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Summary

Genomic regions determining sexual compatibility often display recombination suppression, as

occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions

lacking recombination can extend beyond the genes determining sexes or mating types, by

several successive steps of recombination suppression. Here we review the evidence for

recombination suppression around mating-type loci in fungi, sometimes encompassing vast

regions of themating-type chromosomes. The suppression of recombination atmating-type loci

in fungi has long been recognized and maintains the multiallelic combinations required for

correct compatibility determination. We review more recent evidence for expansions of

recombination suppression beyond mating-type genes in fungi (‘evolutionary strata’), which

have been little-studied and may be more pervasive than commonly thought. We discuss

testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such

expansions of recombination suppression, including (1) antagonistic selection, (2) association of

additional functions to mating-type, such as uniparental mitochondria inheritance, (3)

accumulation in the margin of nonrecombining regions of various factors, including deleterious
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mutations or transposable elements resulting from relaxed selection, or neutral rearrangements

resulting from genetic drift. The study of recombination suppression in fungi could thus

contribute toour understandingof recombination suppression expansion across a broader range

of organisms.

I. Introduction: Recombination suppression around
genes controlling mating compatibility in various
organisms

As a fundamental feature of sexual reproduction, recombination
between different genotypes can generate beneficial allelic combi-
nations and purge deleterious mutations (Otto, 2009). The
genomic regions involved in promoting such sexual genetic
exchange often have evolved extensive recombination suppression.
Examples of such genomic regions include sex chromosomes*, self-
incompatibility* loci in plants and mating-type* loci in fungi and
algae (see Box 1 for definitions; Uyenoyama, 2005; Beukeboom&
Perrin, 2014; Idnurm et al., 2015; Charlesworth, 2016). The most
extensively studied among these are sex chromosomes, defined as
pairs of chromosomes governing sex determination in many
organisms that have separate sexes*. In heterothallic fungi, mating-
type loci are incompatibility loci not associated with gamete size
determinism (i.e. not associated with separate sexes*); successful
mating is possible only between gametes or cells carrying different
alleles at the mating-type loci based on molecular nonself-
recognition, regardless of gamete or cell size. The suppression of
recombination at the loci determining sexes or mating types
maintains the allelic combinations at two or more genes required
for correct sex or mating-type functions (e.g. genes responsible for
induction of male* function and inhibition of female* function or
mating-type pheromone and pheromone receptor genes;
Charlesworth, 2017). This represents a case of beneficial allelic
associations maintained at multiple genes through recombination
suppression, which are called ‘supergenes’ (Charlesworth, 2016).

A prominent and consequential feature of some sex chromo-
somes* is that the regions lacking recombination often extend well
beyond the genes directly determining sex, and there can be several
successive steps of recombination suppression. In such cases, the
initial recombination cessation event at the key sex-determining
genes is followed by the linkage of adjacent chromosome regions at
different times, in a stepwise manner, resulting in several adjacent
‘evolutionary strata’ of differentiation between nonrecombining
sex chromosomes* (Fig. 1a). Such strata have been identified on
many plant and animal sex chromosomes* (Nicolas et al., 2005;
Bergero & Charlesworth, 2009; Furman et al., 2020), by plotting
allele divergence between the two sex chromosomes*, used as a
proxy for time because recombination suppression3 (Fig. 1b).
Indeed, the alleles at genes linked to the sex-determining locus
accumulatemutations independently with time as soon as they stop
recombining. Differentiation between alleles typically is plotted
against the ancestral gene order as inferred from the recombining
sex chromosome (e.g. the X chromosome in mammals; Fig. 1a,b).
The gene order on the nonrecombining sex chromosome (e.g. the Y
chromosome) is indeed often highly rearranged, whereas the X–X

recombination in females maintains gene order, facilitating tracing
of the history of evolutionary steps (Bergero & Charlesworth,
2009).

The reason why recombination suppression extends progres-
sively outward from the sex-determining genes remains debated
(Ironside, 2010; Charlesworth, 2018; Ponnikas et al., 2018;
Bergero & Charlesworth, 2019; Bergero et al., 2019). The
prevailing hypothesis is the influence of sexually antagonistic
selection*, according towhich a suite of genes with alleles beneficial
in one sex but deleterious in the other become successively linked to
the sex-determining locus (Fig. 1c) (Bergero & Charlesworth,
2009; Charlesworth, 2017). Alleles beneficial only to males but
deleterious in females – for instance, brighter coloration utilized in
mate attraction under female* choice – would be selected for
linkage to the male-determining allele (Fig. 1d,e). Sexual antago-
nism*provides an attractive and theoretically plausible explanation
for the existence of evolutionary strata on sex chromosomes*, but
decades of research on diverse animals and plants have provided
little conclusive empirical evidence to support it (Beukeboom &
Perrin, 2014; Wright et al., 2016). Alternative hypotheses have
been proposed, including some unrelated to any positive selection
on functions in association with different sexes, such as the
following hypotheses: (1) the successive linkage of genes accumu-
lating deleterious recessive mutations on the heterogametic* sex
chromosome due to linkage disequilibrium with sex-determining
loci, where complete linkage ensures heterozygosity and thereby
permanent sheltering of genetic load mutations (Antonovics &
Abrams, 2004); (2) genetic drift, or positive selection unrelated to
sexual antagonism, fixing chromosomal rearrangements suppress-
ing recombination (Ironside, 2010; Ponnikas et al., 2018; Olito &
Abbott, 2020); and (3) transposable element (TE) accumulation in
nonrecombining regions, resulting from relaxed selection, driving
the expansion of recombination suppression into adjacent regions
through the impacts of TE genomic silencing byDNAmethylation
or chromatin modifications (heterochromatinization) (Kent et al.,
2017). These hypotheses have been very little studied but may play
an important role in the evolution of sex-related chromosomes,
even if they are not necessarily exclusive of potential effects of sexual
antagonism*.

Although mating-type loci in fungi have been the subject of
extensive functional studies, their evolutionary aspects remain little
investigated despite their numerous assets as experimental and
genetic models, and the notable similarities to canonical sex
chromosomes* in animals and plants. It has long been known that
mating-type loci of fungi have incorporated genes not involved in
mating-type determination. However, these phenomena in fungi
have not generally been placed within the broader evolutionary
theory of recombination suppression on sex chromosomes*, and
evolutionary biologists often know little about life history and
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mating aspects of fungi. Many fungi are heterothallic*, meaning
that mating can only occur between different mating types, with
cell compatibility being determined in the haploid stage. However,
fungi are not likely to be widely affected by sexual antagonism*, as
they do not have separate sexes* – thus, they do not generally have
individuals that are male* or female*. Actually, many fungi are
isogamous*, without size-differentiated male* and female*
gametes. Even in fungi producing small and large gametes or
undergoing sex bymating between a spore* and a hypha* as a form
of anisogamy*, gamete size is not determined by the mating-type
locus*; all haploid genotypes are hermaphrodites*, being able to

producemale* and female* gametes, whereas compatibility ismost
often still determined by molecular mechanisms controlled by the
mating-type loci (Butler, 2007; Fraser et al., 2007; Billiard et al.,
2011; Billiard et al., 2012). Basidiomycete fungi do not produce
small and large differentiated gametes; however, in some species
such as Schizophyllum commune,male-like and female-like roles can
still be distinguished during mating: the female-like role is played
by the haploidmycelium as being a nucleus-acceptor and themale-
like role by a spore* falling on the mycelium as the nucleus-donor
(Kronstad & Staben, 1997; Butler, 2007; Fraser et al., 2007;
Nieuwenhuis et al., 2011; Nieuwenhuis & Aanen, 2012). In such

Box 1 Glossary (terms defined below are indicated by an asterisk in the text).

Anisogamy: trait of a population or a species in which mating only occurs between gametes of different sizes.
Antagonistic selection: situation where different morphs, sexes or phases have different fitness optima; a particular case of antagonistic selection is
sexual antagonism (i.e. different fitness optimabetween sexes for traits other than sex determinismor gamete compatibility), and another case could be
mating-type antagonism (i.e. different fitness optima between mating types for traits other than mating-type determinism).
Automixis: particular form of selfing, in which mating or nuclear combinations occur among products of a single meiosis.
Dikaryotic: in most basidiomycetes, there is an extended dikaryotic phase –with two separate haploid nuclei per cell, karyogamy taking place only just
beforemeiosis. In ascomycetes, this dikaryotic stage is very brief and quickly followedby karyogamy. In some cases, theremay bemore than twonuclei
per cell.
Female gamete: large haploid cell that will mate with a small, often mobile or dispersing, haploid cell (male gamete) to form a zygote.
Heterothallism: trait of a population or a species in which mating can only occur between different mating types, as opposed to homothallism*. This
definition is based on experimental observations in vitro, when a single haploid strain is unable tomatewith itself; this does not, however, informon the
mating system in natural populations (diploid selfing vs outcrossing).Microbotryum fungi, for example, are heterothallic and highly selfing.
Hermaphrodite: Individual able to produce both male* and female* gametes.
Hemizygous: character of a gene present in one of the sex or mating-type chromosomes* but absent from the other sex or mating-type chromosome,
often maintained under sheltered permanent heterozygosity.
Heterogametic: situation of a sex chromosome that is always found in a heterozygous state (e.g. the Y chromosome in XY males).
Homogametic: situation of a sex chromosome that can be found in a homozygous state (e.g. the X chromosome in XX females).
Homothallism: trait of a population or a species in whichmating is not restricted bymating-type genes, as opposed to heterothallism*. This definition is
basedonexperimental observations in vitro,whena single haploid strain is able tomatewith itself; this breeding systemdoes not however informon the
mating system in natural populations (diploid selfing versus outcrossing).
Hyphae: the filamentous body structure of most fungi.
Isogamy: trait of a population or a species in which compatible gametes have the same size.
Male gamete: small, often mobile or dispersing haploid, unicellular, cell that will mate with a large haploid cell (female* gamete) to form a zygote.
Mating-type chromosomes: pair of chromosomesdeterminingmating typesbut not sexes;mating-type chromosomes are important to distinguish from
sex chromosomes as different evolutionary forces may act on these two types of chromosomes determining sexual compatibility. In particular, mating-
type chromosomesdeterminemating typesandnot sexes (i.e.male* vs female*) andoften lack ahomogametic* condition in thediploid stage– they are
always heterogametic*.
Mating-type locus: a locus in a genome controllingmating compatibility based onmolecular haploid nonself-recognition, mating being successful only
between different alleles, without relationship with gamete size (i.e. without association with male* vs female* functions).
Pseudo-homothallic: trait of a populationor a species inwhich ameiotic reproductive cycle canoccur in a culture of a single, pure strain in vitro, similar to
ahomothallic* fungus;but, unlikeahomothallic* fungus, the reason for their self-compatibility is that the sporeproducedaftermeiosis is dikaryotic*and
heterozygous at themating-type locus*. In general, such fungimate by automixis* – fusion amongproducts of a singlemeiosis, although also theymay
sometimes outcross in nature.
Self-incompatibility locus in plants: a locus, often encompassing several linked genes, controlling mating compatibility based on molecular haploid or
diploid nonself-recognition, mating being successful only between different alleles; self-incompatibility loci in plants correspond to a specific case of
mating-type loci and typically occurs in hermaphroditic* plants.
Separate sexes: situation in a population or species, also called dioecy or gonochorism, in which individuals are either male* or female* –individuals can
only produce either male* or female* gametes, as opposed to hermaphrodites* in which individuals are able to produce both male* and female*
gametes.
Sex chromosomes: pair of chromosomes determining sex (i.e. male* vs female* individuals).
Sexual antagonism: situation where different sexes have different fitness optima, as for example when a trait is selected that enhances transmission
through males (e.g. bright color or long tail conferring sexual attractiveness), whereas the trait would be detrimental to transmission through females
(e.g. the same trait increasing risk from predation).
Spore: in fungi, a spore is theunit of sexual or asexual reproduction consistingof oneor a small numberof cells thatmaybe adapted for dispersal, survival
or mating.
Syngamy: union of gametes during the process of sexual reproduction.
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cases, too, all haploid genotypes are able to play male-like and
female-like roles. Anisogamy* in fungi, when it exists, is thus
decoupled from mating-type determinism, so that stepwise
extension of recombination suppression around mating-type
genes, when present, cannot result from sexual antagonism*. This
decoupling of the cessation of recombination from sexual antag-
onism* allows the testing of alternative hypotheses, which has only
been recognized recently (Branco et al., 2017).

The utility of fungi as tractable models stems in part from the
mating type in heterothallic* species being determined at the
haploid stage, mating being only successful between cells carrying
different alleles at themating-type locus/loci* (Kronstad&Staben,
1997; Feldbrugge et al., 2004; Butler, 2007; Fraser et al., 2007).
The haploid stage often is culturable, allowing easy access to
valuable developmental, genetic and genomic analyses, especially as
they often have small and compact genomes. In ascomycetes
(molds), mating type is determined by a single locus. In most
basidiomycetes (mushrooms, rusts and smuts), mating type is
determined by two loci, often located on different chromosomes
(Coelho et al., 2017). In basidiomycetes, the pheromone-receptor
(PR) locus controls the compatibility at the pre-mating stage (i.e.
for initiating syngamy), whereas the mating-type homeodomain
(HD) locus controls post-mating sexual compatibility. Mating-
type loci have typically two alleles in fungi, although some groups
such as the Agaricomycetes (including many mushrooms) have
evolved multiple alleles (Casselton & Kues, 2007; James, 2015).

We review below the evidence for recombination suppression at
mating-type loci focusing mainly on heterothallic* fungi: first at

the mating-type genes themselves, and then in the cases where
recombination has extended into adjacent chromosomal regions,
or incorporated additional genes from elsewhere in the genome,
and we discuss the possible ultimate and proximate causes of such
evolutionary strata, as well as their evolutionary consequences in
terms of genomic degeneration. There have beenmany reviews and
studies on functional aspects of fungal mating-type loci, but studies
on the patterns and evolutionary causes of recombination
suppression extending farther than mating-type genes remain too
scarce. We hope that recent findings highlighted here will foster
further research on the expansion of recombination suppression
around mating-type loci in fungi, to assess the generality of these
patterns, and to test hypotheses about the evolutionary genomics of
reproductive compatibility across a broader range of organisms.

II. Gene linkage at mating-type loci in fungi ensures
proper nonself-recognition function

Recombination suppression at mating-type loci has been long
recognized in fungi for maintaining function of distinct alleles in
the haploid nonself-recognition system (Kronstad&Staben, 1997;
Butler, 2007; Fraser et al., 2007; Stankis & Specht, 2007) (Fig. 2a,
b; Table 1). Because mating type in heterothallic* species is
determined at the haploid stage, as in brown algae or mosses
(Ahmed et al., 2014), all diploid or dikaryotic* individuals are
heterozygous (i.e. there is no homogametic* state as, for example,
in the mammalian system with homogametic* XX females and
heterogametic* XY males). In ascomycete fungi, the mating-type

0
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Fig 1 Evolutionary theory based on sexual antagonism to explain evolutionary strata on sex chromosomes. Illustration of sex chromosomes in humans (a), of a
typical evolutionary strata pattern on sex chromosomes as found in many plants and animals (b), with blocks of decreasing divergence between the alleles
associatedwith the two sex chromosomes further from the sex-determining genes when plotted against the ancestral (X) gene order, of sexual dimorphism in
lions (c) andbirds (d), andof thehypothesis of sexual antagonism(e) for explainingevolutionary strata: thegreengeneswithalleles beneficial in only one sexare
selected for being linked to the sex-determining genes in purple, leading to suppressed recombination in blue.
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locus* encodes transcription factors that control the mating-type-
specific pheromone and pheromone-receptor genes located else-
where in the genome. The mating-type locus* in ascomycetes also
controls the expression of many other genes in the genome, some
being involved in the mating process (Bidard et al., 2011; Coppin
et al., 2012). Although in a comparable genomic location, the

alternate mating-type alleles are so different between mating types
that they are called idiomorphs rather than alleles and often are
considered as nonhomologous. However, it may be that the alleles
have differentiated so much as a consequence of a very ancient
recombination suppression that their homology is no longer
recognizable (Debuchy & Turgeon, 2006). In many homothallic*
ascomycetes (i.e. with no discrimination based on mating type for
compatible mates), the two mating-type alleles are present and
closely linked in each haploid genome (Lin & Heitman, 2007),
which may be the result of some kind of recombination suppres-
sion, although this has not been studied; one does not expect the
suppression of homologous recombination between parental
genomes within mating-type genes in homothallic fungi as all
haploid individuals carry the same alleles, but one may expect
selection against heterologous recombination between the two
idiomorphs (if/when they were still similar enough for recombi-
nation between them to be possible) that would yield progeny with
unbalanced number of genes.

In basidiomycete fungi, normally eachmating type produces and
receives specific pheromones (Fig. 2c), and the PR mating-type
locus itself includes linked pheromone and pheromone receptor
genes, where recombination between them stopped hundreds of
millions of years ago. These basidiomycete mating-type loci thus
display the most ancient trans-specific polymorphism known to
date; the genes are only alignable between mating types as protein
sequences (Devier et al., 2009). Also essential to successful mating
in basidiomycete fungi, the mating-type homeodomain (HD)
locus consists of paired genes that together function in determining

Table 1 Possible evolutionary (ultimate) andmechanistic (proximate) causes
for recombination suppression at mating-type loci in fungi.

Ultimate causes
Proper nonself-recognition: functions directly involved in nonself-
recognition.
Mating-type antagonism: functions that may possibly improve the
fitness of one mating type but not the other mating type but that would
not be related directly to the nonself-recognition function per se; for
example, a gene increasing the production or attractiveness of a single
pheromone allele (e.g. the duplication in several copies of pheromone
genes).
Selection for associating a function other than nonself-recognition to the
mating-type function (e.g. mitochondrion uniparental inheritance).
Selection for increasing mating compatibility odds: for example, linkage
between the two mating-type loci in basidiomycetes, or between
mating-type loci and centromeres, or for inducing a single crossing-over
between the mating-type locus and the centromere.
Selection for co-regulation: it may be beneficial to use the same
promoters as mating-type determining genes for genes that need to be
expressed only during mating.

Selection for shelteringdeleterious alleles: if deleterious alleles accumulate
in themargin of themating-type locus due to partial sheltering, selection
for sheltering them permanently in a heterozygous state by complete
recombination cessation may be selected for (Fig. 8a)
Genetic drift fixing neutral inversions/rearrangements: rearrangements
at the margin of the mating-type locus may be neutral and fixed by
genetic drift, but can only be fixed in the mating-type chromosome
where they occurred, thus expanding the region without recombination
between mating-type chromosomes (Fig. 8b)
Positive selection fixing inversions/rearrangements in the flanking region
of the mating-type locus: the rearrangement breakpoints may in some
cases induce beneficial genetic changes that can be selected for other
causes than related to self-recognition, but can only be fixed in the
mating-type chromosome where they occurred; beneficial
introgressions also may be selected for in mating-type chromosomes to
counteract degeneration, possibly bringing rearrangements from
another species; there also may be positive selection for rearrangements
preventing recombination without direct selection for being associated
to the mating-type locus (e.g. in the case of spore killer/antidote
systems), but linkage to the mating-type locus could occur by chance or
selection for recombination suppression couldbeeasier in themarginof a
region already without recombination.

Relaxed selection allowing for transposable element accumulation
together with their silencing marks: transposable elements (TEs) may
accumulate in the flanking regions of the mating-type locus in cases
where it already shows a large region of suppressed recombination
where TEs accumulate and spread nearby because they are partially
sheltered or actively disperse near their mother copies (Fig. 8c); this can
promote expansion of recombination suppression if their silencingmarks
prevent crossing-overs.

Proximate causes
Recombination modifiers: localized genes or genetic elements
controlling recombination rates, in cis or trans.
Inversions/rearrangements: the lackof collinearity betweenmating-type
chromosome impairs the occurrence of crossing-overs.
Chromatin or other epigenetic modifications that impair the occurrence
of crossing-overs

Box 2 Why is there a post-mating check point in basidiomycete
fungi?.

Haploid cells in basidiomycetes with different alleles at the PR locus
can undergo syngamy for mating, but abort rapidly if they carry the
same allele at the HD locus (Kues, 2000). Such post-mating suicide
may seemcostly froman evolutionary point of view, as it is awaste of
the energy invested thus far in mating andmay prevent the gametes
involved toproduceanyprogenyatall.However, post-mating suicide
may not be that costly in fungi. Indeed, mating-type determinism by
two loci, one involved in post-mating compatibility, is restricted to
basidiomycete fungi, including mushrooms, in which mating occurs
mostly by mating between hyphae*. In mushrooms, the HD and PR
alleles often display dozens or hundreds of alleles, thus finely
informing about relatedness. Stopping the mating process after
syngamy* can avoid investing resources in diploid selfing progeny,
andwithoutanycostactuallybeyondtheenergetic costof syngamy*.
The other hyphae of the mycelia then can still mate later with other,
less related individuals. In the cases of other basidiomycetes, such as
rusts and smuts, in which mating occurs between single-celled
gametes,multiple gametes from the samediploid individual often are
produced locally; suicide after suboptimal syngamy* could preserve
resources for the progeny of locally present siblings, thus being
beneficial via kin selection (Gibson et al., 2012). Another explanation
may be that maintaining the HD locus as an incompatibility locus is
costly, but it cannot be lost because it is needed as a ‘developmental
switch’ (Perrin, 2012).
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compatibility after syngamy. The protein products of the adjacent
HD1 and HD2 genes dimerize between mating types, signaling
zygotic development (Fig. 2c; see also Box 2) (Feldbrugge et al.,
2004). Linkage of theHD1 andHD2 homeodomain genes to each
other also ensures propermating-type function at this second locus,
located on a different chromosome than the PR locus in most
basidiomycetes (Feldbrugge et al., 2004; Butler, 2007; Nieuwen-
huis et al., 2013). Both the PR and HD mating-type loci thus
constitute ‘supergenes’ – loci transmitted as a single unit but
composed of several genes (Schwander et al., 2014). Some
additional genes may have been incorporated into the mating-type
locus for proper nonself-recognition; for example, in Cryptococcus
neoformans it was shown that mating-type specific alleles of
ribosomal proteins were not interchangeable, being likely involved
in promoting inheritance of nuclei of both mating types (Ianiri &
Fang, 2020). Some basidiomycetes have multiple copies of the
same pheromone alleles at their mating-type locus, which need to
be linked to each other and to the pheromone receptor gene for
proper nonself-recognition; such a situation, especially where
duplication numbers differ betweenmating types (e.g. Kues, 2015;
Xu et al., 2016), could be investigated as a potential case of mating-
type antagonism as these multiple copies seem to increase
pheromone production and, thus, attractiveness more than just
functioning as recognition, for which a single gene copy is sufficient
(Nieuwenhuis & Aanen, 2012).

III. Incorporation at mating-type loci of genes without
function in mating compatibility but involved in
mating, without clear benefit of linkage

In some fungi, recombination suppression proximal to the mating-
type loci incorporates additional genes not directly involved in
mating compatibility (Coppin et al., 1997; Feldbrugge et al., 2004;
Debuchy & Turgeon, 2006; Butler, 2007) (Fig. 2a,b; Table 1). In
the ascomycete Sordariomycete dung fungus Podospora anserina, a
single gene constitutes one mating-type idiomorph whereas three
genes constitute the alternative mating type, one being involved in
subsequent stages of sexual development (Coppin et al., 1997). In
sordariomycetes, the SMR1 gene (Mat1-1-2; Dyer et al., 2016)
involved in the fructification (ascocarp) formation is in linkagewith
one of the mating-type idiomorphs and is lacking in the other
(Wilken et al., 2017; Wilson et al., 2019). However, experiments
have shown that this gene functions as well anywhere else in the
genome; it does not need to be linked to the mating-type locus*
(Arnaise et al., 2001; Dyer et al., 2016). In basidiomycetes, too,
there are clades in which genes involved in mating processes other
than the key mating-type determinants are present at the mating
type loci, such as protein kinases and transcription factors STE11,
STE12 and STE20 in the Tremellales (Sun et al., 2019). In
Cryptococcus spp. genes of the MAP kinase pathway involved in
mating seem to have been anciently linked to the PR mating-type
locus* (Fraser et al., 2004; Fraser & Heitman, 2004). However, it
remains unclear why it would be evolutionarily beneficial to link
these genes involved in the physiological process of mating to a
mating-type locus* determining genetic compatibility. Some
hypotheses would be that: (1) it helps the co-regulation of these

genes, as in gene clusters (Lawler et al., 2013) (e.g. the gene in one
mating type is under control of a transcription factor in the other
mating type, thus ensuring that expression will only occur in the
diploid/dikaryotic phase) (Perrin, 2012); or (2) different alleles are
optimal in the two mating types (i.e. mating-type antagonistic
selection*). There is little evidence so far of any benefit for linkage
of most of these genes to the mating-type locus* and some have
been moved experimentally without any deleterious effect (Arnaise
et al., 1997; Gra€ıa et al., 2000; Contamine et al., 2004; Lambou
et al., 2008; Grognet et al., 2019). It may thus be that most genes
have been linked to the mating-type locus by other evolutionary
process, as outlined below and inTable 1, likemany other genes not
involved in mating but linked to the mating-type locus*. This
evolutionary question has been poorly recognized and therefore
little studied.

IV. Uniparental mitochondrion inheritance or selfing
mating systems can trigger beneficial recombination
suppression around fungal mating-type loci

In some fungal mating-type chromosomes*, recombination sup-
pression has extended across chromosomal regions beyond linking
together the mating-type genes, thus enlarging the mating-type
‘supergenes’ to include many more functions (Table 1). In
basidiomycete fungi in the genus Ustilago, for example, two genes
(Iga2 and Rga2) involved in uniparental inheritance of mitochon-
dria (Fedler et al., 2009) have been incorporated at themating-type
locus* (Bortfeld et al., 2004); mitochondria are transmitted by a
single mating type in many fungi (Basse, 2010; Sun et al., 2020),
which most often is due to the active process of degradation of
mitochondria from one mating type, thus avoiding heteroplasmy
that may favor selfish mitochondria (i.e. being less efficient at
respiration but replicating faster; Billiard et al., 2011). Likewise, the
mitochondrial intermediate peptidase genemip is linked to theHD
locus in many basidiomycetes (James et al., 2004; Fraser et al.,
2007; van Diepen et al., 2013); although this gene has no function
in the mating process, it is involved in cleaving proteins in the
mitochondrion, with mutants at this gene having degraded
mitochondria (Isaya et al., 1995). Although uniparental inheri-
tance ofmitochondria can be beneficial for the nuclear genome as it
minimizes the potential for the spread of selfish mitochondria
haplotypes (Havird et al., 2019), selection for transmission of
mitochondria by a single mating type thus does not constitute a
mating-type antagonism per se (it does not improve alternative
mating-type functions). Instead, it corresponds to a benefit to the
nuclear genome as a whole of having uniparental inheritance
(Cosmides & Tooby, 1981; Greiner et al., 2015).

In several selfing basidiomycetes, recombination suppression
further links the HD and PR mating-type loci (Bakkeren &
Kronstad, 1994; Fraser & Heitman, 2005; Nieuwenhuis et al.,
2013; Branco et al., 2017; Branco et al., 2018) (Fig. 2a; Table 1),
which increases the odds of compatibility among the gametes of a
diploid individual (Nieuwenhuis et al., 2013; Branco et al., 2017).
Indeed, with linked HD and PR loci, a given diploid individual
produces only twomating types among its progeny, instead of four
as occurs with unlinked mating-type loci; a given gamete is
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therefore compatible with half of other gametes instead of one
quarter of them. The linkage of the two mating-type loci thus is
beneficial under selfing, and has occurred repeatedly in several
basidiomycete genera, such as the Microbotryum anther-smuts
(Branco et al., 2017), the Cryptococcus human pathogen (Fraser &
Heitman, 2005), theMalassezia human pathogens (Xu et al., 2007;
Gioti et al., 2013), and the Sporisorium and Ustilago cereal smuts
(Bakkeren & Kronstad, 1994; Que et al., 2014; Taniguti et al.,
2015; Rabe et al., 2016; Liang et al., 2019). The region of
suppressed recombination linkingHDandPR loci can span from c.
100 kb and 20 genes in C. neoformans to 600 genes and megabases
of DNA inMicrobotryum fungi (Fraser & Heitman, 2005; Branco
et al., 2017), trapping in-between many genes with no functions in
mating. These particular fungi are all pathogens, for which selfing
may constitute reproductive insurance. Indeed, for pathogens
mating within their host or just before infecting a host, a very
limited number of genotypes may be present in or on the host.
Beyond the advantage of reproductive assurance, selfing also can be
selected for due to the automatic fitness advantage of transmitting
twice as many of gene copies (Busch & Delph, 2012). In at least
three genera or families – Microbotryum, Ustilago, Cryptococcus –
multiple independent events of HD–PR linkage even occurred
within clades (Bakkeren & Kronstad, 1994; Rabe et al., 2016;
Branco et al., 2018; Liang et al., 2019; Sun et al., 2019), revealing
frequent evolutionarily convergent events within each of these
genera.

In some other selfing basidiomycete fungi, recombination
suppression does not link mating-type loci one to each other but
does link the mating-type determining loci to centromeres
(Carpentier et al., 2019), which yields a similar elevated gamete
compatibility odds under intra-tetrad mating (i.e. automixis*) or
mating among the products of a givenmeiosis. Indeed, if there is no
recombination between the mating-type loci and their respective
centromeres, the mating-type alleles segregate at the first meiotic
division at both loci, and only two mating-type genotypes are
generated among the products of the meiosis (Carpentier et al.,
2019).

Recombination suppression around the mating-type locus in
some fungi also can ensure that two nuclei of oppositemating types
are placed together by cytological means in a single dispersing
spore* (Fig. 3); this process of pseudo-homothallism* allows the
completion of the life cycle without the necessity of locating a
haploid mating partner or to be universally compatible for mating
(Billiard et al., 2011; Billiard et al., 2012; Grognet et al., 2014;
Grognet & Silar, 2015). In fungi belonging to the Neurospora
tetrasperma species complex, which display such cytological post-

meiotic nuclear packaging, a large region of suppression of
recombination (c. 7Mb), spanning over more than 75% of the
mating-type chromosome, links the centromere and the mating-
type locus* (Gallegos et al., 2000;Menkis et al., 2008; Ellison et al.,
2011; Corcoran et al., 2016). In P. anserina the occurrence of a
single crossing-over between the mating-type loci and the
centromere allows proper nuclear packaging with two opposite
mating types per spore*. A 0.8-Mb region of recombination
suppression around the mating-type loci likely plays a role in the
limitation to a single crossing-over in the relatively large region

between themating-type locus* and the centromere (Grognet et al.,
2014; Grognet & Silar, 2015).

V. Further recombination suppression beyond fungal
mating-type loci without obvious benefits

Further extension of recombination suppression has been reported
around mating-type loci to genes without any function related to
mating, mating types, mating-type compatibility or mitochon-
drion inheritance. Recent studies ofmating-type chromosomes* in
fungi without male*/female* roles (Branco et al., 2017) (the
anther-smut, plant-castrating Microbotryum fungi) have shown
that evolutionary strata have evolved repeatedly in the absence of
sexual antagonism*. Multiple evolutionary strata extended the
region without recombination, in several steps, beyond mating-
type genes and centromeres, into regions devoid of genes involved
in mating-type determination. This expansion has occurred
independently in several Microbotryum lineages (Branco et al.,
2018) (Fig. 4; Box 3). The nonrecombining region can extend up
to 90%of the chromosome,which is nearly 4Mb long (Hood et al.,
2013; Badouin et al., 2015; Branco et al., 2018). Because neither
mating-type chromosome recombines, they both accumulate
rearrangements independently (Bull, 1978), and it is not possible
to observe ancestral gene order directly for assessing evolutionary
strata (whereas the X sex chromosome can be used to recover the
ancestral-like order as it recombines in females; Fig. 1). In the
fungal system, the ancestral gene order could be inferred from the
gene order shared by several distantMicrobotryum species that have
retained recombining mating-type chromosomes* until recently,
where recombination preserves gene order (Branco et al., 2017).
Seven independent cases of evolutionary strata were identified
across the Microbotryum phylogeny (Fig. 4; Box 3), involving
different sets of genes and devoid of mating-type genes (Branco
et al., 2017; Branco et al., 2018). The repeated evolution of such
strata in closely relatedMicrobotryum anther-smut species suggests
that they evolve frequently in response to common evolutionary
processes.

Although the challenge of reconstructing ancestral gene order in
mating-type chromosomes* can be overcome, other mutational
considerations are involved in quantifying evolutionary strata in
fungi. In Microbotryum fungi, several lines of evidence have been
provided for establishing the existence of evolutionary strata
(Box 3). The synonymous divergence (dS) between alleles on the
two mating-type chromosomes* was plotted along the ancestral
gene order in several species, and the shared presence of stretches of
likewise elevated divergence in a given span of chromosome was
used to infer the phylogenetic node at which recombination ceased
in that genomic region (Fig. 5). The inference of the different strata
was then further validated by testing whether the dS level was
significantly different among the different strata within each
species. A third line of evidence used to support the inferred node of
appearance of the various evolutionary strata was based on the
deepness of trans-specific polymorphism at the genes in evolution-
ary strata. This approach utilizes the principle that, as soon as
recombination cessation links a gene to themating-type locus*, the
alleles at this gene will accumulate differentiating mutations in the
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genomes of alternativemating types. If a gene becomes linked to the
mating-type loci before a speciation event, the genealogy of this
gene will group together the alleles of the same mating type across
species (Fig. 5), which is called trans-specific polymorphism.
Going deeper in the phylogeny, the nodes where alleles cease to
cluster according to mating type, and rather cluster according to
species, thus provide indication on the time since recombination
suppression (Fig. 5). However, gene conversion events, even if very
rare, will reset the level of trans-specific polymorphism (Sun et al.,
2012). As a matter of fact, the level of trans-specific polymorphism
often was not homogeneous within evolutionary strata in
Microbotryum, but the oldest trans-specific polymorphism within
a stratum can give strong support to the stratum’s inferred age. As
an extreme case, an oldmating-type loci linkage has been inferred in

the Tremellales based on shared gene order and rearrangements
across species, and yet there was no trans-specific polymorphism,
which was interpreted as resulting from the occurrence of rare gene
conversion events (Sun et al., 2019).

Recombination suppression also has been shown to extend
around the mating-type locus* in the button mushroom Agaricus
bisporus (Xu et al., 1993). The different varieties of the button
mushroom have different breeding systems, either homothallic*,
pseudo-homothallic* or heterothallic*. The cultivated A. bisporus
var. bisporus variety is pseudo-homothallic, reproduces mainly by
automixis* and has very extensively suppressed recombination
(Sonnenberg et al., 2016), across almost the whole genome, with
crossing-overs only occurring at the very ends of all chromosomes
(Foulongne-Oriol et al., 2009; Foulongne-Oriol et al., 2010;
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Morin et al., 2012; Foulongne-Oriol et al., 2016; Sonnenberg et al.,
2016; Sonnenberg et al., 2017). Conversely, the variety A. bisporus
var. burnettii is heterothallic and exhibits a quite homogenous
recombination pattern along chromosomes, except in some

genomic regions where recombination is low or suppressed,
including the mating-type locus region (Foulongne-Oriol et al.,
2010).Only theHDmating-type locus* is involved inmating-type
determination inA. bisporus, even the variety burnettiiwith no large
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recombination suppression, so that recombination suppression is
unlikely to have evolved under selection for linking mating-type
loci together (Morin et al., 2012). The recombination suppression
may still have evolved to promote automixis* as inMicrobotryum,
P. anserina andN. tetrasperma fungi, for example by linkingHD to
the centromere. It is, however, unclear why the recombination
suppression evolved and extended differently in several varieties of
A. bisporus. Such extension may constitute evolutionary strata
without any relationship to mating-type genes. Another factor that
may be relevant to the recombination landscape is that the BSN
locus (basidial spore* number), determining the number of nuclei
per dispersing spore* and thus the automictic* versus outcrossing
behaviors, is linked to the mating-type locus (Imbernon et al.,
1996). Within the Agaricus genus, the recombination suppression
around the mating-type locus also has been reported in the distant
species A. subrufescens (Thongklang et al., 2014; Foulongne-Oriol
et al., 2016) and A. sinodeliciousus (Ling et al., 2019). In
A. subrufescens, a genetic linkage map suggested a normal recom-
bination behavior on the rest of the genome (Foulongne-Oriol
et al., 2016).

The existence of evolutionary strata extending recombination
suppression beyond mating-type loci and beyond linkage to the
centromere also has been suggested in the fungi belonging to the
N. tetrasperma species complex (Menkis et al., 2008), as well as in
Cryptococcus neoformans and in C. gattii (Fraser et al., 2004),
although no divergence plots along ancestral gene order have been
published and introgressions detected in some N. tetrasperma
lineages could have led to spurious stratum patterns. We therefore
plotted herein divergence between mating types along an ancestral
order inferred from recombining outgroups in N. tetrasperma
lineages without introgressions (L1 and L8; Corcoran et al., 2016))
and indeed found evidence of evolutionary strata (Box 4; Figs 6a,
7a). Evolutionary strata also have been found in Podospora
pseudocomata (FEH, PS, TG, unpublished data).

In many of the ascomycetes, the mating-type locus is found in
linkage with APN2 (encoding an endonuclease/DNA lyase) and
SLA2 (encoding a protein binding to cortical patch actin) (Butler,
2007). A large region without recombination also has been
reported near themating-type locus in European populations of the

ascomycete pathogen Cryphonectria parasitica responsible for the
chestnut blight (Kubisiak & Milgroom, 2006). Recent genome
sequencing suggests the presence of rearrangements between strains
around the mating-type loci in several fungi, such as the wheat
pathogenZymoseptoria tritici (Plissonneau et al., 2016). In the yeast
Lachancea kluyveri recombination suppression has been reported
across 1Mb around the mating-type locus, involving many genes
not related to mating or mating-type functions (Friedrich et al.,
2015; Brion et al., 2017; Brion et al., 2020). The additional genes
incorporated into linkage with the mating-type locus sometimes
involved genes that were not initially physically the most proximal
to the mating-type genes. For example, in the apple ascomycete
pathogenValsa mali, two genes (COX13 andAPN2) were linked to
the mating-type locus*, long after initial recombination suppres-
sion at mating-type genes, via intrachromosomal rearrangements
(Yin et al., 2017).

In basidiomycetes also, genes with no known function inmating
have been incorporated into themating-type locus, such as the beta-
flaking gene (bfg) present next to the HD genes in many
Agaricomycota (Rong et al., 2015). Recent inversions near the
mating-type locus* have been reported in the mushroom
Flammulina velutipes (van Peer et al., 2011). Other examples of
recombination suppression extending beyond mating-type loci
includeUstilago bromivora inwhich two evolutionary strata seem to
exist, one on either side of the mating-type locus* (Rabe et al.,
2016).

In many other fungi, the lack of recombination is shown by the
presence of genes close to mating-type genes in one mating-type
and completely lacking in the other mating-type (hemizygosity*).
This situation indicates that a gene has been incorporated at the
mating-type locus* by recombination suppression, followed by the
loss of the focal genes in linkage to onemating-type allele; gene loss
in one allele is allowed by the sheltering in a permanent
heterozygote state in the region without recombination around
the mating-type locus*. Alternatively, there may have been gene
gains in the mating-type locus in a single mating type. This
situation is analogous to the hemizygous* genes on the heteroga-
metic* Y in mammals or Drosophila (Bachtrog, 2005). Across
ascomycetes for example, six genes with no known function in

Fig. 4 Independent evolution and stepwise extension of recombination suppression in the mating-type chromosomes in the highly selfing plant castrating
fungusMicrobotryum lychnidis-dioicae (Basidiomycete). (a) Rearrangements having led, from the ancestral state of unlinked mating-type loci, to a single
mating-type chromosome and mating-type locus linkage. A picture is shown of a diseased Silene latifolia flower with anthers full of fungal spores. (b)
Evolutionary strata inM. lychnidis-dioicae, as revealed by plotting the synonymous divergence (dS) between the alleles associatedwith the twomating types
(a1 and a2) against ancestral gene order. Homeodomain (HD) and pheromone-receptor (PR) are the two mating-type loci, linked together by the black
evolutionary stratum. Other evolutionary strata are shown in color, linking mating-type genes with many other genes having functions unrelated to mating-
type determination, in several successive steps (Branco et al., 2017). The blue, purple and orange strata evolved around the mating-type loci before PR–HD
linkage,whereas the orange, red andgreen strata evolved successively after PR–HD linkage.When the divergencebetween a1 and a2 alleleswas too extensive
to be calculated, it was depicted as « unalignable» (Un). (c) Phylogeny of 10Microbotryum species based on genome data (Branco et al., 2018), with red
branches for unlinkedHD and PRmating-type loci, black branches for linkedHD and PR loci, and green branches formating-type loci linked to their respective
centromeres. The presence of the various evolutionary strata in the various species is shownon the right aswell as the nodeswhere the various strata have been
inferred to have arisen; evolutionary strata have the same colors as used in previous studies (Branco et al., 2017; Branco et al., 2018). The blue, purple and
orange strata evolved as recombination suppression extensiondistal to the PRorHD lociwhen theywere still on different chromosomes. Themultiple events of
HD–PR linkage then occurred independently in several lineages (black branches), involving different chromosomal arms and/or orientation of chromosomal
fusions (Branco et al., 2017; Branco et al., 2018). For eachMicrobotryum species pictures of diseased flowers and name of the host plant are indicated. A red
yeast species was used as outgroup (Rhodosporidium babjevae).
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mating have been found specific to one mating type and 10 other
genes specific to the other mating type, with no homology between
them (Wilken et al., 2017;Wilson et al., 2019). These mating-type
specific genes often are shared by whole clades, indicating ancient

recombination suppression (Wilken et al., 2017; Wilson et al.,
2019), but different genes have been incorporated at the mating-
type locus* in different fungal clades. In Leotiomycetes for
example, a gene encoding a metallothionein protein without

Box 3 Historical review of discoveries related to mating system, mating types and recombination suppression inMicrobotryum fungi.

Microbotryumviolaceum (sensu lato) causes anther-smut disease in plants of theCaryophyllaceae family. These fungi are important researchmodels in
many fields of biology, including genomics, host–pathogen interactions and evolutionary ecology. In the early work on sexual compatibility,
Microbotryum violaceum, calledUstilago violacea before 1982, was among the first fungi in which heterothallism*was demonstrated (Kniep, 1919).
More recently, the mating-type chromosomes* of M. lychnidis-dioicae were the first to be found size-dimorphic in fungi, as initially revealed by
electrophoretic karyotypes, andwithextensivenonrecombining regions, as supportedbyAFLPmarkers,being thus suggested to sharegenomic features
with sex chromosomes* (Hood, 2002; Hood et al., 2004). A later study suggested that the nonrecombining region on theM. lychnidis-dioicaemating-
type chromosomes*was small (c. 1000 kb) but the size estimate was based on a fewmarkers (Votintseva & Filatov, 2009). An optical map confirmed
that the region of recombination suppression spanned 90% of the mating-type chromosomes* (Hood et al., 2013). Votintseva & Filatov (2009) also
claimed the existence of evolutionary strata based on heterogeneous synonymous divergence values in the nonrecombining region, but no physical
order of the genes analyzed had been provided, the variation in the degree of the allelic divergence did not look like discrete strata, and only few genes
were analyzed. A subsequent study reported an absence of correlation between the dS level from the study by (Votintseva& Filatov, 2009) and the age
of the linkage of each marker to the mating type estimated based on gene genealogies (Petit et al., 2012). Another study claimed to have found
evolutionary strata on the M. lychnidis-dioicae mating-type chromosomes* based on a clustering method (Pandey & Azad, 2016), but later studies
showed the inferred strata were not correct, as the current gene order results from chaos of rearrangements (see below).
The sequencingof cDNA libraries allowed the identificationof thepheromone receptor (PR)gene (Yocktenget al., 2007) and later of theHDgenes (Petit
et al., 2012). STE3-like pheromone receptors have been characterized among sequences expressed during mating ofM. lychnidis-dioicae (Yockteng
et al., 2007). Gene genealogies of the alternate alleles of the pheromone receptor gene frommultiple basidiomycete species revealed inMicrobotryum

the deepest degree of trans-specific polymorphism ever reported. The Microbotryum a1 and a2 pheromone receptor alleles had been estimated to
diverge 370Myr ago (Devier et al., 2009). TheHDgenes inMicrobotryumwere identified in the ESTs (Petit et al., 2012) by sequence similaritywith the
previously characterizedhomeodomain in Sporobolomyces spp. (Coelhoet al., 2010). Incomplete trans-specificpolymorphism signal has been found in
HDgene treeswith severalMicrobotryum species. Indeed,HDalleles froma1 and a2 strains clustered by species in somegroups and clusteredbymating
type with certain level of trans-specific polymorphism in other groups. The recombination suppression at the HD genes could still be ancestral in the
Microbotryum clade, with some rare crossing-overs or gene conversion events that have reset the allelic divergence in some groups (Petit et al., 2012).
Pheromone genes have been identified in Microbotryum spp. by sequence similarity with pheromone genes described in the Microbotryomycete
Rhodosporidium toruloides fungus and their mating function has been validated experimentally (Xu et al., 2016). Studying pheromone genes and
pheromone receptor gene sequences from a1 and a2mating types ofmultipleMicrobotryum species suggested the existence of distinct coevolutionary
patternsbetween the twopairs of pheromones–pheromone receptors. Thea1pheromoneallele is present inmany copieswithin themating-type locus*
and shows little variation acrossMicrobotryum species. This lowvariation ismatchedby its corresponding a2 pheromone receptor gene. By contrast, the
a2 pheromone allele is present in fewcopieswithin a genomeand ismorediverse in sequence across species than the a1 pheromone.These differences in
coding sequence variation acrossMicrobotryum species were associated with differences in the strength of purifying selection, which was stronger on
the a1 pheromone allele. These results are consistent with earlier observations onMicrobotryummating behaviour (Day, 1976): a1 cells initiate mating
through greater diffusion of a conserved a1 signal, whereas the a2 cells play a responsive role through a2 pheromones which do not need to be as
conserved as the a1 signal. The conjugation tube following the pheromone recognition developsmore rapidly and to a greater extent froma2 than from
a1 cells.
Recently, long-read sequencing and high-quality assembly confirmed the existence of a large region of recombination suppression in M. lychnidis-
dioicae as seen in chromosomal optical maps (Hood et al., 2013), spanning around 90% of the mating-type chromosome length (i.e. > 3Mb), with a
chaos of structural rearrangements (Badouin et al., 2015) and elevated synonymous divergence values between a1- and a2-associated alleles. Despite
the heterogeneous and elevated synonymous divergence values reported, no pattern of progressive extension of the nonrecombining region had then
been found because the high degree of rearrangements on the two mating-type chromosomes* obscured the ancestral gene order (Badouin et al.,
2015). This issue was resolved by using the gene order present across distant and related species (M. intermedium and M. lagerheimii) with high
synteny at the mating-type chromosomes*, allowing the identification of evolutionary strata (Fig. 4) (Branco et al., 2017).
Segregation analyses in progenies had shown that althoughmanyMicrobotryum species carried linkedHDand PR loci, some still hadHDand PR loci on
different chromosomes (M. intermedium,M. saponariae andM. lagerheimii; Fig. 4c) (Hood et al., 2015). Given theMicrobotryum phylogeny and the
distribution of species with linkedmating-type loci (Fig. 4c), themost parsimonious hypothesis was an ancestral event linking HD and PR loci, followed
by a reversal to an unlinked state (Hood et al., 2015). However, comparative genomic analyses revealed several independent and convergent events
(Branco et al., 2018) rather than one ancient linkage event followed by a reversal: the linkage between HD and PR indeed occurred through different
rearrangements and chromosomal fusions in the different species (Branco et al., 2018), involving different chromosomal arms and/or orientation of
fusion (different black branches in Fig. 4c). The independent evolution of recombination suppression was further checked based on the age of trans-
specific polymorphism (Fig. 5). Furthermore, dS patterns onmating-type chromosomes plotted along the ancestral gene order in each species revealed
multiple independent stepwise extension (Branco et al., 2018) (Fig. 4c),withmultiple evolutionary strata of various ages across the phylogeny (strata of
different colors in Fig. 4c).
Regarding species with HD and PR loci on different chromosomes (M. saponariae and M. lagerheimii; Fig. 4c), progeny segregation analyses have
shown that the twomating-type loci were linked to their respective centromeres (green branches in Fig. 4c; Hood et al., 2015; Carpentier et al., 2019)
and genomic analyses revealed that the linkage likely occurred convergently as independent events (Carpentier et al., 2019).
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known role inmating is found in a singlemating type (Wilken et al.,
2017;Wilson et al., 2019).Other examples include themodel fungi
Neurospora crassa,Magnaporthe oryzae, Coccidioides spp., Cordyceps
spp., Fusarium spp. and Melampsora larici-populina (Persoons
et al., 2014; Wilken et al., 2017; Wilson et al., 2019). The
occurrence of various mating-type specific (i.e. hemizygous*)
genes, present in whole fungal clades but being different among
clades, suggest multiple extension events of recombination
suppression – evolutionary strata. Genomic analyses thus have
recently revealed that the expansion of recombination around
mating-type loci may be a common and recurrent phenomenon
across fungi, making their study in a comparative context
potentially a powerful approach for gaining insights into the
evolutionary genomics of sexual compatibility.

VI. Consequences of recombination suppression:
genomic degeneration

The lack of recombination typically leads to genomic degeneration.
There have been several studies in fungi showing that nonrecom-
bining regions on the mating-type chromosomes* accumulate
deleterious mutations, in terms of nonsynonymous substitutions,
nonoptimal codon usage, accumulation of transposable elements,
gene losses and decrease in gene expression level. Examples have
been reported in Microbotryum fungi (Fontanillas et al., 2015;
Branco et al., 2017; Bazzicalupo et al., 2019; Ma et al., 2020), in
U. hordei (Bakkeren et al., 2006), in P. anserina (Grognet et al.,
2014), in N. tetrasperma (Whittle & Johannesson, 2011; Whittle
et al., 2011; Samils et al., 2013), and in the yeasts L. kluyveri (Brion
et al., 2020) and Saccharomyces cerevisiae (de Clare et al., 2011).

Experiments also have revealed haplo-lethal alleles linked to
mating-type loci in several fungi, which are due to the existence of
lethal alleles in nonrecombining regions near the mating-type loci
and have been reported in Microbotryum fungi (Oudemans et al.,
1998; Thomas et al., 2003), A. bisporus (Callac et al., 2006),
Ustilago bromivora (Rabe et al., 2016), U. nigra (Darlington &
Kiesling, 1975), U. bullata (Fischer, 1940), U. avenae and
U. kolleri (Grasso, 1955; Holton & Dietz, 1960).

Differential expression between alleles associated to different
mating types often has been interpreted in terms of selection for
different optima between mating types (Fraser et al., 2003; Samils
et al., 2013; Grognet et al., 2014). However, such differential gene
expression also can result from simple degeneration resulting from
recombination suppression. In particular, differential expression
between mating types was found associated with footprints of
degeneration in the least expressed allele in Microbotryum fungi,
such as transposable element insertions, indel distribution, and
premature stop or nonsense codons (Ma et al., 2020). In turn, the
accumulation of deleterious alleles and transposable elements could
promote further extension of recombination suppression, as
outlined below.

VII. Ultimate and proximate mechanisms generating
evolutionary strata beyond sexual antagonism or
selection for mating-type compatibility or
mitochondrion inheritance

If evolutionary strata suppressing recombination far beyond the
mating-type genes regularly evolve in fungi, understandingwhy can
reveal analogous causes that also might occur in other types of

PR locus HD locus

No trans-specific polymorphism:
Linkage to mating-type genes after speciation events

Trans-specific polymorphism:
Linkage to mating-type genes before speciation events

(a) (b)

Gene genealogies

a1 a2 a1 a2 a1 a2
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a1

a1
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a2
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Centromere
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Fig. 5 Illustration of trans-specific polymorphism at a gene located between the Homeodomain (HD) and pheromone-receptor (PR) loci and thus linked to
mating-type loci inMicrobotryummating-type chromosomes, and its use to infer the relative age of linkage to mating-type loci relative to speciation dates. If
recombination suppression is younger than speciation, alleles associated to differentmating types cluster per species (a), whereas if recombination suppression
is older than speciation, alleles associated to different mating types cluster together across species (b).
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organisms. The most common hypothesis invoked for explaining
evolutionary strata on sex chromosomes remains sexually antago-
nistic selection. Although the evolutionary strata on mating-type
chromosomes* provide a strong analogy to sex chromosomes* of
animals and plants, it is important to emphasize the absence of any
male*/female* roles associated to mating type, so sexual antago-
nism* cannot account for the observed extension of recombination
suppression beyond mating-type determining genes in fungi (see
the Introduction section above).Mating type regulates haploid-cell
compatibility strictly through molecular signaling, promoting
mating between different genotypes as does self-incompatibility*

in some hermaphroditic* plants. Few traits appear to have
alternative forms beneficial in only one mating type beyond
molecular signaling, rendering any kind of strong antagonistic
selection* unlikely as a cause for evolutionary strata (Schafer et al.,
2010; Bazzicalupo et al., 2019).

Furthermore, in the case ofMicrobotryum fungi, for example, all
gametes have the same size (Schafer et al., 2010), andmating occurs
quickly after meiosis, with no substantive free-living haploid stage
during which cells of opposite mating types might express
contrasting ecological traits (Hood & Antonovics, 2000; Hood
& Antonovics, 2004). A study on gene expression found no
evidence of genes differentially expressed or with signs of sequence
specialization between mating types in the young evolutionary
strata inMicrobotryum fungi, further reinforcing the view that there
are not mating-type antagonistic traits* (Bazzicalupo et al., 2019).
Sexual antagonism*, or the analogous mating-type antagonism
cannot, therefore, account for the multiple evolutionary strata
found in severalMicrobotryum species. The only functions known
to be associated with mating types in Microbotryum fungi are the
conjugation tube elongation and mitochondrion inheritance, and
neither can explain the multiple recent evolutionary strata in
Microbotryum fungi, trapping many different genes across the
phylogeny.

More generally, evolutionary strata not involving any mating-
type genes thus seem to evolve regularly in fungi without sexual
antagonism* and without being involved in mating-type compat-
ibility odds or mitochondrion inheritance. We therefore need to
test other hypotheses to explain the spread of recombination
suppression (Antonovics & Abrams, 2004; Ironside, 2010; Branco
et al., 2017; Ponnikas et al., 2018). This effort can best proceed
through combined attention to evolutionary and proximate
explanations for recombination cessation (Table 1): evolutionary
(ultimate) hypotheses explain why, in terms of evolutionary forces,
chromosomal regions became linked to mating-type loci (i.e. what
gain in fitness it conferred or why neutral evolutionary processes are
likely to act and lead to such situations); by contrast, proximate
explanations focus on how, mechanistically, recombination was
suppressed. These two aspects constitute two important, associated
and interrelated, but very different levels of explanations, which,
when combined, can produce a fuller understanding of the
evolution of recombination suppression.

One evolutionary hypothesis is the successive linkage of a suite of
genes with recessive deleterious mutations to the initial region of
suppressed recombination (Antonovics&Abrams, 2004; Ironside,
2010; Branco et al., 2017). If recombination frequency gradually
increases from the boundary of the nonrecombining region into the
adjacent recombining region (the ‘deleterious allele sheltering
hypothesis’; Fig. 8a; Table 1), then partial linkage (linkage dise-
quilibrium) to mating-type or sex-determining genes may partially
shelter them as the necessity tomate between differentmating types
preserves heterozygosity. This would lead to deleterious allele
accumulation at the margin of the nonrecombining region.
Occasionalmeiotic crossovers would generate individuals homozy-
gous for deleterious alleles, reducing fitness through the exposure of
genetic load. Thus, selection might favor the complete cessation of
recombination (evolutionary cause) through recombination

Box 4 Evolutionary strata in Neurospora tetrasperma and
Cryptococcus fungi.

We plotted the divergence between mating types for strains of the
L1, L6 and L8 lineages of theN. tetrasperma cryptic species complex
along an inferred ancestral gene order of the mating-type chromo-
some – the gene order of the closely related fungal species N. crassa
with recombiningmating-type chromosomes* (Ellisonet al., 2011;Y.
Sun et al., 2017). We confirmed the existence of a region of
significantly lower divergence in the right flanking region of the
mating-type locus compared to the left flanking region, that likely
constitutes a recent evolutionary stratum (in pink in Fig. 6a), as
suggested previously (Menkis et al., 2008). We also found this pink
recent stratum in the L1 and L8 lineages of N. tetrasperma (Fig. 6a),
indicating that it was not the spurious result of the introgression
detected in theL6N. tetrasperma lineage (Corcoranet al., 2016). The
dS was non-null in this region (i.e. there was some heterozygosity),
whereas all autosomes in the L6 and L8 lineages were completely
homozygous (not shown).We found trans-lineage polymorphism in
this pink stratum (Fig. 6b) that can be the result of introgression in L6,
but not in L1 or L8, supporting a recombination suppression having
occurred before the divergence of the lineages. Furthermore, the dS
plots suggest the existence of another stratum, present only in the L6
lineage, in the left flanking region (in green in Fig. 6a). An inversion in
the L6 lineage encompasses the green stratum, supporting the
occurrence of recombination suppression (Fig. 6c). This stratum
might be due to introgression (Corcoran et al., 2016), but neverthe-
less represent an extension of recombination suppression, as shown
by the inversion.
We also plotted the divergence between mating types in
C. neoformans and in C. gattii (Fig. 7a), along an inferred ancestral
gene order of the mating-type chromosome – the gene order of
C. amylolentus that has unlinked mating-type loci and recombining
mating-type chromosomes* (S. Sun et al., 2017). The plots of
divergence between mating types (Fig. 7a) support the existence of
evolutionary strata for the two species: older strata with very high
divergence around each of the HD and PR mating-type loci, and a
younger stratumwithmoderate divergence in genes flanking the first
strata and linking HD and PR loci, contrasting with null divergence in
the recombining regions. Considering theC. amylolentus gene order
as a proxy for the ancestral state, the rearrangements linking HD and
PR loci in C. gattii (Fig. 7b) appear to have involved many more
fusions and fissions with autosomes than in the anther-smut
Microbotryum fungi (Fig. 7b). Even in C. amylolentuswith unlinked
mating-type loci and recombining mating-type chromosomes, rear-
rangements can be observed around the PR mating type locus
(Fig. 7b), supporting the existence of an ancient stratum here shared
by various Cryptococcus species.
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modifiers or rearrangements (proximal causes). Permanent shel-
teringmay occurmore readily than purging if recombination is rare
relative to mutation accumulation near the region of suppressed
recombination (Fig. 8a), although this remains to be tested, both
theoretically and experimentally.Deleterious allele accumulation is
known to occur in nonrecombining regions (Marais et al., 2008;
Llaurens et al., 2009; Immler&Otto, 2015). However, deleterious
allele accumulationmay not necessarily be a simple consequence of
a complete lack of recombination as modeled so far. Models have
shown that deleterious alleles can accumulate under low rates of
recombination (Grossen et al., 2012), but have yet to investigate
whether such genetic load can drive recombination suppression,
beyond the particular case of Microbotryum and high intra-tetrad
selfing rates (Antonovics & Abrams, 2004).

A second, nonexclusive hypothesis involves the fixation of
rearrangements (Ironside, 2010; Ponnikas et al., 2018). Rear-
rangements, whether introduced in populations by mutations or
introgressions, might be fixed by genetic drift or by positive
selection for reasons other than the linkage tomating type that they
cause. Inversions and asymmetric rearrangements in the flanking
regions of nonrecombining loci can only be fixed in a singlemating-
type chromosome and then automatically extend the nonrecom-
bining region (Fig. 8b). Here rearrangements constitute proximate
causes, and the ultimate explanation rests on whether they are fixed
by drift or selection. Rearrangements that span the boundary of the
nonrecombining region of one sex or mating-type chromosome
may indeed be neutral in the short term andbecome fixed on the sex
or mating-type chromosomes* where they arose as a result of
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recent pink evolutionary stratum (genemRNA_2177). Bootstrap values (out of 100 replicates) are indicated at nodes. Trans-lineage polymorphism is present in
the black and pink evolutionary stratum. dS values and tree per genes were computed as described previously (Branco et al., 2017).Mat-A andmat-a haploid
genomes of the dikaryotic* P4495, J13 and P581 strains belonging to the L1, L8 and L6 lineages of the N. tetrasperma species complex (respectively) were
retrieved from Corcoran et al. (2016) and gene annotation of the L6mat-a genome was used. For trees, N. crassawas used as outgroup and genome was
retrieved from Ellison et al (2011). (c) Synteny comparison between the L6mat-a and L6mat-Amating-type chromosomes of the dikaryotic* P581 strain that
shows large rearrangements (Ellison et al., 2011) and between the L1mat-a and L1mat-Amating-type chromosomes of the dikaryotic* P4492 strain that
shows no rearrangements (Sun et al, 2017). Mating-type locus (mat) locations are represented by red circles. Centromere location is represented by yellow
rectangles.
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linkage to mating-type or sex-determining genes (‘neutral rear-
rangement/inversion hypothesis’; Fig. 8b; Table 1). Rearrange-
ments also can be selected for but for other reasons than being
associated with the mating-type locus. Rearrangements that
distinguish alternative mating-type chromosomes can be brought
by introgression from another species, and be beneficial in
nonrecombining mating-type chromosomes by counteracting

genomic degeneration (Corcoran et al., 2016; Hartmann et al.,
2020). Rearrangements also could be beneficial if the breakpoint in
itself induces an advantageous mutation or by suppressing
recombination between a spore killer and its antidote (Svedberg
et al., 2018). Actually, some genetic selfish elements have been
found associated with fungal mating-type loci (Meunier et al.,
2018).
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Fig. 7 Evolutionary strata in the basidiomycete Cryptococcus species. (a) Divergence (synonymous divergence, dS) values between a and alphamating-type
associatedalleles along themating-type chromosomeswithindiploid individuals of twoCryptococcus species: (i)C. neoformansalpha JEC21 strainanda JEC20
strain (thewhole region sequenced in the a JEC20 strain in black; gray lines correspond to values inferred from the isogenic state between the two strains (Hull
et al., 2005), and not based on genomic data); (ii)4 C. gattii alphaWM276 and a E566 strains dS was plotted following the methods in (Branco et al., 2017)
according to thegeneorder inC. amylolentus (strainCBS6039)as aproxy for ancestral geneorder, as it is a closely related specieswithunlinkedmating-type loci
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alphaWM276 strain and the C. amylolentus CBS6039 strain as a proxy for ancestral gene order; (ii) between theMicrobotryum silenes-acaulis and
M. lagerheimeii as a proxy for ancestral gene order; and (iii) between the two mating-type chromosomes of the C. amylolentus CBS6039 strain
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Some of the recent evolutionary strata identified inMicrobotryum
anther-smut fungi involve inversions or movement of the region at
the margin of the nonrecombining region into the middle of the
nonrecombining region (Branco et al., 2017; Branco et al., 2018)
(Fig. 8b). In the L10 lineage of N. tetrasperma, a large inversion
appeared polymorphic (Y. Sun et al., 2017), extending the region of
recombination suppression, which brings support to the hypothesis
that neutral rearrangements fixed by drift may be a mechanism
generating evolutionary strata. Examples also may include inver-
sions found adjacent to the mating-type locus in Flammulina
velutipes (van Peer et al., 2011) and in several lineages of
N. tetrasperma (Ellison et al., 2011; Y. Sun et al., 2017). However,
it is difficult to assesswhether such rearrangementswere the causes or
consequences of recombination suppression. As a matter of fact,
large regions of recombination suppression without any inversions
betweenmating types also have been identified inMicrobotryum spp.
(Branco et al., 2017; Carpentier et al., 2019), P. anserina (Grognet
et al., 2014) andN. tetrasperma fungi (Y. Sun et al., 2017) (Fig. 6c),
indicating that other mechanisms can suppress recombination.

A third, nonexclusive hypothesis relates to epigenetic modifica-
tions of chromatin structure associated with transposable elements
(TEs) (Kent et al., 2017) (‘spread of transposable element

hypothesis’; Fig. 8c; Table 1). TEs accumulate in regions of
suppressed recombination (Bachtrog, 2003; Bachtrog, 2013;
Branco et al., 2018), where selection against their deleterious
insertions is less effective than in freely recombining regions.
Genome defenses against TE proliferation often involve the
silencing of gene expression through constitutive heterochromatin
assembly, sometimes driven by DNA methylation (Maloisel &
Rossignol, 1998; Ben-Aroya et al., 2004; Lewis et al., 2009; Yelina
et al., 2012;Montanini et al., 2014; Li et al., 2016). The effects upon
local genomic architecture often are not limited to the TE sequences
but can extend, in terms of both DNA methylation and
heterochromatin formation, up to several kilobases away. Thus,
TE accumulation and/or their silencing may spread into adjacent
regions, possibly driving a feedback of extending recombination
suppression and the further favoring of TE accumulation in those
regions (Willing et al., 2015; Kent et al., 2017; Choi & Lee, 2020).
In addition, repeat-induced point mutation (RIP), a mechanism
specifically mutating repeated sequences in fungi, also has the
consequence to decrease recombination rates, because it decreases
similarity between homologous genomic regions containing repeats
and because it induces the formation of constitutive heterochro-
matin (Aramayo & Selker, 2013). RIP has been found in the

(c)  Spread of transposable element hypothesis(a)  Deleterious allele sheltering hypothesis

(b)  Neutral rearrangement/inversion hypothesis
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Fig. 8 Three other evolutionary hypotheses than sexual antagonism for explaining evolutionary strata extending beyond mating-type loci. (a) Sheltering of
deleterious recessive alleles, which may accumulate in the recombining regions in linkage disequilibrium with the non recombining region on both sex and
mating-type chromosomes (here, the a1 and a2mating-types). (b) Neutral rearrangements fixed by drift (the illustrated cases of genemovement and inversion
seem to have occurred inMicrobotryum fungi (Branco et al., 2017). (c) Spread of transposable elements and their silencing marks (methylation,
heterochromatin, repeat-induced point mutation) proximally to the region without recombination.
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nonrecombining region around mating-type genes (Hood et al.,
2005; Grognet et al., 2014). RIP and TE methylation have further
been shown to ‘leak’ further than just transposable elements (Van de
Wouw et al., 2010eWouw et al., 2010;Meunier et al., 2018). Here,
the silencing mechanisms of transposable elements constitute
proximate causes of recombination suppression whereas the evolu-
tionary cause is the lack of effective selection against TE insertions
and the selection for genomic defense against repeat multiplication.

Other putative proximate mechanisms of recombination sup-
pression (Table 1) include chromatin compaction and subsequent
depletion of recombination hotspots (Furman et al., 2020), that
could be involved for example in cases of selection for recombi-
nation suppression for sheltering deleterious alleles. For instance,
the presence of histone H3 lysine 9 methylation (H3K9me being
the hallmark of constitutive heterochromatin) and RNA interfer-
ence was associated to recombination suppression in the yeast
fungal model Schizosaccharomyces (Ellermeier et al., 2010; Okita
et al., 2019). Localized recombination modifiers also can act in cis
or in trans. The recombination landscape was found to be highly
contrasted between A. bisporus varieties, with the variety bisporus
showing crossing-overs only at chromosome ends and the variety
burnettii showing a more homogeneous crossing-over distribution
(Sonnenberg et al., 2017), suggesting recombination suppression
expansion. The intermediate recombination landscapes in hybrids
and backcross (Foulongne-Oriol et al., 2011) led to the hypothesis
that the recombination suppression in central parts of chromo-
somes was a quantitative trait and thus under the control of
multiple genetic loci (Sonnenberg et al., 2017). A quantitative trait
loci (QTL) mapping analysis in fact revealed two QTLs located on
chromosome l (i.e. the mating-type chromosome) and three other
QTLs located on chromosomes IV, VI and VII, respectively
(Telgerd, 2017), suggesting the existence of several recombination
modifiers, some of which at least acting in trans.

VIII. Conclusion and future directions

Recent progress in sequencing technologies has revealed increasing
number of cases of recombination suppression around fungal
mating-type geneswhereas their evolutionary and proximate causes
have been little explored. We hope that the recent findings
highlighted here will foster further studies on the recombination
suppression around mating-type loci in fungi, to assess the
generality of these patterns and contribute to our understanding
of the evolutionary genomics of reproductive compatibility across a
broader range of organisms.Mating-type loci in pseudo-homothal-
lic and selfing fungi will be particularly interesting to investigate,
butwedefinitely need to accumulate data on amore diverse range of
fungal life cycles to be able to draw general patterns about the
features associated with recombination suppression. Fungi repre-
sent excellent models to test general hypotheses about the causes of
recombination suppression, thanks to their small and compact
genomes, the decoupling of mating types from gamete size
differences and their experimental tractability. Mating-type loci
in other organisms, in particular the fungal-like oomycetes, alsowill
be interesting subjects on which to study these hypotheses5 , as they
have just begun to be discovered and there seems to be gradual

decrease in heterozygositywhen going farther from themating-type
locus* (Dussert et al., 2020).

Hypotheses could be tested by investigating, in a wide range of
species, the patterns of accumulation of deleterious mutations,
linkage disequilibrium, polymorphic rearrangements, transposable
elements and methylation marks, especially at the margin of
nonrecombining regions (Fig. 8). Distributions of crossovers,
double-strand breaks and chromatin modifications also need to
be further investigated in fungal mating-type chromosomes*.
Furthermore, some of the transposable element and deleterious
allele hypotheses predict a gradual extension of recombination
suppression, whereas the chromosomal inversions or rearrange-
ments predict large discrete ‘strata’, such that investigating the
divergence patterns between mating types may allow disentangle-
ment of various hypotheses. When more data are available on the
extent of recombination suppression around mating-type loci in
fungi, contrasting features may further allow disentanglement of
hypotheses by evolutionary comparative methods. The tractability
of fungi as genetic models and the progress of technology to access
to structural and epigenetic variation in genomes will likely
enhance further discoveries in the near future.
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