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Dynamics of ribbed plates with inner resonance: Analytical homogenized
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This paper deals with the theoretical, numerical and ex perimental behavior of periodic orthogonally ribbed plates. It ex tends the paper (Fossat et al., 2018)
in which a comprehensive homogenized model has been es-tablished for flexural and torsional motion of periodic 1D-ribbed plates. New theoretical results 
describing the out-of-plane behavior of cellular plates involving inner resonance phenomena, are derived using an asymptotic approach. In this aim, the out-of-
plane model of beam grids accounting for local bending and torsion is first established through the asymptotic method of homogenization of periodic discrete
media. Then, the coupling between the beam grid and the internal plates (fully or partially connected to it) is detailed. This lead to an explicit analytical 
formulation of the equivalent plate model whose effective parameters arise from the geometry and mechanical properties of the unit cell. The unconventional 
features of the flex ural wave dispersion are shown to be straightforwardly related to inner-resonance phenomena. These theoretical results are successfully 

compared to numerical computations conducted using WFEM. Furthermore, ex periments performed on two prototypes of ribbed plates evidence the ability of
the homogenized model to describe their complex dynamic behavior. The latter is characterized by the co-ex istence of a dynamic regime at both the micro-
scale of the period and the macro-scale of the whole structure, that results in an inhomogeneous kinematics where the plate and beam displacements differ at the
leading order. These unique features depart from the usual assumptions retained in plate mechanics and generates the observed non-conventional features. In
conclusion, it is stressed that the study yields design rules to tailor cellular panels having specific atypical features in a given frequency range.

1. Introduction

The classical plates models are well suited for homogeneous or mod-
erately heterogeneous plates. However, difficulties appear when at-
tempting to extend classical theories to composite structures with sig-
nificantly contrasted properties. For instance, when considering ribbed
plates with stiffeners of similar flexural rigidity than that of the plate, then
the global behavior is that of a classical but anisotropic plate. Conversely,
if the stiffeners are much stiffer than the plate, the global behavior will be
that of a beam lattice. In-between situations with specific beam grid/plate
coupled behavior should exist. The present paper focuses on this specific
situation in dynamic regime, in which the stiffener/plate contrasts induces
inner resonance phenomena.

The ribbed plates are widely used in structural and mechanical
engineering. It is well known that they can present unconventional
wave dispersion or atypical sound transmission and adsorption see e.g.

(Varanasi et al., 2013) and (Varanasi et al., 2017). The understanding of
such a complex behavior have motivated the development of numerical
and theoretical approaches. All of them take advantage of the 1D or 2D
periodicity of the ribbed plates to reduce the computational cost of
numerical procedures, or the complexity of theoretical formulations.

Let us first recall a few reference works in statics, namely (i) the deri-
vation by (Timoshenko and Woinowsky-Krieger, 1959) of the equivalent
orthotropic plates for plates reinforced by equidistant stiffeners in two di-
rections, (ii) the plate model describing the out-of-plane behavior of peri-
odic beam grid established by (Renton, 1964), and (iii) the physical ana-
lysis of (Nishino et al., 1974) that yields the effective torsional rigidities
which incorporate the interaction between the plate and the stiffeners.

In dynamics, numerical approaches as finite elements method for-
mulated in the framework of Floquet-Bloch theory has been developed
to determine the wave dispersion of periodic media. As for ribbed
plates, such a WFEM (Wave Finite Element Method) (Mead, 1973; Waki
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et al., 2009) has been used by (Mead et al., 1988) to determine, from
computations performed on the periodic cell, the free-wave propaga-
tion in plate stiffened by a grid of orthogonal beams. This method can
be improved with modal reduction techniques as demonstrated by
(Droz et al., 2016) in the case of orthogonally ribbed plates. More re-
cently, an energy method based on a semi-analytical variational for-
mulation enables to predict numerically the vibroacoustic behavior of
orthogonally ribbed plate (Trévisan et al., 2016). Advanced numerical
procedure have also been applied to the identification of propagation
parameters in composite structures from experimental measurements.
For example, the IWC (Inhomogeneous Wave Correlation) method in-
troduced by (Berthaut et al., 2005) consists in decomposing the vi-
bratory field on a basis of inhomogeneous waves. A spatial correlation
index, allows extracting the wavenumber from the experimental data
and yields the empirical dispersion curve(s), as presented in (Berthaut
et al., 2005; Ichchou et al., 2008a) for several applications to ribbed
panels and plates. These different numerical approaches provide accu-
rate numerical results provided that he micro-structure is given, but fail
to identify the underlying model that arises from the physics involved
within the cell. Moreover, the detailed numerical modeling of large
panels with high mechanical and geometrical contrasts must be handle
cautiously because of the discretization errors or aliasing effects (Waki
et al., 2009; Mace et al., 2005).

Among the theoretical approaches, the homogenization of periodic
media (Sanchez-Palencia, 1980; Auriault et al., 2009) is a rigorous
asymptotic method for up-scaling the physics at micro-scale into a
macroscopic model, in which the effective parameters are fully de-
termined from the periodic cell. To be applied, the method requires to
consider (i) domains made of a large number of periods, and (ii) phe-
nomena evolving at a macroscopic length of characteristic dimension L
significantly larger than the size of the cell. In practice these re-
quirements are generally satisfied and made the homogenization an
appropriate method of modeling. The relevancy of the up-scaled de-
scription is insured by taking into account the key physical phenomena
at the local and global scales. Note furthermore that the macroscopic
model results from the asymptotic process itself, without any additional
assumption on the nature of the model to be found. This method has
been extensively applied to develop advanced plate theories, and one
may refer to (Lewiński and Telega, 2000; Altenbach et al., 2010;
Kalamkarov et al., 2009) for reviews on composite plates, structured
plates, corrugated plates, heterogeneous shells, etc. Recently, the
asymptotic approach have been applied to highly contrasted mono di-
rectionally ribbed plates (Fossat et al., 2018). This study explains the-
oretically that the unconventional behavior with singular dispersion
and possible band-gap noticed by direct WFEM computations are
straightforwardly related to inner resonance phenomena. The latter
corresponds to situations where dynamic regimes co-exist at both the
micro-scale of the period and the macro-scale of the structure, as de-
scribed in highly contrasted elastic composites (Auriault and Bonnet,
1985; Auriault and Boutin, 2012), that may results into negative ef-
fective mass over bands centered around the inner resonance fre-
quencies (Auriault and Bonnet, 1985; Auriault and Boutin, 2012;
Chesnais et al., 2012).

The purpose of the present work is to extend the previous analysis of
unidirectional ribbed plate (Fossat et al., 2018) to periodic bidirectional
ribbed plates. The main outcomes of this study are (i) an analytical
formulation of the equivalent model of orthogonally ribbed plates in-
volving inner resonance phenomena, whose effective parameters ex-
plicitly arise from the geometry and mechanical properties of the unit
cell, (ii) the experimental validation of these new theoretical results
derived using an asymptotic approach, (iii) the agreement between the
quasi-analytical results given by the explicit model and those obtained
by strictly numerical WFEM approach.

The paper is structured as follows. Section 2 focuses on the flexural

behavior of 2D-ribbed plates. The out-of-plane model of beam grids
accounting for local bending and torsion is first established through the
method of asymptotic homogenization of periodic discrete media, in-
itiated by (Tollenaere and Caillerie, 1998), and applied to in-plane
behavior in (Boutin and Hans, 2003; Hans and Boutin, 2008), (Chesnais
et al., 2012). Then, the coupling between the beam grid and the internal
plates (fully or partially connected to it) is detailed. From this, the
equivalent plate model is established, and the unconventional features
of the flexural wave dispersion are presented and discussed. Section 3 is
devoted to the numerical and experimental validations of the homo-
genized model. The theoretical results are successfully compared to
numerical calculations conducted using WFEM. Furthermore, the ex-
periments performed on two prototypes of ribbed plates in more than
10 configurations evidences the ability of the homogenized model to
describe their complex dynamic behavior. In conclusion, it is stressed
that the study yields design rules to tailor cellular panels having specific
atypical features in a given frequency range, and some perspective of
further developments are drawn. Finally, Appendix A is devoted to a
circular plate and Appendix B briefly recalls the results gained for 1D-
ribbed plates.

Remark. In the whole paper the models are developed considering
harmonic regimes at angular frequency ω, and, by linearity, the time
dependence i texp( ) is systematically omitted hereinafter.

2. Homogenization of the flexural behavior of 2D-ribbed plates

2.1. Investigated structures

The periodic orthogonally ribbed plate (hereafter called 2D-
ribbed plates for simplicity and denoted RP) under study is depicted
in Fig. 1. It comprises identical “micro”-plate elements (denoted P)
connected to an orthogonal beam grid (denoted G ), both made of
isotropic elastic materials. The beams of the grid are assumed sig-
nificantly stiffer than the “micro”-plate (in a sense precised latter
on). We focus on the dynamic range such that the size of the cell (or
the width of P) is small in regards to the wavelength in the beam
grid. The referential frame of unit vectors e e e( , , )x y z is such that ex
and e y are the in-plane vectors along the orthogonal ribs, while ez is
the out-of-plane vector.

Fig. 1. Orthogonally ribbed plate RP under study with notations associated
with macro-beams constituting the beam grid G , and focus on the unit cell
made of micro-beams B and internal micro-P -plate.
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The two families of perpendicular beams (or stiffeners) define the
ortho-beam grid . The stiffeners oriented along x (resp. y) are iden-
tical and spaced periodically by the length y (resp. x). However, the
two families may differ from one another. These stiffeners intersect on
perfectly stiff and mass-less nodes. This defines the rectangular periodic
mesh, which is constituted by the portions of the two orthogonal stif-
feners that join at a node. The period of surface =S x y is characterized
by the length = x y , and = =O O( ) ( )x y . We will also use in the

sequel the dimensionless quantities = /
x x ; = /

y y so that
= 1

x y
and = =O O O( ) ( ) (1)

x y
.

Each segment of stiffeners between two consecutive nodes is mod-
eled as a Euler-Bernoulli “micro”-beam (denoted Bx , By). The geome-
trical parameters of Bj, with =j x y, , are h b A( , , , )j j j j which stand
respectively for their length, ez-thickness, width with =b O h( )j j and
section area =A h bj j j. The mechanical parameters

I= =E I b h G A J( , /12, , , , , )j j j j j j j j j j j j
3 denote respectively the

Young Modulus, the bending inertia, the torsional modulus and tor-
sional inertia, the density, the linear mass, and the polar moment. The
dimensions of the sections Aj are assumed small with respect to the
lengths j so that the behavior of the inter-node elements can be ef-
fectively modeled as Euler-Bernoulli beams. It is further assumed that
the geometrical and the mechanical parameters of both types of beams
Bj are of the same order of magnitude.

The material of the micro-plates P of area x y and thickness d, have
a Young's modulus Ep, a Poisson's ratio p (the “plate modulus” is

=E E /(1 )p p p

2 ) and a density
p
. The plate bending inertia is denoted

=I d /12p
3 and the surface mass = dp p .

2.2. Physical insight into inner resonance of 2D-ribbed plates

The dynamics of 2D-ribbed plates presents analogy with the behavior
of inner resonance elastic composites as developed in the pioneer paper
(Auriault and Bonnet, 1985) (see also (Auriault and Boutin, 2012)). As
indicated in the introduction, inner resonance refer to a specific ‘co-dy-
namics’ regime where the dynamic phenomena co-exist at both the cell
and the macroscopic scales. For such a regime to take place, the con-
stituents of the cell must be sufficiently contrasted so that the stiff and
connected component carries the long wavelength - and then undergoes a
local quasi-static regime - while, at the same frequency, the soft compo-
nent experiences a local dynamic regime. This is precisely what happens in
ribbed plates undergoing out-of-plane vibrations, as formulated in (Fossat
et al., 2018). Indeed the stiff beam conveys the large wave length, and the
soft plate experiences a local resonance. In this situation, the mechanical
roles of the beam and the plate are dissimilar and the coupling between
them is asymmetrical. More precisely, the stiff beam is forcing the soft
plate. Furthermore, the specific quasistatic-dynamic mixed regime within
the cell generates an inhomogeneous kinematics where the plate and beam
displacements differ at the leading order. These unique features depart
from the usual assumptions retained in plate mechanics and result in non-
conventional modeling.

2.3. Tailored homogenization process

The asymptotic homogenization method is well suited to handle
systems with strong contrasts of properties and has been used in (Fossat
et al., 2018) to build up the 1D-ribbed plate model. This method applies
under the key assumption of scale separation. This means that the
wavelengthO L( ) is much larger than the period size and consequently
= L/ 1. The usual process consists in formulating the physics

through two-scale asymptotic expansions in ε-powers of the variables,
and to solve order by order the local problems set the period, (Sanchez-
Palencia, 1980; Auriault et al., 2009). For ribbed plates, the procedure
is tailored by taking advantage of the asymmetrical coupling. Indeed,
the beam grid imposes its displacement to the plate and in turn is
subjected to the stresses exerted by the plate. Reciprocally, the plate is
subjected to the beam grid displacement and imposes its stresses to the

beam. Consequently, the approach is split into the following steps, i)
establish the beam grid model undergoing an unknown load at the
junction with the plate; this is performed by means of the Homo-
genization of Periodic Discrete Media (HPDM) (section 2.4), ii) identify
the conditions for having inner resonance in 2D-ribbed plates (section
2.5), iii) formulate in this framework the dynamic behavior of internal
plates perfectly or partially connected to the grid (section 2.6) and iv)
express the plate/beam coupling through the continuity conditions of
the displacements and the stresses at the junction that yields the
homogenized model of 2D-ribbed plate (section 2.7).

2.4. Homogenization of the ortho-beam grid

We aim at building a model for long wavelength transverse flexural
vibrations in small deformations. The up-scaling process of the out-of
plane dynamics of the ortho-grid is performed through HPDM
(Tollenaere and Caillerie, 1998; Hans and Boutin, 2008). The develop-
ments follow the same guidelines as for the in-plane behavior studied in
(Chesnais et al., 2012) and proceed into three steps, namely (i) the dis-
cretization of the dynamic balance (section 2.4.1), then (ii) the homo-
genization procedure itself through scale separation assumption (section
2.4.2) and normalization (section 2.4.3), leading (iii) to the equivalent
continuous model (section 2.4.4). The macroscopic description of the grid,
valid at the dominant order, is the limit behavior reached for = L/ 0.

2.4.1. Discretization of the dynamic balance
The discretization consists in reducing the description of the grid

into the forces and moments at the nodes expressed as functions of the
displacement and rotations at the nodes, without loss of information.

Discretized beam behavior: Consider a beam element B of length
from its origin “o” to its end “e”, free of external forces, see Fig. 2.
When the grid undergoes an out-of-plane motion, B experiences

bending and torsion. Thus, in the local beam frame, the variables of
interest are, u the transverse displacement of the beam (ez-out-of-plane
motion of the grid), and 2, 1, the rotations around the transverse beam
axis e2 (gradient of deflection) and the axial beam axis e1 (torsion), (the
e1, e2) axis being the in-plane axis of the grid, i.e. either (ex , e y) or (e y,
ex). In the sequel, by convention, the shear force T, bending moment M
and torsional momentM operate from the left to the right, and s de-
notes the axial coordinate of the considered beam.

The harmonic transverse vibrations of B are described by the mo-
mentum balance, the moment of momentum balance, and the bending
constitutive law, i.e.:

+ = = =T u M T M EI u0 , 0 ,s s s

2 2 (1)

that gives =u u
s

4 4 where the bending wave number δ is defined by
= EI/4 2 . As for harmonic torsional vibrations, the torque balance

and the torsion constitutive law read:

M M I+ = =J G0 ,s s

2
1 1 (2)

that results into =
s

2
1

2
1 where I= J G/2 2 is the torsion wave

number.
Note that the bending and torsion wavelengths, i.e., = 2 /b and
= 2 /t are related by the relationship:

I= =EI J G O A/ ( / )/( / ) ( )
b t

4 2 , where A is the beam section. Thus
= O A/ ( / )b t b which indicates that the bending wavelength is sig-

nificantly smaller than the torsion wavelength, since the beam theory
requires a beam thickness much smaller than the wavelength. In ad-
dition, one has the following dimensionless estimate related to the
beam slenderness A/ .

=

A

(2 / )

(2 / )

( )

( )
1

b

t

4

2

4

2

2

(3)

Setting given displacements and rotations at the origin of B

(u , ,o o o

2 1 ) and at its end (u , ,e e e

2 1 ), the integration of (1) and (2)
allows the explicit determination of (i) the fields within the beam and
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(ii) of the shear force and the bending and torsion moments at the ex-
tremities. For example, at the beam origin (see (8) for the definition of
functions f

i
):

= + +T

EI

f u f f u f( ( ) ( ) ( ) ( ) )o o o e e

1 3 2 4 6 2 (4)

= +M

EI

f u f f u f( ( ) ( ) ( ) ( ) )o o o e e

3 2 2 6 5 2 (5)

M
I

=

G

sin

cos

( )
( ( ) )o o e

1 1
(6)

More generally, denoting the generalized force vector
M=f T M( , , )2 1 and the generalized motion vector =v u( , , )2 1 , the

forces acting on the extremities are expressed in the local frame
e e e( , , )z1 2 under the matrix form:

= + = +f D v D v f D v D v;o oo o oe e e eo o ee e (7)

where D D D D, , ,oo oe eo ee in (7) are the dynamic stiffness matrices de-
fined as:

I I

I

= =

= =

D

f f

f f

G g

D

f f

f f

G g

D

f f

f f

G g

D

( ) ( ) 0

( ) ( ) 0

0 0 ( )

;

( ) ( ) 0

( ) ( ) 0

0 0 ( )

( ) ( ) 0

( ) ( ) 0

0 0 ( )

oo

EI EI

EI EI ee

EI EI

EI EI

oe

EI EI

EI EI t eo

1 3

3 2

1

1 3

3 2

1

4 6

6 5

2

in which , f
i
and g

i
are the functions associated with the Euler-

Bernoulli beam element and read:

I= = =

= + = +

= =

= =

= =

EI J G

f f

f f

f f

g g

1 cosh( )cos( ) / ; /

( ) (cosh( )sin( ) sinh( )cos( )) ( ) (sin( ) sinh( ))

( ) (cosh( )sin( ) sinh( )cos( )) ( ) (sin( ) sinh( ))

( ) (sin( )sinh( )) ( ) (cosh( ) cos( ))

( ) cot( ) ( ) /sin( )

4 2 2 2

1
3

4
3

2 5

3
2

6
2

1 2 (8)

Scale separation and local quasi-static state: According to the
scale separation, the bending and torsion wavelength of any beam
element B are significantly greater that their lengths, so that 1

and 1 (here stands for x or y). In other worlds, the beams
undergo a local quasi-static state, and the dynamic stiffness matrices
can be expanded according to and . In fact, the expansions con-
tains only terms in power of = EI( ) /4 2 4 and I= J G( ) /2 2 2 ,
i.e. in power of 2 as expected physically. Thus, the dynamic matrix Dij

take the expanded form:

= + + =D K M O a b o e( ) ; { , } { , }ab ab ab2 4 (9)

For instance:

I

= =K M

0

0

0 0

and

0

0

0 0

oo

EI EI

EI EI

G

oo

J

12 6

6 4

13

35

11

210

11

210 105

3

3 2

2

2

2 3

(10)

It should be noted that, according to (3), the torsional terms (related
to J) in M

ab2 are smaller than the bending terms (related to ) by a
factor of the order of A l/ 2.

Discrete formulation of the grid balance: For expressing the
conditions of connection of the beams with different orientations, the

force and displacement (7) written in the beam frame e e e( , , )z1 2 must
be re-express in the grid frame e e e( , , )x y z . The orientation ϕ of B in the
global frame ( = 0 for Bx , = /2 for By) is accounted for by the
rotation matrix P , and the generalized force vector in the grid frame
=F P f is formulated as a function of the generalized displacement

vector in the grid frame =V P v with the stiffness matrices

= P D PD
ij ij ( i j{ , } = o e{ , }). Thus, the force-displacement relations

(7) become in the grid frame:

= + = +F V V F V VD D D D;o oo o oe e e eo o ee e (11)

The extremities of the four micro-beams connected to a node un-
dergo the same motion V since the connections are assumed perfectly
stiff. Thus, each node m p( , )x y

(mx and p
y
integers, see Fig. 3) is de-

scribed by three kinematic variables (the deflection and two rotations of
in-plane axis). Now, as relationships (11) result from the beam equa-
tions, the balance of each micro-beam is thereby assured. Thus, to
formulate the global equilibrium, it is necessary and sufficient to focus
on the equilibrium of each one of the nodes. It remains therefore to
express in each node (assumed mass-less) the balance of forces and
moments applied by the four beam-elements therein connected. For the
grid depicted in Fig. 2, the balance equation at the node m p( , )x y

is
related to the motion of the neighboring nodes. Using the formalism
(11), the m p( , )x y

node equilibrium reads:

+ =

+

+

F V V F V V

F V V F V V

( , ) ( , )

( , ) ( , ) 0

e m p m p o m p m p

e m p m p o m p m p

( , 1) ( , ) ( , ) ( , 1)

( 1, ) ( , ) ( , ) ( 1, )

x y x y x y x y

x y x y x y x y (12)

This gives the exact grid balance in a discrete form, with the kine-
matic variables V and the actions F at the node locations. Substituting
the forces and moments by their expressions in terms of displacements
and rotations (11), the vector balance equation (12) related to shear
forces along ez, and moments around ex and e y leads to the following
set of finite difference type:

D D

D D

D D I D

D D I D

D D

D

D D

D D

D D

D

+

+

+

+

+

+

+

+

+

+

+

=

( )

( )
( )

)

u

u

u G

u G

u u

J

u

u u

u

J

O

( )

( )

(2 3 26

(2 3 26 )

(

( )

E I

x

m p

x y

m p E I

y

m p

y x

m p

E I

y

m p

x

m p

y x

m p

x x x

x

m p

E I

x

m p

y

m p

x x

m p

y y y

y

m p

x x

m p

y y

m p

y

m p

x x x x

m p

x x

m p

y

m p

x x y

m p

x

m p

y y

m p

x x

m p

x

m p

x

m p

y y x

m p

y

m p

y y y y

m p

y y

m p

12 2 ( , ) ( , ) 12

2 ( , ) ( , )

12 ( , ) ( , )

6

2 ( , ) 2

( , )

12 ( , ) ( , )

6

2 ( , ) 2

( , )

2

( , ) 13

210

( , ) 9

70

2 ( , )

( , )

6

2 ( , )

420

( , ) 2 2 ( , ) ( , )

2

( , )
13

210

( , ) 9

70

2 ( , )

420

( , ) 2 2 ( , ) ( , )

( , )

6

2 ( , )

4

x x

x

x y
x y y y

y

x y
x y

y y

y

x y
x y y x y

x y

x x

x

x y
x y x x y

x y

x y
x x y x

x y

x y x x y

x x x y x y
x y

x y

y x y y
x y

y y x y x y
x y

x y y x y

2

2

2 2

2

3

2 2

3

2

(13)

Note that using (9), the balance equations have been split into static

Fig. 2. Variables and efforts on the local beam ele-
ment and its local frame e e e( , , )z1 2 .
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terms (first block) and inertial terms related to Bx and By (second and
third blocks). Furthermore, to lighten the writing we have introduced
the notations for any discrete variable w m p( , )x y (w stands here for u, x or

y):

D

D

=

=

+

+

w w w

w w w

( )/(2 )

( )/(2 )

x

m p m p m p

x

y

m p m p m p

y

( , ) ( 1, ) ( 1, )

( , ) ( , 1) ( , 1)

x y x y x y

x y x y x y (14)

D

D

= +

= +

+

+

w w w w

w w w w

( 2 )/

( 2 )/

x

m p m p m p m p

x

y

m p m p m p m p

y

2 ( , ) ( 1, ) ( , ) ( 1, ) 2

2 ( , ) ( , 1) ( , ) ( , 1) 2

x y x y x y x y

x y x y x y x y (15)

2.4.2. Switch from discrete to continuous variables
In condition of scale separation, the increment of motion between

adjacent nodes is small. This lead (i) to introduce continuous kinematic
variables (denoted by uppercase letters) coinciding with the discrete
variables at the nodes m p( ; )x y

of coordinates = =x m mm x x x x

* and

=y p
p y y

* , i.e.:

=

= =

u U x y

x y x y

( , );

( , ); ( , )

m p

m p

x

m p

x m p y

m p

y m p

( , )

( , ) ( , )

x y

x y x y

and (ii) to use Taylor series expansions to re-express the finite differ-
ence in the form of macroscopic derivatives of the continuous variable.
Furthermore, as these variables are assumed to converge when 0

they are seek in the form of asymptotic expansions in ε-powers. More
precisely, the developments show that expansions in power of 2 is
relevant (the terms of odd powers are redundant with those of even
powers). Hence, any continuous variableW x y( , ) (W stands for U, x,

y) is rewritten as

= + + …W x y W x y W x y W x y( , ) ( , ) ( , ) ( , )0 2 2 4 4

Combining Taylor's series and asymptotic expansions and recalling
that = = Lx x x

* * , = = Ly y y

* * one obtains for any discrete
variable w and associated continuous variable W:

= ± + + + …
±

w W x y L W W

L

W( , ) ( ) (
2

)mx p
y

m p x x xm y
p

x

x xm y
p

( 1, ) 0 * 0
( , )

2 2
*2 2

2 0
( , )

= ± + + + …
±

w W x y L W W

L

W( , ) ( ) (
2

)mx py
m p y y xm y

p

y

y xm y
p

( , 1) 0 * 0
( , )

2 2

*2 2
2 0

( , )

and consequently at any node m p( , )x y
of location :

D

D

= + + +

= + + +

( )

( )

w W L W W O L

w W L W W O L

( ) ( )

( ) ( )

x x x x x x

x x x x x x

0 * 2 1

3 !

3 0 2 * 4

2 2 0 * 2 2

4 !

4 0 2 2 * 4

(16)

with similar expressions forD wy andD w
y

2 by changing
x

* and x into
y

*

and y.
Substituting these expressions into the finite difference equation

(13), provides the differential system that governs the expanded con-
tinuous variables. However, before performing the asymptotic resolu-
tion, the assumption of dynamic regime at large scale have to be in-
troduced through a normalization step.

2.4.3. Normalization and up-scaling process
We focus on the frequency range such that the reduced bending

wavelength /(2 )b is much larger than the micro-beam size and hence,
corresponds to the macroscopic length, i.e. = =L O O( /(2 )) (1/ )b .
Thus = =L L O( ) (1)

EI

4 2 4 which leads to the following order of
magnitude of the inertial terms compared to the bending terms:

= = =U O EI

U

L

U

EI U

L L

O

EI

Uand therefore x

2
4

2
2

2

2
2 2

Consequently, to properly account for long wavelengths, the inertial
terms in the expansions (13) have to be rescaled by 2. For complete-
ness, let us remind that compared to bending, the torsional inertial
terms are smaller by a factor O A( / )2 . This factor is small, but in-
dependent of ε. Thus for more generality, the inertial torsional terms
will be also rescaled by 2 meanwhile they may be negligible.

From this point, we follow the classical asymptotic procedure of
homogenization. First, expansions (16) are substituted in the rescaled
balance equation (13) so that the set of finite difference equations is
changed into a set of differential equations governing the continuous
variables. Then, rearranging the terms with respect to their order of 2

provides a series of balance equations at different orders that are solved
successively up to obtain the equivalent continuous description at the
leading order.

At the dominant order, the differential set (13) simply reads

+

=

U U

U

U

( ) ( )

( )

( )

0

E I

x x y

E I

y y x

E I

y x

E I

x y

12 0 0 12 0 0

12 0 0

12 0 0

x x

x

y y

y

y y

y

x x

x

From the momentum balances one deduces the usual kinematic
constrains of the standard plate theory:

= =U U;y x x y

0 0 0 0
(17)

and the transverse balance is trivially verified. Using (17), the differ-
ential set at the next order simplifies into

I

I

+ + +

+

+ +

+ +

=

( )U U U U

U

U G J

U G J

( ) ( )

( )

( )

( )

0

Ex Ix

x
x x y

EyIy

y
y y x

Ex Ix

x
x

EyIy

y
y

x x y y

Ey Iy

y
y x x x x x x x x x x

Ex Ix

x
x y y y y y y y y y y

12 2 2 12 2 2 4 0 4 0 2

0

12 2 2 2 0 2 0

12 2 2 2 0 2 0

Eliminating (i) the rotations through the kinematic constrains (17),
and (ii) the variables of second order in the balance of transverse force
by means of the balance of moments, we are left with the following
macroscopic description of the grid at the leading order (hence the
order exponent is dropped)

I I
+ + +

+ + = +

E I U

x

E I U

y

G G U

x y

J U

x

J U

y

U

x x

y

y y

x

x x

y

y y

x

y y

x

x x

y

x

y

y

x

4

4

4

4

4

2 2

2
2

2

2

2
2

(18)

2.4.4. Ortho-beam grid macroscopic model
The governing equation (18) is expressed with the properties of the

micro-beams constituting the cell. This equation can be recast in the
classical form of orthotropic plate equations, by defining.

• the transverse forces T e
x

G

z, T e
y

G

z exerted on the faces of normal ex ,

e y and the in-plane vector = +T T e T e
G

x

G

x y

G

y

• the momentum matrix G
M that involves the bending and torsion

effects

Fig. 3. Representation of the beam grid in its plane.
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Thus (18) is rewritten equivalently as (the differential operators
operates in the x y( , ) plane):

+ = = +

=

=

= =

= =

=

T U

M T J U

M

M U M U

M U M U

J

J

J

div( ) 0 ;

div( ) . grad( ) 0

;

0

0

G

G G

G G G

G

xx

E I

x xy

G J

x y

yx

G J

y x yy

E I

y

G
y y

x x

2

2

2

2

x

y

y

x

x x

y

y y

x

x x

y

y y

x

(19)

The grid model (19) explicitly shows the coupling between the
flexural and torsional behaviors. Note that in statics, i.e. 0, (19) is
identical to the grid model of (Timoshenko and Woinowsky-Krieger,
1959). Remind also that the inertial terms containing the polar mo-
ments J

G may be neglected in regards to those related to the linear
masses . Note also that the description could be improved by con-
sidering the correctors constituted by the higher order terms of the
expansions. They will not be explored here but their contribution could
be appreciable when dealing with poor scale separation.

At this stage, (19) applies to the beam grid only free of external
loading. The following section aims at introducing the contribution of
the internal plates.

Remarks. Conversely to 1D-ribbed plates (see Appendix B), the
bending and torsional kinematics cannot be treated independently.
Another significant difference is that the effective stiffnesses are of the
same order of magnitude in the x and y directions and consequently the
order of magnitude of the macroscopic wavelength is identical
whatever the direction of propagation.

This model uses the classical St Venant assumption for the beams
and assumes that the nodes are perfectly stiff and mass less. These as-
sumptions are physically sound considering the slenderness of the
beams. Consequently, the three dimensional effects at the beam inter-
sections can be neglected as well as the weak deformability and small
mass of the nodes. Nevertheless they could be taken into account as
correctors of the leading order description. As for the 3D effects, their
incorporation would need significant theoretical efforts as they would
require to match the beam representation with the 3D description of
their junctions on the node. Conversely, the weak deformability and
small mass of the nodes could be easily integrated in the model.

2.5. Conditions for inner dynamics of 2D-ribbed plates

We investigate 2D-ribbed plates presenting inner resonance phe-
nomena, i.e., the stiff ortho-beam grid conveys the large wavelength,
while the soft internal plate experiences a local resonance. Such a
mixed regime within the cell results into (i) an inhomogeneous kine-
matics where the plate and grid displacements differ at the leading
order and (ii) an asymmetrical coupling where the grid is forcing the
soft plate. Let us specify the conditions for the occurrence of such a co-
dynamic regime.

2.5.1. The co-dynamic condition
In order of magnitude, the equation governing the flexural motion

of the grid alone along its axis ex or e y yields (hereafter the non-
indexed parameters stand for the order of magnitude of the parameters
indexed x y( , ), e. g., = =EI O E I O E I( ) ( )x x y y , = = …O O( ) ( ),x y ):

=O
EI

O U O U( )2 2

and the reduced (i.e. divided by 2 ) bending wavelengthL is given by:

L = O
EI4

2

The fundamental resonance G of the grid of dimensions
= =L O L O L( ) ( )x y is such thatL = O L( )

G
and consequently

= O
EI

L
G

2

4

Similarly, for the P-plate, the governing equation of the out-of-plane
motion w implies that

=E I O w O w( ) ( )p p p

4 2

The P-plate resonance happens within the period, which size is
O ( ), at frequency of the order of the fundamental resonance frequency

p, of a plate of size O ( ) that is estimated as:

= O

E I

p

p p

p

2

4

In inner resonance regime, the grid G and P-plate fundamental re-
sonances are of same order i.e., =O O( ) ( )G p , so that:

= = =O
E I

O
EI

L

E

E
O

h

d L
O

h

d
i. e.

p p

p

p

p
4 4

2

2

4

4
4

2

2
(20)

This relation highlights the significant contrasts of mechanical
properties of the constituting materials of the beam grid G and P-plate.

2.5.2. Asymmetric coupling
As above stated, in presence of inner resonance, the grid acts as the

forcing system that imposes its displacement to the forced P-plate, in
turn, the latter exerts forces on the grid. Considering the transverse
balance of the grid loaded by the internal plates, such an asymmetric
coupling requires:

=T O Tdiv( ) ( )G p (21)

where GT relates to the transverse shear force (unit kN) in the grid G
and Tp is the transverse linear shear force in the internal P-plate (unit
kN/m). According to (19), TG and Tdiv( )G are assessed as

G G= =T O EI

U

L

T O E

bh U

L

; div( )
123

3

4

Now, as the P -plate is of dimension O ( ), Tp is estimated as:

= =T O E I w O E
d w

( )
12

p p p p
3

3

3

The plate and beam displacements are identical at their junction,
and consequently we have =w O U( ). Thus, from (21) and recalling
that =b O h( )k k one deduces the following requirement

= = =O E
bh

L
O E

d E

E
O

d L
O

h

d
i. e.p

p
3

4

3

3

3

3

4

4
4

2

2

(22)

In practice, = O/ (1)
p

and the two conditions (20)–(22) reduces to

= ( )O
E

E

h

d

4p 2

2 . For ribbed plate made of a single material =E Ep , and

the inner-resonance arises when =d h O L/ ( / )2 2 , i.e. for plates P sig-
nificantly thinner than the beams of the grid G. If the P-material is
much softer that the G -material, namely =E O E( )p

4 then
=d h O L/ ( / ) enables the inner-resonance to occur. Note that in these

realistic cases, the bending stiffness of the plate is much smaller than
that of the grid, in accordance with the asymmetry of the coupling.

2.5.3. Beam grid loaded by internal plates
From the above analysis, provided that conditions (20)–(22) are

fulfilled, the action of internal plates is introduced in the beam grid
model (19) in the form an external loading constituted by a shear force
F ez and a couple C resulting from the contact forces. This yield:
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F

C

+ + =

+ + =

T U

M T J U

div( ) 0

div( ) grad( ) 0

G
G

G G G

2

2
(23)

where the coupling terms F and C averaged on the cell are given
either in terms or contact stresses on the grid or of efforts in the plate,
by

F
S S

= =n T n

1
. ds

1
. dl

P

P P

(24)

C
S

S

= × =

+

S

x n M n

b n T n

1
. ds

1
. dl

1 1

2
( )( . ) dl

P

P P

P
n

P P P

(25)

(where b
n
stands for the “oriented micro-beam width”, i.e., ± by, resp.

± bx , when = ±n e
P

x resp. ± e y). It remains now to express explicitly
these coupling terms induced by the resonating internal plates. This is
the aim of the next section.

Remark. The torque that would results from the local terms z xy

vanishes because = 0xy on the plate border for both free or clamped
conditions.

2.6. Dynamics of the internal plates fully or partially connected to the beam
grid

Modeling the P-plate as a Kirchhoff plate, its out-of-plane motion w
is driven by (26):

+ = =

=

= +

± ±
T w P

M T

M E I e w w I

div( ) 0 with boundary conditions on

div( ) 0

((1 ) ( ) )

P

p x y

P P

P

p p p p
P

2

(26)

Furthermore, provided that conditions (20)–(22) are fulfilled, the
wavelength within the grid is large compared to the P-plate size . As a
consequence, at the leading order, the grid cell moves with a rigid body
motion defined by the uniform deflection U and the rotation of in-plane
axis Ugrad( ). This motion is imposed on those of the borders of P that
are clamped to the grid. It is worth mentioning that the driving accel-
eration related to rotations is of the order of

=U O U U L L|grad( )| ( )( / )( / )2 2 2 which is much smaller by a factor
U L L( / )( / ) than the driving acceleration related to translation, namely
O U( )2 . Indeed,U L/ 1 from the small deformation assumption, and
from the scale separation assumption L/ 1. Consequently, at the
leading order, the rigid body rotation can be neglected, and only the
motion imposed by the uniform deflection U will be considered.

Furthermore, the dynamic of the plate depends on the nature of its
connections with the grid. We will consider the following configura-
tions illustrated in Fig. 4:

• CCCC (Clamped-Clamped-Clamped-Clamped) i.e., the plate is
clamped along its four edges,

• CFCF (Clamped-Free-Clamped-Free) i.e., the plate is clamped along
two opposite edges and free on the two others opposite edges, that
implies a cylindrical bending as in a bi-clamped beam,

• CFFF (Clamped-Free-Free-Free) i.e., the plate is clamped along one
edge and free on its three others edges as a cantilever plate,

• In addition, we will also consider the case of additional masses at-
tached on P . To maximize its effect the mass is located at the center
of the plate in the CCCC and CFCF configurations, whereas for
CFFF configuration, it is located at the outboard side of the clamped
edge,

In absence of added mass, the boundary condition reads, where nC,
resp. nF , stand for the normal of the clamped boundary PC, resp. free
boundary PF , with =P P PC F :

= = =

=

w U n w P M n T n

P

; ( . ) 0 on and . 0 ; .

0 on

C C

P

F

P

F

F (27)

with =
± ±

PC x y
for C C C Cx y x y ; =

±
PC x

for C F C Fx y x y, and =
+

PC x

for C F F Fx y x y (the C and F index indicates the orientation of the normal
of the border). If an additional mass m is located at the mid length, in
CFCF configuration the boundary conditions are complemented by
=T m wp

2 and =w 0 in the middle of the plate. If the additional
mass is located on the “free” extremity in the cantilever configuration,
the CFFF shear condition becomes on this line =T m wp

2 , the other
CFFF -conditions being unchanged (neglecting the moment of inertia of
the mass).

Independently of the specific type of the above listed boundary
conditions, the elasto-dynamic plate problem (26) is a 2D (CCCC con-
figuration) or 1D (CFCF and CFFF configurations) linear problem
where the deflectionU x y( , ) of the beam grid is the forcing term, which
is uniform at the P-plate scale. It results that the plate deflection takes
the form

=w x y U x y( , , ) ( , ) ( )bc
(28)

where = +e e
x x y y stands for the local position within each P-plate

and ( )bc is the frequency dependent deflection, for a unitary dis-

placement of the grid. Hence, ( )bc is the solution of the P-problem
(26) in the configuration specified by the boundary conditions (bc).
Note that this problem is set on a single finite plate, independently of
the grid. The resolution can be performed either numerically or ana-
lytically as detailed afterward for the CFCF and CFFF conditions.

2.7. Homogenized flexural behavior of 2D-ribbed plate

The effect of internal plates on the grid is contained in the forceF ,
(24), and couple C , (25) and can be deduced from the knowledge of
deflection in the plate ( )bc .

Fig. 4. Shape of the fundamental mode associated with boundary conditions considered for the internal plates P : (a) C C C Cx y x y, (b) C F C Fx y x y, (c) C F F Fx y x y.
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Regarding the force F : Using the transverse force balance of P ,
(26)-a F, can be re-expressed as

SF = = =x y T n T w( , ) . dl div( ) ds ds
P

P P

P

P

p

P

2

i.e., introducing the following notation
S

= ds
P

1 for the mean
value on the plate

F =x y U x y( , ) ( , )p
bc 2 (29)

Regarding the couple C : To calculate C given by (25), let us first
integrate the transverse force balance of P , (26)-a multiplied by the
local coordinate . One obtains:

= =T w U x ydiv( ) ds ds ( , ) ds
P

P
p

P
p

P

bc2 2

Using the divergence theorem and the momentum balance of P ,
(26)-b, the right hand side becomes

=

=

T T T

T n M

div( ) ds div( ) ds ds

( ). dl div( ) ds

P

P

P

P

P

P

P

P P

P

P

so that

=T T n M ndiv( ) ds ( . ) dl . ds
P

P

P

P P

P

P P

Note that = ( )T n n T n( . ) ( . )P P P P P

2

n where n stands for ± x,

resp. ± y, when P
= ±n e x resp. ± e y. Reporting these results into (25)

one derives that

S C
P P

P P P
= + +w b n T nds

1

2
( ) ( . ) dlp n n

2

Furthermore, since P P P
= +T T e T e

x x y y with

P

P

= =

=

T E I w x y E I U x y

T E I U x y

( , , ) ( , ) ( ) ;

( , ) ( )

x p p p p
bc

y p p
bc

3 3

3

x x

y

we are left with

C
S

= =x y K U x y K H
E I

C( , ) ( , ) ;bc bc
p

bc p bc2

(30)

where K
bc is an vector of elasto-inertial effective parameter that in-

volves the frequency dependent dimensionless vectors H
* and C

* . The
components of the latter read explicitly

=

=

+

+

H

C
b

( ) ;

2
| | d

bc
x

bc

bc x y bc bc
y

2

2 3

2
,

3

2
,

x

x y

y

x
x

y x
x

y (31)

with similar expressions of the y-components by switching x and y.
Reporting expressions (24) and (25) into (23) yield the effective model
of the 2-D ribbed plate that describes the grid behavior enriched by for
the locally resonant internal plates.

G G+ + = = +

+ =

= =

T U

M T J U K U

M

U U

U U
J

J

J

div( ) ( ) 0 ;

div( ) . grad( ) 0

;
0

0

p
bc

bc

E I
x

G J

x y

G J
y x

E I

y

y y

x x

2

2

2

2

x

y

y

x

x x

y

y y

x

x x

y

y y

x (32)

The inner resonance effect appears through the frequency depen-
dent effective parameters bc , and K

bc both associated with the
dynamic motion of the internal plate. They results into a non conven-
tional apparent mass and an unusual stiffness that links a specific
torque to the deflection. The driving equation of the deflection takes the
following form where it is noteworthy that the specific torque in-
troduces a derivative of the first order.

I I

+ + +

+ + + +

= + +

( )
( )
( )

( )K K

U

E I U

x

E I U

y

G G U

x y

J U

x

J U

y

bc U

x

bc U

y

p
bc

2

2

x x

y

y y

x

x x

y

y y

x

y y

x

x x

y x y

x

y

y

x

4

4

4

4

4

2 2

2

2

2

2

(33)

These equations applies for the different boundary conditions of the
plate. For a better physical understanding, they can be specified for
each configuration by expressing the parameters bc , and K

bc and
analyzing their features.

2.7.1. Features of bc , and K
bc

Let us first estimate the relative order of magnitude of the two non-
conventional terms appearing in (33). From the expression (31) of K

bc

one has:

= =O K O O
E I

(| |) ( )bc
p

bc p bc2
3

so that

= =

K U

U
O

K

L
O L

| || | | |
( / ) 1

bc

p
bc

bc

p
bc

Consequently, the effect of the non conventional torque is of one
order smaller than the effect of non conventional inertia. In addition,
when considering internal plates with symmetric boundary condition as
in the configurations CCCC and CFCF (with or without symmetrically
distributed added mass) then the local deflection bc respects the same
symmetry. Consequently, the couples exerted on the two faces of each
beam of the cell are opposite and cancel each other, so that in any
symmetric configurations =K 0bc . For these reasons we will now focus
on the apparent mass effect.

To highlight the properties of bc it is convenient to use the clas-

sical modal decomposition to express ( )bc . Doing so, and denoting
( )N and N the series of eigenmode and eigenfrequency of the plate

with the proper boundary conditions of the configuration, one obtains:

= +

=

( ) 1
( )

1

bc

i

N

N

N

1
2

N

2

2

This expression discloses the following key properties of bc :

• 1bc when 0, consistently with the fact that in the statics,
the apparent mass of P is its real mass,

• bc when N and bc when +

N i.e., at
frequencies close to the eigenfrequencies { }N of the P-plate modes
of non zero mean value ( 0N ).

• In between two singular frequencies, there is a frequency range
where 0bc and consequently the apparent mass of P is nega-
tive.

These properties are illustrated here-below in the CFCF and CFFF
configuration that induces a 1-D deformation of the plate and enable
the explicit determination of .

CFCF plates: In that case the local plate problem and the corre-
sponding field is identical to that encountered for 1-D ribbed plate (see
(B.2)-(B.3) in Appendix B). Thus one has, when the P-plates are
clamped on the y-oriented micro beams, as in Fig. 4-b (and similar
expression switching x and y if the clamping is on Bx)

=

+

=

E I

2 1

coth( ) cot( )
C F C F

x x x

p

p p

2
x y x y 4

(34)

Note that according to the above analysis ±
C F C Fx y x y when

+ =coth( ) cot( ) 0x x , i.e., at the eigenfrequencies of the y-bi-
clamped P-plate symmetric modes. These frequencies are accurately
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approximated by ( )( )n2
E I1

2

2 2

x

p p

p

, = …n 1,2,3, .

When a massma is added at the middle of the plate, C F C Fx y x y takes
a cumbersome expression, and we just mention that the eigen-
frequencies are the roots of the following equation wheremP is the mass
of the plate.

=

+m

m

1 1 cos( )cosh( )

sin( )cosh( ) cos( )sinh( )

a

P x

x x

x x x x (35)

CFFF plates: This case corresponds a cantilever plate. The local
resolution is straightforward and provides, when the P-plates are
clamped on the y-oriented micro-beams, as in Fig. 4-c (and similar
expression inverting x and y if the clamping is on Bx)

=

+

+

1 cosh( )sin( ) cos( )sinh( )

cos( )cosh( ) 1
C F F F

x

x x x x

x x

x y x y

(36)

As expected, ±
C F F Fx y x y when + =cos( )cosh( ) 1 0x x

which corresponds to the eigenfrequencies of the y-clamped cantilever

P-plate, which are accurately approximated by + ( )( )n
E I1

2

2 2

x

p p

p

,

= …n 1,2,3, . If a mass ma is added at the extremity of the cantilever
plate, the eigenfrequencies are roots of the equation:

=

+

m

m

1 1 cos( )cosh( )

sin( )cosh( ) cos( )sinh( )

a

P x

x x

x x x x (37)

CCCC plates: For a plate clamped on its four sides there is no ex-
plicit expression of the local field. However, an analytical solution is
available for circular clamped plate, see Appendix A. This provides an
approximated value for a square plates of side by matching its first
eigenfrequency with that of a circular plate of radius a. The corre-
sponding approximation reads where Jk and Ik are the Bessel and
modified Bessel functions of the first kind.

= +

a

J a

J a

I a

I a
a

4 ( )

( )

( )

( )
where 0.53Csquare Ccircle 0

1

0

1

1

(38)

2.7.2. Dispersion features in the orthogonally ribbed plate
Consider a flexural harmonic wave propagating in the direction
= +n e ecos( ) sin( )x y. The motion =U x i k n x( ) exp( ( . ) is gov-

erned by (33). However, taking into account the facts that (i) the terms
associated with polar moments are of weak magnitude compared to the
translational inertia, and (ii) the terms of non conventional torque are
of one order smaller that those associated with the non conventional
inertia, these two terms can be disregarded at the leading order.
Consequently, the flexural wavenumber k ( ) is given by:

I I
+ + +

+ + =

k
E I E I G G

cos ( ) sin ( ) cos ( )sin ( )

0

x x

y

y y

x

x x

y

y y

x

x

y

y

x
p

cb

4 4 4 2 2

2

(39)

The inner resonance of P-plate accounted by , lead to dispersion
features that differs notably from the classical bending case in which
k~ in the whole frequency range. Significant changes are expected
in the neighborhood of the internal plate's eigenmodes. Indeed, in ab-
sence of damping, the effective inertia of P-plate is infinite (positive
and negative) and yields singularities for the wave numbers. Obviously,
the singularities are smoothed in presence of damping in P-plate as
their inertia can then only reach large but finite values. Depending on
the beam to plate mass ratio, and on theP -plate damping, the effective
inertia of the whole 2D-ribbed plate may either remains positive, with
variations around the eigen frequencies (cases presented in section 3) or
becomes negative in a limited frequency range. In the first case an
atypical dispersion will be observed but the flexural wave is always
propagative (and attenuated), while in the second case band gap for

flexural waves, more precisely evanescent flexural waves, occur. Note
also that the effect of a structural damping in the B-beams of the grid
simply results in a classical attenuation. The numerical and experi-
mental evidences of these properties are detailed in the next section.

Remark. Conversely to 1D-ribbed plates (see Appendix B), the 2D-
ribbed plates prevents the propagation of guided modes that are
inhibited by presence of stiffeners in the two directions.

3. Numerical and experimental validation

The purpose of this section is to validate the model numerically and
experimentally on several prototypes. One focuses on the comparison of
the dispersion features gained on one side by the up-scaled model and
on the other side either by direct wave finite element simulations or by
experimental records. The spectral methods used to extract the dis-
persion curves from the numerical simulations or the experimental vi-
bratory fields are first briefly reviewed hereafter.

3.1. Methods for identifying the dispersion curves

Consider at a given frequency the harmonic displacement field
w x y( , )n m

(computed numerically or measured experimentally) on the
×N Nx y nodes of an orthogonal grid, where = =x n y m,n x m y, with n

and m are integers, n N1 x ; m N1 y, and let us extend this field
out of this grid, by 2D-periodization. The simplest post processing of
this periodized field consists in calculating its 2D-Discrete Fourier
Transform (DFT) (see e.g. (Ichchou et al., 2008b) for further details)
that reads

=

= =

+W pk qk
N N

w x y e( , )
1

( , )x y
x y

i

N

j

N

i j
i pk x qk y

1 1

( )
x y

x i y j

(40)

with =k N2 /x x x and =k N2 /y y y, with p and q integers, and
p N1 x , q N1 y. The maximum amplitude of W k k( , )xp yq de-

termines the dominating value of the wave number. Conducting the
same calculations at different frequencies enable reconstructing the
dispersion curve(s). The Inhomogeneous Wave Correlation (IWC) de-
veloped by (Berthaut et al., 2005; Ichchou et al., 2008b, 2008c) is a
more advanced method. The principle is to compute the correlation
between the harmonic spatial discrete field w x y( , )n m

and a set of in-
homogeneous plane waves parametrized by their direction of propa-
gation θ, wavenumber k and attenuation coefficient . The in-
homogeneous waves field are given by:

=
+ +Q x y e( , )k

ik i x y
( , , )

(1 )( cos( ) sin( ))

The correlation index between Q k( , , ) and the investigated field is
defined as follows:

=IWC k

w x y P x y

w P
( , , )

( , ) ( , )

.

x y n m k n m

x y x y x y k

, ( , , )

,
2

, ( , , )
2

n m

n m n m (41)

where Q is the conjugate of Q. For a given direction θ, maximizing this
index leads to the identification of k( , ). In the experimental context,
the sums in (41) are weighted by the coherence function identified from
the data. The coherence function between the average amplitude of the
scanned points and the input force estimates the causality between
input and output. This method smooths the strong variations of the
field, and therefore the results are almost non-sensitive to the boundary
conditions nor the source location. The added value of this method
compared to DFT is to estimate the structural damping. One may refer
to (Berthaut et al., 2005; Ichchou et al., 2008b, 2008c) for a full outline.
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3.2. Numerical validations on a finite ribbed plates

The WFEM numerical method is based on the exact Floquet-Bloch
wave formulation that applies to any periodic structures. It provides the
dispersion features of the different types of waves that propagate
through the considered periodic media. The unit cell used for the nu-
merical computation is that described on Fig. 1. It is treated numeri-
cally in harmonic regime as a 3D elastic body having the parameters of
the plate and the beams. At any frequency, one determines the wave(s)
number(s) k ( )x of waves propagating in the direction ex by imposing a
phase shift condition on the motions of the opposite faces of the cell in
the form + =U x jk U x( ) exp( ( ) ) ( )x x x . The dynamic balance of the
cell expressed form the discretized stiffness and matrix (as in FEM
method) yields an eigen value problem whose solutions are the wave
numbers of the different types of waves propagating in the structure.
The numerical implementation of WFEM, e.g. (Ichchou et al., 2008a)

has been improved by a modal reduction process that lowers sig-
nificantly the computational cost (Droz et al., 2016).

We perform direct WFEM simulations of a 2D-ribbed plate designed
so that resonance frequencies of the inner plate matches with that of the
beam grid. The considered system denoted hereafter by RP1 is a square
panel made up of 5×5 cells whose the stiffeners are in aluminium and
internal plates in perspex, much softer than aluminium. With the geo-
metric and mechanical parameters given on Table 1 the co-dynamic
condition (20) =b p is satisfied. Typical structural damping coeffi-
cients for aluminium and perspex are respectively = 5/1000

k
and

= 1/100
i

and are included into the model as an imaginary part of the
Young's modulus. Then, the effective parameters previously defined
analytically and the wavenumbers are calculated for different boundary
conditions on the internal plates, and compared to the results obtained
by WFEM simulations.

Grid without internal plates. A first validation is achieved on the

Table 1
Geometrical and mechanical parameters of the 2D-ribbed plate RP1 considered for the numerical validation.

= =n n 5x y E [Pa] [kg.m−3] dimensions [m] weight [kg]

Beam grid ×69 109 2700 = = = =h h b b 0.01y x y x 1.78

Plate ×3 109 1200 = = 0.1y x , =d 0.001 0.363

Global structure = =L L 0.56x y 2.14

Fig. 5. Wavenumbers predicted by the homogenized model in the directions = 0 ( ), = /4 ( ), and by WFEM computation, = 0 ( ), and = /4 (+). a) Top
left: Grid without internal plates, b) Top right: Grid with CCCC , plates. c) Bottom left: Grid with CFCF plates, d) Bottom right: Grid with CFFF plates.
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beam grid model itself. On Fig. 5-a one notices an excellent agreement
between the wavenumbers along the x direction ( = 0), and along the
oblique direction = /4 predicted by the homogenized model and
those computed.

Grid with CCCC, CFCF and CFFF internal plates. The

fundamental frequency of a CCCC plate can be estimated using by
Galin's formula (Leissa, 1969). For a square plate: p = EI d(36/ ) /2 ,
that gives here 277 Hz (the three first eigenfrequencies calculated by 3D
finite element are 275 Hz, 562 Hz, 1009 Hz). Fig. 5-b shows that the
theoretical and numerical approaches provide very close results. The

Fig. 6. Effect of mass added on the internal plates. Frequency shift on the singularity of the flexural wavenumber in configuration (a) CFCF : no added mass (top
figure), 9 g (bottom figure), (b) CFFF : no added mass (top figure), 9 g (bottom figure). Vertical dotted line correspond to the eigenfrequencies of the internal plate.

Fig. 7. Transverse displacement of the equivalent plate (with CFCF inner plates) without considering inner resonance (top figure), and with inner resonance effects
(bottom figure), at the inner resonance frequencies (a) 165 Hz; (b) 882Hz.
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classical flexural dispersion is notably modified by the singularity in-
duced by the resonance of the symmetric modes of the inner plates.

Further, the first resonance frequencies for the CFCF plate are
170 Hz, 470 Hz, 921 Hz (respectively 27 Hz, 168 Hz for theCFFF plate).
The comparison between numerical and theoretical dispersion pre-
sented on Fig. 5-c, -d are also very satisfactory on those cases.

On Fig. 5-c the singularity in the numerical results that are not
predicted by the theoretical results arises at the antisymmetric re-
sonance of the P-plate depicted on Fig. 6-a. The latter are associated
with torsional kinematics that are inhibited at the leading order in 2D-
ribbed plate (conversely to 1D-ribbed plates, see Appendix B). Never-
theless, a slight torsion exists and the singularity generated numerically
by the antisymmetric resonance magnifies the effects and results in a
sharp and very tight singularity in the calculated wave numbers. Now,
due to its very peculiar nature, this mode can be considered as “nu-
merical artifact” in the sense that it would be extremely difficult to
trigger it. Indeed, during the performed experiments this “fictitious”
mode is never observed (see section 3.3). Note finally that for CFFF
conditions this artifact doesn't occurs as the modes are neither sym-
metric nor antisymmetric.

Grid with CFCF , CFFF internal plates and added masses. The
influence of an added mass of 9 g (corresponding to 75% of that of the
internal plate) is illustrated in Fig. 6. As expected the inner resonance,
hence the singularities, are shifted to low frequencies (note that in the
CFCF configuration, the mass being located at the center of the plate,
the frequency of asymmetric modes is unchanged).

3.2.1. Influence of the inner resonance on the whole vibratory field
The vibratory field of inner resonant plates is provided the homo-

genized model (33). Consider such a panel (with CFCF inner plates)
clamped on two opposite sides and free on the two others opposites
sides. The vibratory fields when the inner resonance effect is dis-
regarded (i.e. the inner plates are only taken into account as additional
masses) and accounted for have been calculated. The results are shown
on Fig. 7 which clearly illustrate the fact that around their inner re-
sonance, the inner plates significantly modifies the vibrations of the
whole panel.

3.3. Experiments on 1D and 2D-ribbed plates

3.3.1. Investigated structures and instrumentation
Two types of ribbed plates have been experimented in various

configurations. Their characteristics are described below and depicted
in Fig. 8:

• uni-directionally ribbed plate with plate and ribs in aluminium. The

plate ( × ×750 600 1 mm) is ribbed with 8 stiffeners ( × ×600 10 5

mm) spaced of 90mm,

• orthogonally ribbed plate with aluminium stiffeners and perspex
(PMMA) plate. The panel ( × ×560 560 1 mm) is ribbed with ×2 6

ribs ( × ×560 10 10 mm) spaced of 100mm, contains 25 inner plates
( ×100 100 mm).

For both structures, the ribs are glued on the plate. For the 2D-
ribbed plate, the CCCC, CFCF and CFFF configurations have been
tested, the two latter being realized by cutting 2 opposite edges, and
then 3 edges of the 25 inner plates. Tests with additional masses
(magnets of 3 g) have been realized on the CCCC, CFCF and CFFF

configurations.
The panels are freely suspended and excited by an electromagnetic

shaker, see Fig. 8-b that delivers a wide band random noise, The ex-
citation point is located on the central stiffener and an impedance head
gives the input force and acceleration. The velocity field is measured by
a scanning Laser vibrometer (Polytech PSV400) using Doppler effect
that perform measurement with an excellent accuracy (displacement
resolution of µ0.01 m in the measured frequency range). Self-adhesive
scattering stickers are located in each measurement points to improve
the signal to noise ratio. The scan is performed on a line along the
excited stiffener, on 21 points regularly spaced. Measurements are
performed in the frequency range 0–2 kHz.

The IWC method presented in Section 3.1 is used to extract the
wavenumber from the experimental data. For each scanned point, the
frequency response function is recorded with its coherence functions.
Hereafter, the flexural dispersion curves recovered from the experi-
ments are compared to the analytical and/or the numerical ones.

3.3.2. Experimental flexural wavenumber versus model
Unidirectionally ribbed plate: The experimental flexural disper-

sion curve extracted from the measurements along the central stiffener
are displayed on Fig. 9-a together with the dispersion predicted by the
model described by the set (B.5) of Appendix B. The experimentally
recovered dispersion curve matches qualitatively quite well with that of
the analytical result. This confirms that the experimental phenomenon
is captured by the homogenized ribbed plate model. Nevertheless, be-
fore the inner resonance the model gives shorter wavelengths than
those recorded. The likely reason of this mismatch is that, in this fre-
quency range, the wavelength ( 10 cm) is almost the spacing of the
stiffeners (9 cm). Hence, the model reach its limit of validity as the scale
separation is no more satisfied.

Grid: Fig. 9-b shows that the experimental flexural dispersion of the
grid compares satisfactorily with that given by the homogenized model
of the grid.

Fig. 8. Experimental setup for the freely suspended ribbed plate: (a) uni-directionally ribbed plate; (b) orthogonally ribbed plate; (c) plate with added mass in the
center in CCCC configuration.
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2D-ribbed plate with CCCC plates: The experiment/model com-
parison presented in Fig. 10 clearly show that the singularities pre-
dicted by the model actually occur in practice. Note that the phase
enables to identify significant fluctuations associated with inner re-
sonance of the plate.

Complementary tests have been realized by adding masses at the
center of the CCCC plate, see Fig. 8-c. The fundamental frequencies of
the loaded CCCC plate calculated by a finite element, is reported in
Table 2. The influence of added mass on the flexural wavenumber is
shown in Fig. 11. As expected, the dispersion is modified by a shift (of
about 125 Hz) to low frequency of the singularities. The much smaller
difference of about 10 Hz between the experiments and the numerical
estimates, reflect imperfect experimental conditions (as mass localiza-
tion or boundary conditions of the internal plates) that may lead to
discrepancies.

2D-ribbed plate with CFCF plates: The same experiments has
been performed in the CFCF configuration and the results presented on
Fig. 12 (without mass) lead to similar comments as above.

In presence of added mass the theoretical frequencies given by (37)
are compared with the computed and experimental ones, in Table 3.
The influence of added masses on the flexural dispersion shown in

Fig. 9. Flexural dispersion curve, analytical ( ) and experimental ( + ). (a) Unidirectionally ribbed plate, (b) Beam grid.

Fig. 10. 2D ribbed plate withCCCC internal plates: Flexural wavenumber, homogenized model ( ), experimental data ( + ). The theoretical resonance frequencies
are indicated by vertical dotted lines.

Table 2
CCCC plates: Fundamental eigenfrequencies (in Hz) obtained by FEM and
identified experimentally for different added masses on the plate center.

⊘ Added mass

4 g 6 g 9 g

Homogenized 274.9
Finite elements 274.8 150 128 108
Experimental 275 152 140 115
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Fig. 13 is greater than in the CCCC configuration as the CFCF config-
uration is much softer.

2D-ribbed plate withCFFF plates: The results gained on theCFFF
configuration without mass are presented in Fig. 14, and with masses
(located at the free extremity of the inner plates) on Fig. 15. The the-
oretical, numerical and experimental eigenfrequencies are given in
Table 4.

To sum up this section, the numerical simulations and the experi-
mental results gained on more than 10 different configurations are all
very consistent with the theoretical modeling.

4. Conclusion

The homogenization method applied to periodic orthogonally

Fig. 11. 2D ribbed plate with CCCC internal plates and added masses. Flexural wavenumber, analytical ( ), experimental (a) no added mass ( + ), (b) added mass
4 g ( + ), (c) 6 g ( + ), (d) 9 g ( + ).

Fig. 12. 2D-ribbed plates with CFCF internal plates. Flexural wavenumber,
homogenized model ( ), experimental data ( + ), The theoretical resonance
frequencies are indicated by vertical dotted lines.

Table 3
CFCF plate: Fundamental eigenfrequencies (in Hz) obtained by (35), FEM and
identified experimentally for different masses added on the plate center.

⊘ Added mass

4 g 6 g 9 g

Homogenized 170.3 126.4 113.3 100.1
Finite elements 169.2 125.3 110.5 96.0
Experimental 170 125 113 99
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ribbed plates with contrasted geometrical parameters and/or mechan-
ical properties allowed to determine their unconventional macroscopic
behavior. The model is established within the scale separation as-
sumption, and its effective parameters are fully and explicitly de-
termined from the geometry and mechanical properties of the plate and
stiffeners.

The complex dynamic behavior encompasses the atypical flexural
dispersion associated with the enriched local kinematics induced by the
inner resonance. As a consequence, the flexural waves are affected by
the frequency dependent positive or negative effective mass of the
moving inner plates. Hence, around the inner plate's eigenfrequencies
(that depends on the boundary conditions as CCCC, CFCF , CFFF or
added masses) the wave dispersion presents singularities, namely
strong velocity variations together with frequency bands of strong at-
tenuation.

These outcomes are successfully compared with WFEM computa-
tions for realistic examples of contrasted cellular plates and with ex-
periments performed on two prototypes in different configurations,
with IWC post-processing of the data. This shows (i) that the homo-
genized model correctly captures the phenomena, (ii) that the study
yields reliable design rules to tailor cellular panels having specific
atypical features in a given frequency range.

The present up-scaling method could be further applied on various
cell geometries (triangular, honeycomb) either regular or skewed

Fig. 13. 2D ribbed plate with CFCF internal plates and added masses. Flexural wavenumber, analytical ( ), experimental (a) no added mass ( + ), (b) added mass
4 g ( + ), (c) 6 g ( + ), (d) 9 g ( + ).

Fig. 14. 2D ribbed plate with CFFF internal plates. Flexural wavenumber, from
homogenized model ( ), from experimental datum ( + ). The theoretical
resonance frequencies are indicated by vertical dotted lines.
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lattices, with different types of boundary conditions, plate material, etc.
The great amount of possible configurations enables tunable singula-
rities of the panel behavior, and offer the possibility of wider the
bandwidth of significant attenuation. From this point of view the con-
trasted ribbed plates studied here belongs to 2D-metamaterials as panel

with distributed spring-mass system or tunable membrane-type meta-
materials recently investigated in (Chen et al., 2017; Langfeldt et al.,
2018; Miranda et al., 2019).

Let us finally mention that the proposed model can be used to cal-
culate common vibro-acoustic indicators such as radiation efficiency,
and sound transmission loss.
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Appendix A. Circular plate approximation for square clamped plate

In absence of exact solution for the motion of theCCCC square plate, one look for an approximation based on the response of the clamped circular
plate. More precisely, the idea is to approximate the unknown frequency dependence Csquare of the square plate by that of a circular plate Ccircle

(denoted hereafter c to lighten notations) whose the radius is such that its first eigenfrequency coincides with that of the square plate.
The motion r( , )c of a circular plate of radius a, clamped on its periphery which moves harmonically with a uniform out-of-plane unitary

motion is governed by the following equation:

Fig. 15. 2D ribbed plate with CFFF internal plates and added masses. Flexural wavenumber, analytical ( ), experimental (a) no added mass ( + ), (b) added mass
4 g ( + ), (c) 6 g ( + ), (d) 9 g ( + ).

Table 4
CFFF plate. Fundamental eigenfrequencies (in Hz) obtained by (37), FEM and
identified experimentally for different added masses on the plate border.

⊘ Added mass

4 g 6 g 9 g

Homogenized 29.0 18.9 16.5 14.2
Finite elements 30 18.4 16.5 14.4
Experimental 29 24 19 14
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For = r , the solution is a combination of Bessel functions of the first and second kind, respectively J r( )0 and Y r( )0 . For = i r , the solution is
a combination of modified Bessel functions of the first and second kind, respectively I r( )0 et K r( )0 . Hence,
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Note that:

• 1c when 0 i.e. when 0: in statics the apparent mass of P is the real mass,

• ±
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c of the eigenmodes of the circular clamped plate. A good
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Numerical computations of the first eigenfrequencies of the circular clamped plate and the square CCCC plate give

= =

a

E I E I3.1962
,

36.1087
c

p p

p

c
p p

p

1

2

1 2

Hence the matching of them determines the radius of the “equivalent circular plate”

a 0.5319eq

This approximation fits the first resonance and over-predicts the second mode with an error of 5%.

Appendix B. Overview of the 1D-ribbed plate model

This part shortly presents the effective model of 1D-ribbed plates established in (Fossat et al., 2018). The unit cell of the 1D-ribbed plate is
depicted in Fig. 16. It comprises the section of the straight and homogeneous stiff beam B and that of the homogeneous soft plate P clamped on it.
We focus on the dynamic range such that the width of P is small in regards to the wavelength in the beam. The referential frame of unit vectors
e e e( , , )x y z is such that ex is along the ribs, e y is the orthogonal in the plane of the plate and ez is the out-of-plane vector of the plate.

Fig. 16. Periodic 1D-ribbed plate of cell and local coordinates associated with the beam B and the P -plate clamped on their interfaces ±

b
, ±

p
.
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Note that for 1D-ribbed plates the analysis undertake separately i) the flexural behavior and the torsional behaviors where the beams are set in
motion and ii) the guided waves in confined plate where the beams remain at rest.

Appendix B.1. Flexural behavior of 1D-ribbed plates

The three steps of the process provide successively the following results, valid at the leading order.
Transversely loaded beam: The harmonic ez vibrations of the beam B are described by the following equations, where U, TB, MB stand

respectively for the ez-deflection, the ez-shear force, and the bending moment; E Ib b and b are the ez-section inertia and the linear mass of B:
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Set (B.1) corresponds to a Euler-Bernoulli beam undergoing the loading applied on the beam/plate junction that consists in (i) a transverse force
F due to the shear stresses yz and (ii) a couple C related to xy.

Plate forced by the beam motion: The out-of-plane motion of the P-plate is governed by the Kirchhoff equation. Now, the wavelength along L is
much larger than the width D of P , then, in P , the gradient along x is much smaller than along y and can be neglected. Consequently, the 2D plate
equation reduces to the 1D equation (B.2)-a, where w, TP, MP stand respectively for the ez-displacement, the ez-shear force, and the bending
moment; E Ip p and p being the section inertia and surface mass.
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The boundary conditions (B.2)-b specify that the plate is clamped on the beam. By linearity one deduces that =w x y U x y( , ) ( ) ( ) where y( ) is
the 1-D bending motion that depends upon the flexural wavenumber = E I/( )p p p
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The expression of y( ) highlights the resonant nature of the plate response as | | at the frequencies corresponding to the symmetric modes
of the plate.

Beam/plate coupling: The coupling termsF andC involved in the beam balance (B.1) are derived from the forced response of the plate. First,
expressing the stress continuity at the beam/plate interface and accounting for the periodicity we have = ±Syz tyz| |b p

and = =± 0Txy pxy| |b p
(due to

the clamped condition), hence C = 0. Then, using (B.2), the force F (see (B.1)) reads

F
P P P

= = = =
+

T T T y w y D U xd d ( )
D

D

y p

D

D

p| | /2

/2
2

/2

/2
2

p
p (B.4)

Expression (B.4) shows that the shear force exerted by the plate is an effective inertial term with a frequency dependence arising from . This
apparent mass reported in (B.1) provides the modeling of the 1D-ribbed plates in bending (B.5) that involves the conventional flexural stiffness of the
beam B and a non conventional effective beam/plate inertia:

+ + =

=

=

= =
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( ) ( ) 0

0

( )
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x
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b p

x
B B

B
b b x

D D

D

2

3

2

1

/2

/2 2 1

coth( ) cot( )* * * (B.5)

Appendix B.2. Torsional behavior of 1D-ribbed plates

The behavior of B loaded in torsion is driven by (B.6) where (θ,T ,MB) stand respectively for the ex-rotation, the ex -torque that results from the
stresses on the beam/plate junction, and the torsion moment; the parameters IGb b and J

b b being the ez-torsion stiffness and the torsional inertia of
B:

M T T

M I

+ + = =

=

J x y n z n

G x

( ) 0 with . .

( )

x
B

b b zy y yy y

B
b b x

2

b b

(B.6)

Again the P-plate in bending is described by the 1D-equation (B.2)-a, while the proper boundary conditions express that
p
and +

p
follows the

rotation x( ) of the beam:

= =x w x y w x y x, ( , ) 0 ; ( , ) ( ) ; ony p| | (B.7)

The linear set (B.2)-a and (B.7) yields =w x y D x y( , ) ( ) ( ) where y( ) is the frequency dependent solution of = 0
y

4 4 with =( )y 0| p

and =( )y D1/y | p
; the explicit expression of which reads
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= < <y

y y

D y D( )
sinh( )sin( ) sin( )sinh( )

2 (cosh( )sin( ) cos( )sinh( ))
; /2 /2

* *

* * * * * (B.8)

At the frequencies of the antisymmetric plate modes, | | which express the resonance of the plate.
Hence, the stress in the plate can be deduced that leads after algebra to the expression of the torqueT . The latter substituted in (B.6) yields the

effective torsional modeling of the ribbed plate (B.9).
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* 3 3
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This model involves the conventional torsional stiffness of the beam B and the non conventional effective beam/plate rotational inertia, that
contains (i) the usual rotational inertia of the beam Jb and the effective rotational inertia of the plate J * - and (ii) a frequency dependent torsional
“spring” rigidity C*.

Appendix B.3. Guided modes

In the above descriptions, the plates P are driven by the moving beams B. Another regime of guided waves within the plates, arises when the
beams remain at rest, i.e. =U x( ) 0 in (B.2) and =x( ) 0 in (B.7). In that case, considering wavelengths along x much larger than the plate width D,
the plate motion at the leading order is seek in the form of separated variables, i.e., =w x y ik x y( , ) exp( ) ( ) where y( ) is governed (B.2)-a and
fulfill the boundary condition of vanishing displacement and rotation on , i.e., =( )y 0| p

and =( )y 0y | p
whose the solutions are the set of

eigenmodes { ,I I} of the clamped plate. For each eigenmode I , noting that =E Ip p y

I

p I

I4 2 , the wavenumber of the guided wave is de-
termined by the following equation:

=E I k k[( ) 2( ) ] ( )p p
I I I

y
I

p I
I4 2 2 2 2

(B.12)

References

Altenbach, J., Altenbach, H., Eremeyev, V.A., 2010. On generalized cosserat-type theories
of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80 (1),
73–92. https://doi.org/10.1007/s00419-009-0365-3.

Auriault, J.-L., Bonnet, G., 1985. Dynamique des composites élastiques périodiques. Arch.
Mech. 37 (4–5), 269–284.

Auriault, J.-L., Boutin, C., 2012. Long wavelength inner-resonance cut-off frequencies in
elastic composite materials. Int. J. Solids Struct. 49 (23–24), 3269–3281. https://doi.
org/10.1016/j.ijsolstr.2012.07.002.

Auriault, J.-L., Boutin, C., Geindreau, C., 2009. Homogenization of Coupled Phenomena
in Heterogenous Media (ISTE), first ed. Wiley-ISTE.

Berthaut, J., Ichchou, M., Jezequel, L., 2005. K-space identification of apparent structural
behaviour. J. Sound Vib. 280 (3–5), 1125–1131. https://doi.org/10.1016/j.jsv.2004.
02.044.

Boutin, C., Hans, S., 2003. Homogenisation of periodic discrete medium: application to
dynamics of framed structures. Comput. Geotech. 30 (4), 303–320. https://doi.org/
10.1016/S0266-352X(03)00005-3.

Chen, J.-S., Huang, Y.-J., Chien, I.-T., 2017. Flexural wave propagation in metamaterial
beams containing membrane-mass structures. Int. J. Mech. Sci. 131–132, 500–506.
https://doi.org/10.1016/j.ijmecsci.2017.07.054.

Chesnais, C., Boutin, C., Hans, S., 2012. Effects of the local resonance on the wave pro-
pagation in periodic frame structures: generalized Newtonian mechanics. J. Acoust.
Soc. Am. 132 (4), 2873–2886. https://doi.org/10.1121/1.4744975.

Droz, C., Zhou, C., Ichchou, M., Lainé, J.-P., 2016. A hybrid wave-mode formulation for
the vibro-acoustic analysis of 2d periodic structures. J. Sound Vib. 363, 285–302.
https://doi.org/10.1016/j.jsv.2015.11.003.

Fossat, P., Boutin, C., Ichchou, M., 2018. Dynamics of periodic ribbed plates with inner
resonance: analytical homogenized model and dispersion features. Int. J. Solids
Struct. 152–153, 85–103. https://doi.org/10.1016/j.ijsolstr.2018.06.012.

Hans, S., Boutin, C., 2008. Dynamics of discrete framed structures : a unified homo-
genized description. J. Mech. Mater. Struct. 3 (9), 1709–1739. https://doi.org/10.
2140/jomms.2008.3.1709.

Ichchou, M., Berthaut, J., Collet, M., 2008a. Multi-mode wave propagation in ribbed
plates. part ii: predictions and comparisons. Int. J. Solids Struct. 45 (5), 1196–1216.
https://doi.org/10.1016/j.ijsolstr.2007.08.020.

Ichchou, M., Berthaut, J., Collet, M., 2008b. Multi-mode wave propagation in ribbed

plates: Part i, wavenumber-space characteristics. Int. J. Solids Struct. 45 (5),
1179–1195. https://doi.org/10.1016/j.ijsolstr.2007.09.032.

Ichchou, M., Bareille, O., Berthaut, J., 2008c. Identification of effective sandwich struc-
tural properties via an inverse wave approach. Eng. Struct. 30 (10), 2591–2604.
https://doi.org/10.1016/j.engstruct.2008.02.009.

Kalamkarov, A., Andrianov, I., Danishevs’kyy, V., 2009. Asymptotic homogenization of
composite materials and structures. Appl. Mech. Rev. 62 (3). https://doi.org/10.
1115/1.3090830. 030802–1–030802–20.

Langfeldt, F., Gleine, W., von Estorff, O., 2018. An efficient analytical model for baffled,
multi-celled membrane-type acoustic metamaterial panels. J. Sound Vib. 417,
359–375. https://doi.org/10.1016/j.jsv.2017.12.018.

Leissa, A., 1969. Vibration of Plates, NASA SP. National Aeronautics and Space
Administration.

Lewiński, T., Telega, J., 2000. Plates, Laminates, and Shells: Asymptotic Analysis and
Homogenization, Series on Advances in Mathematics for Applied Sciences. World
Scientific.

Mace, B.R., Duhamel, D., Brennan, M.J., Hinke, L., 2005. Finite element prediction of
wave motion in structural waveguides. J. Acoust. Soc. Am. 117 (5), 2835–2843.
https://doi.org/10.1121/1.1887126.

Mead, D., 1973. A general theory of harmonic wave propagation in linear periodic sys-
tems with multiple coupling. J. Sound Vib. 27 (2), 235–260. https://doi.org/10.
1016/0022-460X(73)90064-3.

Mead, D., Zhu, D., Bardell, N., 1988. Free vibration of an orthogonally stiffened flat plate.
J. Sound Vib. 127 (1), 19–48. https://doi.org/10.1016/0022-460X(88)90348-3.

Miranda, E., Nobrega, E., Ferreira, A., Santos, J.D., 2019. Flexural wave band gaps in a
multi-resonator elastic metamaterial plate using Kirchhoff-love theory. Mech. Syst.
Signal Process. 116, 480–504. https://doi.org/10.1016/j.ymssp.2018.06.059.

Nishino, F., Pama, R.P., Lee, S.-L., 1974. Orthotropic Plates with Eccentric Stiffeners, vol.
34 IABSE publicationshttps://doi.org/10.5169/seals-26286. (1974).

Renton, J., 1964. A finite difference analysis of the flexural-torsional behaviour of gril-
lages. Int. J. Mech. Sci. 6 (3), 209–224. https://doi.org/10.1016/0020-7403(64)
90023-2.

Sanchez-Palencia, E., 1980. Non-Homogeneous Media and Vibration Theory (Lecture
Notes in Physics), spi Edition. Springer.

Timoshenko, S., Woinowsky-Krieger, S., 1959. Theory of Plates and Shells, Engineering
Societies Monographs. McGraw-Hill.

Tollenaere, H., Caillerie, D., 1998. Continuous modeling of lattice structures by homo-
genization. Adv. Eng. Software 29 (7), 699–705. https://doi.org/10.1016/S0965-

19

https://doi.org/10.1007/s00419-009-0365-3
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref2
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref2
https://doi.org/10.1016/j.ijsolstr.2012.07.002
https://doi.org/10.1016/j.ijsolstr.2012.07.002
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref4
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref4
https://doi.org/10.1016/j.jsv.2004.02.044
https://doi.org/10.1016/j.jsv.2004.02.044
https://doi.org/10.1016/S0266-352X(03)00005-3
https://doi.org/10.1016/S0266-352X(03)00005-3
https://doi.org/10.1016/j.ijmecsci.2017.07.054
https://doi.org/10.1121/1.4744975
https://doi.org/10.1016/j.jsv.2015.11.003
https://doi.org/10.1016/j.ijsolstr.2018.06.012
https://doi.org/10.2140/jomms.2008.3.1709
https://doi.org/10.2140/jomms.2008.3.1709
https://doi.org/10.1016/j.ijsolstr.2007.08.020
https://doi.org/10.1016/j.ijsolstr.2007.09.032
https://doi.org/10.1016/j.engstruct.2008.02.009
https://doi.org/10.1115/1.3090830
https://doi.org/10.1115/1.3090830
https://doi.org/10.1016/j.jsv.2017.12.018
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref18
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref18
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref19
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref19
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref19
https://doi.org/10.1121/1.1887126
https://doi.org/10.1016/0022-460X(73)90064-3
https://doi.org/10.1016/0022-460X(73)90064-3
https://doi.org/10.1016/0022-460X(88)90348-3
https://doi.org/10.1016/j.ymssp.2018.06.059
https://doi.org/10.5169/seals-26286
https://doi.org/10.1016/0020-7403(64)90023-2
https://doi.org/10.1016/0020-7403(64)90023-2
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref26
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref26
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref27
http://refhub.elsevier.com/S0997-7538(19)30166-4/sref27
https://doi.org/10.1016/S0965-9978(98)00034-9


9978(98)00034-9.
Trévisan, B., Ege, K., Laulagnet, B., 2016. Vibroacoustics of orthotropic plates ribbed in

both directions: application to stiffened rectangular wood panels. J. Acoust. Soc. Am.
139 (1), 227–246. https://doi.org/10.1121/1.4939706.

Varanasi, S., Bolton, J.S., Siegmund, T.H., Cipra, R.J., 2013. The low frequency perfor-
mance of metamaterial barriers based on cellular structures. Appl. Acoust. 74 (4),
485–495. https://doi.org/10.1016/j.apacoust.2012.09.008.

Varanasi, S., Bolton, J.S., Siegmund, T., 2017. Experiments on the low frequency barrier
characteristics of cellular metamaterial panels in a diffuse sound field. J. Acoust. Soc.
Am. 141 (1), 602–610. https://doi.org/10.1121/1.4974257.

Waki, Y., Mace, B., Brennan, M., 2009. Numerical issues concerning the wave and finite
element method for free and forced vibrations of waveguides. J. Sound Vib. 327
(1–2), 92–108. https://doi.org/10.1016/j.jsv.2009.06.005.

20

https://doi.org/10.1016/S0965-9978(98)00034-9
https://doi.org/10.1121/1.4939706
https://doi.org/10.1016/j.apacoust.2012.09.008
https://doi.org/10.1121/1.4974257
https://doi.org/10.1016/j.jsv.2009.06.005

	Dynamics of ribbed plates with inner resonance: Analytical homogenized models and experimental validation
	Introduction
	Homogenization of the flexural behavior of 2D-ribbed plates
	Investigated structures
	Physical insight into inner resonance of 2D-ribbed plates
	Tailored homogenization process
	Homogenization of the ortho-beam grid
	Discretization of the dynamic balance
	Switch from discrete to continuous variables
	Normalization and up-scaling process
	Ortho-beam grid macroscopic model

	Conditions for inner dynamics of 2D-ribbed plates
	The co-dynamic condition
	Asymmetric coupling
	Beam grid loaded by internal plates

	Dynamics of the internal plates fully or partially connected to the beam grid
	Homogenized flexural behavior of 2D-ribbed plate
	Features of ⟨φωbc⟩, and Kωbc‾
	Dispersion features in the orthogonally ribbed plate


	Numerical and experimental validation
	Methods for identifying the dispersion curves
	Numerical validations on a finite ribbed plates
	Influence of the inner resonance on the whole vibratory field

	Experiments on 1D and 2D-ribbed plates
	Investigated structures and instrumentation
	Experimental flexural wavenumber versus model


	Conclusion
	Acknowledgements
	Circular plate approximation for square clamped plate
	Overview of the 1D-ribbed plate model
	Appendix B.1. Flexural behavior of 1D-ribbed plates
	Appendix B.2. Torsional behavior of 1D-ribbed plates
	Appendix B.3. Guided modes

	References




