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Introduction

Among the broad array of analytical tools developed for marine ecology studies over the last two decades, Species Distribution Modelling (SDM) has been increasingly used [START_REF] Peterson | Predicting species' geographic distributions based on ecological niche modeling[END_REF][START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF][START_REF] Austin | Species distribution models and ecological theory: a critical assessment and some possible new approaches[END_REF][START_REF] Gobeyn | Evolutionary algorithms for species distribution modelling: A review in the context of machine learning[END_REF]) and applied to Southern Ocean pelagic [START_REF] Pinkerton | Spatial and seasonal distribution of adult Oithona similis in the Southern Ocean: predictions using boosted regression trees[END_REF][START_REF] Freer | Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean[END_REF], benthic organisms [START_REF] Loots | Habitat modelling of Electrona antarctica (Myctophidae, Pisces) in Kerguelen by generalized additive models and geographic information systems[END_REF][START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF][START_REF] Basher | The past, present and future distribution of a deep-sea shrimp in the Southern Ocean[END_REF][START_REF] Xavier | Biogeography of Cephalopods in the Southern Ocean using habitat suitability prediction models[END_REF][START_REF] Gallego | On the need to consider multiphasic sensitivity of marine organisms to climate change: A case study of the Antarctic acorn barnacle[END_REF], Guillaumot et al. 2018a[START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF][START_REF] Fabri-Ruiz | Can we generate robust species distribution models at the scale of the Southern Ocean?[END_REF][START_REF] Jerosch | Ensemble modelling of Antarctic macroalgal habitats exposed to glacial melt in a polar fjord[END_REF]) and even marine mammals [START_REF] Nachtsheim | Habitat modelling of crabeater seals (Lobodon carcinophaga) in the Weddell Sea using the multivariate approach Maxent[END_REF]. SDM represents a complementary approach to individual-based modelling and eco-physiological experiments, quickly and synthetically identifying environmental correlates of species distribution [START_REF] Brotons | Modeling bird species distribution change in fire prone Mediterranean landscapes: incorporating species dispersal and landscape dynamics[END_REF], Feng and Papes 2017[START_REF] Feng | Physiology in ecological niche modeling: using zebra mussel's upper thermal tolerance to refine model predictions through Bayesian analysis[END_REF]. SDM is also used to define species distribution spatial range (Nori et al. 2011, Walsh and[START_REF] Walsh | A Framework for Forest Landscape and Habitat Suitability Model Integration to Evaluate Forest Ecosystem Response to Climate Change[END_REF] and can be used as decision criteria for conservation purposes [START_REF] Guisan | Predicting species distributions for conservation decisions[END_REF][START_REF] Marshall | Species distribution modelling to support marine conservation planning: the next steps[END_REF]. For instance, it is currently used in proposals developed by national committees of the CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) to support the definition and delineation of marine protected areas [START_REF] Ballard | Coexistence of mesopredators in an intact polar ocean ecosystem: the basis for defining a Ross Sea marine protected area[END_REF], CCAMLR report WG-FSA-15/64, Arthur et al. 2018).

Applying SDM to Southern Ocean case studies is particularly challenging due to major constraints and biases that may reduce modelling performance. As for many oceanographic studies, access to environmental data with high temporal and spatial resolutions is difficult [START_REF] Davies | Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia)[END_REF][START_REF] Robinson | Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities[END_REF]. Antarctic coastal areas, in particular, are rarely accessed and documented due to logistical constraints, access being for example impossible during the austral winter due to sea ice cover [START_REF] De Broyer | Biogeographic atlas of the Southern Ocean[END_REF]. The availability of species absence records is also a limiting factor to modelling performances and model calibrations (Brotons et al. 2004, Wisz and[START_REF] Wisz | Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data[END_REF]. Models are usually based on a limited number of presence-only records and limited number of sampling sites, which are both spatially aggregated in the vicinity of scientific stations, where access is frequent and datasets from different seasons, have been compiled over decades and even beyond [START_REF] De Broyer | Biogeographic atlas of the Southern Ocean[END_REF], Guillaumot et al. 2018a[START_REF] Fabri-Ruiz | Can we generate robust species distribution models at the scale of the Southern Ocean?[END_REF][START_REF] Guillaumot | Broad-scale species distribution models applied to data-poor areas[END_REF].

When generating a SDM, the model is fit to data with a given range of value for each environmental descriptor (i.e. the calibration range). When transferring model predictions, a portion of the environment may cover additionnal conditions that are outside this calibration range: these are non-analog conditions and the model extrapolates [START_REF] Randin | Are niche-based species distribution models transferable in space?[END_REF], Williams and Jackson 2007, Williams et al. 2007[START_REF] Fitzpatrick | The projection of species distribution models and the problem of non-analog climate[END_REF][START_REF] Owens | Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas[END_REF][START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF].

Considering the limited number of species presence-only records occupied by each marine benthic species, and the poor quality and precision of environmental descriptors available for modelling Southern Ocean species distributions (Guillaumot et al. 2018a[START_REF] Fabri-Ruiz | Can we generate robust species distribution models at the scale of the Southern Ocean?[END_REF]), a large proportion of cells might be expected to be extrapolations beyond the calibration range of the model.

The Multivariate Environmental Similarity Surface (MESS) approach analyses spatial extrapolation by extracting environmental values covered by presence-only records and estimates areas where environmental conditions are outside the range of conditions contained in the calibration area [START_REF] Elith | The art of modelling range shifting species[END_REF]. The method considers that extrapolation occurs when at least one environmental descriptor value is outside the range of the environment envelop for model calibration (more details given in Appendix 4).

The MESS approach was initially used to determine the environmental barriers to the invasion of the cane toad in Australia, when facing new environments and under future conditions [START_REF] Elith | The art of modelling range shifting species[END_REF]. Implemented in MaxEnt [START_REF] Elith | A statistical explanation of MaxEnt for ecologists[END_REF], MESS was subsequently used by several authors for defining the climatic limits to the colonisation of new environments by non-native species, such as the American bullfrog in Argentina [START_REF] Nori | American bullfrog invasion in Argentina: where should we take urgent measures?[END_REF], for studying contrasts between native and potential ecological niches like in the study of the spotted knapweed (Centaurea stoebe) [START_REF] Broennimann | Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America[END_REF], or for defining the limits to model transferability and predicting the distribution of trees under future environmental conditions [START_REF] Walsh | A Framework for Forest Landscape and Habitat Suitability Model Integration to Evaluate Forest Ecosystem Response to Climate Change[END_REF].

More recently, the MESS approach was used to define model uncertainties related to extrapolation [START_REF] Escobar | A global map of suitability for coastal Vibrio cholerae under current and future climate conditions[END_REF][START_REF] Li | Correction: Evaluation of Limiting Climatic Factors and Simulation of a Climatically Suitable Habitat for Chinese Sea Buckthorn[END_REF][START_REF] Cardador | Combining trade data and niche modelling improves predictions of the origin and distribution of non-native European populations of a globally invasive species[END_REF][START_REF] Luizza | Integrating local pastoral knowledge, participatory mapping, and species distribution modeling for risk assessment of invasive rubber vine (Cryptostegia grandiflora) in Ethiopia's Afar region[END_REF][START_REF] Iannella | Unraveling climate influences on the distribution of the parapatric newts Lissotriton vulgaris meridionalis and L. italicus[END_REF][START_REF] Milanesi | Towards continental bird distribution models: environmental variables for the second European breeding bird atlas and identification of priorities for further surveys[END_REF][START_REF] Silva | Digital soil mapping including additional point sampling in Posses ecosystem services pilot watershed, southeastern Brazil[END_REF]) and extrapolation areas where environmental conditions are non-analog to conditions of model calibration [START_REF] Fitzpatrick | The projection of species distribution models and the problem of non-analog climate[END_REF]Hargrove 2009, Anderson 2013).

Associating uncertainty information to model predictions has been acknowledged as a necessity for reliable interpretations of model predictions [START_REF] Grimm | Robustness analysis: Deconstructing computational models for ecological theory and applications[END_REF]Berger 2016, Yates et al. 2018). It is also a requirement for specifying the level of risk associated with predictions and evaluating whether uncertainty can be mitigated to improve model outcomes [START_REF] Guisan | Predicting species distributions for conservation decisions[END_REF]).

This study addresses the importance of extrapolation and associated uncertainties in SDMs generated at broad spatial scale for Southern Ocean species: an analysis that is seldom performed although important to characterise model reliability. Using the case study of six abundant and common sea star species in marine benthic communities, objectives of this work are to evaluate the importance of extrapolation proportions in wide projection areas, and to provide some methodological clues to mitigate the effects of extrapolation and improve model accuracy.

Methods

Studied species and environmental descriptors

The distribution of six sea star species (Asteroidea : Echinodermata) was studied (Table 1). The six species, Acodontaster hodgsoni (Bell, 1908), Bathybiaster loripes (Sladen, 1889), Glabraster antarctica (Smith, 1876), Labidiaster annulatus Sladen, 1889, Odontaster validus Koehler, 1906and Psilaster charcoti (Koehler, 1906) are abundant and common in benthic communities in the Southern Ocean. The biology, ecology and distribution of these species have been extensively studied and are relatively well documented [START_REF] Mcclintock | Intraspecific agonistic arm-fencing behavior in the Antarctic keystone sea star Odontaster validus influences prey acquisition[END_REF][START_REF] Mah | Global diversity and phylogeny of the Asteroidea (Echinodermata)[END_REF][START_REF] Lawrence | Starfish: biology and ecology of the Asteroidea[END_REF]). Presence-only records were compiled from a recently updated database, thoroughly scrutinised with the World Register of Marine Species (WoRMS Editorial Board 2016), to delete potential discrepancies, update taxonomy and correct for georeferencing errors [START_REF] Moreau | Antarctic and sub-Antarctic Asteroidea database[END_REF].

Models were generated for the different species using 298 to 851 presence-only records, and projected at different depth ranges (Table 1). The distributions of these presence-only records are contrasting between species (Appendix 1), with A. hodgsoni, B. loripes and G. antarctica having an Antarctic and sub-Antarctic distribution, with an important number of data available for B. loripes and G. antarctica but less data for A. hodgsoni (respectively 591, 851 and 298 presence-only records). L. annulatus has a distribution mainly gathered in the sub-Antarctic region with few data available (375 presence-only records). O. validus and P. charcoti are mainly present on the coasts of the Antarctic shelf. 'distance' layers and 'extreme' layers were not selected because the interpretation of their respective contributions to niche models is complex or weak and collinear descriptors were also discarded for a Variance Inflation Factor (VIF) > 10 ( [START_REF] Naimi | Where is positional uncertainty a problem for species distribution modelling?[END_REF]. A set of 14 to 16 speciesspecific layers that characterise temperature, salinity, food availability and habitat characteristics were therefore used for model calibration (Table S2).

Models calibration

Species Distribution Models (SDMs) were generated using the Boosted Regression Trees (BRT), a machine-learning approach that was already calibrated for Southern Ocean case studies [START_REF] Guillaumot | Methods for improving species distribution models in data-poor areas: example of sub-Antarctic benthic species on the Kerguelen Plateau[END_REF][START_REF] Guillaumot | Broad-scale species distribution models applied to data-poor areas[END_REF] and was proved efficient to provide accurate models with good transferability performance, that is good ability to project model in space and time [START_REF] Elith | A working guide to boosted regression trees[END_REF][START_REF] Reiss | Species distribution modelling of marine benthos: a North Sea case study[END_REF][START_REF] Heikkinen | Does the interpolation accuracy of species distribution models come at the expense of transferability?[END_REF][START_REF] Guillaumot | Broad-scale species distribution models applied to data-poor areas[END_REF]. In order to minimalize the effect of presence-only records aggregation on model predictions, background data were randomly sampled in the environment following the probabilities defined by a Kernel Density Estimation (KDE) (see [START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF] 2019)). One hundred SDMs were generated and averaged for each species, with background data randomly sampled following the KDE for each replicate.

SDMs were calibrated and reliability tested using a spatial cross-validation procedure. For each species, several procedures were compared following [START_REF] Guillaumot | Broad-scale species distribution models applied to data-poor areas[END_REF]. The studied area was randomly subdivided into 2 to 6 areas of similar surfaces (longitude-split spatial folds), with presence and background data selected from one to three areas for model training and from the remaining areas for model testing. The "6-fold CLOCK" cross-validation approach was selected for B. loripes, G. antarctica, L. annulatus and O. validus and the "2-fold CLOCK" procedure was selected for A. hodgsoni and P. charcoti, according to the best percentage of test data correctly classified (Appendix 3).

The Maximum sensitivity plus specificity threshold (MaxSSS), considered the most appropriate threshold for presence-only SDM [START_REF] Liu | Selecting thresholds for the prediction of species occurrence with presence-only data[END_REF]) was used to binarize models into suitable (>MaxSSS value) and unsuitable areas (<MaxSSS value). This threshold was used to measure the proportion of test data correctly classified. Modelling performances were also assessed using the three following metrics: Area Under the Receiver Operating Curve (AUC, Fielding and Bell 1997),

the Point Biserial Correlation between predicted and observed values (COR, [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF]) and the True Skill Statistics (TSS, [START_REF] Allouche | Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)[END_REF].

Two analyses were performed: in Analysis #0 ('no-depth limited'), SDMs were projected on the entire Southern Ocean surface (south of 45°S) and in Analysis #1 ('depth limited'), SDM projections and background samplings were restricted to areas limited by a maximum depth threshold defined for each species based on the available species presence-only records (Table 1).

MESS calculation

The MESS was measured using the dismo R package [START_REF] Hijmans | Package 'dismo[END_REF]) and following the guidelines provided in [START_REF] Elith | The art of modelling range shifting species[END_REF]. Pixels for which at least one environmental descriptor has a value that is outside the range of environmental values defined by presence-only records (calibration range) were considered to be extrapolation (i.e when MESS estimate gets negative values, Appendix 4). The proportion of extrapolation areas (i.e. the proportion of cells defined as extrapolations over the total projection area) was calculated and compared between species. On SDM projection maps, extrapolated pixels were displayed in black.

Environmental parameters responsible for extrapolation were estimated by modifying the code provided in [START_REF] Elith | The art of modelling range shifting species[END_REF]. Detailed R scripts are available at https://github.com/charleneguillaumot/THESIS. Methodological details are provided in Appendix 4.

Influence of the number and distribution of presence-only records on extrapolation

The proportion of extrapolation areas may vary with presence-only sampling effort. In order to study the influence of the number and distribution of these presence-only records on the proportion of extrapolation areas, two analyses were performed. First, several SDMs were generated with different numbers of presence-only records, following the chronological addition of new presenceonly records through time, from 1980 to 2016. Second, SDMs generated with 10% to 100% (10% increments, so 10 subsets) of the entire presence-only dataset were compared. In this analysis, in contrast to the previous one, presence-only records are randomly sampled among the datasets available.

In these two analyses, SDMs were projected on the environmental space limited by the maximum depth defined for each species (Table 1), 100 model replicates were generated and averaged in each case and spatial autocorrelation (SAC) was estimated to assess the influence of presenceonly records aggregation on modelling performances. The significance of SAC was tested using the Moran I index computed on model residuals [START_REF] Luoto | Uncertainty of bioclimate envelope models based on the geographical distribution of species[END_REF][START_REF] Crase | A new method for dealing with residual spatial autocorrelation in species distribution models[END_REF].

The relationship between the number of presence-only records used in SDM and the relative proportion of extrapolation areas was characterised using linear regressions. This allowed, for each model, estimation of the minimum number of presence-only records required to obtain a 'reasonable' proportion of extrapolation area arbitrarily set to a 10% threshold.

Results

Extrapolation and the extent of projection areas

All generated SDMs are accurate and performant, with high AUC (AUC>0.91), TSS (TSS>0.559)

and COR (COR>0.68) values, low standard deviations and good percentages of correctly classified presence-only test data (77 to 90 %) (Table 2). Descriptors that contribute the most to SDMs are depth (22 to 34%), minimum POC (6 to 21%), POC standard deviation (8 to 20%), mean ice cover depth (7 to 17%) and mixed layer depth (3 to 10%). Contrasts between species are in the respective percentage of contribution of these descriptors. Descriptors that drive the most species distribution are similar between species (Appendix 5).

Models projected on the entire Southern Ocean (Analysis #0, 'no-depth limited') extrapolate on an area covering between 15 to 78% of the entire projection area, and 19 to 45% of the area initially predicted as suitable to the species distribution (Table 2, Fig. 1). Extrapolation areas cover more than 50% of the projection area for A. hodgsoni (78.6%), P. charcoti (67.8%), L. annulatus (64.8%)

and O. validus (51.9%) and more than 30% of suitable areas (Table 2). For these four species, depth is responsible for 25 to 68% of extrapolation (Appendix 5). Geomorphology, mean ice cover and POC standard deviation are layers also contributing to 2 to 7% for extrapolation (Appendix 5).

These descriptors that highly contribute to MESS also contribute to the model, and there are no descriptors for which the contribution to MESS is important whereas the contribution to the model is not substantial (Appendix 5).

In models projected on areas restrained in depth (Analysis #1, 'depth limited'), the percentage of extrapolation area sharply decreases from 59 to 18% according to the species ( 

Extrapolation and the number of presence-only records

Model performance and size of extrapolation area were compared between models run with different numbers of presence-only records, following the chronological addition of new samples (from 1980 to 2016). From 1980 to 2016, the number of presence-only records collected during oceanographic campaigns has increased from 1.9 to 3.3 times according to the species (1.9 times for O. validus, 3.3 times for A. hodgsoni)(Fig. 2a). Spatial autocorrelation between presence-only records varies between species, with the highest Moran's I scores obtained for L. annulatus, O.

validus and A. hodgsoni. The highest Moran's I values were mainly calculated for the oldest presence-only subsets (1980), strenghtening the fact that the addition of new presence-only records with additional campaigns reduces spatial autocorrelation (Table S7).

Model performance increases (higher AUC scores) with the addition of new presence-only records, for all species except for models of A. hodgsoni and B. loripes for which AUC values are stable (Table S6). Similarly, the percentage of correctly classified test data presents important standard deviation values and improves with the addition of new presence-only records, except for O.

validus (10% decrease) (Fig. 2).

For all species, the addition of new data reduces the percentage of extrapolation over the total projection area (-30.7% for A. hodgsoni, -12.7% for B. loripes, -20.5% for G. antarctica, -17.6% for L. annulatus, -10.2% for O. validus and -11% for P. charcoti, i.e. differences between the two extrapolation % values) and over the species suitable area as well (Fig. 2, Table S6). S7); (C) Proportion of grid-cell pixels of the projection area that are extrapolations (%). The maximal number of presence-only records present in Table 2 may not be reached here because some collection dates remain unknown.

The decrease of extrapolation with the addition of presence-only records was tested by running, for each species a series of models with different subsets of presence-only records randomly sampled from the total dataset. One hundred model replicates were progressively run with 10 to 100% of the total dataset and proportions of extrapolation areas were computed accordingly (Fig. 3, Table S7). Results confirm that the addition of presence-only records strongly reduces proportions of extrapolation areas. Proportions of extrapolation areas also vary between species models as a A linear regression model was fit to the relationship between the number of presence-only records and proportions of extrapolation areas. For all species, regression coefficients are all negative and tested significant showing that proportions of extrapolation areas decrease with the addition of new records (Table 3). The intersection point between regression models and the (arbitrary) 10%

extrapolation threshold was used to provide an estimate of the minimum number of records required for each species model to have an "adequate" proportion of extrapolation areas of 10%.

This minimum number of presence-only records is reached for none of the studied species, and according to species, the number of presence-only records available should be increased at least by 1.6 to 3.3 times (Table 3). 

Discussion

Modelling performances and extrapolation

SDMs were generated for Southern Ocean sea star species, with contrasting distributions and different numbers of presence-only records available (Table 1, Appendix 1). Overall, species presence-only records are spatially concentrated in the most accessible and visited areas of the Southern Ocean. Most of the sea star samples were collected close to the coasts of the Western Antarctic Peninsula, the Ross Sea and sub-Antarctic Islands such as the Kerguelen Islands.

Consequently, high spatial autocorrelation values were computed, for L. annulatus and O. validus in particular (Table S6).

Overall, models all show good performances (Table 2), the spatial cross-validation procedure ensuring a relevant evaluation of modelling performances when using spatially aggregated data [START_REF] Muscarella | ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models[END_REF][START_REF] Dhingra | Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3. 4.4 viruses with spatial cross-validation[END_REF][START_REF] Guillaumot | Broad-scale species distribution models applied to data-poor areas[END_REF]). However, models show high proportions of extrapolation areas, with extrapolation covering up to 78% of the projection area in A. hodgsoni model (Table 2). This means that even if models are evaluated as accurate, model extrapolation area can concern up to three quarters of the projection area! Assessing the proportion of the projection area for which models extrapolate is therefore necessary as a complementary statistic to adapt modelling methods and improve model predictions. Masking projections by extrapolation uncertainties is also important to perform accurate interpretations.

Extrapolation uncertainty maps have already been associated to SDM projections once in the context of the Southern Ocean, by [START_REF] Torres | Poor transferability of species distribution models for a pelagic predator, the grey petrel, indicates contrasting habitat preferences across ocean basins[END_REF] in their study of the grey petrel Procellaria cinerea, performed at the scale of the Southern Ocean. More recently, the MESS approach has been introduced in the methodological paper of [START_REF] Guillaumot | Broad-scale species distribution models applied to data-poor areas[END_REF], showing an extrapolation area covering 64% of the projection area for the distribution model of the sea star O. validus, the most studied benthic invertebrate of the Southern Ocean. However, uncertainties associated to extrapolation were not provided in most model projections performed for Southern Ocean species studies. For instance, modelled distributions performed for the sea urchins Sterechinus neumayeri and Sterechinus diadema [START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF] were generated using a relative low number of presence-only records (241 and 332, respectively). Based on results of the present study, extrapolation could be expected to cover up to 60% of modelled distribution areas for these last two species. Further Southern Ocean species distribution models were generated with sometimes less than 100 presence-only records (see [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF][START_REF] Fabri-Ruiz | Can we generate robust species distribution models at the scale of the Southern Ocean?[END_REF] for instance), suggesting that extrapolation could cover up to 70% of projection areas as visible in models of A. hodgsoni and P. charcoti performed in our study with few records (Fig. 2, Table S6, Table S7).

In addition to model uncertainties associated to extrapolation, other biases can alter the performance of SDMs generated at broad spatial scales including the spatial and temporal aggregation of data [START_REF] Hortal | Historical bias in biodiversity inventories affects the observed environmental niche of the species[END_REF][START_REF] Tessarolo | Uncertainty associated with survey design in Species Distribution Models[END_REF], 2017), the selection and quality of environmental descriptors (Davies et al. 2008, Synes and[START_REF] Synes | Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change[END_REF], the choice of modelling algorithms and the definition of model settings [START_REF] Hartley | Quantifying uncertainty in the potential distribution of an invasive species: climate and the Argentine ant[END_REF][START_REF] Marmion | The performance of state-of-the-art modelling techniques depends on geographical distribution of species[END_REF]). Providing such uncertainty information, highlighted with some model statistics is very much encouraged here, as they are essential to model interpretation [START_REF] Beale | Incorporating uncertainty in predictive species distribution modelling[END_REF][START_REF] Guisan | Predicting species distributions for conservation decisions[END_REF][START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF].

How can we reduce model extrapolation? Enriching SDMs with knowledge of species ecology One objective of this work was to provide some methods to mitigate the effect of extrapolation on model uncertainties. Our results show clear contrasts between models generated for "deep" and "shallow" species, with lower proportions of extrapolation areas computed for deep species models (29.1 and 15.73% respectively for B. loripes and G. antarctica). The model generated for P.

charcoti departs from this general scheme, with extrapolation reaching 67.9% of the projection area. This is due to the strong spatial aggregation of records and the small presence-only record dataset available in deeper habitats. Depth is indeed responsible for 58.1% of the extrapolation for P. charcoti (Appendix 5). Indeed, the erroneous characterization of species occupied space, due to an incomplete sampling, has been identified as a significant source of bias in SDM predictions [START_REF] Hortal | Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands[END_REF], 2008[START_REF] Rocchini | Accounting for uncertainty when mapping species distributions: the need for maps of ignorance[END_REF][START_REF] Sánchez-Fernández | Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles[END_REF][START_REF] Titeux | The need for large-scale distribution data to estimate regional changes in species richness under future climate change[END_REF][START_REF] El-Gabbas | Wrong, but useful: regional species distribution models may not be improved by range-wide data under biased sampling[END_REF].

Limiting model projection areas to biogeographically, or ecologically "realistic" depth ranges can help reduce extrapolation as exemplified in the present study, for models of A. hodgsoni and P.

charcoti, for which extrapolation was reduced from 78.6 to 40.6% and 67.9 to 35.8% respectively (Table 2). Restraining model projection areas based on species ecological or physiological tolerance thresholds is a common approach in ecological modelling using experimental data or field observations [START_REF] Kearney | Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges[END_REF][START_REF] Hare | Projecting range limits with coupled thermal tolerance-climate change models: an example based on gray snapper (Lutjanus griseus) along the US east coast[END_REF][START_REF] De Villiers | Combining field phenological observations with distribution data to model the potential distribution of the fruit fly Ceratitis rosa Karsch (Diptera: Tephritidae)[END_REF]). Knowledge of species ecology and physiology can also be useful to delineate transferability areas (Feng and Papes 2017) and improve distribution models, as recently shown for Southern Ocean species (Guillaumot et al. 2018a[START_REF] Guillaumot | Broad-scale species distribution models applied to data-poor areas[END_REF]. [START_REF] Feng | Physiology in ecological niche modeling: using zebra mussel's upper thermal tolerance to refine model predictions through Bayesian analysis[END_REF] developed a new modelling algorithm, called Plateau, which uses experimental data to define upper temperature conditions in distribution models. For temperature and salinity, physiological experiments and field observations can be used in models to determine species tolerance thresholds. This requires knowledge about the species ecology and physiology and the input from specialists, all conditions that remain difficult to meet, regarding deep sea species of the Southern Ocean [START_REF] Gage | Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic[END_REF][START_REF] Gutt | Marine Life in the Antarctic[END_REF][START_REF] De Broyer | How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species[END_REF]. Moreover, several studies suggested that some Southern Ocean species might have found refuges in deep sea habitats in the past, during glacial maxima, which makes species depth range difficult to precise when deep and shallow populations have not been differentiated into distinct taxonomic units yet [START_REF] Rogers | Evolution and biodiversity of Antarctic organisms: a molecular perspective[END_REF][START_REF] Arango | Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae)[END_REF][START_REF] Havermans | DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep Sea Research Part II[END_REF][START_REF] Near | Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes[END_REF].

How can we reduce extrapolation? Improving sampling effort

Increased sampling effort over enlarged areas allows the production of larger datasets from which many records can be used to generate reliable models with reduced extrapolation areas. In this study, proportions of extrapolation areas proportionally decreased when increased numbers of presence-only records were used to generate models. The occurrence datasets were significantly augmented between 1980 and 2016, with a number of presence-only records multiplied by 1.9 to 3.3 times according to the studied species, which allowed reduction of model extrapolation from 10.2 to 30.7% according to the species (Fig. 2, Table S6). However, results suggest that about twice the number of presence-only records actually available would be necessary to reduce extrapolation down to a "satisfactory" threshold of 10% of the projection area (Table 3).

Generating reliable and stable models using a sufficient number of presence-only records is essential. In this study, some models could not be run when the number of presence-only records was too low (approaching 150 presence-only records or less) compared to the broad extent of the projection area and the spatial aggregation of these data (Table S7). Considering that the spatial cross-validation procedure splits the initial dataset into training and test data, and that at each step, 75% of these training data are randomly sampled by BRT to iterately create a model tree (and generate stochasticity in the procedure), the final number of presence-only records available to describe the presence data -environment relationship becomes too low (around 37.5% of the initial number of presence-only records).

The lowest number of presence-only records required to build a reliable model is speciesdependent as not all presence-only records are equally informative, due to species-specific relationships between records and the environment. When models are generated using BRT, records that bring no new environmental information to the model are dropped because they are not informative enough to improve the construction of BRT trees. Pruning non-informative data also reduces the total number of presence-only records available to generate a model [START_REF] Elith | A working guide to boosted regression trees[END_REF]. This is strongly related to prevalence that is, the ratio between the number of presence-only records and the size of the projection area [START_REF] Jiménez-Valverde | The effect of prevalence and its interaction with sample size on the reliability of species distribution models[END_REF][START_REF] Santika | Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data[END_REF][START_REF] Barbet-Massin | Selecting pseudo-absences for species distribution models: how, where and how many?[END_REF]. In order to accurately describe a vast projection area and be able to create a model, it is necessary to gather a substantial amount of information about the geographic environmental conditions and about species known distribution. If a limited number of records is available and these data are aggregated in space (i.e. weakly informative), the first trees produced by BRT will contain most of the model deviance, but as no new information is provided, the model will quickly overfit because redundant information is provided by close presence-only records.

Eventually, this will make the model collapse.

Increasing the number of presence-only records is proved an efficient alternative to generate more relevant models [START_REF] Stockwell | Effects of sample size on accuracy of species distribution models[END_REF][START_REF] Feeley | Keep collecting: accurate species distribution modelling requires more collections than previously thought[END_REF][START_REF] Van Proosdij | Minimum required number of specimen records to develop accurate species distribution models[END_REF]), but the spatial distribution of these records is of importance as well [START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF]. A uniform distribution of records over the entire projection area reduces spatial autocorrelation and optimizes the sampling and representativeness of environmental conditions under which species can thrive.

In this study, the spatial aggregation of species records was particularly high for two species, O. validus and L. annulatus. It was estimated that the number of supplementary presence-only records necessary to reach a proportion of extrapolation areas of 10% should be twice as high as it is for other species (Table 3). Additional data are necessary to improve the establishment of the relationship between species distribution and the environment because species records are less informative when aggregated than when they are evenly distributed.

The Southern Ocean covers contrasting environmental conditions, biogeographic regions and ecoregions [START_REF] Pierrat | Macroécologie des échinides de l'océan Austral: Distribution, Biogéographie et Modélisation[END_REF][START_REF] Fabri-Ruiz | Benthic ecoregionalization based on echinoid fauna of the Southern Ocean supports current proposals of Antarctic Marine Protected Areas under IPCC scenarios of climate change[END_REF]. Ideally, both species presence and absence should be recorded in each ecoregion for an accurate description of the occupied space [START_REF] Torres | Poor transferability of species distribution models for a pelagic predator, the grey petrel, indicates contrasting habitat preferences across ocean basins[END_REF]. Because such a sampling effort is usually not achievable, nor realistic, alternatives would consist of (1) a relevant adjustment of projection areas, with for instance the combination of several SDM projections using different grid sizes according to what is available. Generating SDM projections for large areas and combining results with projections zoomed in on areas where more environmental detail is available would provide more relevant and realistic modelled species distributions (Seo et al. 2009, Anderson and[START_REF] Anderson | The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela[END_REF].

(2) In order to compensate for the lack of presence-record availability, the 'ensembles of small models' approach is another alternative. This method fits a set of bivariate models (i.e. generated with two environmental descriptors only), within a hierarchic multi-scale framework (i.e. zooming in and out in space from local to regional predictions), and finally averages this ensemble of models with a weighted ensemble approach, which subsequently provides more accurate and robust model predictions [START_REF] Lomba | Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant[END_REF][START_REF] Breiner | Overcoming limitations of modelling rare species by using ensembles of small models[END_REF][START_REF] Habibzadeh | Ensemble of small models for estimating potential abundance of Caucasian grouse (Lyrurus mlokosiewiczi) in Iran[END_REF].

Some limitations to the MESS approach

The MESS approach can reveal parts of projection areas where models extrapolate. Extrapolation however can be over-estimated. Indeed, extrapolation is considered as soon as the value of a single environmental descriptor falls outside the range of the known species environmental requirements. But, some extreme values would not limit but can promote species presence: this is the case for descriptors relating to food resource availability (e.g. chlorophyll a, POC concentrations...), for which a high pixel value exceeding the range of values recorded based on species presences will be still considered as extrapolation, although more food usually means suitable conditions for species distribution.

Some fine-tuning of the MESS approach would imply to identify, for each pixel, which descriptor is responsible for extrapolation and filter the conditions for which the model should really extrapolate.

Such an approach was developed by [START_REF] Owens | Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas[END_REF], who used the MOP method (Mobility Oriented Parity). Based on multivariate analyses, they determined if pixels contain a combination of environmental conditions that should induce extrapolation. In contrast to the MESS approach, the MOP method can directly differentiate proportions of extrapolation areas according to the combination of descriptors responsible for extrapolation. Another complex alternative is the ExDet tool, developed by [START_REF] Mesgaran | Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models[END_REF], which also accounts for multivariate extrapolation possibilities, i.e. extrapolation linked to novel combinations between covariates.

In this study, the MESS approach was favored as a more strict and conservative method to highlight the importance of extrapolation, the effect of data quantity and quality, and the relevance of the proposed corrections. The MESS is also simpler to apply and well suited to exploratory studies.

Conclusions

This study shows that when modelling species distribution on broad scale areas, such as the Southern Ocean, important proportions of predicted distribution probabilities (suitable or not) are model extrapolations. This extrapolation uncertainty relies on the completeness of species sampling, and the definition of its occupied space to calibrate the model. Extrapolation occurs in areas where habitat suitability is unknown as no information on species presence or absence is provided.

Reducing extrapolation is possible by combining SDM with ecological and physiological knowledge of species requirements (e.g. depth range, temperature tolerance thresholds). Increased sampling effort over enlarged areas also allows the production of more reliable models with reduced extrapolation areas and our study shows that doubling the number of presence-only records available to generate the model would help reduce the extrapolation area down to 10% of the projected area.

While more data samples remain unavailable, some methods are increasingly developed to improve model performances, by adjusting the extent of the projection area or by generating and aggregating several small ensemble models.

Finally, present results call for a widespread use of extrapolation maps and uncertainties associated to model predictions in model outputs, along with information about the quantity of presence-only records available, the quality and resolution of environmental descriptors and the state of our knowledge of species ecology. These are all essential information needed to support model interpretations, as also stated in recent publications that review best practices in ecological modelling [START_REF] Araújo | Standards for distribution models in biodiversity assessments[END_REF][START_REF] Zurell | Testing species assemblage predictions from stacked and joint species distribution models[END_REF]).

Figure 1 .

 1 Figure 1. Maps of extrapolation areas covering SDM predictions, generated with all presence-only records available for the studied species. Left panel: projection area not limited in depth (Analysis #0), right panel: projection area limited to -1,500 m and -4,000 m depth (Analysis #1), according to the species (A. hodgsoni, L. annulatus, O. validus until 1,500 m; B. loripes, G. antarctica, P. charcoti until 4,000 m; Table 1). (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Glabraster antarctica, (d) Labidiaster annulatus, (e) Odontaster validus, (f) Psilaster charcoti. Extrapolation areas displayed in black; pixels colored by the yellow-red color palette provide SDM distribution probabilities (comprised between 0 and 1); bathymetric chart in shades of blue.
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 2 Figure 2. Evolution of model performances with the increase of data (chronological addition of presence-only records, by 5-year periods, from 1980 to 2016). (A) Number of presence-only
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 1 Sea star species investigated in the present study. The number of presence-only records available was summed up after removal of duplicates from each grid cell pixel. Image sources:Brueggeman 1998, BIOMAR ULB database (P. Pernet), proteker.net, B121 expedition (Q.
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	https://data.aad.gov.au/metadata/records/environmental_layers. These are oceanography raster
	layers that mostly describe the physical and geochemical environment south of 45°S with a 0.1°
	grid-cell resolution (approximately 11km wide in latitude). Among the 58 environmental descriptors
	provided, only those that fulfilled the analysis performed by Guillaumot et al. (2020) were selected:
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	279	(duplicates excluded); AUC: Area Under the Curve; TSS: True Skills Statistic; COR: Biserial
	280	Correlation.					
	281								
						Analysis #0, no-depth limited		
	Species		Pres.	AUC	TSS	COR	Correctly	Suitable area (%	Extrapolation	Extrapolation
			NB				classified test	total area)	area	area
							data (%)		(% total area)	(% total area)
	Acodontaster		298	0.925 ± 0.02	0.579 ± 0.04	0.735 ± 0.06	90 ± 6.26	8.86	78.6	35.3 ± 4.1
	hodgsoni								
	Bathybiaster		591	0.910 ± 0.02	0.559 ± 0.07	0.68 ± 0.09	80.6 ± 10.9	8.55	29.1	21.9 ± 4.4
	loripes								
	Glabraster		851	0.929 ± 0.01	0.58 ± 0.05	0.719 ± 0.07	85.45 ± 6.34	7.95	15.73	19.9 ± 3.9
	antarctica								
	Labidiaster		375	0.95 ± 0.03	0.598 ± 0.07	0.730 ± 0.14	77.7 ± 15.2	3.33	64.83	42.1 ± 10.5
	annulatus								
	Odontaster validus	337	0.953 ± 0.01	0.605 ± 0.05	0.746 ± 0.09	85.4 ± 9.6	6.89	51.9	45.2 ± 5.65
	Psilaster charcoti	353	0.911 ± 0.02	0.58 ± 0.03	0.723 ± 0.04	87.7 ± 4.8	8.90	67.9	32.5 ± 4.71
	282								
						Analysis #1, depth limited		
	Species		Pres.	AUC	TSS	COR	Correctly	Suitable area (%	Extrapolation	Extrapolation
			NB				classified test	total area)	area	area
							data (%)		(% total area)	(% total area)
	Acodontaster		298	0.823 ± 0.05	0.419 ± 0.1	0.475 ± 0.14	45.5 ± 18.1	17.49	40.6	27.5 ± 8.5
	hodgsoni								
	Bathybiaster loripes	591	0.887 ± 0.03	0.513 ± 0.08	0.607 ± 0.12	78.4 ± 11	15.75	18.2	20.8 ± 4.8
	Glabraster		851	0.915 ± 0.01	0.537 ± 0.08	0.654 ± 0.1	81.8 ± 7.7	14.08	23.9	18.64 ± 3.5
	antarctica								
	Labidiaster		375	0.918 ± 0.03	0.482 ± 0.16	0.563 ± 0.25	57.98 ± 20	8.88	59.5	38.7 ± 14.6
	annulatus								
	Odontaster validus	337	0.908 ± 0.03	0.504 ± 0.13	0.586 ± 0.17	57.68 ± 21	11.64	51.5	38.3 ± 6.97
	Psilaster charcoti	353	0.885 ± 0.02	0.546 ± 0.04	0.665 ± 0.06	83 ± 6.6	15.40	35.78	33.2 ± 5.1

). However, model performances also decrease, with AUC values going down to 0.885, TSS values to 0.419 and COR values to 0.475. The percentage of correctly classified test data is much lower and more variable for the shallowest species A. hogdsoni (from 90 ± 6.26% to 45.5 ± 8.1%), L. annulatus (77.7 ± 15.2 % to 57.98 ± 20%) and O. validus (from 85.4 ± 9.6% to 57.68 ± 21%). For all species, predicted suitable areas increase two-fold.

Overall, descriptor contributions to the model remain unchanged between the two analyses, except for depth contribution that decreases to around 10% on average for all the species. In contrast, in Analysis #1, depth contribution to the MESS is very low (0.64 to 5.8%), except for P. charcoti (16.3%). Mean ice cover is the layer that contributes the most to extrapolation, extrapolation areas mainly corresponding to Weddel and Amundsen seas.

  Psilaster charcoti. For each box, mean values (blue dots) and outliers (black dots) are shown for the 100 model replicates. Some boxes are missing for low percentages of presence-only records (10 to 30%, corresponding to close or less than 100 presence-only records) that do not allow models to be generated.

function of depth. Low proportions of extrapolation areas are obtained in models run for deep species and large datasets (e.g. 8.2% for 591 records in B. loripes and 23.9% for 851 records in G. antarctica). In contrast, models run for shallower species show higher proportions of extrapolation areas (40.6% for 298 records in A. hodgsoni, 51.5% for 375 records in L. annulatus and 35.8% for 337 records in O. validus). For these last species, spatial autocorrelation values are also higher compared to other species (Table

S7

). Figure 3. Boxplot diagrams representing the decrease of proportions of extrapolation areas (in % of the total projection area) with addition of presence-only records used to generate model replicates (in % of data available, see Table

1 and Table S7

), for: (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Glabraster antarctica, (d) Labidiaster annulatus, (e) Odontaster validus, (f)

Table 3 .

 3 Equations

	Species	Equation	R 2	Estimated Pres.NB. (with multiplier of
				actual Pres.NB. available)
	Acodontaster hodgsoni	Y=-0.1358X + 73.616**	0.60	468 (x 1.6)
	Bathybiaster loripes	Y=-0.0249X + 28.974*	0.42	762 (x 1.3)
	Glabraster antarctica	Y=-0.0304X + 44.991**	0.61	1151 (x 1.4)
	Labidiaster annulatus	Y=-0.0913X + 88.078**	0.85	855 (x 2.3)
	Odontaster validus	Y=-0.0561X + 71.112**	0.93	1089 (x 3.2)
	Psilaster charcoti	Y=-0.0301X + 44.613*	0.37	1150 (x 3.3)

of simple linear regressions between the number of presence-only records X and the average proportion of extrapolation areas Y (Table

2

, significance levels: * p<0.1, ** p<0.05). The estimate of the number of presence-only records necessary to have a minimum "adequate" arbitrary proportion of extrapolation areas of 10% is given in the last column

model replicates. Pres. NB: number of presences-only records available for modelling
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