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Abstract

Identification of elastic and damping properties is a challenge for fabrication of composite materials,

which can have complex shapes. A new approach based on the Force Analysis Technique was developed

to identify structural parameters from local equation of motion. For structures with known analytical

models, this method gave good results. This work presents a similar approach to extend the previous

method to structures which cannot be described with known analytical models, where the model is

replaced by a Finite Element operator. In order to reduce the amplification of the measurement noise, a

procedure based on a probabilistic approach coupled to a minimization of a cost function is proposed.

The method is illustrated on a curved beam using simulated displacement. Then, an experimental

validation is shown by using measured translations on an aluminum flat beam and on a sandwich

curved beam.
Keywords: inverse identification, curved beam, composite materials, complex Young’s modules,

Force Analysis Technique, FEM

1. Introduction

The vibro-acoustic behavior of structures made of composite materials is difficult to grasp numeri-

cally, because the modeling of each constituent may lead to a huge model, which cannot be operated.

Such models can be reduced using homogenized material properties, but the assessments of homoge-

nized properties is not straightforward. The common methods to identify structural parameters can5

be divided in four categories. The first category corresponds to static or quasi-static methods, which

are based on the linear elastic theory of materials [1]. Although these methods are well established,

they provide incomplete information, in the sense that they do not give the frequency dependence of

the material properties. The second category concerns methods based on modal analysis [2, 3]. They
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rely on the identification of natural frequencies and modal damping ratios to estimate the Young’s10

modulus and loss factor of a material. The standardized tests [4] propose a methodology for esti-

mating the elastic properties of multi-layer composite beams, using the Oberst beam method. The

using of modal method implies a good knowledge about the boundary conditions, which is not always

possible. Montalvao [5] noted a variability over the estimation of structural parameters depending on

the clamping conditions. Close to these modal methods, other methods are based on the identification15

of the natural wavenumber of the structure, from which structural parameters can be extracted [6].

A third class of methods is based on comparison of modal parameters obtained numerically by using

a Finite Element (FE) model with those obtained experimentally on the real structure. The identi-

fication of structural parameters is performed by updating the FE model until the theoretical data

match the experimental data [7, 8]. The fourth family includes high frequency methods, also known20

as ultrasound methods [9, 10], which may be used to obtain a spatial mapping of material properties.

Following this classical methods and with the rise of full-field measurement techniques, inverse

methods to identify structural parameters were developped. The Virtual Field Method (VFM) was

developped at the end of 1980s by Grediac [11]. This method is based on the global equilibrium of

tested sample, which can be described by the Principle of virtual work. Verifying this principle, it is25

also possible to identify material properties of the sample like Young’s modulus or loss factor. Some

works are done for the identification of the stiffness of isotropic plate [12] and of orthotropic plate [13].

At the end of 1990s, an another inverse approach was developed by Pézerat for vibration source

identification [14] called Force Analysis Technique (FAT) or Résolution Inverse Filtrée Fenêtrée (RIFF),

which stands for Windowed Filtered Inverse Resolution. This inverse method is based on the verifica-30

tion of the local equation of motion of a vibrating structure. It means a part of the structure can be

considered without knowing what happens in others parts of the structure. The principal advantages of

the proposed procedure are that it can be performed locally on the structure without the knowledge of

the boundary conditions of the area of interest and any information outside this area. It can be noted

that this technique is not recent and has been widely used (under different names) for the identification35

of sources (initially introduced in [15, 16, 17]) and location of defects (see for example [18, 19, 20]),

generally in the case of analytically known structures (plate-shell beams). The identification of sources

on complex structures modelled by FEM is not recent either, but its use was different since it was a

question of identifying sources [21, 22]. Its adaptation to the characterization of materials on academic

structures is much more recent, but it has remained limited to academic structures [18]. The basic40

principle of the FAT technique is to inject the discrete measured displacement field of the structure in

a discrete form of its motion equation. Usually, a Finite Difference scheme is used. As the assesment of

spatial derivatives of the displacement amplifies the measurement noise, the inverse problem requires

a regularization step. In the FAT method, the regularization is ensured by a spatial windowing associ-
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ated with a low-pass wavenumber filtering of the calculated force distribution. The main advantage of45

this method is that little information is required: the local equation of motion and a local displacement

field. At the beginning, the method was developed only for identification of force distribution exciting

the structure on analytically known structures, such as beams [15], plates [16] and shells [17].

In order to extend the FAT method and make it suitable for more complex structures, a Finite

Element formulation of the inverse problem was developed by Renzi [23] for identification of source.50

This variant of the method gives the possibility to identify nodal loads on a finite element mesh from

the measured displacements. It has been experimentally validated on flexural beams and flexural

plates.

Another variant of the FAT method aims at identifying material properties (stiffness and damp-

ing) [24, 25]. It is based on the verification of the local equation of motion in an area of the structure55

in which no external force is applied. This approach is always independent of boundary condition and

allows identification of material properties at any frequency, not only at resonant frequencies. The abil-

ity of the method to provide a spatial mapping of properties has been experimentally demonstrated by

considering a composite plate containing patches of damping material [25]. Wassereau [18] extended

this approach to characterize structural parameters on thick sandwich beams using Timoshenko’s60

model. He estimated complex Young’s modulus and complex shear modulus.

Since manufacturing of composite materials implies that the material and the shape of structures

must be made in the same process, it is particularly interesting in characterizing composite materials

on shaped parts instead of samples.

Recently, the two aforementioned variants of the FAT method have been coupled in an attempt to65

identify material properties on structure having complex geometries, using a FE operator. A proof-

of-concept was presented considering a flat beam [26]. The estimation of a complex Young’s modulus

was demonstrated using numerical and experimental data. The regularization of the inverse problem

was introduced by a probabilistic approach inspired from previous work by Faure [27].

In this paper, this approach is extended to the case of a curved beam, where transverse and70

longitudinal motions are coupled. In section 2, the general principle of the method is exposed. Then,

the proposed approach is demonstrated in section 3, using a simulated displacement field. The effect

of noise is illustrated and a probabilistic framework is proposed to automatically adjust the level

of regularization. Finally, in section 4, the proposed approach is demonstrated on the measured

translations of an aluminum flat beam and of a sandwich curved beam.75
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2. Identification technique

2.1. Basic principle

This part adresses the basic principle of the proposed approach. It is divided into three topics:

• building of the FE matrices,

• elimination of force at the boundary of the considered area,80

• influence of the noise on the inverse problem.

Building of the FE matrices

In the following, the dynamic problem of an homogenized Euler-Bernoulli beam is considered. This

beam has a thickness h, a width b, a beam section S = hb and a second moment of area Iz. Its

homogenized material properties are the density ρ, the traction complex Young’s modulus Ẽt = Et(1+85

jηt), where Et is the traction Young’s modulus, ηt, the traction structural damping of the material,

and j the unit imaginary number and the flexural complex Young’s modulus Ẽf = Ef (1 + jηf ), where

Ef is the flexural Young’s modulus and ηf , the flexural structural damping of the material. In this

article, the beam is studied in the plane (x,z) and can have a curvature, i.e. its neutral axis is not

straight. The curvature can be defined by a local radius that can vary along the neutral axis.90

The in-plane moving beam is modeled by the Finite Element Method (FEM) with N discretizing

nodes, NDOF = 3N degrees of freedom (DOFs) and Ne elements (Ne = N − 1). Considering

harmonic motion at angular frequency ω, the equation of motion of the discrete system can be written

as [28] : (
K− ω2M

)
q = f , (1)

where M is the mass matrix, K is the stiffness matrix and q is the response vector containing 2N

translations and N rotations (motions in the plane) and f is the excitation vector containing, according

to the DOFs mentioned here above, 2N forces and N moments.

The matrices M and K can be computed by assembling the elementary mass and stiffness matrices,

Me and Ke. In the local reference frame (x, z) of each beam element (see figure 1), these matrices are

defined with the FEM [28] as

Me = ρSLe



1
3 0 0 1

6 0 0

0 13
35

11Le

210 0 9
70 − 13Le

420

0 11Le

210
L2

e

105 0 13Le

420 − L2
e

140
1
6 0 0 1

3 0 0

0 9
70

13Le

420 0 13
35 − 11Le

210

0 − 13Le

420 − L2
e

140 0 − 11Le

210
L2

e

105


, (2)
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and

Ke =



ẼtS
Le

0 0 − ẼtS
Le

0 0

0 12Ẽf Iz

L3
e

6Ẽf Iz

L2
e

0 − 12Ẽf Iz

L3
e

6Ẽf Iz

L2
e

0 6Ẽf Iz

L2
e

4Ẽf Iz

Le
0 − 6Ẽf Iz

L2
e

2Ẽf Iz

Le

− ẼtS
Le

0 0 ẼtS
Le

0 0

0 − 12Ẽf Iz

L3
e

− 6Ẽf Iz

L2
e

0 12Ẽf Iz

L3
e

− 6Ẽf Iz

L2
e

0 6Ẽf Iz

L2
e

2Ẽf Iz

Le
0 − 6Ẽf Iz

L2
e

4Ẽf Iz

Le


, (3)

where Le is the length of the beam element.

The stiffness elementary matrix (Eq. (3)) can be rewritten as

Ke = ẼtKe
t + ẼfKe

f , (4)

where

Ke
t =



S
Le

0 0 − S
Le

0 0

0 0 0 0 0 0

0 0 0 0 0 0

− S
Le

0 0 S
Le

0 0

0 0 0 0 0 0

0 0 0 0 0 0


(5)

is the matrix providing the geometric contribution to the traction stiffness matrix of the element and

Ke
f =



0 0 0 0 0 0

0 12Iz

L3
e

6Iz

L2
e

0 − 12Iz

L3
e

6Iz

L2
e

0 6Iz

L2
e

4Iz

Le
0 − 6Iz

L2
e

2Iz

Le

0 0 0 0 0 0

0 − 12Iz

L3
e
− 6Iz

L2
e

0 12Iz

L3
e

− 6Iz

L2
e

0 6Iz

L2
e

2Iz

Le
0 − 6Iz

L2
e

4Iz

Le


(6)

is the matrix providing the geometric contribution to the bending stiffness matrix of the element.95

Both matrices are formulated in terms of local coordinates, i.e. with respect to local axes (x,z)

shown in figure 1. To obtain the assembled mass matrix M and the assembled stiffness matrices Kt

and Kf , the elementary matrices have to be expressed with respect to the global axes (XS ,ZS), also

called structural axes, see figure 1. Geradin [28] proposes a transformation matrix Te which allows to

compute the elementary mass and stiffness matrices of each element with respect to global axes as

MeS = TeT MeTe, (7)

and

KeS = TeT KeTe, (8)
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Figure 1: Two-dimensional beam element with arbitrary orientation in the plane.

where T stands for the transpose and Te is the rotation matrix defined as

Te =


cos(β) sin(β) 0

−sin(β) cos(β) 0

0 0 1

 , (9)

where β is the angle between the local reference frame of each beam element (x,z) and the global axes

(XS ,ZS) (see figure 1).

It is necessary to separate bending DOFs and longitudinal DOFs. Indeed, when those matrices Ke

are computed in the global axes, both DOFs are combined and traction and bending Young’s modules

are inseparable and also hardly identified.100

Eq. (1) can be rewritten to separate, in the stiffness matrix K, the influence of the bending motion

and the influence of the flexural motion as

(
ẼtKt + ẼfKf − ω2M

)
q = f , (10)

where Kt and Kf represent respectively the assembled stiffness matrices of the longitudinal DOFs and

of the transverse DOFs and M is the assembled mass matrix.

Elimination of force at the boundary of considered area

If the left-hand side of Eq.(10) is evaluated on a part of the structure without external excitation,105

the vector f is equal to zero everywhere, except at the boundaries of the considered area. Its non-

zero values correspond to two forces and one moment at each extremity. These efforts correspond to

reaction forces and moments due to the kinematic continuity between the considered subpart of the

structure and the rest of the structure.

To avoid these efforts, the first three lines and the last three lines of matrices Kt, Kf and M are110

removed. Those lines correspond to three DOFs of one node at each extremity of the observed area. If

the left-hand side of Eq. (10) is evaluated after this truncation, the resulting forces and moments vanish
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on the boundaries, as expected. To keep the notation concise, the truncated matrices will simply be

noted Kt, Kf and M.

Out of the exciting sources, the Eq. (10) becomes

ẼtKtq + ẼfKf q = ω2Mq. (11)

Eq. (11) expresses the equilibrium between the stiffness and the inertia terms, when no external115

excitation is applied. It should be noted that this equation can be used on a part of the structure,

except on parts where external excitation are applied.

Thus, if the displacements q are known, Young’s modules Ẽt and Ẽf can theoretically be found

using a least square solution of equation

[
Ktq Kf q

] Ẽt

Ẽf

 = ω2Mq. (12)

Noise on the inverse problem

Taking into account the noise uncertainties due to measurement noise, the observation equation is

written as

y = q + n, (13)

where y is the vector of observations (or noisy displacements) and n is the vector of noise. The120

exact displacement vector q is actually unknown, only the noisy displacement vector y is known by

measurement. Replacing q by y in Eq. (12) makes the least-square approach unstable, because the

stiffness terms considerably amplify the noise. Indeed, if this FEM equation of motion is compared

to analytical equation of motion, the stiffness term contains high spatial derivative terms, which are

particulary sensitive to noise measurement, as discussed by Pézerat in [15]. A regularization step is125

thus needed.

2.2. Regularization

2.2.1. Principle of the regularization

Considering that the noise is Gaussian, the probability density of noise vector n can be described

as

[n] ∼ Nc(0,Σn), (14)

which represents a multivariate complex Gaussian distribution with zero mean value and covariance

Σn and ∼ is the symbol for "is distributed as".130

Substituting Eq. (14) in Eq. (13), the probability of exact displacements is

[q|y,Σn] ∼ Nc(y,Σn). (15)
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It is observed [26] that the calculation of Kty and Kf y is responsible for the instability of the inverse

problem, since it drastically amplifies measurement noise. For this reason, the proposed regularization

procedure consists in estimating the term

δ = ẼtKtq + ẼfKf q. (16)

This can be done by merging the probabilistic information provided by two equations. A first equation

corresponds to the direct estimation of δ from noisy displacements by using Eq. (16). Substituting

Eq. (15) into Eq. (16) provides the probability density

[δ] ∼ Nc(ẼtKty + ẼfKf y, (ẼtKt + ẼfKf )Σn(ẼtKt + ẼfKf )H), (17)

where H indicates hermitian transpose, i.e. the conjugate transpose.

A second equation is related to the verification of the equation of motion Eq. (11), i.e.

δ = ω2Mq. (18)

Substituting Eq. (15) into Eq. (18) provides the probability

[δ] ∼ Nc(ω2My, (ω2M)Σn(ω2M)H). (19)

The estimate of δ can therefore be obtained from the intersection of both probability densities, i.e.

the product of the two Gaussian distributions of Eqs. (17) and (19),

[δ] ∝ Nc(µδ1 ,Σδ1) · Nc(µδ2 ,Σδ2), (20)

where, ∝ means "proportional to" and

µδ1 = ẼtKty + ẼfKf y

Σδ1 = (ẼtKt + ẼfKf )Σn(ẼtKt + ẼfKf )H

µδ2 = ω2My

Σδ2 = (ω2M)Σn(ω2M)H

. (21)

The result itself is a Gaussian distribution,

[δ] ∝ Nc(µδ,Σδ), (22)

where the mean vector and covariance matrix areΣδ =
(
Σδ1

−1 + Σδ2
−1)−1

µδ = Σδ

(
Σδ1

−1µδ1 + Σδ2
−1µδ2

) . (23)

In the following, the highest value of this gaussian probability density function [δ], i.e. µδ, is

considered.

In this section, a regularized estimate of the left hand side of Eq. (11) has been computed.
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2.2.2. Definition of a cost function135

To perform the identification of Young’s modules, the cost function

f(Ẽt, Ẽf ) =
∑
|µδ − ω2My|2 (24)

is introduced, where the dependence on Ẽt and Ẽf is carried by µδ (see Eqs (21) and (23)). The result

of this cost function should be theoretically null in the absence of noise, because there is a equality

between the mass term and the stiffness terms, as show by Eq. (11).

2.3. Estimation of rotation

A second obstacle to this simple resolution comes from the presence of rotational DOFs in the140

displacement vector q.

One of the most practical difficulty to implement the proposed approach is that the rotational DOFs

in the displacement vector q must be known. Indeed, theses rotational DOFs cannot be measured

directly. A way to estimate them is to use the dynamic condensation method [29]. A condition to use

this method is the absence of excitation in the domain where the non-measurable DOFs have to be145

estimated. This condition is actually verified, because the developed identification technique requires

no force and no moment in the domain of interest.

The dynamic condensation consists in partitioning the displacement vector q into measurable DOFs

qm (translations) and non-measurable DOFs qs (rotations), where subscripts m and s stand for master

and slave, respectively. With these notations, Eq. (12) can be rewritten asẼt

 Ktmm Ktms

Ktsm Ktss

+ Ẽf

 Kfmm Kfms

Kfsm Kfss

− ω2

 Mmm Mms

Msm Mss

 qm

qs

 =

 0m

0s

 .

(25)

Using the second line of Eq. (25),[
ẼtKtsm + ẼfKfsm + ω2Msm

]
qm +

[
ẼtKtss + ẼfKfss + ω2Mss

]
qs = 0s, (26)

it is possible to estimate the unknown rotations qs from the translations qm as

qs = C · qm, (27)

with,

C = −
[
ẼtKtss + ẼfKfss − ω2Mss

]∗ [
ẼtKtsm + ẼfKfsm − ω2Msm

]
, (28)

where ∗ means a pseudo-inverse [30].

It should be noted that Eq. (26) provides (N − 2) scalar equations, which is due to the fact that

the moment is null everywhere, except at the boundary nodes (as discussed in section 2.1). Hence,150

the estimation of N rotations from Eq. (26) is slightly under-estimated. An example of rotation

computation is illustrated in section 3.2.
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2.4. Probability of exact displacements

The displacement vector q has three kind of components, the translations along the XS and the ZS

directions and the rotations. The two first quantities are regrouped in the vector qm and are directly155

measured, whereas the rotations qs are estimated from vector qm.

The probability of exact translations [qm|ym, σ
2
n] is given from Eq. (15), with σ2

n a scalar variance

of noise for the translations,

[qm|ym, σ
2
n] ∼ Nc(ym, σ

2
n · I), (29)

where I stands for the identity matrix.

When Eq. (29) is substituted in Eq. (27), the probability of exact rotations is

[qs|C,ym, σ
2
n] ∼ Nc

(
qs|Cym,Cσ2

nCH
)
. (30)

Eqs. (29) and (30) can be concatenated to build the probability [q] as,

[q|y, σ2
n,Σq] ∼ Nc

(
q|y, σ2

nΣq
)
, (31)

with,

y =

 ym

ys

 , (32)

Σq =

 I 0

0 CCH

 . (33)

The Eq. (21) can be rewritten as

µδ1 = ẼtKty + ẼfKf y

Σδ1 = (ẼtKt + ẼfKf )σ2
nΣq(ẼtKt + ẼfKf )H

µδ2 = ω2My

Σδ2 = (ω2M)σ2
nΣq(ω2M)H

. (34)

It can be shown from Eqs. (34) and (23) that µδ finally does not depend on σn. The evaluated

expression does not contain parameter of regularization, which has to be adjusted by a method such

as L-curve or Generalized Cross Validation (GCV), as discussed by Faure [31].160

2.5. Numerical implementation of the identification method

To resume the main steps of the developed method, the first step is to build the FE matrices of

the subpart of the system (M, KT and KF) for which the structural parameters are looking for. This

building is done from the geometrical dimensions of the beam and from the density of the material.
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Figure 2: Geometry of beam used for numerical simulation.

Then those square matrices are truncated by removing 6 lines, to avoid bonding efforts coming from165

the rest of the structure.

The second step is to obtain the translation field ym for each frequency, either by measurement,

for example with a scanning laser vibrometer, or by numerical simulations, for example to test the

method.

The following steps are part of the minimization procedure to obtain the complex Young’s modules170

and are done for each frequency. In a first part, after initializing the complex Young’s modules, the

rotations ys are estimated with the dynamic condensation procedure from Eq. (27). In a second part,

the translations and the rotation are concatenated in the vector y from Eq. (32). In a third part, the

variance Σq, from Eq. (33), and the MAP µδ, from Eq.(23), are computed. And in a fourth and last

part, the cost function is minimized by repeating all these steps from Eq.(24).175

Finally, the complex Young’s modules Ẽfreq
t and Ẽfreq

t are thus obtained. The superscript freq

means that Young’s modules depends on the frequency and that they have to be determined for each

frequency.

The main steps of the developed method are condensed in the algorithm given in the Appendix A.

3. Numerical simulation180

3.1. Direct problem

In this section, the reference solution is calculated using the FEM. Let us consider a clamped-

clamped isotropic beam (figure 2), with a curvature of 1 m and whose characteristics are given in

Table 1. The beam is simultaneously excited in the both direction XS and ZS .

The displacements q are computed at discrete abscissas delimited by x ∈ [0.3; 0.8] m, region without185

excitation. The translations and the rotations are plotted in figure 3.
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Geometric parameters

Length Lg (m) 1

Width b (m) 0.01

Thickness h (m) 0.001

Second Moment of Area Iz (m4) bh3/12

Spatial sampling Le (m) 0.01

Curvature radius R (m) 1

Material parameters

Density ρ (kg/m3) 2700

Traction Young’s modulus Et (GPa) 75

Traction loss factor ηt 0.1 %

Bending Young’s modulus Ef (GPa) 70

Bending loss factor ηf 0.1 %

Excitation characteristics

Frequency (Hz) 500

Excitation force |FXS
| = |FZS

| (N) 1

Excitation location x0 (m) 0.1

Observation area [x1;x2] (m) in curvilinear axes [0.3; 0.8]

Table 1: Geometrical and material properties set for the simulated beam and excitation characteristics.

X
S
 (m)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Z
S
 (

m
)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Non excited beam
Exact translations
Noisy translations

0.6 0.61 0.62

-0.142

-0.14

-0.138

-0.136

-0.134

-0.132

(a)

0.3 0.4 0.5 0.6 0.7

X
S

 (m)

-5

-4

-3

-2

-1

0

1

2

3

4

5

R
ot

at
io

n 
(r

ad
)

10-3

(b)

Figure 3: Displacements in observation area: (a) Translations (magnified with a scaling factor of 10’000) in the global

axes without noise and noisy (SNR = 35 dB), (b) Rotation in the global axes of the beam.
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X
s
 (m)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

R
ot

at
io

n 
(r

ad
)

×10-3

-6

-4

-2

0

2

4

6

8

Exact
From exact translations
From noisy translations

Figure 4: Reconstruction of rotation (–) by dynamic condensation: from exact simulated translations (•) and from noisy

simulated translations (◦).

To approximate a measurement, the translations previously calculated, are blurred with noise,

ym = qm + 10
−SNR

20 α, (35)

with ym, the noisy translations, SNR, the Signal to Noise Ration and α, a zero mean Gaussian random

variable with unit variance. Noisy translations are also shown in figure 3 (a) with a SNR equal to

35 dB.

3.2. Illustration of rotation computation190

A first step is to verify the rotations computed by dynamic condensation from exact translations

qm using Eq. (27). Black points in figure 4 are obtained. The computed rotations are in accordance

with exact rotations in red solid line in figure 4, except near the boundaries of the studied area. This

is a consequence of the under-determined nature of Eq. (26). That is why the point at each extremity

cannot be determined. By default, it is set to zero. These false value is propagated to the nearest195

point. For this reason, two nodes at each extremity of the area will be used only for the rotations

estimation. This four nodes will not be considered in the final material characterization.

A second step is to test the reconstruction of the rotation from noisy translations. The blue circles

in figure 4 represent the rotations obtained from Eq. (27) with noisy translations ym. It can be

observed that they are very close to the rotations estimated from exact translations, which shows that200

the estimation of rotations is not very sensitive to measurement noise.

3.3. Identification of both traction and bending complex Young’s modules

3.3.1. Simulation of an aluminum beam

The results of identification of Young’s modules are illustrated for the frequency of 500 Hz. Fig-

ure 5 (a) shows the cost function defined in Eq. (24). Using exact displacements q, a minimum of the205
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(Ẽ

t,
Ẽ
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Figure 5: Cost function depending of the traction and the bending Young’s modules (Et, Ef ) for: (a) exact data,

(b) noisy data without regularization and (c) noisy data with regularisation.

cost function is clearly obtained at the correct values of Young’s modules.

This first case with exact translations is also computed for a large frequency band with the regu-

larization process (see Appendix A). The identification results are given in figure 6.

Figure 6 (a) shows the identification of the Young’s modules. It can be seen the bending Young’s

modulus is identified for all frequencies, at its value of 70 GPa. The identification of the traction210

Young’s modulus is near its value of 75 GPa, for the high frequencies. Before 8 kHz, some singular-

ities are observed. The identification of the traction modulus is very sensitive, because the involved

translations are very small, especially at low frequencies, where no resonances are present, and also the

regularization process brings noise, which disturbs this identification. The same results for loss factors

are visible in figure 6 (b). The bending loss factor are identified for all frequencies, while traction loss215

factor identification let see some singularities, especially at low frequencies.
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Figure 6: Identification results on the simulated aluminum beam from exact translations with the regularization process:

(a) Young’s modules and (b) loss factors.

When noise is added to translations, the cost function obtained are shown in figure 5 (b). It can

be observed that Young’s modules cannot be identified.

After regularisation, it appears in figure 5 (c), that the cost function is much more sensitive to

variations in flexural Young’s modulus Ef than in traction Young’s modulus Et. To verify that both220

Young’s modules can be still identified, a minimization technique is applied to this cost function for a

large band of frequencies, between 100 Hz and 20 kHz.

Figure 7 (a) and (b) show the result of the parameters identification with a SNR set to 35 dB.

It can be observed that the bending Young’s modulus is correctly identified at almost all frequen-

cies. For the traction/compression Young’s modulus, the identification seems to be more difficult,225

especially in the low frequency domain. A plausible explanation is that traction/compression wave-

length is too large compared to the length of the considered area before the second mode of traction,

which occurs around 7.5 kHz. Figure 7 (b) shows the extreme difficulty to obtain accurate results for

traction/compression and bending loss factor, when the structural damping is small.

In order to show the sensitivy of the method to different noise ratio, figure 7 (c) and (d) present230

the result of the parameters identification with a SNR fixed to 20 dB. It is then observed the same

behavior about Young’s modules identification. Indeed, the bending Young’s modulus (figure 7 (c))

is correctly identified to its value of 70 GPa, but the traction Young’s modulus shows difficulties to

be identified especially at low frequencies. Nevertheless, a drop of SNR allows a better identification

even at low frequencies of this structural parameter. For the loss factors identification, figure 7 (d), it235

can be observed a better identification when the SNR is lower. It is noticed the bending loss factor is

correctly identified around its value of 0.1 % and the traction loss factor is not identified to its value
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Figure 7: Identification of complex Young’s modules for a large frequency band for a simulated beam, with SNR = 35

dB: (a) Young’s modules in traction/compression and in bending movement, (b) Loss factors in traction/compression

and in bending and with SNR = 20 dB: (c) Young’s modules in traction/compression and in bending movement, (d) Loss

factors in traction/compression and in bending.
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Figure 8: Loss factor identification sensitivity through the simulation of an aluminum beam with different loss factors:

0.1 %, 1 % and 10 %. Identification of (a) traction loss factor and (b) bending loss factor.

of 0.1 %.

3.3.2. Loss factor identification sensitivity

In the previous section, it has been observed that loss factors identification seems to be very240

sensitive. In this section, it is proposed to study this sensitivity. Three cases of translations are

simulated for the same aluminum beam, but with three different loss factors: 0.1 %, 1 % and 10 % and

the SNR of translations is fixed to 35 dB. Loss factors identifications are presented in figure 8 (a) for

the traction loss factors identifications and in figure 8 (b) for the bending loss factors identifications.

It can be observed for those both figures a better identification when the loss factor increases.245

Indeed, higher are the loss factors, more influence they have on the beam motion, and more correctly

they are identified.

3.3.3. Preliminary conclusion for structural identification from simulated cases

In this part, identification results from simulated cases were presented. Preliminary conclusions

can be done in order to explain further identification of complex modules with this method.250

The first one concerns the identification of Young’s modules. It has been observed that the bending

Young’s modulus is easier to identify than the traction Young’s modulus, especially at low frequencies.

This difficulty to identify traction parameters comes from the difference of behavior between bending

and traction motion. Indeed, the wavelengths involved between those two movements are drastically

different and this has two consequences: the measured area can be too small to capture a sufficient255

portion of traction wavelength and the level of traction translations is very low when few modes are

involved.
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The second concerns the identification of loss factors. As with Young’s modulus identification, it

has been shown that it is easier to identify bending Young’s modulus than traction Young’s modulus,

especially at low frequencies. Furthermore, a high loss factor is easier to identify. It can be explained,260

because a small loss factor has less influence on the beam motion.

4. Experimental Results

This section presents experimental results obtained on two beams :

• an aluminum straight beam,

• a sandwich curved beam.265

In all experiments, the structure has one extremity free and the other driven by a shaker (LDS

V201). The shaker was equipped with a force sensor (PCB 208C02). The excitation signal was a

periodic chirp between 100 Hz and 20 kHz. This shaker is recommended to work between 5 Hz and

13 kHz. In these cases, it is used up to 20 kHz, but the input signal has been reworked to obtain a

sufficient excitation level and the coherence is verified over the whole frequency band. Two kind of270

excitation can be used, one excites predominantly the longitudinal direction (following XS) and the

second excites predominantly the transverse direction (following ZS). The vibratory field was measured

using the measurement platform 3D Vib, a Polytec 3D scanning vibrometer (Polytec PSV-500-3D-xtra)

mounted on an industrial robot. The translations were measured on a meshgrid constituted of five

points along the width of the beam. 730 points are measured. Traction and flexural translations of275

these five points are averaged in order to have a value at each abcissa along the beam and to reduce

the measurement noise. The distance between points in length and in width is fixed to 3.33 mm.

4.1. Experimental validation on aluminum straight beam

The first experiment concerns the aluminum beam. The beam has a length of 0.5 m, a width

b = 0.02 m and a thickness h = 0.002 m. The mass density of the beam is 2700 kg.m-3. The section280

of the beam is also a rectangle, so the second moment of area is calculated by Iz = bh3

12 . This beam is

excited principally by a longitudinal excitation (following XS).

The measured mobility of the beam is presented in figure 9. The dashed blue line represents the

mobility of the beam along the XS-axis. Four peaks are observed, which show four resonances of

traction. The yellow line represents the mobility of the beam along the ZS-axis. On this one, a lot of285

bending resonance are visible. A difference of behavior between traction and bending movements is

also noted, since the involved wavelengths are not the same.

Using the algorithm presented in Appendix A and initializing Ẽ0
t and Ẽ0

f to 50(1 + 1j) GPa,

identification results are shown in figure 10. The traction Young’s modulus is successfully identified
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Figure 9: Averaged mobility of the aluminum straight beam in the three direction for an excitation along the XS-axis.
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Figure 10: Identification on an aluminum straight beam between 100 Hz and 20 kHz: (a) Traction and flexural Young’s

modules ; (b) Traction and flexural loss factors.
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from 8 kHz to 20 kHz and its value is around 72 GPa. Before 8 kHz, there is not enough amplitude290

associated to the traction/compression motion of the beam.

The flexural Young’s modulus is clearly identified after 2 kHz, but its value oscillates between 60

and 80 GPa. After 7 kHz, when the traction Young’s modulus seems correctly identified, the value of

flexural Young’s modulus is more stable with a mean value 68 GPa.

The values of Young’s modules after 8kHz are in accordance with the aluminum material, which295

typically has a Young’s modulus around 70 GPa.

As usual results with this kind of inverse method, loss factors are hardly identifiable, because it

has a very low value for aluminum material. In figure 10 (b), traction and flexural loss factors can not

be identified.

4.2. Identification on sandwich curved beam300

The second experiment concerns the sandwich curved beam, as shown as figure 11. The sandwich

material is composed of two steel skins of 1 mm each and a resin core of 0.04 mm, so that the total

thickness of the beam is h = 2.04 mm. The mass density is calculated and gives 7666 kg.m-3.

The geometry of the beam consists of two straight portions, forming an angle of 50◦ and linked by

a curved portion with a curvature radius of 0.150 m. The length of the beam is 0.5 m. The section is305

rectangular too, with a width b = 0.02 m.

The measured area has a length close to 0.485 m. It covers about 97 % of the total length and

fully includes the curved portion.

In this part, two kind of excitation are studied : an excitation along the XS-axis and an excitation

along the ZS-axis. The averaged mobility of the curved sandwich beam in the three directions is310

plotted in figure 12 for each excitation.

For this identification, traction Young’s modulus initialization is fixed to 150(1 + 1j) GPa and

bending Young’s modulus to 70(1 + 1j) GPa. Figure 14 shows the results of the identification with

the proposed inverse method.

Firstly, results for the excitation along theXS-axis are described and commented. The homogenized315

traction Young’s modulus, in figure 14 (a), is clearly identified after 1800 Hz. Its value is around

220 GPa, which is close to the value for steel. Indeed traction motion is governed by the skins of the

sandwich, the resin core is only slightly solicited by this motion. In consequence, traction loss factor

(in figure 14 (b)) is hard to identify because it is very low, less than 0.1 %. That corresponds to steel

loss factor.320

Regarding homogenized flexural Young’s modulus, in figure 14 (a), its identification seems to be

more complicated. At low frequencies, a fall of its value is observed from 200 GPa to around 100 GPa.

Between 2 kHz and 5.5 kHz, 11 kHz and 13.5 kHz and 14.7 and 18.4 kHz, this value is monotone
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(a) (b)

Figure 11: Experimental setup for translations measurements of a curved sandwich beam with a 3D Scanning Vibrometer

on a robot for (a) an excitation along the XS-axis and (b) an excitation along the ZS-axis.
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Figure 12: Averaged mobility of the curved sandwich beam in the three directions for (a) an excitation along the XS-axis

and (b) an excitation along the ZS-axis.
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(a) 5540 Hz (b) 9406 Hz (c) 14325 Hz (d) 19146 Hz

Figure 13: Operational deflection shapes of the sandwich curved beam excited along the XS-axis, for four frequencies :

(a) at 5540 Hz, (b) at 9406 Hz, (c) at 14325 Hz and (d) at 19146 Hz

and decreases slowly. Sandwich structures involve shearing motion. The developped model neglects

this kind of motion. In consequence the apparent Young’s modulus lowers [32]. This identification325

procedure fails for three frequency bands : between 6 and 11 kHz, around 14 kHz and around 19 kHz.

As it can be seen on figure 12 (a), for each frequency band, other motions (twist or lateral bending)

appear, which are not taken into account in the finite element model of the inverse problem. The mode

shapes of the beam for these frequencies are given in figure 13. Flexural loss factor (in figure 14 (b))

is also clearly identified, except for traction modes frequencies. The flexural loss factor is higher than330

20 % before 6 kHz and around 15 % after this frequency. This relatively high loss factor is due to

viscoelasticity of the resin, which is expected to provide high damping.

Secondly, results for the excitation along the ZS-axis are described and commented. Homogenized

traction Young’s modulus seems to be more difficult to identify before 14 kHz, in figure 14 (c), even

if this mean value is around 225 GPa. After 14 kHz, its identification is more stable. In figure 14 (d),335
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the homogenized traction loss factor is always hard to identify, due to its low value.

However, homogenized flexural Young’s modulus, in figure 14 (c), is better identified than the

excitation is along the axis XS . The same decrease is observed at low frequencies, but the identification

failures are more limited on the flexural Young’s modulus, as well as on the homogenized loss factor, in

figure 14 (d). This behavior of the homogenized loss factor is a common result for laminated structures340

as for example shown by Manconi [33]. Indeed for laminated structures, loss factor value presents a

bell-shaped curve. It means at low frequencies a low value of loss factor, then a rise up to a peak and

after a drop of its value.

It can be concluded comparing both results for different directions of excitation, that the excitation

conditions the result of the identification. If two complex modules are sought with only one measure-345

ment, a compromise between an excitation along the XS-axis and along the ZS-axis should be found

to excite properly the motion of traction and the motion of bending.

5. Conclusion

This paper presents an inverse method to identify traction and flexural stiffnesses of a curved beam.

The developed method is based on the FAT method coupled to a Finite Element operator to replace350

the need of the analytical dynamic motion equation.

The application of this method requires the knowledge of the structure geometry, which allows to

build stiffness and mass matrices. Other conditions are the absence of external effort on the measured

area and the access of the translation field. In the present case, two components of the displacement

are required, the traction and the flexural translations. The sensitivity to measurement noise is over-355

come by a probabilistic approach, which adjusts automatically the level of regularization. A dynamic

condensation method is used to compute from the translations the flexural rotation.

The method has been validated experimentally on an aluminum straight beam and on a sandwich

curved beam. For those both cases, traction and bending Young’s modules were identified on a wide

frequency band between 100 Hz and 20 kHz. For aluminum beam, loss factors are too low to be well360

identified. However for sandwich beam, bending loss factor is clearly identified.

Through different simulations and experiments, some good practices can be deduced to apply this

method to a curved beam. Firstly, the measurement is a very important point for two main reasons.

Inverse methods are sensitive to noise and also needs denoising procedure. A way to have a correct

result is to have a SNR as low as possible. The second reason concerns the excitation. In this paper,365

it is shown that the beam have to be sufficiently excited in the direction of the traction and in the

direction of the bending to identify correctly the structural parameters. Moreover, it has been observed

that the traction Young’s modulus is more difficult to obtain than bending Young’s modulus. That’s

23



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (Hz) 104

0

0.5

1

1.5

2

2.5

3

Y
ou

ng
's

 M
od

ul
us

 (
P

a)

1011

Traction Young's Modulus identified
Flexural Young's Modulus identified

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (Hz) 104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Lo
ss

 fa
ct

or

Traction loss factor identified
Flexural loss factor identified

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (Hz) 104

0

0.5

1

1.5

2

2.5

3

Y
ou

ng
's

 M
od

ul
us

 (
P

a)

1011

Traction Young's modulus identified
Flexural Young's modulus identified

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (Hz) 104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Lo
ss

 fa
ct

or

Traction loss factor identified
Flexural loss factor identified

(d)

Figure 14: Identification on a sandwich curved beam of between 100 Hz and 20 kHz: (a) Bending and flexural Young’s

modulus and (b) Bending and flexural loss factor, for an excitation along the XS-axis; (c) Bending and flexural Young’s

modulus and (d) Bending and flexural loss factor, for an excitation along the ZS-axis
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why, it would be necessary to pay special attention to the direction of the excitation. Furthermore, it

has been noted that others motions can occur and disturb the identification at particular frequencies,370

as seen for bending Young’s modules, which are disturbed by twist motion. These others movements,

which are not taken into account in the model, can be limited by an excitation as clean as possible.

Secondly, for the identification procedure, an attention should be taken to the initialization of the

Young’s modules. It can be suggested an improvement to initialize the minimization procedure in

determining the Young’s modules by static methods (Dynamic Mechanical Analyses for example) to375

have an idea of the Young’s modules and to use those values as initialization values.

The third recommendation concerns the limit about loss factor identification. With this presented

method, it can be concluded that low loss factors cannot be determined by this method, because they

don’t have enough influence on the beam motion and the information is lost in the measurement noise.

Nevertheless, that doesn’t prevent to identify correctly Young’s modules.380

A last point can also be discussed, the choice of the FE model. Some studies were already done by

Wassereau [18, 32] on thick beams and by Ruzek on the selection of vibration models [34, 35], and a

deeper study would be necessary about the choice of this FE model. Indeed, refined models describe

more accurately the structure dynamics, but have lower robustness when using an inverse method.

This is the reason why we use here a simple FE model, which will depict the right dynamics for the385

global beam. However this model can be more complex to describe the local strain and stress inside

the beam section.
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Appendix A Algorithm of the inverse problem

Require: Initialize : Ẽ0
t , Ẽ0

t

1: M,KT,KF ← compute FE matrices

2: for freq ∈ [freqmin, freqmax] do

3: ym ← get the translations field at frequency f

4: ys ← calculate from Eq. (27), Ẽi−1
t and Ẽi−1

f

5: y← calculate from Eq. (32)

6: Σq ← calculate from Eq. (33)

7: µδ ← calculate from Eq.(23)

8: Ẽi
t , Ẽ

i
f ← obtain in minimizing f(Ẽt, Ẽf ) from Eq.(24)

9: Ẽfreq
t ← ẼN

t (see Figure 7)

10: Ẽfreq
f ← ẼN

f (see Figure 7)

11: end for
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