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Abstract

Implementing efficient actuators with good backdriveability properties is of primary importance for the design
of high-performance performance bipedal robots. Nowadays, the use of linear direct drive electric motors is an
interesting choice. This actuation scheme is closer to the efficient muscular system of human legs. However, the
efficiency of linear motors is highly sensitive to the placement of their attachment points. Two main issues are
addressed in this paper; (i) the optimal placement of the motors on the leg and (ii) the best actuation scheme of
the leg with three motors when considering both mono-articular and bi-articular motors. Little research work has
been devoted to these issues. Accordingly, a methodology is proposed to optimize linear motors attachment points.
Instead of resorting to a pure numerical optimization, a first analytic-heuristic approach is proposed in order to obtain
more insight into the optimization problem. This first approach, in addition to providing useful information, allows
obtaining a good initial guess for the numerical optimization. Eventually, eight different leg architectures with three
motors and combining different numbers of mono-articular and bi-articular motors are optimized. Results show the
interest of using bi-articular motors to reduce the maximum effort required for each motor.

1. Introduction

Biped motions such as walking, running and jumping require a great amount of work from motors [1], [2]. They
must produce forces experiencing drastic magnitude changes over time according to the different movement phases.
These forces also strongly depend on the robot parameters as well as on the environment. Moreover, an important
need to be considered in the design of bipeds is to absorb the effects of high impacts with the ground. Selecting an
appropriate leg architecture and choosing suitable motors is therefore of primary importance, especially since they
generally represent nearly 40% of the total mass of the biped [3]. Two main types of motors can be used to actuate
the legs of a biped, namely, rotary motors and linear motors.



1.1. Backdriveability and rotary motors

Backdriveability is an interesting feature that offers a natural low impedance [4], [5] and allow cushioning shocks.
A metric named ”impact mitigation factor” (IMF) to quantify backdrivability is proposed in [6]. Rotary motors are
often used in current biped designs, because their technology is well known and they may allow unlimited joint rota-
tions. Rotary motors are most often equipped with reduction gears in order to achieve sufficient torque. Sellaouti et al
[7] designed a three-degree-of-freedom parallel mechanism to actuate the hip and the ankle joints of their ROBIAN
biped. Omer et al [8] proposed a mechanism called bi-directional adjustable stiffness artificial tendon (BIASAT) for
the ankle pitch joint of WABIAN-2R in order to provide passive and active motions. However, rotary motors have
some drawbacks, such as the presence of dynamic imbalance in the frontal plane when the output axis is not aligned
with the articulated bodies, and the lack of backdriveability when a reduction device is necessary to increase the
torque. The absence of backdriveability in rotary motors with reduction gears can be compensated by the use of S EA
(Selective Elastic Actuator). They can passively conform to unmodeled disturbances [9]. Sharbafi et al [10] present
three bio-inspired legged robots with leg musculoskeletal architectures similar to humans, BioBiped1, BioBiped2, and
BioBiped3. They used compliant musculoskeletal bipedal systems with SEA to mimic biological muscles. However,
SEA suffer from a number of shortcomings, such as limitations on actuation bandwidth and introduction of control
complexities [11], [12]. Backdriveability can also be available by adding a variable stiffness mechanism to a rotary
motor. Such a solution was used in the design of exoskeletons [13]. Compliantly actuated legs with both series
and parallel-elastic actuation have also been proposed for bipeds [14] or wearable robot [15]. Another way to allow
backdriveability is to use direct drive (DD) motors. Rotative DD motors have been used in several legged robots, see
[16, 11, 17] for example. However, the limited torque capability of these motors reduces the scope of their use to
low-demanding applications. In many cases, a low-ratio gearbox or planetary gear must be embedded to improve the
balance between motor size, backdrivability, bandwidth and output torque [11, 18, 6]. Rotative DD motors are also
often space consuming. Previous work on the MIT Cheetah robot has shown that building a full size quadruped robot
requires at least 76 cm DD rotary motors [6].

1.2. Backdriveability and linear motors

Linear motors are easier to embed in body segments spaces than rotary motors in joints. Three types of back-
driveable linear motors can be considered for a legged robot, (i) electric DD motors, (ii) pneumatic motors and (iii)
hydraulic motors. Pneumatic motors have been experimented with some interesting results, such as in the Pneupard
biomimetic quadruped robot [19]. Unfortunately, the use of compressors is an obstacle for embedded systems. Hy-
draulic motors were implemented in the famous BigDog from Boston Dynamics. Well known for its performance in
rough terrain, BigDog embedded a 15 hp combustion engine that drives a pump delivering high-pressure hydraulic oil
to the robot’s leg actuators [20]. This architecture, shared with the Atlas robot [21], is heavy to implement, noisy and
expensive. When compared to pneumatic and hydraulic motors, electric DD motors have better dynamic properties
and simple direct output force control capabilities [22]. With a six-quadrant driver, linear DD motors can be used as
generators to break the acceleration during a downhill walking phase and thus store energy for later use [23]. Electric
linear motors have been used to build exoskeletons [24] or bipeds using parallel mechanisms to model contribution of
several muscles [25, 26, 27]. In [28], the authors have developed a customized linear DD motor to be used in a cheetah
leg. Several efficient electric linear DD motors have appeared recently on the market. Designed on the basis of [29],
these motors can produce high peak forces at extremely high accelerations and speeds. Their prime asset relies on
high backdrivability. In summary, electric linear motors appear as good candidates to design biped robots with high
performance and backdriveability properties.

1.3. Design methodology for the placement of linear motors

Linear motors are connected to the limbs and apply forces on the joints, like muscles. In humans and animals,
mono and bi-articular muscles coexist [30], [31, 32] and have their own interests [33, 34, 35, 14]. Thus, both mono and
bi-articular motors can be considered in the design of a biped’s leg. One drawback of linear motors is the occurrence
of a singularity when the slider axis meets the joint axis. In this configuration, no torque can be transmitted. Thus,
a special attention must be paid to the positioning of the motor on the bipedal structure. Expected designs must be
far enough from singularities and produce sufficient torque on the desired rotation range of all joints. The solution to
this problem is tackled at the geometric design level by optimizing the attachment points of the linear motors on the

2



leg structure. Since the torque produced by the linear motor at a joint depends on the robot configuration, the design
process must be based on expected motions of the prototype.

It is worth noting that little research has been devoted to this issue. To the best of the authors’ knowledge,
the only contribution to this problem is a generic approach proposed by Ha et al [36]. They provide a general
algorithm for optimizing robot parameters of manipulators or legged robots. Upon linearizing the manifold of valid
parameters implicitly defined by constraints, the algorithm allows tuning some of the design or motion parameters
while remaining on the aforementioned manifold. Their algorithm applies to the design of robots with both rotary
and linear DD motors. However, since their approach is generic and operates locally, it is hard to appreciate the
quality of the optimal solution. Seok et al [18] present design principles for developing energy-efficient legged robots.
Energy loss is analyzed through the entire system but no design methodology is provided for optimizing the geometric
parameters.

From the literature review, in conclusion, there is no specific, well-designed strategy to find suitable placements
of the attachment points of linear motors with an optimal lever arm and allowing a human-like walking. Accordingly,
this paper proposes an original strategy based on an optimization algorithm for a biped robot when each leg is actuated
by three linear motors. Most existing design methodologies rely on dynamic simulations and require time-consuming
iterative processes without guarantee of optimality [36], [37]. Contrary to previous work, the method in this paper is
based on the kinematic model relating joint torques and motor forces.

Human legs are actuated with a set of antagonistic pulling muscles. Since linear motors can both pull and push,
they can replace a set of antagonistic muscles. In human legs, many groups of muscles produce redundant actuation,
but this work is limited to the use of non-redundant actuation schemes with only three motors per leg in sagittal plane.
The following main issues are tackled in this paper:

• What are the best attachment points of the motors, for a given architecture?

• What is the best actuation architecture with three motors?

Eight leg architectures, shown in Figure 1, combining mono-articular and bi-articular motors are investigated for
walking and squat motions. As a result of our numerical tests, we show that the best design for the desired trajectories
is a leg architecture combining two bi-articular motors ankle-knee and knee-hip along with a mono-articular motor at
the ankle.

This paper is organized as follows. Section 2 presents the dynamic model and the contribution of motor forces
to this model. The statement of the problem is defined in Section 3. The optimal placement of the motor attachment
points is defined for mono-articular motors in Section 4. Two successive approaches are used: an analytic-heuristic
approach and a numerical optimization. The extension to an optimal design including bi-articular motors is discussed
in section 5. The eight proposed leg architectures for a planar biped with three motors per leg are optimized and the
results are discussed in Section 6. Last section concludes this paper.

2. Dynamic model of mechanical structure

2.1. Notations and preliminary information

A mono-articular linear motor actuates only one joint. Besides, its two attachment points are located on each side
of the actuated joint. On the contrary, a bi-articular linear motor actuates two joints and its two attachment points
are separated by two successive joints. Based on biomimetic inspiration, we limit our study to mono-articular or bi-
articular motors and do not consider multi-articular motors connecting the foot and the trunk. The following notations
are used: Mh: mono-articular hip motor, Mhk: bi-articular hip knee motor, Mk: mono-articular knee motor, Mka:
bi-articular knee ankle motor and Ma: mono-articular ankle motor.

In order to build an anthropomorphic robot, predefined mass distribution and inertia are considered. Winter’s
parameters are used [37] to describe the robot bodies. The mass distribution is assumed identical for all studied
actuation types whatever the choice of motors and their attachment points. Accordingly, we produce a preliminary
design step. A detailed design can be envisaged in a second step by taking into account bodies’ mass and motors’
mass separately. This second step is out of the scope of this paper. The main data of the four bodies modelled in
sagittal plane are given in Table 1 for a human of height 1.72 m and weight of 62 kg. The height of the foot is 0.07 m.
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1 2 3 4

5 6 7 8

Figure 1: The eight possible actuation schemes for one robot leg. The two attachment points of any mono-articular (resp. bi-articular) motor are
separated by one (resp. two) joints. Attachment points are depicted with the same color as their respective anchor body. For instance, the blue
upper (resp. red lower) attachment point of the mono-articular knee motor in the first architecture (Ma,Mk ,Mh) is linked to the femur (resp. tibia).
Mono-articular (resp. bi-articular) motors are shown in white (resp. grey) rectangles.

Body Mass Length Inertia
kg m kg m2

Trunk 42 0.81 2.57
Thigh 6.2 0.424 1.63
Calf 2.88 0.426 0.05
Foot 0.9 0.20 0.009

Table 1: Main data of the planar biped studied.
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Figure 2: Joint angles description (measured counter-clockwise)

2.2. Taking into account the mechanical structure
Each leg comprises four bodies associated with the foot, the calf, the thigh, and the trunk, respectively. The two

legs are assumed to have the same design. In this context, the dynamic model can be written when the robot is assumed
to be in support with one foot flat to the ground. The unilateral constraints between this stance foot and the ground
are implicitly taken into account. The model can thus be written in Lagrange form as follows:

A(q)q̈ + C(q, q̇)q̇ + G(q) = Γ, (1)

where q is the vector of joint variables. For a planar biped robot, q normally contains the joint variables of the two
legs, but since only one leg needs to be considered in this study, q can be reduced to any one leg. Then, q is written as
q = [qa, qk, qh]>, where qa is the ankle angle (relative angle with respect to the perpendicular of the sole of the foot),
qk is the knee (relative) angle and qh is the hip (relative) angle, see Fig. 2.

Since all motors are linear and not rotary, the vector of joint torques Γ does not contain the motor torques. In fact,
it contains the moments applied by the linear motors on the joints. This vector can be derived from the virtual work
of the motors. For the same reasons as above, vector Γ is restricted to any one leg. Moreover, Γ = [Γa,Γk,Γh]>, where
the indices a, k, h stand for ankle, knee, and hip respectively.

2.3. Motor consideration
Let us denote A j and B j the distal and proximal attachment points of the linear motor j on the leg (see Fig. 2) and

let F j denote the force applied by the linear motor. The virtual work δW of the force of magnitude F j for a virtual

displacement δ
−−−→
A jB j can be written as follows:

δW = F j

−−−→
A jB j

‖
−−−→
A jB j‖

· δ
−−−→
A jB j (2)

Points A j and B j are linked to the leg and their coordinates can therefore be written as functions of q. The right-
hand side of Eq. (2) must be written as a function of the joint angles and of their virtual displacements. To do so, the
case of mono-articular and bi-articular motors must be treated separately.

Let us first consider a mono-articular motor j placed around joint q j, where j is a (ankle), k (knee) or h (hip).

Then,
−−−→
A jB j (resp. δ

−−−→
A jB j) can be expressed as a function of q j only (resp. δq j). The virtual work can be written as:

δW = F jJ j, j(q j)δq j. (3)
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and
Γ j = J j, j(q j)F j. (4)

where J j, j(q j) is a scalar expression detailed in section 4.1. As shown in that section, J j, j(q j) defines the lever arm, i.e.
the distance between the action line of the linear motor and the center of the joint. This distance depends on q j.

Let us now consider a bi-articular motor j spanning joints qi and ql, where i (resp. l) is either a or k (resp. k or h).
Here, j is ak or kh. Then,

−−−→
A jB j and δ

−−−→
A jB j can be written as functions of qi and ql. Accordingly, the virtual work can

be expressed as follows:

δW = F j

[
Ji, j(qi, ql) Jl, j(qi, ql)

] [ δqi

δql

]
. (5)

In this case, the joint torques can be expressed as follows:[
Γi

Γl

]
=

[
Ji, j(qi, ql)
Jl, j(qi, ql)

]
F j. (6)

When all possible motors are considered, the following general model is obtained [38]:

Γ = J(qa, qk, qh)F (7)

or, in more details:  Γa

Γk

Γh

 =

 Ja,a Ja,ak 0 0 0
0 Jk,ak Jk,k Jk,kh 0
0 0 0 Jh,kh Jh,h




Fa

Fak

Fk

Fkh

Fh

 . (8)

In this paper, only non-redundant actuation schemes are studied. Since each leg has three degrees of freedom, only
three motors are considered. A proper actuation choice requires that matrix J be not structurally singular. Accordingly,
only the following eight architectures have to be considered (see Fig. 1):

• full mono-articular actuation: only one architecture is possible, namely, {Ma,Mk,Mh} (architecture 1);

• one bi-articular motor and two mono-articular motors: the bi-articular motor must be completed with one mono-
articular motor for the remaining joint. The second mono-articular motor can actuate one of the two joints
spanned by the bi-articular motor. Thus, there are four possible architectures: {Ma,Mak,Mh}, {Mak,Mk,Mh},
{Ma,Mkh,Mh}, {Ma,Mk,Mkh} (architectures 3, 6, 4, 2 resp.)

• two bi-articular motors and one mono-articular motor: the two bi-articular motors are necessarily Mak,Mkh.
The complementary mono-articular motor can be at any of the three joints. Thus there are three possible
architectures: {Ma,Mak,Mkh}, {Mak,Mk,Mkh}, {Mak,Mkh,Mh} (architectures 5, 7, 8, resp.),

With a full mono-articular actuation, matrix J remains diagonal and the design of the robot is easier. In contrast,
the introduction of bi-articular motors induces coupling between joints that increases the design difficulty. Thus,
architecture 1 will be studied first. The architectures containing bi-articular motors will be considered afterwards.

3. Design problem statement

The joint torque applied by a linear motor does not depend only on the linear motors’ features. It also relies on
the position of its two attachment points A j and B j on the leg, as well as on the joint configuration of the leg. The
objective of the design phase, for a given actuation scheme (see Figure 1) is to determine the position of A j and B j. In
the preliminary design phase, the assumption that the mass distribution is not affected by the position of the attachment
points, implies that the choice of points A j and B j affects matrix J but not the dynamic model (1). This allows us
to decompose the problem by studying matrix J while the desired motion and corresponding torques are preliminary
inputs of the problem. Since the transmission ratio depends on the configuration q of the leg, it is important to consider
all movements that the leg has to experience. This will avoid any singularity in the useful range of joints, and exploit
the fact that the lever arm varies as a function of the angle.
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3.1. Desired trajectories

The first step is to define the tasks to be performed by the robot. In the case of a walking robot, one must define
the type of movement that the robot is requested to experience. As an illustration, the robot is requested to walk as
well as to perform squat movements (that is, motions from sitting to standing configurations). For the design, it is
more important to cover different types of desired movements than to include several movements with similar torque
and position requirements. Adding walking movements at different speeds, running, carrying heavy loads, would
affect the optimal solution but not the methodology. Two desired movements are considered for the design: a periodic
walking and a squat motion. To define the periodic walking, a literature review on human motions [39] allows us to
choose a joint motion t 7→ q(t). This pattern is approximated via a polynomial function for a walking velocity of 2
km/h. The velocity t 7→ q̇(t) and acceleration t 7→ q̈(t) can be deduced and the torque can thus be evaluated according
to the dynamic model (1). To avoid dealing with a partition of the contact forces in double support phase, only single
support is considered. The behaviour in double support phase is considered via a squat motion defined in [40], for
which the two legs have the same motion and the ground force is assumed to be identical on both feet. For these two
desired motions, the zero moment point is always inside the sole of the robot since the stance foot is assumed flat on
the ground.

Once the two desired motions are defined, the data of one leg are collected into a table composed of time vectors:

D(t) = [t, qa(t), qk(t), qh(t),Γa(t),Γk(t),Γh(t)]>. (9)

The collected data correspond to one stance support, one swing phase and one squat motion. For the concatenation
of these motions, t varies from 0 to T where T is the total duration of the motion. Time t is used to associate Γ and q
only. Figure 3 shows torque plots on the hip, knee and ankle against the joint values for the considered motions.

As expected, the maximal torques are observed for stance phases and squat motions. The largest torque appears on
the ankle joint for walking and on the knee joint for squat. The rotation range of all joints is limited to approximately
40◦ during walking. During squat motions, the rotation range is about 100◦ for the hip, 80◦ for the knee, and 40◦ for
the ankle. The rotation range is a crucial parameter to avoid singularity when linear motors are used, as it will be
discussed in section 4.1. Note that the ranges of the ankle, knee and hip rotations of a human leg in sagittal plane are
a bit higher but do not exceed 155◦ [41, 42].

3.2. Criterion optimized

For a rotary motor, the gear ratio is chosen to handle the trade-off between torque and velocity. In the case of
a linear motor, this trade-off is managed by defining suitable motor attachment points. However, for practical and
aesthetic reasons, the attachment points will have to be close to the joints. Bounds on the attachment area are deduced
from design and bio-inspiration considerations. The set of possible attachments is denoted by S , and will be more
precisely defined in the following, see for example Fig. 6. As a result, the transmission ratio remains limited and
the most active dimensional constraint is the available force. Consequently, the motors are selected according to the
maximum force they have to produce. For the design obtained and the movements expected, we verify a posteriori
that motor velocities stay always under the limits met in high-power linear motors available on the market. The linear
motors used in this study can produce positive and negative forces. For simplicity, each motor force F j is assumed
bounded by the same value FM: | F j| ≤ FM . The objective is therefore to find the placement of the motor attachment
points that minimizes FM for all the joint configurations and torques belonging to the desired trajectories D(t).

The optimization problem can be stated as follows. For a leg architecture composed of three motors M1, M2, M3
corresponding to one of the eight actuation schemes shown in Figure 1, find the best attachment points A1, B1, A2, B2, A3, B3
that minimize the maximal forces required at all joints:

C1 = min
(A1,B1,A2,B2,A3,B3)∈S

(max(|F1|, |F2|, |F3|)) (10)

such that
∀t, qa(t), qk(t), qh(t),Γa(t),Γk(t),Γh(t) ∈ D(t), Γa

Γk

Γh

 = J(qa, qk, qh)

 F1
F2
F3

 (11)

7



q
a
 [°]

-80 -60 -40 -20 0 20 40 60 80

|Γ
a
| 
[N

m
]

0

10

20

30

40

50

60

70

80

90

100
stance walking
swing walking
squat

a)

q
k
 [°]

-80 -60 -40 -20 0 20 40 60 80

|Γ
k
| 
[N

m
]

0

10

20

30

40

50

60

70

80

90

100
stance walking
swing walking
squat

b)

q
h
 [°]

-80 -60 -40 -20 0 20 40 60 80

|Γ
h
| 
[N

m
]

0

10

20

30

40

50

60

70

80

90

100
stance walking
swing walking
squat

c)

Figure 3: a) ankle torque against ankle joint, b) knee torque against knee joint, c) hip torque against hip joint .
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Upon solving the above optimization problem, criterion C1 provides the value of FM required to produce the
desired motions. This value allows us to choose the motors assuming that the same motors are used for all joints. A
more general case can be defined by introducing weights in C1 as follows:

C1 = min
(A1,B1,A2,B2,A3,B3)∈S

(max(α1|F1|, α2|F2|, |F3|)) (12)

where α1, α2 are up to the designer if different motors are used.
Since infinitely many optimal designs exist that produce the same criterion C1, a second criterion C2 shall be con-

sidered, which is the minimization of the integral of the squared norm of F. This allows us to reduce simultaneously
the maximal motor forces and the loss of energy by Joule effects in the motors. This criterion is well suited to walking
robots that produce periodic motions with null integral of energy when friction is neglected. It may be sensitive to the
choice of desired trajectories and especially to the duration of squat and walking trajectories.

This second criterion is written as:

C2 = min
(A1,B1,A2,B2,A3,B3)∈S

∫
t∈D

(F2
1 + F2

2 + F2
3)dt (13)

such that:
∀t, qa(t), qk(t), qh(t),Γa(t),Γk(t),Γh(t) ∈ D, Γa

Γk

Γh

 = J(qa, qk, qh)

 F1
F2
F3

 (14)

As for criterion C1, weights can be introduced in criterion C2.

3.3. Solving the optimization problem

We would like to have more insight into the optimization problem before solving it numerically. To do so, an
analytic-heuristic approach is first conducted to obtain an optimal solution of criterion (10). This step allows us to
point out several interesting results, such as the existence of singularities pertaining to linear motors, and the necessity
to avoid them. The analytic step also instructs on the choice of optimization variables, on their contribution to the
optimization problem, and on the great number of acceptable designs. The analytic solving is followed by a numerical
optimization. The numerical optimization aims to validate and refine results from the analytic step. It also highlights
the limitations of the heuristic approach. On the other hand, the analytic results are used as initial guesses for the
numerical optimization. In the numerical approach, the optimization criterion is C = µC1 + C2 with C1 and C2 given
by (10) and (13) respectively. A large value is used for µ to take into account the difference of magnitude order for the
two criteria and to give priority to criterion C1.

4. Design with three mono-articular motors

The design of a leg with three mono-articular motors is first considered (see architecture 1 in Fig. 1). This case
is the simplest, because J is diagonal. Since each motor M j depends on one unique joint angle q j and on one unique
torque Γ j, the design of each motor is independent.

4.1. Relationship between motor forces and joint torques

Let us consider one joint j ( j = a, k, or h) and denote O j its rotation center in the robot plane. The distance O jA j

(resp. O jB j) is referred to as dA j (resp. dB j). The angle Â jO jB j is a function of the joint variable q j. Let us define
qAB j as the value of Â jO jB j when q j = 0. Notations are detailed in Fig. 4.

The relationship between the motor forces and the joint torques can be written as follows:

Γ j = J j, j(q j)F j, (15)

where J j, j(q j)=h j(q j) is the height of the triangle A jO jB j.

9



Figure 4: Notation for a mono-articular actuation, case of the knee.

Overall, the objective of the design optimization is to increase J j, j(q j) especially for those angle values q j associ-
ated with a high torque Γ j.

Upon expressing the triangle height h j(q j) as a function of its surface using the vector product, the following
formula is obtained:

J j, j(q j) = h j(q j) =
dA jdB j sin(qAB j + q j)

‖
−−−→
A jB j‖

(16)

where ‖
−−−→
A jB j‖ can be obtained using the cosine rule:

‖
−−−→
A jB j‖

2 = d2
A j + d2

B j − 2dA jdB j cos(qAB j + q j). (17)

The two equations above show us that:

• The scalar J j, j(q j) can be written with only three parameters dA j, dB j, and qAB j, while the definition of the
attachment points requires four variables, the coordinates of the attachments points: xA j, yA j, xB j, yB j. In fact,
the overall rotation of triangle A jO jB j does not affect the value of J j, j(q j).

• Since the term sin(qAB j + q j) appears in the numerator, no rotation q j of range greater than or equal to 180◦ can
be achieved without meeting a singularity where a zero torque is transmitted. This means that linear motors
should be used only in situations where singularities can be avoided (otherwise actuation redundancy would be
required). Note that the rotation ranges experienced in bipeds satisfy this constraint (see Figure 3).

• The angle qAB j must be chosen to avoid all singularities. Since a singularity occurs whenever q j = −qAB j,
q j = 180◦ − qAB j or q j = 360◦ − qAB j, qAB j should satisfy 0◦ < qAB j + q j < 180◦ or 180◦ < qAB j + q j < 360◦

for all q j ∈ D. Upon adding a safety margin of 10◦, the condition becomes: qAB j should be such that 10◦ <
qAB j + q j < 170◦ or 190◦ < qAB j + q j < 350◦ for all q j ∈ D.

• Variables dA j and dB j have a symmetrical role in J j, j(q j). It can be shown that (see appendix 8.1):

max
0◦<qAB j+q j<180◦

J j, j(q j) = min(dA j, dB j) (18)
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Figure 5: Evolution of |J j, j | for dA j = 0.1 m for different values of dB j. For each dB j, there are two mirrored curves, from 0◦ to 180◦ and from 180◦

to 360◦, respectively. Their shapes change when dB j increases. When dB j tends to infinity, the associated two curves are symmetric with respect to
qAB j + q j = 90◦ and qAB j + q j = 270◦, respectively.

and this maximum is reached for

qAB j + q j = ± arccos(max(
dA j

dB j
,

dB j

dA j
)). (19)

It can be noted that this configuration corresponds to the case where vector
−−−→
A jB j is perpendicular to the shortest

vector
−−−→
O jB j or

−−−→
O jA j.

• An isometric scaling of dA j and dB j by some scalar S scales J j, j by S and thus allows one to produce a torque
Γ j scaled by S , for the same motor.

Figure 5 depicts the plot of |J j, j(q j)| against qAB j + q j for several values of dB j and for a fixed value of dA j = 0.1.
It shows that increasing dB j so that dB j > dA j modifies the shape of the graph of |J j, j(q j)| and translates the maximum
of |J j, j(q j)| but the magnitude of this maximum is not affected. Moreover, |J j, j(q j)| vanishes whenever qAB j + q j = 0◦,
180◦ and 360◦, independently of dA j and dB j. These situations correspond to the singularities where the linear motor
cannot transmit any torque.

4.2. Analytic and heuristic design methodology

4.2.1. Limitations on the location of A j and B j

For practical designs, A j and B j must be located within a predefined possible attachment area. Since a design rule
of a humanoid robot requires that the center of mass be close to the trunk [3], the linear motor must be close to the
proximal end of the body. The attachment point A j is linked to the distal body, thus it must be close to the joint center
O j. Accordingly, point A j is constrained to be in a disc of radius rA j and centered on O j. Muscles in human legs
are attached to bones. Since it was shown in the previous section that an overall rotation of triangle A jO jB j does not
modify the transmission ratio between motor force and joint torque, point B j can be constrained to be on the axis of
the proximal body. These placement areas are illustrated in Figure 6.

4.2.2. Proposed methodology
The proposed design methodology is based on the following steps:

1. Assign the distance for the most constrained attachment point, namely, A j. By virtue of equation (18), dA j = rA j

to maximize J j, j for any q j. For B j, the distance can be chosen as dB j ≥ rA j. Since the maximum value of J j, j is

11



Figure 6: Possible placement of the attachment points of the three mono-articular linear motors.

rA j (see equation (18)), we know that the maximal force FM j for all motions in D cannot be less than:

FM j = max
Γ j∈D

|Γ j|

rA j
. (20)

This means that C1 is greater or equal to FM j as defined above. Ideally, C1=FM j but this is not always possible
as shown further.

2. Determine the distance of the second attachment point dB j ≥ dA j according to the shape of |Γ j| ∈ D shown
in Figure 3 and based on the shape of |J j, j| given in Figure 5. Knowing that the minimal motor force is FM j

(eq. (20)), plot the corresponding torque FM j|J j, j| for several dB j. The value of dB j is determined graphically
by playing with the placement of the graph of FM j|J j, j| along the abscissa axis. The goal is to limit the |Γ j|

overshoots over FM j|J j, j(qAB j + q j)|. The best value of dB j is selected.
3. Determine qAB j. Changing qAB j allows translating the graph of FM j|J j, j| along the q j abscissa axis. Tune the

translation so that the singularity is avoided and the overshoots of |Γ j| over FM j|J j, j(q j)| are minimized. When
|Γ j| ∈ D has a clear, unique maximum, denote q jmax the value of q j where this maximum is reached. Since the
maximum of |J j, j(q j)| is defined in (19), the best value for qAB j is given by:

qAB j = ± arccos(min(
dA j

dB j
,

dB j

dA j
)) − q jmax. (21)

This heuristic methodology is summarized in Figure 7 and illustrated with an example in the next section.

4.3. Heuristic mono-articular optimal design: case study
The constrained area of the attachment points is chosen as rAa = rAk = rAh = 0.1 m. We therefore deduce

dAa = dAk = dAh = 0.1 m. For the robot to be built, the length of the tibia (resp. of the thigh) is 0.426 m (resp. 0.424
m). Accordingly, 0.1 m ≥ dBa ≥ 0.4 m, 0.1 m ≥ dBk ≥ 0.4 m and 0.1 m ≥ dBh ≥ 0.4 m.

For the ankle, the joint range of qa is small (see Figure 3 a). Thus, we are free to select any value of dBa > dAa,
say dBa = 0.2 m. Moreover, there is a clear, well centered torque peak. In this case, thus, qamax is obtained easily:
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Assign the first attachment point distance dA j = rA j and define FM j with equation (20).

Determine graphically dB j to minimize the overshoots of |Γ j(q j)| over FM j|J j, j(qAB j + q j)| for
a free placement along the abscissa axis.

Determine qAB j so that the singularity is avoided and the overshoots of |Γ j| over FM j|J j, j(qAB j +

q j)| are minimized.

Figure 7: Summary of the heuristic method for a mono-articular actuation.

qamax = −13.3◦ and qABa can be defined with equation (21). Accordingly, qABa = 73.3◦ and 10◦ < qABa + qa < 170◦.
Plots of FMaJa,a(qa) and Γa(qa) ∈ D against the ankle joint are shown in Figure 8 a) to illustrate the chosen design.

For the knee, the desired trajectories in D are characterized by a large range of qk. Besides, Γk has two peaks
located close to the limits of qk (see Figure 3, b). A value of dBk close to dAk = 0.1 m is thus appropriate, say
dBk = 0.11 m. Since Γk has two peaks, qkmax cannot be determined as above. The maximum of Jkk(qk) must be
between the two peaks. qkmax is determined graphically as qkmax = 66◦, while the highest peak of Γk is at 73.5◦.
From (21), qABk = −90.6◦. For the resulting design, the maximal force is FMk = 665.3 N. The plots of FMk Jkk(qk)
and Γk(qk) ∈ D are shown in Figure 8 (middle) to illustrate the chosen design. Small overshoots of |Γk(qk)| over
FMk |Jk,k(qABk + qk)| can be observed and the maximal force required is greater than FMk.

For the hip, the desired trajectories in D are characterized by a large range of qh and one high Γh peak (see Figure
3 c). Moreover, this peak is not centered. Accordingly, we choose dBh = 0.13 m and 190◦ < qABh + qh < 350◦. Then,
(21) gives qABh = −21.6◦, FMh = max( Γh

dAh
) = 462.3 N. The plots of FMhJhh(qh) and of Γh(qh) ∈ D are shown in Figure

8 c) to illustrate the chosen design.
The corresponding design of the robot showing the attachment points and a simplified representation of the linear

motors is also depicted in Figure 9.
When all attachment points Aa, Ba, Ak, Bk, Ah, Bh are obtained, matrix J can be evaluated and forces Fa, Fk, Fh can

be evaluated for all the desired trajectories in D. Next, criteria C1 and C2 can be evaluated, either globally or, in this
case, for each joint.

4.4. Numerical optimization of the mono-articular design

The optimal design is now conducted numerically with the constraints described in section 4.3. According to the
previous analytic study, two optimization variables dB j and qAB j are considered for each single joint motor, while dA j

is set to its maximal value defined by the constraint dA j = 0.1 m. Since the optimization of each joint is independent, a
separated optimization is conducted for each joint using (15). This allows criterion C1 in (10) to be taken into account
for non-penalizing joints. This criterion provides infinitely many solutions. Additionally, criterion C2 defined in (13)
is added to select a solution minimizing the integral of the square of the motor forces. Accordingly, the compound
criterion C = µC1 + C2 is considered, where coefficient µ is set to an arbitrary high value (chosen here as 30000).

An optimization algorithm based on sequential quadratic programming algorithm is used. Cases 10◦ < qABk +qk <
170◦ and 190◦ < qABk + qk < 350◦ are treated successively and the best solution is chosen. The obtained results are
summarized in Table 2 and compared to those of the analytic/heuristic approach.

The numerical optimization algorithm was run with the fmincon solver provided by the Matlab©Optimization
Toolbox. The optimization takes 28 iterations and around 13 seconds on a personal computer (2 GHz Intel Core i5)
to converge. Note that having a lower bound to the optimal value can help to assess the quality of the numerical
solutions found by the optimization solver. In our case, one can determine a lower bound of C1 for each joint. Indeed,
the required force for each joint cannot be smaller than the maximal torque in D divided by the maximal level arm
(see eq. (20)). Since the attachment points of each motor are in a disc of radius 0.1 m, the maximal level arm (see
(18) is also 0.1 m. Thus, the lower bounds of C1 are 922.9 N for the ankle, 639.9 N for the knee and 467.3 N for the
ankle, respectively. It can be observed that the computed numerical solution found reaches the lower bound of C1 for
the ankle and the hip. For the knee, C1 exceeds its lower bound by 0.3% only. This shows that the computed solutions
are of excellent quality.
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Figure 8: Heuristic mono-articular design: ankle joint a), knee joint b) and hip joint c). Plots of FM j J j, j(q j) are shown in purple. Plots of |Γ j |

coming from Figure 3 have been added
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Figure 9: Optimal design with three mono-articular linear motors.

Parameters C1 C2
N 105 N2s

Method Heuristic
Ankle dBa = 0.2 m, qABa = 73.3◦ 922.9 1.63
Knee dBk = 0.11 m, qABk = −90.6◦ 651.2 1.66
Hip dBh = 0.13 m, qABh = −21.6◦ 467.3 1.32
Total 922.9 4.62
Method Numeric
Ankle dBa = 0.17 m, qABa = 66.6◦ 922.9 1.63
Knee dBk = 0.105 m, qABk = −86.2◦ 642.1 1.63
Hip dBh = 0.14 m, qABh = −25.7◦ 467.3 1.31
Total 922.9 4.58

Table 2: Results of the optimization with the proposed heuristic and numerical approaches
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Figure 10: Position of the attachment points for bi-articular actuation.

It can be noted that criterion C1 pertaining to the complete robot is identical in both cases and is large: C1 = 922.9.
It is the ankle joint that is the penalizing joint for the chosen movements. The results of the heuristic and numerical
methods are close.

5. Optimization with bi-articular motors

The force produced by a bi-articular motor applies a torque on two joints. When an architecture with one bi-
articular motor is considered, two joints and two motors have to be considered together. As a case study, let us
consider architecture (Ma,Mak,Mh). Both the ankle joint and the knee joint must be considered together, while the
hip joint can be treated alone. For an architecture with two bi-articular motors, the three joints must be considered
together. We will show that rewriting equation (8) allows us to decouple the relationship between forces and torques.

5.1. Relationship between motor forces and joint torques

The bi-articular motor Mak is treated as an example. The terms Ja,ak and Jk,ak in equation (8) can be written in
order to show the relationship between the joint torques Γa, Γk and the motor force Fak. For more simplicity in the
writing, the indices are omitted in the motor attachment points, which are simply written A and B.

As shown in Figure 10, point A is attached to the distal body (the foot) at a distance dA from the ankle joint center
Oa and with an angle qA with respect to the vertical. Point B is attached to the proximal body (the thigh) at a distance
dB from the knee joint Ok and with an angle qB with respect to the thigh axis. Let l denote the distance between Oa

and Ok i.e. the length of the tibia.
It can be shown (see appendix (section 8.2)) that:

Ja,ak =
dAdB sin(qA − qa − qB − qk) + ldA sin(qA − qa)

‖
−−→
AB‖

, (22)

Jk,ak =
dAdB sin(qA − qa − qB − qk) − ldB sin(qB + qk)

‖
−−→
AB‖

, (23)
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where:
‖
−−→
AB‖ = (d2

A + d2
B + l2 + 2dAdB cos(qA − qa − qB − qk)

+2ldA cos(qA − qa) + 2ldB cos(qB + qk))1/2 .

Term Ja,ak (resp. Jk,ak) is the height of triangle AOaB (resp. AOkB).
For the calculation of the motor force, both the ankle joint and the knee joint must be taken into account in equation

(8). We obtain: [
Γa

Γk

]
=

[
Jaa(qa) Ja,ak(qa, qk)

0 Jk,ak(qa, qk)

] [
Fa

Fak

]
. (24)

This equation will be rewritten in order to decouple the two equations.
For the design at hand (Ma,Mak,Mh), only the bi-articular motor Mak applies a torque on the knee joint. Thus,

Jk,ak must be different from zero to avoid any singularity. The ratio between Ja,ak and Jk,ak accounts to the extra torque
applied on the ankle joint when a torque on the knee is desired. The ratio rak can be thus defined as rak =

Ja,ak

Jk,ak
:

rak =
dA

dB

(
dB sin(qA − qa − qB − qk) + l sin(qA − qa)
dA sin(qA − qa − qB − qk) − l sin(qB + qk)

)
(25)

Introducing the ratio rak, the above equation is rewritten as:[
Γa

Γk

]
=

[
Jaa(qa) rak(qa, qk)Jk,ak(qa, qk)

0 Jk,ak(qa, qk)

] [
Fa

Fak

]
. (26)

When the bi-articular motor Mak applies a torque Γk on the knee, it also applies a torque rakΓk on the ankle. Thus,
the torque to be applied by the mono-articular motor Ma is modified as follows:[

Γa − rakΓk

Γk

]
=

[
Jaa(qa) 0

0 Jk,ak(qa, qk)

] [
Fa

Fak

]
. (27)

The equations are now decoupled, the physical coupling being included in rak that depends on qa, qk and on design
parameters dA, dB, qA, qB.

5.2. Analytic heuristic design methodology

For the mono-articular motors Ma and Mh, the attachment points are constrained as previously. For the bi-articular
motor Mak, the attachment points are constrained to belong in a disc located around the joint axis as illustrated in
Figure 10: dA ≤ rA, dB ≤ rB.

The proposed approach consists in determining the motor attachment points with equation (27). It is conducted in
three main steps summarized in Figure 11:

• In the actuation architecture at hand, the knee is actuated by the bi-articular motor only. Thus, this joint is
considered first. A design is proposed by assuming that the distal attachment point A coincides with Oa. This
approximation allows us to treat the bi-articular motor as a mono-articular one, i.e. its length varies only with
the variation of knee joint qk. The effect on the design is limited since we have observed that the transmission
ratio is strongly affected by the smallest distance from the attachment points to the joint center. Here the limiting
factor is dB and the optimal solution is dB = rB. As it will be detailed further, only parameters dB and qB are
involved in this step.

• A second objective of the bi-articular motor is that is contributes positively to the ankle joint. Parameters dA

and qA are then determined to meet this objective.

• Finally, the parameters of the mono-articular ankle joint are determined.

These three steps are detailed below.
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The bi-articular motor Mak is treated as a mono-articular for moving the knee, assuming that
A is placed at the ankle joint center O.

Choose the pose of A in order to minimize the maximum of Γa − r̃akΓk where r̃ak is an approx-
imate value of rak

The mono-articular ankle motor is designed to apply the torque Γa − rakΓk

Figure 11: The three steps of the methodology for the design of a bi-articular motor Mak associated to a mono-articular motor Ma.

5.2.1. Choice of dB, qB

The design of the bi-articular motor is first regarded by focusing on its contribution to the knee joint. The second
line of matrix equation (27) is thus considered, the objective being to maximize Jk,ak(qa, qk) at all useful configurations
qa, qk in order to minimize |Fak | required to apply the desired torque Γk in D.

Let us see how |Jk,ak |, defined by (23), varies as a function of qk + qB and qa − qA. Assume l = 0.43 m, dA = 0.05
m and dB = 0.1 m. A contour plot representation in plane (qk + qB, qa − qA) is provided in Figure 12. It appears that
|Jk,ak | varies essentially as a function of qk + qB and that |Jk,ak | never exceeds dB. This limit on the height of triangle
AOkB can be reached when

−−→
AB is perpendicular to

−−−→
OkB if the distance between Ok and A is always greater than dB.

When the ankle rotates, the attachment point A of the bi-articular motor moves on a circle of radius dA about Oa.
This motion produces few variation of Jk,ak as it can be seen in Figure 12. To simplify the problem, it is thus proposed
to assume that the contribution of motor Mak on the knee is equivalent to the contribution of a mono-articular motor
with A placed at Oa. This simplification assumes that dA = 0. It is reasonable if dA is small with respect to the length
of the tibia l. Under this simplification, the optimal value of dB is its maximal value rB since l is greater than rB.

This simplification is equivalent to replace equation (23) by:

Jk,ak(qk) =
dBl sin(qB + qk)√

d2
B + l2 − 2dBl cos(qB + qk)

. (28)

5.2.2. Choice of dA, qA

Since the force of the bi-articular motor Mak contributes to the torque of the ankle, the objective of the design is that
this force helps the mono-articular motor Ma. Accordingly, rak is determined in order to minimize Γa − rak(qa, qk)Γk ∈

D at least for its largest value. Thus, the torque to be delivered by the mono-articular motor to the ankle is reduced.
In the literature [38], bipeds are designed to obtain an almost constant ratio. In this study, rak is not assumed constant.
In the heuristic approach, the expression of the ratio is simplified. Using (25), and since l is high with respect to dA

and dB, the following approximate value of rak is then obtained:

rak(qa − qA) ≈ −
dA

dB

sin(qa − qA)
sin(qk + qB)

. (29)
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Figure 12: Contour plot representation of |Jk,ak | in the plane (qk + qB, qa − qA) for l = 0.43 m, dA = 0.05 m, dB = 0.1 m. |Jk,ak | varies essentially as
a function of qk + qB.

Note that sin(qk +qB) must keep the same sign during any motion for a given design, otherwise a singularity would
be met. Moreover, a good design will be such that | sin(qk + qB)| is maximized in order to maximize (28). Thus, the
ratio rak can be also approximated by:

rak(qa − qA) ≈ r̃ak = −
dA

dB

sin(qa − qA)
sgn(sin(qk + qB))

. (30)

Since in the previous step dB was fixed to dB = rB, dA
dB

is bounded as follows:

0 <
dA

dB
<

rA

rB
. (31)

Consequently, r̃ak is bounded by:

−
rA

rB
<

dA

dB
sin(qa − qA) <

rA

rB
. (32)

We now need to determine dA and qA to minimize Γa− r̃akΓk. This torque is then plotted in the two extremes cases:
Γa + rA

rB
Γk and Γa −

rA
rB

Γk ∈ D and the solution that produces the smallest maximum is selected. According to the value
of qa, different ratios may be appropriate and the best solutions for dA and qA are chosen knowing the form of r̃ak (30).
An example is shown in the next section.

5.2.3. Design of the associated mono-articular motor
When the bi-articular motor is defined, the exact value of the function rak(qa, qk) can be calculated. The mono-

articular motor Ma can then be designed accordingly for the prescribed trajectories in D.

5.3. Heuristic bi-articular optimal design: case study
In section 4.4, we showed that the ankle is the joint that requires the highest mono-articular motor force. The

case where the mono-articular ankle joint is helped by a bi-articular motor is thus detailed in this section. The
corresponding actuation scheme is Ma,Mak,Mh. The same constraints on the attachment points as in section 4.3 are
used for the mono-articular motors. For the bi-articular motor, we take rA = rB = 0.1 m.

For the hip, we use the same mono-articular motor as in section. 4.3.
For the design of the bi-articular motor Mak, the contribution to the knee torque is treated as a mono-articular

motor. Accordingly, dB = 0.1 m, the maximal possible value and l = 0.426 m, the length of the tibia. Figure 13
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Figure 13: Case study: determination of qB for the bi-articular motor.

shows the plots of the knee torques as in Figure 8, middle. According to this figure, the value of qB is determined as
qB = 233◦. Note that this value, when compared to fig. 8, middle in section 4.4, is less convenient. The reason is that
the number of design parameters is reduced here (l is imposed).

The next step is to choose an appropriate ratio rak in order that motors Mak and Ma cooperate. In accordance with
the limits imposed on the placement of the attachment points of Mak: rA = rB = 0.1 m. The approximate evolution
of the ratio r̃ak is a sinusoidal function of magnitude less than rA

rB
= 1. Thus, the torque to be produced by Ma varies

between Γa − Γk and Γa + Γk. Since the torque that Ma can produce depends on qa, the torques |Γa − Γk |, |Γa + Γk | and
|Γa| are plotted against qa in Figure 14, which makes it possible to select an appropriate ratio r̃ak. In order to reduce
the maximal torque appearing around qa = −12◦, it appears that r̃ak ≈ 1 is suitable. Then, thanks to equation (30), we
obtain dA = 0.1 m and qA = 78◦. The corresponding torque Γa − r̃akΓk is drawn in blue in Figure 15.

Then, the design of the mono-articular ankle motor is conducted as in section 4.4 with the torque Γam = Γa− rakΓk.
Besides, rak is evaluated here by its real value since dA, dB, qA, qB are known for the bi-articular motor. The torque
Γam is shown in red in Figure 15. The variation range of qa is small, the maximum of Γam is not centered, thus dBa is
chosen small: dBa = 0.11 m and equation (19) yields qABa = 53.3◦. This choice is illustrated in Figure 16.

This optimal solution is given in Table 3. Once the design is finished, the maximal force required for each motor
and criterion C2 are evaluated for all trajectories in D using the complete model (8). Results are added in Table 3.
Results for the hip are not presented since they are similar to the mono-actuation design studied in section 4.

5.4. Optimal numerical bi-articular design: case study

The optimal design is now conducted numerically. The constraints on the attachment points are defined in section
5.2. The results obtained are summarized in Table 3 and compared to the results obtained with the heuristic approach.
Note that the optimization problem has many local optima and that the heuristic design is a good initial guess for the
optimization problem.

As compared with the three-mono-articular-motor optimal design (Table 2), the results show that the use of a
bi-articular motor Mak together with a mono-articular motor Ma for the ankle, allows reducing the maximal force
required. Thus, a smaller motor can be used to produce the desired motions. With this design, on the other hand, the
integral of the forces to be produced is slightly increased by the use of a bi-articular motor.

As expected, the design obtained with the numerical optimization is better. Indeed, the heuristic method relies on
several approximations and the numerical optimization was run with the result of the heuristic approach as an initial
guess.
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Figure 14: Torques |Γa − Γk | (in red), |Γa + Γk | (in green) and |Γa | (in blue) are plotted against qa. The maximum of torque at qa = −12◦ decreases
for rak ≈ 1.
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Parameters C1 C2
N 105 N 2s

Method Heuristic
Ma: Ankle dBa = 0.11 m, qABa = 53.3◦ 741 3.06
Mak: Knee dB = 0.1 m, qB = −127◦ 776.1 2.02
Mak: Ankle dA = 0.1 m, qA = 78◦

Mh: Hip dBh = 0.13 m, qABh = −21.6◦ 467.3 1.32
Total 776.1 6.4
Method Numerical
Ma: Ankle dBa = 0.15 m, qABa = 64.5◦ 722.6 1.63
Mak: Knee dB = 0.1 m, qB = −143◦ 722.6 1.96
Mak: Ankle dA = 0.03 m, qA = 47◦

Mh: Hip dBh = 0.14 m, qABh = −25.7◦ 467.3 1.31
Total 722.6 4.9

Table 3: Optimization results with heuristic and numerical methods for actuation schemes Ma,Mak ,Mh.
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Like for the mono-articular optimal design, we now determine a lower bound for C1 in order to assess the quality
of the computed optimal solutions. Since the attachment points of each motor are in disc of radius 0.1 m, the maximal
level arm is 0.1 m for both the mono-articular and the bi-articular cases. In any case, the ratio between force and torque
is the height of triangle AOiB, where A and B are the attachment points and Oi the rotation axis. For the knee, since
only one motor is involved, the maximal torque in D divided by the maximal level arm, which gives 639.9 N, provides
a lower bound for C1. For the ankle, since two motors are involved, the maximal torque in D divided by the maximal
level arm and divided by 2, which gives 922.9

2 N, provides a lower bound for C1. Since the two joints are considered
simultaneously in the optimization, the optimal value C1 is necessarily greater than max(639.9, 922.9

2 ) = 639.9 N. The
numerical optimization takes 36 iterations and around 14 seconds on a personal computer (2 GHz Intel Core i5).

It is noteworthy that the same maximal motor forces are required for Mak and Ma. This result is consistent with
criterion C1 used for two coupled motors (the optimum is generally reached when the two values are identical).
The optimal value obtained by numerical calculation exceeds the minimum value of 13% while the optimal solution
obtained by heuristic method exceeds the minimum value of 21%.

6. Comparison of several architectures with three motors

The eight architectures shown in Figure 1 were optimized following the same approach as in the previous case
studies. In order to allow a placement of the motor as close as possible to the trunk, the constraints on the motor
attachment points are the following:

• For the distal attachment point, a disc of 0.1 m around the joint is considered.

• For bi-articular motors, a disc of radius 0.1 m around the joint center is considered for the proximal attachment
point.

• For mono-articular motors, the proximal attachment point is aligned with the axis of the body at a distance
between 0 and 0.4 m to the joint center.

Depending on the architecture considered, there are one, two or three motors acting on a joint and the number
of coupled motors in the optimization varies accordingly. For each joint, the minimal force required is the maximal
torque in D divided by the maximal level arm (0.1) and by the number of motors acting on the joint (1, 2, or 3). If the
joints are coupled by motors, then the maximum of the minimal forces for these joints gives C1. If the joint is actuated
independently, the minimal force for this joint gives C1. The lower bound of C1 for each architecture is shown in figure
17 with an horizontal black line segment. When compared to the computed optimal solutions, it provides information
on the quality of the optimization. It also gives a priori information on the design that is best suited to the task. In
the case studied, we observe that design 5 may be interesting since the lower bound of C1 is less than for the other
designs.

The optimization was started with the solution provided by the heuristic method. The numerical optimization time
is 26 s in average and always less than 50 s. The optimal solutions for the eight architectures are given in appendix
8.3. The results are summarized in Figs. 17 and 18 for criteria C1 and C2, respectively.

6.1. Best design
As expected, the best design is design 5 : (Ma,Mak,Mkh) two bi-articular motors spanning the ankle-knee and the

knee -hip, respectively, and a mono articular motor for the ankle (see Figure 17). This design allows sharing the ankle
torque between several motors. For the optimal solution, C1 exceeds the minimal value by 3.8%. Thus, this design is
excellent with respect to this criterion. This result is quite consistent with the study on humans. Indeed, it was shown
in [43] that the mono-articular ankle muscle and the bi-articular muscle ankle-knee are very active for walking. It is
worth noting that the best design for criterion C1 (Figure 17) is also a good design for criterion C2 (Figure 18).

The optimal design obtained is shown in Figure 19. The forces required to produce the achieve configurations and
torques in D are shown in Fig. 20 (left) for the optimal design. For comparison purposes, the forces required for the
three mono-articular optimal designs depicted in Fig. 9 are shown in Fig. 20 (right).

It can be observed that the force required to move the trunk (Fkh or Fh) are of the same order of magnitude (Fig.20
(bottom)) since only one motor contributes to the torque produced at the hip. For the knee (Fig. 20 (middle)), the
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Figure 17: Maximal force (in N) required for each motor for the eight architectures. Lower bound of C1 for each leg architecture is also shown with
a black line. Whenever several joints are coupled (architectures 5, 6,7 and 8), the lower bound of C1 was calculated as the maximum of the lower
bounds of the coupled joints, and the lower bound must be compared to the maximum of the required forces. The best architecture with respect to
criterion C1 is the design 5, the maximal force required is identical for all motors : 485 N.

Figure 18: The integral of force in N2 s is evaluated for the optimal design of each architecture. Architectures 2, 5, 7 are good candidates with
respect to this criterion.
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Figure 19: The optimal design among the eight architectures tested.
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maximal force required max(Fak) is less than max(Fk) since the bi-articular motor Mkh helps Mak with its torque
contribution to the knee. For the same reason, the maximal force required max(Fa) for the ankle (Fig. 20 (top)) is
lower for the bi-articular design since Mak helps Ma with its torque contribution to the ankle. Note, however, that for
the swing motion, the force required Fa is higher in the bi-articular design than in the mono-articular one, since the
motor force Fa has to counterbalance the torque produced by Fak.

6.2. Discussions
The heuristic approach, although not perfect, allowed us to draw useful conclusions to understand optimal design.

It produces an approximate optimal design that allows us to initialize a numerical local optimization algorithm.
The transmission ratio between the force produced by a linear motor and the joint torque is highly dependent on

the joint configuration. Moreover, a transmission singularity always occurs in any joint displacement of more than
180◦. The trajectories taken into account for the design of our biped can be free of singularities for a good design
since the joint ranges remain within 40◦ and 100◦ for all joints.

The maximum transmission ratio is limited by the smallest distance of the attachment points to the joint center.
This means that if a joint is operated by only one motor, the optimal design yields a motor force equal to the desired
maximum torque divided by the maximum lever arm. Trajectories used for the biped design indicate that the maximum
torque appears on the ankle joint (92 N.m). With an attachment point area defined by a disc of radius 0.1 m, the motors
must provide a force of 920 N. This value can be reduced by accepting a larger attachment point area. Another solution
is to have several motors contributing to the ankle joint. Designs (Ma,Mak,Mh) or (Ma,Mak,Mkh) correspond to this
case and clearly reduce the required motor forces. Another option would be to accept actuation redundancy.

Disc-shaped attachment point areas were chosen for this study. This choice is consistent with what was shown
in the heuristic approach. For mono-articular motors, the optimal solution is the maximum value for the distances
dA j. For bi-articular motors, it is the maximum value for at least one distance dA or dB. Other area shapes such as
rectangles could be used: the above conclusions would not be changed but they would be more hidden.

For mono-articular joints, the simultaneous rotation of the two attachment points of the motor with respect to the
joint axis has not effect on the force required to produce a motion. We have chosen here to place one attachment point
on the body axis but other choices would have been possible.

7. Conclusions

Linear motors are becoming more and more efficient, are inherently backdrivable and suitable for bi-articular
actuation. In this context, they become interesting to realize compact and bio-inspired bipedal robots. However, the
efficiency of linear motors is very sensitive to the placement of their attachment points. The objective of the method
presented in this work is to help the designer to place correctly the linear motors in order to produce the expected
motions. The first requirement is to avoid singularities that can occur when the axis of the motor meets the joint
axis. Accordingly, the methodology proposed to optimize the linear motors attachment points has the following main
features:

• since the transmission ratio of a linear motor depends on the joint configurations, a first step is to choose the
movements that the biped must be able to perform: joint configurations and joint torques in particular were the
input data of the design problem at hand;

• as our objective is to build a human like leg with attachment points close to the structure, the velocity is not a
limiting constraint for the motor. The criterion depends on the motor force only;

• contrary to classical design methods, the approach does not necessitate integrating the dynamic model. It is
based on the kinematic model relying motor forces and joint torques. Consequently, the calculation burden is
reduced.

The methodology is developed in two different ways: an analytic heuristic method and a numerical method.
The analytic (heuristic) method uses two justified approximations: one in the optimization process for mono-

articular joints and another in the kinematic equation for bi-articular joints. This method provides a good under-
standing of the optimal design properties. Practical design rules are deduced and summarized in section 6.2. This
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analytic method, in addition to providing useful information, allows obtaining a good initial guess for the numerical
optimization. This is of high interest since the optimization problem treated here has many local minima. The analytic
approach allows also one to define, based on the limitation of the placement of the attachment points, a lower bound
for the required maximal force. Consequently, it allows one to assess the quality of the design obtained. The numeri-
cal method is based on the complete and exact formulation of the equations. Accordingly, it provides a refinement of
the optimum obtained with the analytical approach.

When the method is defined to obtain the best placement of the motors for a chosen architecture composed of
three mono or bi-articular motors, several architectures can be compared. Finally, eight different leg architectures
with three motors and combining different numbers of mono-articular and bi-articular motors have been optimized.
Results have pointed out the interest of using bi-articular motors to reduce the maximal force required for each motor.

The proposed method provides a preliminary design for a prototype. This preliminary design is based on an
assumed mass distribution (here for a robot with a morphology close to a human) chosen independently of the positions
of the motors. Once the optimal design is obtained, it will be useful to build a more precise dynamic model that
integrates the precise shape of the bodies and a precise description of the motors independently, in order to verify that
the selected motors allow performing the desired movements.

A limitation of the current study is the small number of desired movements taken into account for the optimal
design. While keeping the same methodology, different results could be obtained by considering a wider range of
movements. It would be relevant to repeat this work for a variety of walking trajectories with different step lengths
and speeds. We could also consider running trajectories and analyze their influence on the optimal design.

It would be also interesting to better understand the implementation of muscles in humans in order to consider
two extensions of this work. One extension is to take into account traction-only motors in groups of two antago-
nistic muscles. In this case, we could consider an extension of the approach with more parameters accounting for
more attachment freedom. Another extension is to take into account actuation redundancy: this extension would be
straightforward for the numerical approach.
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8. Appendix

8.1. Appendix: Mono-articular case

The variables dA j and dB j, have a completely symmetrical role in J j j(q j). Thus we propose to rewrite J j j(q j) as
function of dAB j = min (dA j, dB j) and rAB j = max ( dA j

dB j
,

dB j

dA j
), thus rAB j ≥ 1. With these notations, one of the distance is

dA j, dB j is dAB j, while the other is rAB jdAB j. The expression becomes
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J j j(q j) =
dAB jrAB j sin(qAB j + q j)√

1 + r2
AB j − 2rAB j cos(qAB j + q j)

. (33)

The sign of J j j(q j) is constant for all the q j ∈ D, since 0◦ < qAB j + q j < 180◦ or 180◦ < qAB j + q j < 360◦. An
increase of dAB j increases the norm of J j j(q j).

In order to study the extremum of J j j(q j), its derivative with respect to q j is calculated. It can be written:

∂J j j

dq j
= dAB jrAB j

−rAB jC2
j + (1 + rAB j)2C j − rAB j

(1 + r2
AB j − 2rAB jC j)(3/2)

(34)

with C j = cos(qAB j + q j). Thus, the extremum is obtained for

rAB jC2
j − (1 + rAB j)2C j + rAB j = 0. (35)

The corresponding value of q j can be obtained as the solution of the second order equation with respect to C j.
Since rAB j ≥ 1 and −1 ≥ cos(qAB j + q j) ≥ 1, the extremum of J j j(q j) is obtained for:

C j = cos(qAB j + q j) =
1

rAB j
(36)

or
qAB j + q j = ± arccos(

1
rAB j

). (37)

The corresponding maximum is
max

0◦<qAB j+q j<180◦
J j j(q j) = dAB j. (38)

Using the notation dAi, dBi, we obtain the equations (18) and (19).

8.2. Appendix: bi-articular case

The virtual work principle along AB due to Fak can be written as follows:

δW = Fak

−−→
AB

‖
−−→
AB‖

· δ
−−→
AB (39)

or in expanded form:

δW = Fak
(xB − xA)δ(xB − xA) + (yB − yA)δ(yB − yA)√

(xB − xA)2 + (yB − yA)2
, (40)

where (xA, yA) and (xB, yB) are the coordinates of A and B, respectively. First, write the coordinates of point A
and B in a frame attached to the intermediate body here the thigh and centered in O1 (x, directed to the right in the
extended leg position, y upwards, on Figure 10, qA is negative, qB positive).

xA = dA sin(qA − qa),
yA = −l − dA cos(qA − qa),
xB = −dB sin(qB + qk),
yB = dB cos(qB + qk).

(41)

We can deduce the coordinates of the vector
−−→
AB:

xB − xA = −dB sin(qB + qk) − dA sin(qA − qa),
yB − yA = dB cos(qB + qk) + l + dA cos(qA − qh). (42)
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We can deduce from this, the norm of the vector
−−→
AB:

‖
−−→
AB‖ = (d2

A + d2
B + l2 + 2dAdB cos(qA − qa − qB − qk)

+2ldA cos(qA − qa) + 2ldB cos(qB + qk))1/2.
(43)

we find the expression corresponding to the mono-articular case when l = 0 taking into account the fact that q =

π + qA − qB.
For a small variation δqk and δqh, we will have:

δ(xB − xA) = −dB cos(qB + qk)δqk + dA cos(qA − qa)δqa,
δ(yB − yA) = −dB sin(qB + qk)δqk + dA sin(qA − qa)δqa.

(44)

Based on the equation (2), we can calculate the work of the force:

δW = Fak
dAdB sin(qA − qa − qB − qk) − ldB sin(qB + qk)

‖
−−→
AB‖

δqk + Fak
dAdB sin(qA − qa − qB − qk) + ldA sin(qA − qa)

‖
−−→
AB‖

δqa.

(45)
We therefore find for the expressions Ja,ak and Jk,ak:

Ja,ak =
dAdB sin(qA − qa − qB − qk) − ldB sin(qB + qk)

‖
−−→
AB‖

(46)

Jk,ak =
dAdB sin(qA − qa − qB − qk) + ldA sin(qA − qa)

‖
−−→
AB‖

. (47)

8.3. Appendix: The eight optimal designs

The results are summarized in Table 8.3.
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Parameters C1 C2
N 10+5N 2s

Design 1
Ma: Ankle dBa = 0.17 m, qABa = 66.6◦ 922.9 1.63
Mk: Knee dBk = 0.11 m, qABk = −90.2◦ 639.9 1.58
Mh: Hip dBh = 0.14 m, qABh = −25.7◦ 467.3 1.31
Total 922.9 4.61
Design 2
Ma: Ankle dBa = 0.17 m, qABa = 66.6◦ 922.9 1.63
Mk: Knee dBk = 0.11 m, qABk = 23.5◦ 472.8 0.82
Mkh: Knee dA = 0.1 m, qA = 8.4◦

Mkh: Hip dB = 0.1 m, qB = −78.3◦ 472.8 1.27
Total 922.9 3.72
Design 3
Ma: Ankle dBa = 0.15 m, qABa = 64.5◦ 722.6 1.63
Mak: Ankle dA = 0.03 m, qA = 47◦

Mak: Knee dB = 0.1 m, qB = −143◦ 722.6 1.96
Mh: Hip dBh = 0.14 m, qABh = −25.7◦ 467.3 1.31
Total 722.6 4.9
Design 4
Ma: Ankle dBa = 0.17 m, qABa = 66.6◦ 922.9 1.63
Mkh: Knee dA = 0.1 m, qA = 67◦

Mkh: Hip dB = 0.1 m, qB = −42◦ 662.2 1.69
Mh: Hip dBh = 0.06 m, qABh = 118◦ 569.5 1.07
Total 922.9 4.4
Design 5
Ma: Ankle dBa = 0.31 m, qABa = −61◦ 485 1.63
Mak: Ankle dA = 0.097 m, qA = 96◦

Mak: Knee dB = 0.1 m, qB = −98◦ 485 0.70
Mkh: Knee dA = 0.089 m, qA = 184◦

Mkh: Hip dB = 0.1 m, qB = 142◦ 485 1.46
Total 485 3.79
Design 6
Mak: Ankle dA = 0.1 m, qA = 90.3◦

Mak: Knee dB = 0. m, qB = 147◦ 922.9 1.66
Mk: Knee dBk = 0.11 m, qABk = −90.2◦ 648.9 1.63
Mh: Hip dBh = 0.14 m, qABh = −25.7◦ 467.3 1.31
Total 922.9 4.59
Design 7
Mak: Ankle dA = 0.1 m, qA = 85.4◦

Mak: Knee dB = 0.046 m, qB = −42◦ 922.9 1.63
Mk: Knee dBk = 0.27 m, qABk = −120◦ 210.1 0.37
Mkh: Knee dA = 0.1 m, qA = −167◦

Mkh: Hip dB = 0.1 m, qB = 142◦ 492.1 1.55
Total 922.9 3.53
Design 8
Mak: Ankle dA = 0.1 m, qA = −117◦

Mak: Knee dB = 0. m, qB = −177◦ 922.9 1.63
Mkh: Knee dA = 0.1 m, qA = −59◦

Mkh: Hip dB = 0.097 m, qB = −39◦ 663 1.72
Mh: Hip dBh = 0.142 m, qABh = −26◦ 405 0.83
Total 922.9 4.18

Table 4: The eight optimal designs
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