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1 Introduction 1 

 2 

 Soil water content (SWC) is a key variable in hydrology because it affects soil-atmosphere 3 

interactions that control hydrological processes at the catchment scale (Quinn et al., 1993; 4 

Bogena et al., 2010). SWC observations are used for data aggregation, hydrological modeling, and 5 

upscaling (Romano, 2014) to study processes such as drought (Broedel et al., 2017; Abdelli et al., 6 

2017), flood forecasting (Hapuarachchi et al., 2011), soil-surface exchanges (Tromp-van Meerveld 7 

and McDonnell, 2006), rainfall-runoff transformations (Tramblay et al., 2010), and aquifer 8 

recharge (Dobriyal et al., 2012). Studying SWC spatio-temporal variability is a challenge because it 9 

is determined by numerous factors such as atmospheric forcing, topography, soil properties, and 10 

vegetation, which interact differently according to seasons and moisture conditions (Grayson and 11 

Western, 1998; Western et al., 2004). Most studies on SWC spatial organization have focused on 12 

SWC temporal persistence through the identification of stable patterns (Comegna and Basile, 13 

1994; Mohanty and Skaggs, 2001; De Lannoy et al., 2006; Hu et al., 2010). But in the case of flood 14 

generation processes, especially flash flood, the mapping of SWC is required at very short time 15 

steps (less than 20 min) to get the event dynamics. For example, event-scale SWC variation maps 16 

are needed for the identification of runoff-contributing areas dynamics within catchments. High 17 

frequency SWC mapping remains a methodological challenge because areal SWC estimation 18 

depends on both the investigation scale and the measurement technique (Robinson et al., 2008) 19 

but also on the high heterogeneity of soil in three dimensions. 20 

 21 

 Several methods have been recently developed to measure SWC at the catchment scale. For 22 

example, airborne monitoring has emerged in recent years. These methods are based on remote 23 

sensing approaches using passive and active micro-waves as well as radar or multi-spectra waves 24 

(Ochsner et.al, 2013) that are characterized by a limited spatio-temporal resolution and accuracy 25 

(Brocca et al, 2012) even if new generation of SWC estimated from Sentinel-1 are produced at 26 
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high resolution in agricultural areas (El Hajj et al., 2017). Indeed, remote sensing provides 27 

observations at a resolution coarser than what is required for hillslope monitoring. Moreover, 28 

satellite soil moisture is generally representative of surface soil moisture because sensors cannot 29 

explore deep through the soil. The development of airborne based sensors (thermal infra-red) 30 

makes it possible to monitor soil moisture with higher accuracy and geometric correction has 31 

become easier with recent photogrammetry and drone mapping software but sensors and flight 32 

missions are expensive and time consuming especially in mountainous environments (Baghdadi, 33 

2005). Space-averaged SWC is also assessed from the non-invasive cosmic ray sensor, which 34 

provides time-lapse measurements in a limited area defined by a radius of 300 m around the 35 

sensor (Zreda et al., 2008; Bogena et al., 2013; Köhli et al., 2015). But SWC estimation is 36 

integrated over a 30 ha area and SWC variation over the measurement area is unknown. 37 

Hydrogeophysical techniques such as Ground Penetrating Radar (Huisman et al., 2003; Dubreuil-38 

Boisclair et al., 2011), Electrical Resistivity Tomography (Zhou et al., 2001), multi-temporal 39 

resistivity measurements (Brunet et al., 2010) and Electromagnetic Induction (Kashanoski, 1988) 40 

have also been used to estimate SWC spatial variability (Michot et al., 2003) on transects, 41 

hillslopes, and fields. The pedotransfer function approach has been tested using the relationship 42 

between soil electrical resistivity and soil moisture (Brillante et.al, 2014). But SWC retrieval from 43 

these techniques is discussed, especially due to their site-dependence (Calamita et al., 2015). At 44 

the hillslope scale, recent studies showed that the use of fiber-optic distributed temperature 45 

sensing (Selker et al., 2006; Cao et al. 2016) could be a valuable approach for 2D observation of 46 

soil water dynamics but this innovative method needs a complex calibration procedure according 47 

to soil type (porosity, mineralogy, diffusion coefficient) (Krzeminska et al. 2012). 48 

 49 

In most cases, SWC rate variations across scales have been estimated from a network of 50 

local ground-based sensors. In situ SWC plot scale measurements have been greatly improved in 51 

the last several decades due to new technologies and devices allowing monitoring in almost all 52 



3 
 

kind of soils. Invasive methods such as Time Domain Reflectometry (TDR) (Topp et al., 1980), 53 

Frequency Domain Reflectometry (FDR) (Jones et al., 2005; Vereecken et al., 2014), and Time 54 

Domain Transmissometry (TDT) (Blonquist et al., 2005) make it possible to produce SWC time 55 

series along vertical or horizontal profiles (Martini et al., 2017) using soil dielectric permittivity 56 

measurements. Nowadays, these probes are usually available at affordable prices and are easy to 57 

install in the field. However, significant uncertainties regarding actual values may arise owing to 58 

the derivation of SWC from the permittivity measurement or the sensor raw signal via calibration 59 

equations that depend on temperature and soil texture. Several methods have been proposed to 60 

obtain soil moisture maps at higher spatial and temporal resolution from plot scale 61 

measurements, primarily based on geostatistical analysis (Western et al., 1999; Brocca et al., 62 

2010), temporal stability analysis (Vachaud et al., 1985; Zhu et al., 2020), the use of empirical 63 

orthogonal functions (Jawson and Niemann, 2007), or wavelet coherency analysis (Biswas and Si, 64 

2011). Most of these geostatistical approaches have referred to multiple correlation analysis and 65 

variogram models (Ver Hoef, 1993). Geostatistical analyses aim at establishing space-time 66 

relationships between SWC and local variables such as porosity or soil electrical conductivity 67 

(Kachanosky et al., 1990; Brevik et al., 2006 ; Altdorff et al., 2017), topography as a control of 68 

vegetation, soil depth, and by extension, evaporation and evapotranspiration processes (Blyth et 69 

al., 2004), or land use (Bardossy, 1998). 70 

 71 

Several recent studies using those techniques have investigated the links between land 72 

surface characteristics and the spatial distribution of SWC at the catchment scale, as well as the 73 

link between topography and SWC/runoff thresholds (Vanderlinden et al., 2012; Penna et al., 74 

2013; Braud et al., 2017). They have highlighted that these controls are very different according to 75 

the catchment geographic, climatic and physiographic properties. In a 1.9 km² alpine headwater 76 

catchment in the Italian Dolomites, Penna et al. (2011) observed that riparian zones reached 77 

rapidly saturation and contribute mainly to low runoff ratios. Conversely, high runoff ratios were 78 
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associated to subsurface flows on hillslopes occurring during wet period when soils were close to 79 

saturation and flowpaths between the hillslope and riparian zone became connected (Sidle et al., 80 

2000; Ocampo et al., 2006; Zuecco et al., 2013; Mallet et al., 2018). This study also showed that 81 

during dry period streamflows occurred before SWC reached saturation and conversely during 82 

wet period. In a 0.08 km² forested catchment in Pennsylvania (USA), Fan et al. (2020) observed 83 

that SWC temporal variability was higher on north facing hillslopes compared to south facing 84 

hillslopes and that downslope areas were usually wetter than upslope areas. They also observed 85 

that SWC became spatially more variable but temporally more stable with depth, which was also 86 

observed by Zhu et al. (2020) in a subalpine semi-arid catchment in China. The same observation 87 

was made between dry warm seasons and wet cold seasons. Slope shape also impact SWC spatial 88 

variability, storage and water availability for runoff (Moore et al., 1988; Liu and Luo, 2010; Corrao 89 

et al., 2017). Concaved slopes favor water concentrations which lead to higher SWC spatial 90 

variability compared to flat areas. Conversely, convex slopes have shallower infiltration depth and 91 

lower near surface SWC (Green and Erskine, 2011). Vegetation cover and land use also have a 92 

strong impact on SWC spatial and temporal variability since it’s highly correlated to topography 93 

(Vereecken, 2008). SWC variability among different vegetation types depend on complex variables 94 

such as vegetation coverage, root distribution and depth or tree size and spacing 95 

(Rodriguez-Iturbe, I., 2000; Ni et al., 2019; Wei et al., 2019; Stevens et al., 2020). Eventually, 96 

geostatistical analyses help fill spatial SWC data gaps at the catchment scale but producing high 97 

frequency SWC maps at the event time scale in a mountainous catchment remains a 98 

methodological challenge (Tromp van Meerveld et al., 2009). 99 

 100 

SWC monitoring in sloppy catchments is challenging because they are highly complex. 101 

Topography and climatic forcing intensity and variability can make it difficult to access a large area 102 

of the catchment. Focusing on the hillslope scale is a way to monitor hydrological processes at 103 

smaller scale but some studies warn about the unique behavior of each hillslope which makes 104 
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their monitoring inappropriate to understand the catchment hydrological behavior (Beven, 2000; 105 

Sivapalan, 2003). These studies highlight the heterogeneity of soil hydraulic conductivity, lateral 106 

and vertical flow paths, soil depth and layers. To study subsurface flow processes in the Panola 107 

Mountains (PMRW, USA), Meerveld et al. (2006) developed a complex monitoring on a single 108 

hillslope. This kind of monitoring is very effective but difficult to reproduce elsewhere in the 109 

catchment because of its cost and extent. In arid badlands, Gallart et al. (2013) showed how 110 

complex it is to monitor soil water content because of the lack of vegetation and shallow soils. 111 

The lack of vegetation associated to sloppy areas induces large erosion rates and mass 112 

movements. Intense storms and wind erosion contributes to the development of dense gully 113 

network which make it difficult to make long time soil water content monitoring. In the Zin Valley 114 

badlands (Israel), Khun et al. (2004) studied runoff generation processes on hillslopes without soil 115 

water content probes because there is almost no soil layer. Moreover, only extreme rainfall 116 

intensities can generate runoff but at the same time high erosion rate. 117 

 118 

In a mountainous, highly erosive environment, previous studies in the Draix-Bléone research 119 

observatory have focused on rainfall impacts on runoff and erosion rates (Borges, 1993; Descroix 120 

et al., 2003), but also on infiltration processes in heterogeneous marl formations (Garel et al., 121 

2012), and on the discrimination of contributing reservoirs to outflow during flood events (Cras, 122 

2007). Experiments have highlighted the strong variability of infiltration rates in black marl (from 123 

9.E-7 m.s-1 to 1E-5 m.s-1) and the difficulty of precisely following water fluxes due to the diversity 124 

and complexity of the marl structure (Mathys et al., 2006). Moreover, making direct 125 

measurements or field observations is not possible during rainfall events due to flash flood 126 

hazards. During inter-flood periods, field instrumentation is often damaged due to changes of 127 

river morphology or hillslope instability. This situation is common in headwater catchments and 128 

explains why soil water content has only been little investigated in such environments. The 129 

present study is innovative as it is the first attempt to measure in such environments water 130 
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content continuously at the catchment scale and not just on a plot, a hillslope, or a vertical 131 

profile. Moreover, measurements are made in different land covers and not only in bare areas. 132 

 133 

 In this context, the main objective of this study was to explore the short time SWC dynamics 134 

in a mountainous highly reactive headwater catchment and its distribution over area from a set of 135 

plot scale sensors. A capacitance sensors network has been used to monitor SWC every 15 min at 136 

the catchment scale in forest, grassland, and black marl (bare soil) during the summer and 137 

autumn periods. The resulting data were used as input in a geostatistical model that links SWC to 138 

catchment geomorphological variables by regression and kriging. The specific objectives of the 139 

study were to: 1/ analyze how geographical variables influence SWC variations at different time 140 

steps, 2/ quantify the relationships between rainfall, SWC, vegetation cover and outflow at the 141 

event scale, 3/ examine event scale SWC dynamics among land covers to identify partition 142 

between subsurface flow types. 143 

 144 

 145 

2 Survey area 146 

 147 

 The study area is the Laval catchment, located within the Experimental Research Hydrological 148 

Network Draix-Bléone in the Southern Alps, France (part of the eLTER infrastructure DEIMS.iD: 149 

https://deims.org/be7fcb7d-d3c2-486d-a437-4754d18ca1ca). Instruments installed in the 150 

catchment have monitored outflow, rainfall and erosion (Fig. 1) since 1983. Outflows are 151 

measured at the outlet using a Parshall type gauging station. A rain gauge is installed at the outlet 152 

of the catchment while a second one is located on the ridges upstream. A weather station at the 153 

outlet of the catchment has provided data on wind speed and direction, solar radiation, relative 154 

humidity and air temperature since 2000. Analysis of aerial photographs made it possible to 155 

follow bare surfaces evolution since 1948. A first land use map was drawn up by Vallauri in 1997. 156 
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Recently, a LidAr survey provided a high spatial resolution DEM (1 m) (Sintegra, 2011). Elevations 157 

in this small torrential headwater catchment (0.86 km²) range from 850 m at the outlet to 1200 158 

m. The Laval catchment is known for its high specific discharges during flood events, which may 159 

exceed 10 m3/s/km2 (Mathys et al., 2003). The local climate is sub Mediterranean with continental 160 

trend (Joly, 2010) and is defined by high solar radiation (> 2300 hour / year) with mild winters 161 

(little snow cover) and very dry summers. Mean annual rainfall is 800 mm (STD = 170 mm; 162 

observed period from 1987 to 2015). The local relief and the presence of material that is 163 

extremely sensitive to erosion (black marl of Bathonian, Callovian, and lower Oxfordian ages) 164 

explain the permanent dense gully network. Rainfall impact varies across seasons with high 165 

rainfall intensity during summer storms whereas spring and fall events are characterized by lower 166 

intensity and longer duration rainfall. Previous studies have provided detailed information on soil 167 

types (Maquaire et al., 2002), soil properties (hydraulic conductivity, porosity, bulk density) 168 

(Malet et al., 2005), and black marl sensitivity to runoff (Mathys et al., 2005). 169 

 170 

  171 

 172 

 173 

Fig. 1. Survey area - Laval headwater catchment - ORE Draix-Bléone - Alpes-de-haute-Provence - Southern French 174 

Alps 175 

 176 

 177 

3 Material and method 178 

 179 

The methodological approach developed in this paper to better understand SWC variation in 180 

space and time consists in 3 steps (Fig. 2): 1/ Designing a capacitance sensor network to monitor 181 

SWC between 10 and 20 cm depth in various land use and soil types. Once the probes are setup in 182 
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the field, they are calibrated using soils samples extracted at each probe location. 2/ Monitoring 183 

SWC at a 15 min time step in addition to rainfall and outflow measurements to study the 184 

catchment hydrological behavior at the event time scale. 3/ Estimating SWC using a geostatistical 185 

model based on geographical variables to represent the probe location situation. 4/ identifying 186 

the dominant flow mechanism on hillslopes at the event time scale from the wetting curve 187 

maximum slope method (Lozano-Parra et al., 2015). 188 

 189 

Fig. 2. Overview of the methodological approach 190 

 191 

3.1 In situ measurements  192 

 193 

3.1.1 Presentation of capacitance sensors 194 

 195 

 Selected sub-catchments were equipped for SWC monitoring from May 2016 to November 196 

2016. This investigation was based on FDR probes (10HS by Decagon Devices ®). Less expensive 197 

than TDR and relatively easy to set in the soil, the 10HS probe makes it possible to measure SWC 198 

continuously on large scale through a network of autonomous sensors. The soil and the probe 199 

electrodes are used as a capacitor whose capacity varies according to the soil dielectric 200 

permittivity which is related to the presence of water (Qu et al., 2013). The sensor uses a 70 MHz 201 

frequency that minimizes salinity and textural effects, and the 10 cm long probe has an influence 202 

volume of about 1.3 liter. Fourteen capacitance probes were set up in different soil types in the 203 

survey area: 4 in the black marl, 4 in grassland, and 6 in forest (Table 1). The monitoring was 204 

carried out using a 15 min time step. The 10HS probes were vertically positioned to give an 205 

average SWC between -10 cm (bottom of electrode) and -20 cm (top of electrode) depth. At the 206 

plot scale, SWC was also measured vertically using PR2 probes (Delta-T Devices ®). These sensors 207 

were carried on to different points and measurements were done into a plastic tube. SWC were 208 
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obtained at four depths (10 cm, 20 cm, 30 cm and 40 cm) by measuring the dielectric constant of 209 

the soil using capacitance/time domain technology. Vertical monitoring from May to June 2016 210 

showed that most SWC variations occurred between 10 cm and 20 cm in grassland and forest in 211 

the study area. It is important to note that some astonishing behavior could be monitored due to 212 

improper set up. Indeed, FDR probes present a high sensitivity to soil contact and can be strongly 213 

impacted in case of air gaps between the soil matrix and the sensor. Air gaps are due to black marl 214 

structure complexity and instability near surface, to stones and tunnels created by animals 215 

especially in grassland, and mainly to roots and stones in forest, but also to freeze/thaw process 216 

(Mallet, 2018). 217 

 218 

Table 1. Soil type and properties at the plot scale 219 

 220 

Plot     Land Cover Classification (INTL)        Porosity  Bulk density       Slope Orientation 221 
        (kg/m3) 222 

B1     Black marl Clay loam  0.302  1.86  30 SE 223 

B2     Black marl Clay loam  0.356  1.73  10 S 224 

B3     Black marl Clay loam  0.409  1.55  25 NE 225 

B4     Black marl Clay loam  0.414  1.54  30 NE 226 

F1     Forest  Silty loam  0.469  1.40  5 S 227 

F2     Forest  Silty loam  0.434  1.49  15 W 228 

F3     Forest  Silty loam  0.452  1.45  15 N 229 

F4     Forest  Silty loam  0.502  1.32  15 N 230 

F5     Forest  Silty loam  0.447  1.46  15 N 231 

F6     Forest  Silty loam  0.494  1.36  20 NW 232 

G1     Grassland Silty clay loam  0.498  1.33  15 S 233 

G2     Grassland Silty clay loam  0.457  1.40  20 SW 234 

G3     Grassland Silty clay loam  0.466  1.41  20 SW 235 

G4     Grassland Silty clay loam  0.457  1.41  10 SE 236 
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 237 

3.1.2 Calibration of 10HS capacitance sensors 238 

 239 

 SWC values were obtained from soil electrical permittivity, which was computed from the 240 

raw 10HS probe signal. SWC data obtained from 10HS probe using the third-order polynomial 241 

calibration function provided by the manufacturer (Decagon Devices, 2016) were compared to 242 

water content values extracted from in situ soil samples collected from depths of -10 cm to -20 243 

cm. Soil samples were collected from each plot scale using 10 cm long cores (from -10 cm to -20 244 

cm depth) under different hydric conditions. Results showed that SWC monitored in forest fitted 245 

the manufacturer theoretical law. A different calibration function was developed from soils 246 

sampled in grassland and black marl (Mallet et al., 2018). Sensor accuracy was found to be +/- 3% 247 

in forest and +/- 4% in grassland and black marl, which is a reasonable estimate of mean SWC 248 

patterns at the watershed scale. 249 

 250 

3.1.3 Network optimization 251 

 252 

Studying spatial variability of water content in the upper soil layer is a complex task as it strongly 253 

depends on the scale of analysis. Using a sensor network continuously measuring SWC makes it 254 

possible to get spatial data at small scales such as plots, transects, hillslopes and small 255 

catchments. Regarding the Laval catchment size, the survey budget, manpower, and the distance 256 

from the lab to the experimental field, a network of few sensors was setup to provide data at the 257 

plot scale (Blume et al., 2009). To optimize the spatial distribution of the network, homogeneous 258 

soil-landscape patterns with potentially specific hydrologic behaviors were delineated (Dehotin 259 

and Braud, 2008). Such landform-units were defined according to hydrological criteria (stream 260 

network and sub-catchment classification), land cover, soil type, and topography (slope, hillslope 261 

orientation). In this study, a four-step method has been applied (Fig. 3) as follows:  262 
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 263 

 1/ Sub-catchments were delineated using the Strahler stream network classification 264 

(Strahler, 1952; Le Barbu, 2006). Only sub-catchments of order 3, 4 and 5 whose main talweg is 265 

connected to the main network were selected for this stage. They represent a minimum surface 266 

of 1 ha which exceeds the surface of an elementary gully whose hydrological behavior is already 267 

known (Mathys, 2006). 268 

 269 

 2/ Theoretical surface flow concentration areas were then mapped using the RuiCells cellular 270 

automaton (Langlois and Delahaye, 2002) which establishes a link between topographic variables, 271 

the catchment morphology (size and form), and hydraulic variables. Using a 10 m DEM (1 m DEM 272 

could not be used because of the model computational capacities), a spatially homogeneous 273 

rainfall, and considering a zero infiltration capacity of the soil, Ruicells produces a surface flow 274 

concentration map. Surface flow concentration is computed at each sub-catchment outlet by the 275 

Concentration Index (CI) which takes into account the density of the stream network upstream of 276 

each sub-catchment outlet (Douvinet et.al, 2015). The produced map makes it possible to better 277 

understand the catchment potential hydrological response from the sub-catchment to the final 278 

outlet (Douvinet, 2008). For instance, very marked surface water flow concentrations (CI > 10) can 279 

be observed at the outlets of several sub-basins of orders 3, 4 and 5 and at several confluences (in 280 

the main network) while some sub-catchments show very low IC index. This step highlights the 281 

heterogeneity of the catchment potential hydrological response and helps to identify potential 282 

SWC measurements plots. 283 

 284 

 3/ The percentage of bare and vegetated surfaces (forest, grassland) was then calculated on 285 

the sub-catchments and compared with the potential surface flow concentration areas identified 286 

in step 2. Sub-catchments marked with CI> 10 have various land covers: the proportion of 287 

vegetated areas varies from 11% to 82%, while bare soils are between 17% and 88%. It is 288 
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therefore interesting to target the investigation on sub-catchments with various CI and land 289 

cover. Eventually, four sub-catchments with various size, morphology, land cover, soil types and 290 

network ordination were selected for the investigation. 291 

 292 

  4/ Soil type map (Maquaire et.al, 2002) was then combined with land cover map which 293 

made it possible to identify the most represented land covers within the Laval basin. In order to 294 

concentrate the analysis on the most represented soil-vegetation units, only the first six classes 295 

obtained were retained which represent 72.9% of the Laval total surface. 296 

 297 

 5/ SWC probes were then setup in the six classes identified in step 4 within the selected sub-298 

catchments in step 3. Final probe location depended on slope, hillslope orientation, and 299 

accessibility.  300 

 301 

Fig. 3. A four-step method to obtain an optimal capacitance sensors network in the study area 302 

 303 

 Comparison of SWC values requires homogenous spatial distribution of rainfall over the 304 

catchment at the event scale. For this purpose, rainfall spatial variability was studied at the event 305 

scale with the addition of 3 rain gauges (Rainwise®) set up inside the catchment away from 306 

vegetation cover (Fig. 2). Their location was based on elevation, distance to the outlet, and 307 

accessibility (Table 2). Fourteen rainfall events were studied in 2016. For each event, each rain 308 

gauge data were compared to data measured at the catchment outlet (Précis Mécanique ®).  309 

 310 

Table 2. Laval rain gauges 311 

 312 

Rain Gauge  Setup                  Elevation (m)                Distance from outlet (m) 313 

P0   1984              851              0 314 
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P1   2015                     900               690 315 

P4   2015              890              380 316 

P6   2015              915              878 317 

 318 

 319 

3.2 Geostatistical modeling framework 320 

 321 

3.2.1 Presentation of LISDQS 322 

 323 

 The LISDQS (Interpolation of Quantitative and Spatial Data) geostatistical model (developed 324 

by Joly and Vuidel in 2008 and presented in Joly et al., 2008) was used to estimate SWC at the plot 325 

scale considering local geographical variables (Arnaud and Emery, 2000). LISDQS runs a global 326 

analysis that computes all measurement plots to produce a single geostatistical model fitting for 327 

all plots at each time step. Spatial interpolation of soil moisture measurements is performed by 328 

the combination of linear regressions (LR) (Joly et al., 2011) followed by kriging of the residuals 329 

using the method « regression-kriging » (RK) described by Hengl et al. (2007). LR is used to fit the 330 

explained variation with spatial predictors. The subsequent kriging process used to fit the 331 

residuals, i.e. unexplained variation, is ordinary kriging fitted by a single variogram (Spherical 332 

model) (Matheron, 1970; Gratton, 2002). 333 

  334 

3.2.2 A three-step analysis method 335 

 336 

 The LISDQS model combines kriging and regression in 3 steps: 1/ Linear Regression between 337 

all SWC plot and local variables (topography, vegetation, soil) reveals the variables that best 338 

explain the SWC space-time variations (highest R² for Pvalue < 0.05). These best explanatory 339 

variables are then associated 2 by 2, 3 by 3, 4 by 4, etc... (from the best to the worst) in stepwise 340 
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multiple regressions (Hocking, 1976). The best combination (with the highest R²) is applied to all 341 

plots to obtain estimated values that are compared to measured values. 2/ Kriging shows the 342 

spatial structure of SWC distribution of residuals obtained in the first step. Kriging uses the semi-343 

variogram properties and also computes residuals. 3/ Third step is Residual Kriging. At the end of 344 

the first step (LR) and the third step (RK), the estimated soil moisture values are validated by a 345 

"leave-one-out" cross-validation (Plutowsky et al., 1994), the process of which is as follows: as 346 

many iterations are repeated as there are observations i. At each iteration, observation i is 347 

removed from the sample and the model runs with the new sample. Then using this new model, 348 

the predicted value of the withdrawn observation i is calculated. A series of predicted values is 349 

then obtained which can be compared with the observed values by calculating the residuals of the 350 

model. The residuals obtained at the end of phase 1 are estimated by kriging, those obtained at 351 

the end of phase 3 are used to estimate root-mean-square error (RMSE). This three-step method 352 

makes it possible to improve the spatial interpolation of SWC data by taking into account 353 

environmental heterogeneity. 354 

 355 

3.2.3 Parameterization 356 

 357 

 The LISDQS geostatistical model automatically performs a sensitivity analysis for each time 358 

step. Linear regressions were computed between SWC measured at the plot scale and the mean 359 

value of local variables on a 9 m² area around the plot. This averaging method accounts for the 360 

environmental heterogeneity around the SWC probe and not only the value of a 1 m² plot. The 361 

linear regressions make it possible to identify the best variables among as many variables as 362 

needed to be tested.  363 

 364 

 SWC was driven by a set of local variables that are used in the geostatistical model. These 365 

variables drive different processes that affect SWC variations according to seasons and soil 366 
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moisture status. A high-resolution Digital Elevation Model (DEM) (LiDAR, 1m, Panissod et al., 367 

2010) was used to derive 4 topographic variables: curvature index (slope convexity or concavity), 368 

soil depth, hillslope orientation defined by sinus (West-Est orientation) and cosinus (North-South 369 

orientation). The Normalized Vegetation Index (NDVI) was computed from a SPOT 6/7 image1 to 370 

take into account the land cover influence. It is the most common vegetation index for identifying 371 

areas with an elevated chlorophyll activity which are related to vegetation. It computes the 372 

difference between red and near-infrared wavelengths and is normalized by the addition of both 373 

which reduces the ground lightness. NDVI was calculated from the only SPOT image that covered 374 

the survey area during the study period. 375 

 376 

 Cross correlation analysis showed that the NDVI was positively correlated to solar theoretical 377 

radiation which gives for each DEM pixel the solar radiation in W/m² at different time scales. The 378 

latter was weakly positively correlated to hillslope orientation (R = 0.55), whereas slope was 379 

negatively correlated to NDVI (R = - 0.415) (Table 3). In the study area, gentle slopes are mostly 380 

associated with vegetation, which are also among the sunniest areas, while steep slopes are 381 

mostly associated with gullies and bare areas. Soil depth was positively correlated to NDVI (R = 382 

0.58) because soils develop with vegetation growth, whereas bare areas are prone to erosion. 383 

NDVI is related to interception and evapotranspiration, slope affects subsurface flows (horizontal 384 

or vertical), and solar radiation is associated to evapotranspiration whereas soil water storage 385 

mostly depends on soil depth. The solar radiation curve followed the same dynamic as NDVI and 386 

had an increasing positive correlation with SWC from July to mid-October. Soil depth had a stable 387 

positive correlation with SWC over the study period. 388 

 389 

Table 3. Correlation (R) between explanatory variables used for the geostatistical modeling. 390 

                                                           
1  Contains informations ©  2014, Distribution Airbus Defense & GEOSUD, France, all rights reserved. 
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 391 

     Sinus                Cosinus                  NDVI Curvature Soil depth              392 

Sinus  1       0.081          -0.538 -0.034                0.308 393 

Cosinus         1          0.109 -0.04      0.631 394 

NDVI                                1         -0.286           0.598 395 

Curvature                     1                0.293 396 

Soil depth                                       1 397 

 398 

3.3 Identifying the dominant flow mechanism 399 

 400 

Previous studies showed that surface runoff was the main hydrological processes during 401 

flood event in the Laval catchment. However, subsurface flow processes also play a key role on 402 

the catchment hydrological behavior. During rainfall, preferential flows contribute to fast wetting 403 

of shallow soil horizons and to outflows by rapid exchange from soil to streams. On the other 404 

hand matrix flows can be observed anytime and in every monitored land covers and affect soil 405 

moisture status and water availability for plants. During a rainfall event those two processes can 406 

occur simultaneously. To identify the dominant process, the method of the wetting curve 407 

maximum slope (Smax) as proposed by Lozano-Parra et al. (2015) was used. This analysis aims at 408 

identifying which process is dominant, but not to quantify its contribution to discharge. 409 

 410 

���� = ��� ���	∆� − ��
∆� � ∗ ��� 411 

 412 

This parameter represents the maximum soil water content increase measured at the event time 413 

scale by each probe between two measurements. �� is the SWC value at the time �, and ∆� is the 414 

15 min interval between two measurements. Smax was used as an indicator for the degree of 415 

slow or fast flows. On this base, it was assumed that low Smax value was representative of matrix 416 
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flow while high Smax was associated to preferential flow (Fig. 4). Intermediate slopes were 417 

associated to a mix of both processes. 418 

 419 

Fig. 4. Examples of different soil moisture increases monitored during three different flood events. 420 

 421 

4 Results 422 

 423 

The results are divided in four sections that address the questions proposed in this paper. 424 

First, rainfall variability was studied to ensure that SWC data obtained at different locations could 425 

be compared and that the geostatistical analysis could be conducted. Then relationship between 426 

SWC and discharge was analysed to take into account the catchment near-surface hydric status 427 

impact on the catchment hydrological response. Measured and estimated SWC data obtained at 428 

daily, hourly and 15 min time scales were then compared to see how geographical variables could 429 

be used to determine SWC at the catchment scale under various land use and hydric conditions. 430 

Eventually, SWC variations at 15 min time step were analysed and compared to rainfall properties 431 

to enhance SWC space-time variation and impact on subsurface flow types.  432 

 433 

4.1 Low rainfall spatial variability at the event scale 434 

 435 

 The event scale analysis showed low variability between the 3 rain gauges inside the 436 

catchment (differences ranged from 0.3% to 3.4%) (Fig. 5). On the other hand, differences (from 437 

0.4% to 21.5% of the cumulative rainfall event) occurred between P0 (located at the final outlet) 438 

and the other rain gauges, with higher cumulative values measured at P0 at the event scale (mean 439 

difference of 6.3%). The largest differences occurred during April 22 and June 16 events with 440 

cumulative rainfall lower than 31.2 mm (measured at P0). These differences come from the 441 

smaller diameter of P1, P4 and P6 compared to P0. The low spatial variations at the event time 442 
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scale showed that rainfall was relatively homogenous over the catchment, which made it possible 443 

to conduct the geostatistical analysis at the event scale. 444 

 445 

Fig. 5. Cumulated rainfall monitored by 4 rain gauges for 14 rainfall events in 2016. The number over the bar chart is 446 

the difference between the highest and the lowest rainfall values recorded by the rain gauges at the event time scale. 447 

No rainfall data available on February 7 and March 5 at P4 gauge.   448 

 449 

4.2 Relationship between SWC and discharge 450 

  451 

Daily SWC variations provided an overview of the catchment wetting/drying dynamics 452 

over the study period (Fig. 6). Significant differences between measured SWC were observed 453 

among the three main land cover types.  454 

 455 

 SWC dynamics were similar in vegetated areas although a higher dispersion of SWC values 456 

was observed between forest plots (mean SWC difference of 3.9% between F1 and F4) as 457 

compared to grassland (mean SWC difference of 0.3% between G2 and G4) because forest 458 

sensors are setup on silty loams which have a higher water capacity than the other soils. F1 and 459 

F2 sensors globally monitored less variations than the other sensors located in forest. Soil 460 

evaporation which has been taken into account by the sensor placed at 10 cm has a strong 461 

dynamic especially during wetting period. While during dry period plants extract water in deeper 462 

layers and the sensor monitor less variations. It could also be explained by improper installation 463 

since F1 and F2 are installed in soils with a lot of roots and stones. The highest daily SWC was 464 

measured in forest (SWC = 41.8%) but the SWC variation (SWC max - SWC min) was lower than in 465 

the other land covers (SWC values ranging from 20.8% to 41.8% in forest, from 11.2% to 34.8% in 466 

grassland, and from 1.8% to 30% in black marl areas).  467 

 468 
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 SWC dynamics was quite different among black marl plots (mean SWC difference of 8.7% 469 

between B1 and B2). SWC showed high amplitude (min = 2.5%; max = 30%) but daily SWC 470 

variations was smoother than what was observed in rooted soils. Only the B2 probe, located 471 

between bare soils and rooted soils, had a similar trend to that of vegetation probes with a short 472 

reaction to rainfall. The high variability of SWC across space and time in black marl showed that 473 

black marl had the capacity to store and release water during the entire study period which can 474 

be explained by the complexity of subsurface exchanges in this medium. This can be explained in 475 

particular by the spatial variability of infiltration between the different types of regoliths. 476 

Saturation hydraulic conductivities measured on hillslope summit were low which favored surface 477 

runoff. Saturation hydraulic conductivities measured on footslopes where weathered marl 478 

accumulated were higher and more propitious to infiltration (Mathys and Estèves, 2005). 479 

 480 

During the study period, each rainfall events resulting in a flood event (Qmax > 500 l/s) 481 

provoked variations on all SWC probes measurements (Fig. 6) as expected since rainfall was found 482 

to be quite homogeneous over the catchment. Conversely, some rainfall events did not led to 483 

outflow variations despite variations recorded on SWC probes. Between May and the end of 484 

November, only 7 rainfall events on a total of 16 with cumulative amount over 30 mm gave rise to 485 

floods with discharges over 500 l/s (except for the September 12 event with 18 mm rainfall 486 

amount). This rainfall threshold is consistent with past observations (Mathys, 2006).  487 

 488 

Fig. 6. SWC time-series data presentation. Daily mean SWC is monitored at 14 plots. River flows are measured at the 489 

Laval outlet by a Parshall flume. Rainfall was measured from May 11 until November 29 2016 at the Laval final outlet. 490 

Dashed lines indicate flood events (Discharge > 500 l/s). 491 

 492 

These catchment outflow variations partly depend on the relative soil dryness/wetness 493 

which controls the occurrence of overland flows on the hillslopes. Based on the total volume 494 

flowed over the event, this relationship is evidenced by the positive trend observed between the 495 
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initial water content and the runoff coefficient, except for the most exceptional flood events 496 

where direct surface runoff occur over the main part of the event (Fig. 7, red dot). Peak 497 

discharges are usually higher in autumn when the catchment is wet than in summer due to higher 498 

cumulative rainfall in autumn compare to summer rainfalls. However, no correlation was 499 

observed between the initial soil moisture and the maximum flow rate reached at the outlet. This 500 

result illustrates the variability of runoff conditions on the slopes at the peak discharge which 501 

change highly according to the events (dominant contribution of hortonian flow or subsurface 502 

flow). 503 

 504 

Fig. 7. Relationships between runoff coefficient and antecedent soil moisture at the event time scale. The runoff 505 

coefficient is the ratio (%) between the amount of water flow and the amount of water precipitated at the event 506 

time scale. Antecedent soil moisture is an average value computed from the values of each capacitance probe before 507 

rainfall. 508 

 509 

 510 

4.3 Estimated SWC at daily and hourly time scales 511 

 512 

4.3.1 Observed SWC VS estimated SWC 513 

 514 

To validate the geostatistical modeling, the model was run using SWC data from 11 515 

sensors instead of 14. Then the 3 remaining sensors (one in forest, one in grassland and one in 516 

black marl) were used to validate the model at the daily and hourly time scales which gave similar 517 

results (Fig 8). SWC were well estimated in all land uses throughout the study period. The mean 518 

error (+/- 2.3%) was lower than the in situ measurement error (from +/3% to +/- 4%). In spring, 519 

especially in May, SWC values were underestimated in all land uses. In summer, estimated SWC 520 

values fitted quite well with observations until August and early September rainfalls where 521 

estimated SWC values were overestimated in grassland and underestimated in forest and black 522 
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marl. Estimated SWC values appeared to be overestimated in grassland throughout fall especially 523 

from mid September until mid October. Conversely, estimated SWC values fitted with 524 

observations in forest and black marls despite underestimations in forest the days after long 525 

autumn rainfalls. 526 

 527 

Fig. 8. Model validation at daily and hourly time scales. 528 

 529 

Measured and estimated SWC values were compared using the linear least squares 530 

regression method. Variation of the determination coefficient (R²) gives an overview of the 531 

statistical analysis and how geomorphological variables can be used to estimate SWC variations 532 

over different time scales (Fig. 9). However, R² values must be interpreted with care since there 533 

are only 14 data points in the regressions. First of all, correlations between measured and 534 

estimated SWC were better at the hourly time scale in May and June and from the October 14 535 

flood event until the end of November (catchment wetting period) while relationships were 536 

better at the daily time scale during summer (catchment drying period). SWC variations often 537 

appeared at the same time with higher amplitude at the hourly time scale and a smoother 538 

dynamics with the daily data. In most cases, higher correlations were observed during no rainy 539 

periods, namely during soil drying by drainage or evaporation losses. However, sharp decreases of 540 

R2 were observed at both time scales during flood events. The loss of correlation with the 541 

catchment morphological features at that times shows that SWC variations were mostly 542 

controlled by rainfall intensity. 543 

 544 

 545 

Fig. 9. Relation between measured and estimated SWC (R²) at daily and hourly time scales. R² were computed at both 546 

daily and hourly time scales by plotting the 14 measured SWC with the 14 estimated SWC to get one R² value every 547 

time step.  The relationships are significant over the “Student” red dot line.  548 

 549 
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Time series plots show that SWC were generally correctly simulated in all land covers (Fig. 550 

10). Nevertheless, a few probes showed singular behaviors. For instance, B1 probe (black marl) 551 

was poorly simulated (R² <0.4) compared to B3 and B4 probes. Also, B1 probe measured very low 552 

SWC values from summer until the end of September while B3 and B4 were highly reactive to the 553 

first autumn rainfall event (September 12). It could be explained by improper setup and air gaps 554 

between the marl and the probe electrodes since B1 is installed between marls layers. This 555 

installation was hard but it was important to monitor that kind of zone since it is highly 556 

represented at the catchment scale. Measurements obtained at this location need to be 557 

interpreted with caution. In grassland, G1 probe showed a very low R² (< 0.2) with lower values 558 

and larger variation of the simulated SWC compared to observations. Conversely, F1 probe set up 559 

in forest measured higher SWC values and much lower variations than the estimated SWC. These 560 

shortcomings were assumed to be the result of improper set up. 561 

 562 

 563 

Fig. 10. Some examples of relationships between measured and estimated SWC (R²) at some plots in various 564 

monitored land covers at the hourly time scale. 565 

 566 

4.3.2 Weight of local geographical variables in the geostatistical model 567 

 568 

 At both daily and hourly time scales, the weighted model gives information about 569 

wetting/drying processes using mainly 3 variables: soil depth, curvature index and NDVI. During 570 

wetting periods, the model estimated SWC by combining mainly curvature index and NDVI (Fig. 571 

11), except during high flows where rainfall intensity had a major impact on SWC variations. 572 

During drying periods, SWC was primarily estimated by combining soil depth and NDVI. NDVI 573 

weight never exceeds 20% but is constantly used over the study period as it is related to 574 

interception, evaporation and evapotranspiration processes. Curvature index controls drainage 575 
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processes and has a strong weight in the model during rainfall and from mid October until mid 576 

July. Soil depth has a strong weight from mid July until mid October as it is linked to recharge 577 

processes by controlling soil water storage capacity. In early fall (mid September until mi 578 

October), the weighted model varied using mainly soil depth, curvature index and cosinus (which 579 

is related to soil depth (R = 0.631)). No flood event appeared during this period but grouped 580 

rainfall events leaded to successive wetting/drainage processes at short time steps. 581 

 582 

 583 

Fig. 11. Representation of the primary weighting of local variables in the weighted model at both daily and hourly 584 

time scales. 585 

 586 

 587 

4.4 Estimated SWC at event time scale (15 min) 588 

 589 

4.4.1 Observed SWC VS estimated SWC 590 

 591 

The overall relationship between measured and estimated SWC was computed from all 14 592 

capacitance probes for each of the 7 flood events that appeared from may until November 2016 593 

(Fig. 12). The relationship is statistically significant over a threshold of R² = 0.53 (Pvalue = 0.05). At a 594 

15 min time step, correlations between measured and estimated SWC (R²) had the tendency to 595 

decrease when rainfall intensity increased and in return to increase when rainfall stopped or 596 

intensity was very low (< 2 mm/h at a 15 min time step). This increase of R² during drainage is 597 

consistent with observations made at the daily and hourly time steps. R² decreases were larger at 598 

the beginning of rainfall events. For instance, a rainfall intensity of 8 mm/h occurring at the 599 

beginning of the storm induced a higher R² decrease than a rainfall intensity of 40 mm/h that 600 

happened almost 2 hours after the rainfall began (Fig. 12, October 14 event). The same 601 
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observations could be made during a long autumn rainfall (840 min) where a maximum rainfall 602 

intensity of 8 mm/h (at a 15 min time step) during the first part of the event caused a higher R² 603 

decrease (from 0.8 to 0.6) than a maximum rainfall intensity of 10 mm/h (at a 15 min time step) 604 

that occurred later (Fig. 12, November 21/22 event). Also, a delay was observed between rainfall 605 

and R² variation induced by infiltration time and the different SWC rising times (for each probe, 606 

time between the beginning of rainfall and the change of the slope in the SWC rising). This delay 607 

was negatively related to rainfall intensity. SWC were better estimated during November storm 608 

flows caused by long rainfall events with low intensity when the catchment was wet (high mean 609 

SWC and low SWC variations). During summer, flood events caused by shorter and more intense 610 

rainfall when the catchment was dry (high SWC variations) resulted in poorer correlations. 611 

 612 

Fig. 12. Overall relationships between measured and estimated SWC (R²) at the event time scale.  613 

 614 

Time series plot shows that SWC dynamics were well estimated in most situations (Fig. 615 

13). Observed values were underestimated or overestimated according to the plot with a 616 

maximum deviation of about 5% water content. Nevertheless, singular behaviors were observed 617 

at few plots such as the absence of SWC reactions to rainfall (e.g. F1 and F2 probes) despite 618 

measurements recorded by the closest rain gauges under vegetation cover (10 m from F1 and 70 619 

m from F2). This could be explained by soil hydrophobia due to the absence of rainfall event since 620 

8 days. Moreover, no rainfall with amount over 6.8 mm happened since 16 days. Hydrophobia 621 

had already been observed in July 2015 during soil infiltration experiments. 622 

 623 

 624 

Fig. 13. Some examples of different kind of relationships between SWC measured and estimated during the June 16 625 

event. 626 

 627 

4.4.2 Relationship between SWC and rainfall properties  628 
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 629 

At the event time scale, SWC variations mostly depend on rainfall intensity, which varies 630 

according to season, and on the initial SWC before rainfall which also varies according to land 631 

covers. The reaction time (ReacT) is defined as the time between the beginning of rainfall and the 632 

beginning of SWC increase at the sensor depth. Rising time (RisT) is defined as the time between 633 

the start of SWC increase at the sensor depth and the moment of the peak. Amplitude (Amp) is 634 

defined as the ratio between the SWC peak and the initial SWC value (before rainfall starts). 635 

ReacT (Table 4) was generally shorter in grassland than in black marl and forest. In black marl, the 636 

larger reactivity delay measured at the depth interval 10-20 cm can be explained by the material 637 

anisotropy due to marl layer bedding and orientation, which results in shallow preferential lateral 638 

subsurface flows (0 - 10cm) (Calvo-Cases et al., 1991; Castillo et al., 2003; Cantón et al., 2011; 639 

Garel et al., 2012). In forest areas, water reaches the soil with a delay that depends on tree 640 

canopy interception. ReacT observed during intense summer rainfall events was minimal in 641 

grassland. In black marl, the shortest ReacT was observed during autumn rainfall events. Amp 642 

dynamics in grassland and black marl were similar at the event time scale. Low Amp observed in 643 

forest areas was due to high SWC throughout the study period. Nonetheless, very similar SWC 644 

variations could be observed among all land covers during the November 24/25 rainfall event due 645 

to a high mean SWC value at the catchment scale (88.6 mm cumulative rainfall during the 646 

November 21/22 event). Eventually, there was a clear distinction between seasons, with shorter 647 

ReacT and RisT during summer events (June 16; June 18; September 12) than during autumn 648 

events (October 14; November 4/5; November 21/22; November 24/25). 649 

 650 

Table 4. Plot scale SWC variation at the event time scale - mean values by land cover. 651 

 652 

Event Rainfall    SWC rate variation                  Black marl  Forest                   Grassland 653 

June 16  654 

Cumulative rainfall (mm)  31.2 Rising time (min)  65  61  35 655 
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 Mean intensity (mm/h)  5.43 Increase time (min)  190       240  170 656 

 Maximum intensity (mm/h)  24.0 Amplitude (%)  23.4      16.5  33.1 657 

June 18  658 

Cumulative rainfall (mm) 36.8  Rising time (min)  50         40  35 659 

 Mean intensity (mm/h) 8.66 Increase time (min)  120       100  55 660 

 Maximum intensity (mm/h) 31.2 Amplitude (%)  17.1      12.2  17.8 661 

September 12  662 

Cumulative rainfall (mm) 17.8 Rising time (min)  72         68  65 663 

 Mean intensity (mm/h) 4.45 Increase time (min)  172       130  70 664 

 Maximum intensity (mm/h) 28.8  Amplitude (%)  18.6      19.1  28.7 665 

October 14  666 

Cumulative rainfall (mm) 54.2  Rising time (min)  122       138  55 667 

 Mean intensity (mm/h) 2.85  Increase time (min)  155       240  215 668 

 Maximum intensity (mm/h) 40  Amplitude (%)  35.4      23.1  28.7 669 

November 4/5  670 

Cumulative rainfall (mm) 46.8  Rising time (min)  235       240  210 671 

 Mean intensity (mm/h) 1.66  Increase time (min)  1040     1075  1090 672 

 Maximum intensity (mm/h) 12  Amplitude (%)  25.6      19.2  17.2 673 

November 21/22 674 

Cumulative rainfall (mm) 88.6  Rising time (min)  255       287  195 675 

 Mean intensity (mm/h) 2.38  Increase time (min)  965     1100  1430 676 

 Maximum intensity (mm/h) 9.6  Amplitude (%)  19.2      11.6  16.1 677 

November 24/25 678 

Cumulative rainfall (mm) 98.2  Rising time (min)  30         63  50 679 

 Mean intensity (mm/h) 2.85  Increase time (min)  130       916  85 680 

 Maximum intensity (mm/h) 12.8  Amplitude (%)  15.2      15.7  18.5 681 

 682 

Several parameters such as the cumulative rainfall, the number of days since antecedent 683 

rainfall events, rainfall duration, rainfall mean and maximum intensity, initial SWC, ReacT, RisT 684 

and Amp were crossed in order to find out relationships allowing to better understand SWC 685 

dynamics at the event scale and among monitored land covers (Fig. 14). Three significant 686 

relationships emerged from this analysis. Mean rainfall intensity was inversely correlated to ReacT 687 

and RisT. High mean rainfall intensity leaded to short reaction and short rising time whatever the 688 
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land cover. An expected correlation was observed between initial SWC and Amp. Low initial SWC 689 

induced higher SWC variations. However, this relationship was different according to the 690 

monitored land covers: SWC variations proved lower in forest than in grassland and black marl. 691 

Moreover, initial SWC ranged from 7% to 27% in black marl, from 13% to 32% in grassland, and 692 

from 22% to 41% in forest. From these observations, it can be concluded that soils under forest 693 

have a greater storage capacity (higher porosity) but drainage is better in soils under grassland 694 

(higher transmissivity). 695 

 696 

Fig. 14. Three significant relationships between rainfall properties and some SWC index (initial SWC, variation 697 

amplitude) at the plot scale and the event time scale. 698 

 699 

4.4.3 Subsurface flow processes 700 

 701 

98 Smax values were computed from the seven studied flood events (Fig. 15). Low Smax 702 

(< 1000) represented 45% of measured Smax and were mainly associated to November events. 703 

The frequency of low Smax increased from the beginning to the end of November according to 704 

the catchment wetting. Low Smax were almost equally observed in every monitored land cover 705 

with a higher number of observations in forest due to a higher number of monitored plots (6 706 

against 4 in black marl and 4 in grassland). The frequency of Smax between 1000 and 5000 was 707 

lower in forest and black marl than in grassland. High Smax (> 5000) were only measured during 708 

summer events and during the first fall event (October 14). Smax > 6000 were mainly measured in 709 

grassland. 710 

 711 

Relationships between Smax, land cover and initial SWC are consistent with observations 712 

made in Fig. 4. High Smax were more often observed in grassland where the probes reacted more 713 

quickly to rainfall due to higher transmissivity of soils and to the limited impact of interception. 714 
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Conversely, low Smax were predominant in forest due to lower drainage capacity and high 715 

interception by trees. Smax observed in black marl were similar to the Smax in the forest although 716 

isolated observations of very high Smax were observed. Occurrence of subsurface flow in black 717 

marl is explained by the anisotropic nature of the material involving preferential lateral flow.  718 

 719 

Fig. 15. Frequency distribution of Smax calculated from all sensors at 15 cm depth. Left graph shows Smax frequency 720 

distribution by land cover. Right graph shows Smax frequency distribution by event. 721 

 722 

 723 

5 Discussions 724 

 725 

5.1 Remarks on SWC measurements 726 

 727 

 Detailed knowledge of SWC absolute values over the catchment would require a network of 728 

numerous probes that would entail high costs to install and to maintain in good conditions. 729 

Finally, a capacitance sensor network composed of a small number of low cost probes was 730 

suitable for studying SWC mean variation at daily, hourly and event time scales in the Laval 731 

catchment. This is supported by recent findings of Mälicke et al. (2020) who demonstrated (from 732 

a study in the 19.4 km² Colpach catchment) that a minimal number of SWC sensors could capture 733 

soil moisture dynamics at the catchment scale and explain its hydrological dynamic. Sensors 734 

location strategy is a key point in the purpose of estimating soil moisture mean status at the 735 

catchment scale. This strategy is usually based on identified soil-landscape units using different 736 

geostatistical methodologies (Corradini, 2014 ; Zhuo et al., 2020). Backing up the existing probe 737 

network with other sensors to monitor SWC in the identified soil-landscape units elsewhere in the 738 

catchment could enhance the proposed methodology by validating mean porosity values 739 

measured among land covers to characterize SWC more accurately. Eventually, Smax analysis 740 
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would have been enhanced if SWC data obtained by the same sensors at multiple depths were 741 

available. 742 

 743 

 Extreme SWC values (dry or wet) are a key point impacting soil water exchanges (Teuling et 744 

al., 2006). Mittlebach et al. (2011) showed that accuracy measurement of 10HS sensor decreases 745 

with increased SWC, which results in overestimation at low SWC and underestimation at high 746 

SWC (> 40%) especially in clay soils. Extreme SWC values measured by 10HS in the Laval 747 

catchment (values corrected by field-calibration) were near 0% but never exceeded 40% in black 748 

marl, whereas they were never less than 12% and regularly exceeded 40% in forest and grassland 749 

at the event time scale. It is well known that SWC capacitance sensor accuracy depends on the 750 

effect of the monitored soil properties on site-specific calibration. On this basis, a specific effort 751 

must be made to reduce measurement errors, especially for extreme high values. Mittlebach et 752 

al. (2011) showed that specific site-calibration of the 10HS sensor can help reduce measurement 753 

error to 2% (with error values ranging from -7% to 3% in loamy soils and from -8% to 5% in clayey 754 

soils). In the Laval catchment, the forest field-site calibration was similar to the manufacturer’s 755 

calibration, whereas the field-site calibration was different in grassland and black marl. The field-756 

site calibration reduced the 10HS sensor mean measurement error from 12% to 3% in grassland 757 

and from 11% to 4% in black marl. It is assumed that a 4% mean measurement error is reasonable 758 

for estimating mean SWC patterns at the catchment scale. Moreover, estimated SWC values in 759 

the investigated and validation plots were primarily less than measurement error. 760 

 761 

5.2 Explanatory variables and SWC estimation 762 

 763 

 The five variables used in the geostatistical model were appropriate for estimating SWC at 764 

the catchment scale. Regarding relationships between some of these variables, questions about 765 

the impact of each variable in the geostatistical model could be asked. What impact if only NDVI 766 
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and soil depth were used to run the model? Different combinations from 2 to 5 variables were 767 

tested. The difference in estimated SWC using two variables (mean R² = 0.84) and five variables 768 

(R² = 0.88) was very low. But except for curvature index, each variable enhanced the SWC 769 

estimation during rainfall periods. However, these variables give a simplified understanding of 770 

SWC variation at the catchment scale. Using soil properties could help explain SWC variation at 771 

the event time scale. Indeed, regolith type, thickness, dip orientation, porosity, and soil infiltration 772 

capacity are parameters that affect SWC and runoff generation at the hillslope scale, which 773 

contribute to the hydrological complexity of badlands (Kuhn et al., 2004). But at present time it 774 

was not possible to properly map these data. 775 

 776 

Finally, model uncertainties can be attributed to the low number of measurement plots 777 

and the high natural heterogeneity of SWC in a mountainous and steep environment. Even if the 778 

model takes into account local variables that affect SWC at the plot scale, estimated values at 779 

unmeasured plots are influenced by SWC values of the nearest measured plots (Lhottelier, 2006).  780 

 781 

5.3 Impact of the catchment hydric status, geomorphology and landuse on SWC-runoff thresholds and 782 

SWC space-time variability 783 

 784 

In dry period, peakflow measured in the Laval resulted mainly from hortonian runoff and 785 

occurred before peak SWC. In wet period, higher subsurface flow occurrence resulted in an earlier 786 

reaction of SWC than streamflow. These delays between max SWC and peakflow are similar to 787 

what Penna et al. (2011) observed in the 1.9 km² moutainous Rio Vauz catchment (elevations 788 

ranging from 1835 m to 3152 m) mainly composed of Dolomitic rock cliffs, steep slopes and a 789 

valley bottom covered by Quaternary till. These results highlight a reproducibility of soil 790 

hydrological processes despite various land uses and geomorphology. At the seasonal scale, Fan 791 

et. al (2020) observed in a 0.08 km² forested catchment in Pennsylvania (USA) dominated by a 792 
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humid continental climate that SWC was spatially more variable but temporally more stable 793 

during wet cold season compared to dry warm season. Observations made in the Laval are 794 

different since the Mediterranean climate is very contrasted with a long dry period with rare, 795 

short and intense storms while the wet period has a temporally heterogeneous distribution of 796 

long and high cumulative rainfalls. Recharge and drainage phases are then easily identified 797 

regarding to SWC spatial and temporal dynamic. 798 

 799 

In terms of hillslope morphology, Moore et al. (1998) observed in a 0.075 km² gully 800 

catchment located in New South Wales (Australia) that topographic nonuniformity within small 801 

catchments controlled SWC spatial variability and the location of ephemeral gullies. They showed 802 

that dry near-surface soils were quite propitious to gullies development. Similar observations 803 

were made in the Laval catchment which also has a very dense gully network located on bare 804 

areas (Thommeret, 2012). In the Laval the deepest and most durable gullies are located at the 805 

bottom of concave hillslopes where near-surface SWC is greater than SWC measured at upslope 806 

and mid-slope areas which are more propitious to ephemeral gullies whatever the slope shape. In 807 

a 0.56 km² agricultural (essentially wheat) and semi-arid catchment located in Eastern Colorado 808 

(USA), Green and Erskine (2011) showed that vertical processes appeared to control SWC profile 809 

dynamics at summit positions while infrequent overland flow and unsaturated subsurface lateral 810 

flow appeared to control SWC dynamics at downslope positions. Subsurface lateral flow type is 811 

also dominant downslope in the Laval catchment whatever the land use. However, situations is 812 

quite different at summit and mid-slope in black marl areas regarding to the variability of soil 813 

hydraulic conductivity values, material anisotropy and rainfall intensity (Estèves et al., 2005). 814 

Thus, summit are more associated to overland flow type while water is transported from summit 815 

to hillslope bottom by a combination of overland and lateral subsurface flow processes. 816 

 817 

 818 
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6 Conclusions and outlook 819 

 820 

This study showed that mean SWC dynamics can be related to specific soil-vegetation 821 

patterns in badlands and that it is possible to distinguish SWC signatures among land covers. 822 

Geostatistical modeling using a small number of geographical variables makes it possible to 823 

estimate SWC at the plot scale and at daily and hourly time steps. These geographical variables 824 

are useful to predict wetness/dryness status at the catchment scale apart from flash flood events. 825 

However, it is not possible to determine the impact of these variables on the studied land covers 826 

separately. At the event scale, SWC dynamic analysis (Smax index) made it possible to show that 827 

matrix flow would be associated to long autumn rainfall with low intensity producing low outflow 828 

(Qmax < 1500 l/s) and would appear in every land covers (Fig. 16). While preferential flows would 829 

be caused by summer storm with high rainfall intensity giving birth to large flood such as the 830 

October 14 event (Qmax = 10 000 l/s) and would be more often observed in grassland. 831 

 832 

 833 

Fig. 16. Relationships between SWC measurement time steps, variables determining SWC, hydrological processes and 834 

land covers. 835 

 836 

 Future work will focus on validating this methodology by modeling hydrological processes 837 

with a physically-based model that integrates climate forcing especially on surface runoff. 838 

Regarding to high SWC variations it is assumed that black marls area have a major contribution to 839 

stream flows whereas water stored in grassland and especially in forests where soils are deeper is 840 

primarily lost for runoff. The goal of the future work will be to assess independently the impact of 841 

the areal distribution of SWC on runoff generation. 842 

 843 

 844 
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