût)δλ+ λûtδq̂

+ λxûxδâ+ (λtt − (λxâ)x − (λq̂)t)δû]dx

+ (m̂1ûtt(1, t) + â(1)ûx(1, t) + q̂1ût(1, t)− σ̂U)δλ1

+ (m̂2ûtt(0, t)− â(0)ûx(0, t) + q̂2ût(0, t))δλ2

+ λ1(ûtt(1, t)δm̂1 + â(1)δûx(1, t) + ûx(1, t)δâ(1)

+ ût(1, t)δq̂1 − Uδσ̂)

+ λ2(ûtt(0, t)δm̂2 − â(0)δûx(0, t)− ûx(0, t)δâ(0)

+ ût(0, t)δq̂2) + (m̂1λ̈1

− (λ1q̂1)t)δû(1, t) + (m̂2λ̈2 − (λ2q̂2)t)δû(0, t)

)
dt

+

∫ 1

0

[
λδût − λtδû+ λq̂δû

]T
t=0

dx (65)

+

∫ T

0

[
− λâδux + λxâδû

]1
x=0

dt

+

[
λ1m̂1δût(1, t)− λ̇1m̂1δû(1, t) + λ1q̂1δû(1, t)

+ λ2m̂2δût(0, t)− λ̇2m̂2δû(0, t) + λ2q̂2δû(0, t)

]T
t=0

.

Note that due to the fact that the initial conditions are
known δû(·, 0) = δût(·, 0) = 0. The idea is to get the
variations of J = J1 + J2 with respect to the variation
of the parameters. Therefore we enforce the factor of other
variation to be equal to zero. In other words, taking the
factor of δλ, δλ1, and δλ2 to be equal to zero is equivalent
to û = Σu(p̂). Moreover taking the factor of δû, δûx(1, t),

δûx(0, t), δût(·, t), and δû(·, t) equals to zero is equivalent
to
λtt(x, t)− (λx(x, t)â(x))x − (λ(x, t)q̂(x))t = 0, (66a)
λ1(t)â(1)− λ(1, t)â(1) = 0, (66b)
−λ2(t)â(0) + λ(0, t)â(0) = 0, (66c)
λ(·, T ) = λt(·, T ) = 0. (66d)

Imposing the factor of δû(1, t), δût(1, T ), and δû(1, T ) to
be zero is equivalent to

0 = −(u(1, t)− û(1, t)) + λx(1, t)â(1)

+ m̂1λ̈1(t)− (λ1(t)q̂1)t, (67a)
λ1(T ) = 0, (67b)
λ̇1(T ) = 0. (67c)

Ensuring that the factor of δû(0, t), δût(0, T ), and δû(0, T )
is zero is equivalent to

0 = −(u(0, t)− û(0, t))− λx(0, t)â(0)

+ m̂2λ̈2(t)− (λ2(t)q̂2)t, (68a)
λ2(T ) = 0, (68b)
λ̇2(T ) = 0. (68c)

Consider conjointly (66)-(68), these systems are equivalent
to

(i) λ = Σλ(p̂, û) (λ solution to (20)),
(ii) λ1(t) = λ(1, t),

(iii) and λ2(t) = λ(0, t).
The condition λ1(t) = λ(1, t) implies that the factor of â(1)
is equal to zero. Moreover λ2(t) = λ(0, t) implies that the
factor of â(0) is equal to zero. Then the variation of J can
be written as

δJ =

〈


∫ T
0
λx(x, t)ûx(x, t)dt∫ T

0
λ(x, t)ût(x, t)dt∫ T

0
λ1(t)ûtt(1, t)dt∫ T

0
λ2(t)ûtt(0, t)dt∫ T

0
λ1(t)ût(1, t)dt∫ T

0
λ2(t)ût(0, t)dt

−
∫ T
0
λ1(t)U(t)dt


,



δâ(x)
δq̂(x)
δm̂1

δm̂2

δq̂1
δq̂2
δσ̂


〉
. (69)

Using integrations by parts on the factor of δm̂1 and δm̂1

together with (4d), (67b), and (68b) one gets (22). This
concludes the proof of Theorem 3.1. �

B. Proof of Theorem 3.2
The idea of the proof is to decompose the operator A

defined in (31) into one m-accretive part and a remaining
part, then to perform a bijective change of variable which
cancels the remaining part. Finally, we conclude using the
following theorem

Theorem A.1: [Inhomogenous Abstract Problem, [Theo-
rem 7.10 on [2] p. 198]]

Consider, in a Banach space E, the problem
dX

dt
(t) +AX(t) = f(t), (70a)

X(0) = X0. (70b)
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Assume that A is m-accretive (equivalent to maximal mono-
tone in a Hilbert space). Then for every X0 ∈ D

(
A
)

and
every f ∈ C1([0, T ]; E), there exists a unique solution X to
(70) with

X ∈ C1([0, T ]; E) ∩ C([0, T ];D
(
A
)
). (71)

�
Now consider the following operator

∀z ∈ D(G), Gz =



−z2
−(az′1)′ + z2 − z1

a(1) z′1(1)

m1−a(0) z′1(0)

m2


, (72)

and the following matrix

H =


0 0 0 0
1 −q − 1 0 0
0 0 − q1

m1
0

0 0 0 − q2
m2

 . (73)

The domain of G is equal to the domain of A. One gets

A = G +H. (74)

G is the m-accretive part, this is established in the following
lemma

Lemma A.1: The linear unbounded operator G defined
in (72) is maximal monotone on H defined in (29). �

Proof : Considering the definition of the scalar product
(30), one gets

〈z, Gz〉H =

∫ 1

0

[z1z2 − z′1z′2 + z2(−(az′1)′ + z2 − z1)]dx

+ a(1)z3z
′
1(1)− a(0)z4z

′
1(0), (75)

using the fact that z ∈ D(A), one obtains

〈z, Gz〉H =

∫ 1

0

z22dx > 0. (76)

Thus the operator G is monotone (see [2] Chapter 7 on
Page 181). In addition if we establish that

R(I + G) = H, (77)

then the operator G is maximal monotone (see [2] Chapter 7
on Page 181, R stands for the range of the operator). Let
y ∈ H, we have to solve

z ∈ D(A), z + Gz = y, (78)

which means that

z1 − z2 =y1, (79)
z2 − (az′1)′ + z2 − z1 =y2, (80)

m1z3 + a(1)z′1(1) =m1y3, (81)
m2z4 − a(0)z′1(0) =m2y4, (82)

using the fact that z ∈ D(A) one gets

z1 − (az′1)′ = 2y1 + y2, (83)
a(1)z′1(1) +m1z1(1) = m1(y3 + y1(1)), (84)
−a(0)z′1(0) +m2z1(0) = m2(y4 + y1(0)). (85)

This is a classical stationary problem (e.g. see [2]) with
Robin’s boundaries conditions, using standard result (as done
in [2] p. 226 Example 6) one gets that as 2y1+y2 ∈ L2(0, 1),
(83)-(85) has a unique solution z1 ∈ H2(0, 1). Now one can
check that the element z = (z1, z2, z3, z4) with

z1 is solution to (83)-(85), (86a)
z2 = z1 − y1, (86b)

z3 = y3 +
−a(1)z′1(1)

m1
, (86c)

z4 = y4 +
a(0)z′1(0)

m2
, (86d)

satisfies (79)-(82). Moreover using (83)-(85) on (86) one gets
that z satisfying (86) is in D(A). �

Now, we are ready to state the proof of the well-posedness
of (33). Note that the fact that G is maximal monotone
implies that D(A) is dense in H (i.e., D(A) = H).

Proof of Theorem 3.2: Using the bijective change of
variable

ze(t) = z(t)eHt, (87)

z is solution to (33) is equivalent to, ze ∈ D
(
A
)

is solution
to 

d

dt
ze(t) + Gze(t) = U(t)eHt, (88a)

ze(0) = z0, (88b)

where H is defined in (73) and G is defined in (72).
From Lemma A.1, using Theorem A.1 on (88), and the

change of variable (87), one establishes (i). Using argument
of density of D(A) in H, and C0-semigroups theory one
obtains (ii).

Note that we refer the reader to [14], [21] for the notion
mild solutions. Moreover part of the proof are inspired from
[4] and [6] which in turn originates form [25]. �

C. State identifiability

We only prove the second assertion (ii) of Theorem 3.3,
the other item can be established by following similar
arguments.

Proof of Theorem 3.3 (ii):
The proof is based on showing the converse. Consider that

p̂ 6= p. (89)

We study the dynamics of the difference,

ũ(x, t) = u(x, t)− û(x, t). (90)

In the abstract form, we get
˙̃z(t) +A(p)z(t)−A(p̂)ẑ(t) = U(p, t)

−U(p̂, t), (91a)
z̃(0) = 0. (91b)
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One gets using the linearity of the operator A:

˙̃z(t) + Ã(p̂, p)z(t) +A(p̂)z̃(t) = Ũ(σ, σ̂, t). (92)

By continuity of the C0-semigroup associated with the
difference dynamics, we have that

z̃ = 0⇔ ˙̃z(t) = 0, ∀t ∈ (0, T ]. (93)

First consider the case where σ = σ̂, one gets

Ũ(σ, σ, t) = 0. (94)

We recall that σ 6= 0, this implies that z 6= 0, i.e., there exist
several time ti such that z(ti) 6= 0. We take the first one,
and denote it t1, by continuity one gets

˙̃z(t1) + Ã(p̂, p)z(t1) = 0, (95)

therefore, z = 0 is equivalent to Ã(p̂, p) := A(p)−A(p̂) =
0. It follows

Ã(p̂, p) = 0⇔ p̂ = p. (96)

This concludes the first case.
Now consider that σ 6= σ̂, we still have that z 6= 0 as

σ 6= 0 and ∃t0 ∈ [0, T ], U(t0) 6= 0. We consider the first
time such that U is not equal to zero, we denote it t2, by
continuity of the C0-semigroups, we have

˙̃z(t2) = Ũ(σ, σ̂, t2). (97)

It is easy to show that Ũ(σ, σ̂, t2) := U(σ, t2)−U(σ, t2) = 0
is equivalent to σ = σ̂. This concludes the second and last
case, and also the proof of Theorem 3.3. �

D. Boundary observability

Proof of Theorem 3.4: Pick two solutions u and ǔ to
(28) and assume that y(t) − y̌(t) = 0, ∀t ∈ [0,∞), where
y is defined in (5). Let us consider the dynamics of the
difference ŭ(x, t) = u(x, t)− ǔ(x, t) which is driven by the
following over-determined system of PDEs

ŭtt(x, t) = (a(x)ŭx(x, t))x − q(x)ŭt(x, t), (98a)
m1ŭtt(1, t) = −a(1)ŭx(1, t)− q1ŭt(1, t), (98b)
m2ŭtt(0, t) = a(0)ŭx(0, t)− q2ŭt(0, t), (98c)
ŭ(1, t) = 0, (98d)
ŭ(0, t) = 0. (98e)

Next, we prove that the unique solution to the above system
is zero. To this end, we consider the associated first order
hyperbolic system. Define

f(x, t) =

[
ŭt(x, t) +

√
a(x)ŭt(x, t)

ŭt(x, t)−
√
a(x)ŭt(x, t)

]
(99)

where a(·) > 0. Since ŭ is solution to (98), then f is solution
to the following system

ft(x, t) =

[√
a(x) 0

0 −
√
a(x)

]
fx(x, t) +B(x)f(x, t)

f(0, t) = 0

f(1, t) = 0
(100)

where B(x) ∈ R2×2. Let us consider the following invertible
change of variable: g(x, t) : = e−

∫ x
0
B(s)dsf(x, t). Then,

(100) turns into
gt(x, t) =

[√
a(x) 0

0 −
√
a(x)

]
gx(x, t) (101a)

g(0, t) = 0 (101b)
g(1, t) = 0 (101c)

This shows that, since g(·, 0) = 0, g ≡ 0. This concludes
the proof. �
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