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Abstract: This paper presents the first optimization study of multi-site transportation in the construction industry, which
allows mutualizing building material delivery and construction waste removal. This study is inspired by a real-
world problem encountered in the framework of the French R&D project DILC, in which a pooling platform
must centralize the delivery of building materials to the construction sites and the pickup of their waste, using
a limited and heterogeneous fleet that are allowed to perform multiple trips, under time and capacity limitation
constraints. The problem under study, called the Multi-Trip Pickup and Delivery Problem, with Split loads,
Profits and Multiple Time Windows is a new extension of the vehicle routing problem with pickup and delivery,
that considers new realistic constraints specific to the construction industry such as each construction site may
have a priority on its delivery request or its pickup request or both, with a higher priority level for delivery
request, and each construction site may have several time windows. To solve this problem, we propose new
insertion criteria that takes into consideration several aspects of our problem, which we have embedded in a
construction heuristic. Experiments performed on new real instances have shown the efficiency of our method.

1 INTRODUCTION

The construction sector is a key driver for the
economy. In fact, according to the Construction
Intelligence Center and Orbis Research this sector
reaching $10.6 trillion in spending world-wide in
2017, and it is expected to achieve $12.7 trillion by
2022, and $15.5 trillion by 2030. A large part of this
budget is reserved for transport to deliver building
material and pickup wastes to and from the construc-
tion sites. Indeed, the construction industry consumes
huge quantities of materials and generates a large
amount of waste, and to manage their transporta-
tion planning, each construction site collaborates
independently with construction materials suppliers
and waste management operators without any coor-
dination between the construction sites themselves
and between the other logistic actors. In fact, each
of these actors: suppliers and waste managers have
their own fleet of vehicles and operate according to
their own schedules and, often, traffic congestion
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occurs due to uncoordinated operations.This results
in high transport requirements, high social costs, and
a wide range of associated negative environmental
impacts in the form of congestion, road accidents,
environmental pollution, landscape degradation and
noise generation. To deal with these drawbacks,
it is necessary to develop decision support tools to
improve transport planning, but very few studies
have focused on this key lever of optimization.
Just-in-time strategy for the supply flow of building
materials on site has been put forward in (Bertelsen
and Nielsen, 1997). (Ala-Risku and Kärkkäinen,
2006) suggest a potential solution for managing
the material delivery of construction projects. An
optimized integrated logistic model for material
delivery and waste removal in the construction
industry was suggested in (Shakantu et al., 2008), to
reduce transportation cost and vehicular movements.
The proposed model was applied to a real case. An
excellent recent systematic survey of metaheuristic
applications on construction project management
is available in (Liao et al., 2011). However, no
study has addressed the problem of this paper,
which is the multi-site simultaneous optimization of



building material delivery and waste pickup through
a pooling platform in the construction sector. This
issue is the result of a collaboration that we are
conducting within the French framework of the RD
project DILC, whose aim is to design an innovative
platform for optimizing construction site logistics,
that is adapted to multi-site eco-city construction
projects. The optimization lever studied in the DILC
project is the consolidation of the transportation
flows and human resources through a physical
platform that is modular, removable and mobile,
and the development of decision support tools to
help the platform managers to optimize their logistics.

Unlike direct transportation from suppliers to
construction sites, the pooling platform aims group-
ing many delivery building materiel from different
suppliers, receiving them in pallets according to a
schedule corresponding to the progress of construc-
tion activities on the construction sites. From the
received building materials, ready-to-use kits are
prepared on the platform, stored and delivered in
pallets to the construction sites.The kit represents the
site supply unit, that is, a kit must be delivered in full.
It is no possible to split the kit into several deliveries.
Each kit is characterized by its ID, the number of
pallets it contains, and its weight. The delivery
request from the construction sites may involve
different kits, and the quantities of material delivery
demands are known to sometimes exceed the truck’s
capacity, which requires to supply the construction
sites several times, so splitting the delivery demand
is allowed in our case. The amounts of waste are
relatively less important than deliveries but can also
be split.

The platform must also manage the removal of
waste from construction sites to the platform.It
should be noted that there are two types of waste:Big-
bag waste and tipper waste. Big-bag wastes are
packed on pallets and concern wastes that are pro-
duced with small and medium quantities such as soft
plastic, hard plastic, and cardboard. Tipper waste
concerned the wastes that are produced with high
quantities like wood and metals. In this study, we
focus only on Big-bag wastes because their removal
can be pooled with the delivery of building materials
using a limited and heterogeneous tail-lift truck fleet,
whose capacity is given in pallets. The vehicles
perform multiple trips between the platform and the
construction sites to load the kits at the platform,
deliver them to the construction sites, collect waste
from the construction sites and unload these wastes in
the recycling center located just next to the platform.

It should also be noted that the planning of op-
erations within the platform does not concern this
study. The problem addressed here is the routing
optimization between the platform and the construc-
tion sites to mutualize the materiel delivery and the
waste removal, and more specifically we present a
new variant of the well-known pickup and delivery
problem. The pickup and delivery problem is a
variant of the vehicle routing problems that have
been studied for more than 30 years (Parragh et al.,
2007; Berbeglia et al., 2007; Parragh et al., 2008).
It consists of transporting objects or people between
origins and destinations. Despite the abundant litera-
ture on the pickup and delivery problem, the problem
that we present here named the Multi-Trip Pickup
and Delivery Problem, with Split loads, Profits and
Multiple Time Windows (MTPDPSPMTW) is a
novel one and allows us to model constraints that are
specific to the construction sector.

Our contribution can be summarized in the three
following issues
- The MTPDPSPMTW introduce two new constraints
that have not been taken into account in models
and algorithms for vehicle routing research, the two
constraints are listed below.
1) Multiple time windows associated with each
construction sites : depending on the type and the
progress of work on the construction sites, access
to these sites may be limited to one or more time
windows: certain time windows are fixed as “before
the start of the day’s work on the building sites” and
“after the end of a day’s work on the building sites”,
and other time windows are free and may concern
several periods of the day. Whereas in classic VRP
problems, usually only one time window is specified
per customer or per request (Ramdane-Cherif-Khettaf
et al., 2015).
2) Profit associated with delivery request or pickup
request or both: in the vehicle routing problems,due
to some resource limitation constraints, it is often not
possible to serve all customers, so a profit is assigned
generally to each customer. In general, the aim of
solving the vehicle routing problems with profit is to
determine which customers must be served and how
to design the vehicle routes so that the total collected
profit is maximized while adhering to resource
limitations (Chentli et al., 2018). In our study, each
construction site may have a profit on its delivery re-
quest or its pickup request or both. Indeed, to ensure
the satisfaction of certain requests, the platform’s
managers may assign a priority to a delivery request
and/or a pickup request depending on the progress of



work on the sites but also depending on the type of
request and the possibility of outsourcing it or not.
Delivery requests always have a higher priority than
pickup requests.
- The MTPDPSPMTW allows to simultaneously
consider constraints that have never been previously
combined in the pickup and delivery variants studied
in the literature. More specifically, these are the
constraints on heterogeneous fleet of vehicles, multi-
trips, splitting demands, and considering profit and
time windows.
- The MTPDPSPMTW is NP-hard problem, and to
resolve it we propose new score criteria to deal with
the complexity of our problem, and we embedded
these criteria in a constructive polynomial heuristics,
named SBH (Score Based Heuristic). Experiments
on real instances show the efficiency of this approach.

The remainder of the paper is organized as fol-
lows. In Section 2, we review the existing literature
on related vehicle routing problems. Section 3
describes the problem. Heuristic solutions are
proposed in Section 4. Experimental results with
the definition of benchmarks are given in Section 5.
Finally, concluding remarks and guidelines for future
research are given in Section 6.

2 LITERATURE REVIEW

The problem we focus belongs to the class of
Vehicle Routing Problem with Pickup and Delivery
(VRPPD). VRPPD represent an essential class of
VRP in which goods must be transported between
sources and destinations (Berbeglia et al., 2007).
More precisely the problem studied in this paper is
included in the class VRP with Backhauls (VRPB)
where objects or individuals are transported from a
depot to linehaul customers and from backhaul cus-
tomers to a depot (Parragh et al., 2008). The most ad-
equate VRPB subclass with our problem is the VRP
with Divisible Deliveries and Pickups (VRPDDP).
VRPDDP is a special case of VRPPD where each cus-
tomer may have delivery and/or pickup requests that
must be served with capacitated vehicles. The pickup
and the delivery quantities can be served, if helpful,
in two separate visits (Nagy et al., 2015).

Many variants of VRPPD with several constraints
have been proposed in literature to model real trans-
portation problems. In some cases, the available re-
sources are insufficient to service all customers. Thus,
a known profit is associated with each customer, the
goal is to find the subset of customers to be ser-
viced and to determine vehicle routes that: maximize

the total acquired profit, minimize the total traveling
cost, and satisfy temporal and capacity constraints.
In (Chentli et al., 2018) a selective Adaptive Large
Neighborhood Search heuristic (sALNS) was put for-
ward to solve Vehicle Routing Problem with Simulta-
neous Pickups and Deliveries (VRPSPD) with profits.

Several variants of VRPPD introduced the concept
of time windows where the service at each customer
must start within one given time windows. In such
problem, the concept of time is introduced and one
has to think about the travel time and service time
at the customers. A new branch and cut and price
algorithm for the pickup and delivery problem with
time windows (PDPTW) was presented in (Ropke
and Cordeau, 2009). Tabu search and genetic algo-
rithm were designed in (Liu et al., 2013) for solving
a specific version of VRPPD with time windows in
the home health care industry. In (Li et al., 2016)
the authors introduce the pickup and delivery prob-
lem with time windows, profits, and reserved requests
(PDPTWPR) and propose an ALNS to solve this
problem. An improvement of original ALNS was car-
ried out in (Sun et al., 2020) to solve time-dependent
profitable pickup and delivery problem with time win-
dows (TDPPDPTW).

VRPPD with split loads (VRPDPSL) is a variant
of the VRPDP where customer demands can be split
between several vehicles. The load splitting reduce
the total transportation cost and the fleet size.The ben-
efit of splitting loads in the pick-up and delivery prob-
lem was quantified in (Nowak et al., 2008). An In-
teger Linear Programming (ILP) formulation for VR-
PDPSL was presented in (Wassan and N.Nagy, 2014).
In (Chen et al., 2014), the authors introduced the
multi-commodity unpaired VRPPDSL and developed
a mathematical formulation and a variable neighbor-
hood search algorithm to solve instances with up to
10 customers and 6 commodities.

Multi-trip VRPPD is another variant of VRPPD
where a set of customers located at different geo-
graphical positions has to be served by a fleet of ve-
hicles. Each vehicle can make several trips during a
planning period, which is typically a day. The objec-
tive is to minimize the total travel cost while respect-
ing all operational constraints. An exact algorithm
based on the trip-chain-oriented set-partitioning was
suggested in (Tang et al., 2015) to solve a new ver-
sion of VRPDP called Multi-Trip Mode of Door-to-
Door service of Pickup and Delivery of Customers to
the Airport (MTM-D2PDCA).

Other variants of VRPPD which combines split
and multi-trip are available in the literature. In (MI-
TRA, 2005), one-to-one VRPPDSL was presented.
This problem is called “one-to-one” since every re-



quest originates at one location and is destined for
one other location. The VRPPDSL was modeled as a
mixed-integer programming (MIP), and a route con-
struction heuristic was proposed to solve this VRP
variant. In (Mitra, 2008), the same authors presented
an extension of this heuristic, using parallel cluster-
ing. In (Nowak et al., 2008), a heuristic-based on
simulated annealing and tabu search was described
and a set of random large-scale instances are tested.
The experimental results show that, for a given set
of origins and destinations, a significant benefit takes
place when the load size is higher than half the capac-
ity of the vehicle. An extension of one-to-one VRP-
PDSL was suggested in (Şahin et al., 2013), where
multiple vehicles can be used to serve just one load
and each vehicle can make multiple stops. This vari-
ant was called a Multi-vehicle One-to-one PDPSL
(MPDPSL). To solve MPDPSL, the authors proposed
a heuristic based on tabu search and simulated anneal-
ing. Branch and price algorithm and large neighbor-
hood based Metaheuristic were designed in (Haddad
et al., 2018) for MPDPSL. A special mathematical
model for the VRPPDSL was suggested in (Yin et al.,
2013) where two new constraints were imposed: the
first constraint concern the maximum travel distance
for all vehicles, the second limits the number of re-
quests splitting of each customer to one.

In all the works cited above, the vehicle fleets
are assumed to be homogeneous, In (Gansterer et al.,
2016), the authors have proposed two versions of the
general variable neighborhood search (GVNS) for a
multi-vehicle profitable pickup and delivery problem
where the vehicles are heterogeneous. A very com-
plex variant of VRP which groups: pickup and deliv-
ery, time windows, and multi-trip has been presented
in (Nguyen et al., 2017). This variant is known as
Multi-trip Pickup and Delivery Problem with Time
Windows and Synchronization (MT-PDTWS). Tabu
search heuristic algorithm was implemented for solv-
ing this variant.

Table 1 summarizes the constraints considered in
the variants described above and shows that the model
proposed in our study is novel compared to the litera-
ture.

3 PROBLEM DEFINITION AND
NOTATION

The Multi-Trip Pickup and Delivery Prob-
lem, with Split loads, Profits and Multiple Time
Windows, named MTPDPSPMTW can be de-
fined on a complete, undirected graph G = (E,V ),
where V = {0, . . . ,n} is the set of vertices and

E = {(i, j) : i, j ∈V, i 6= j} is the set of edges. Vertex
0 is the pooling platform while the other vertices
are the construction sites. A travel time ti j and
cost ci, j are assigned to each edge (i, j). A fleet
of heterogeneous tail lift vehicles is located at the
platform. The vehicle fleet is composed by m vehicles
with different capacities and time availability . We
noted Qk the capacity in pallets of the kth vehicle
k ∈ {1, . . . ,m},Wk its volume capacity in tons, and by
Dk its maximum working time.

Each site i ∈ V has a pickup demand −→pi a deliv-
ery demand

−→
di . Note that, all demands are integer

vectors.−→pi is in this form (big−bag1, . . . ,big−bagz)
which expresses the pickup demand of each type of
Big-bag waste.

−→
di is represented as (kit1, . . . ,kitz′ )

that describes the delivery demand of each type of
kits. A kit can contain one or more pallets and theBig-
bag waste unit is the pallet. Thus, all demands of site
delivery and pickup are expressed in pallets. In the
rest of the paper we denote by Q(

−−→vect) the size of de-
mand in pallets (−−→vect can be −→pi or

−→
di ). Sometimes, the

demands of sites (delivery and/ or pickup) are greater
than the vehicle capacity (for example Q(

−→
di ) > Qk),

then the site can be served by the same vehicle with
several trips or by several vehicles. Each site can have
a priority on its delivery demands or its pickup de-
mands or both. To satisfy these requirements, two real
values ppi and pdi are associated with each site i and
correspond to the pickup profit and delivery profit, re-
spectively. Unlike the literature approaches where the
profit is associated with customers, in our model, the
profit is associated with each demand.

Each vertex i ∈ V \ {0} has a service time si
which corresponds to the loading/unloading time
on site, and a set of time windows TWi =
{[e1

i , l
1
i ], [e

2
i , l

2
i ], . . . , [e

t
i, l

t
i ]} where ep

i p ∈ {1, . . . , t} is
the earliest time to begin service at the vertex i and lp

i
is the latest time to finish service at the vertex i . Some
time windows are flexible, and a time delays are pro-
vided with some penalty to allow arrival before ep

i and
departure after lp

i . These time delays are noted mep
i

(mlp
i respectively) for the upstream delay (the down-

stream delay respectively),so each time window of a
site i can be enlarged to [ep

i −mep
i , l

p
i +mlp

i ] = [e∗i , l
∗
i ].

If a delay time of a time window is null, the time win-
dow is called hard time window, otherwise the time
window is flexible, the flexibility of a given time win-
dow is more important if the delay time is larger. In
fact, this time delay can be used mainly by the plat-
form managers to help them to negotiate more effec-
tively the time window constraints with the construc-
tion sites.

Furthermore, we defined [e0, l0] as the single time



Table 1: Comparison between recent studies on the Pickup and Delivery Problem and its variants

Reference Pickup & Delivey Split Profit Time Windows MultiTrip Heterogeneous vehicules
(Chentli et al., 2018) X X

(Ropke and Cordeau, 2009) X X X
(Liu et al., 2013) X X X
(Li et al., 2016) X X X

(Sun et al., 2020) X X X
(Wassan and N.Nagy, 2014) X X

(Chen et al., 2014) X X
(Tang et al., 2015) X X X
(MITRA, 2005) X X X

(Mitra, 2008) X X X
(Nowak et al., 2008) X X X
(Nowak et al., 2009) X X X
(Şahin et al., 2013) X X X

(Haddad et al., 2018) X X X
(Yin et al., 2013) X X X

(Gansterer et al., 2016) X X X
(Nguyen et al., 2017) X X X

Our problem MTPDPSPMTW X X X X X X

window of the platform that designates the earliest
possible departure from the platform and the latest
possible arrival at the platform. The service time s0
at the platform is given by the sum of loading time of
kits and unloading time ofBig-bag waste. This service
time is not considered for the first trip of each vehicle
since the first vehicle loading can be done indepen-
dently of its tour.

If a vehicle travels directly from site i to site j. The
site service j starts at b j =max{ec

j,bi+si+ti, j}where
ec

j =min1≤k≤|TW j |{e
k
j−mek

j | lk
j +mlk

j−(bi+si+ti, j+
s j)≥ 0} designated the lower bound of the most ade-
quate time window. If the vehicle arrives too early at
j, the service can start at b j = max{ec

j−mec
j,bi + si +

ti, j} if mec
j 6= 0. Note that waiting is not allowed be-

cause construction site activities do not allow access
to the sites beyond the imposed time constraints.

A feasible solution to our problem is composed of
a set of feasible trips assigned to adequate vehicles.
A feasible trip is a sequence of nodes that satisfies the
following set of constraints:

• Each trip must start and end at the pooling plat-
form.

• Each kit must be delivered in full, no possibility
to split the kit into several trips.

• The overall amount of materials delivered and
wastes picked along the route must not exceed the
vehicle capacity (Qk, Wk).

• The total duration of each trip calculated as the
sum of all travel duration required to visit all the
construction sites of the trip sequence, and service
time needed for each visit to a construction site
during the tour could not exceed Dk ;

• Each site can be visited at most once during the
trip while respecting one of its time windows.

We seek to construct a feasible solution of minimum
number of trips, and affecting one or several trips to
the available vehicles such that:

• The total duration of each vehicle’s route, calcu-
lated as the sum of all its trips duration, and the
sum of the platform’s service times don’t exceed
Dk

• Each vehicle must start at the pooling platform no
earlier than e0 and finish at the pooling platform
no later than l0.

• No more than m vehicles are used;

• Each construction site may be visited several
times with the same or different vehicles, so
splitting is allowed for delivery requests and for
pickup requests, and some sites may not be vis-
ited at all.

• The sum of the quantities delivered to a given
construction site must be less than or equal to
its delivery request, and the sum of the quanti-
ties collected from a given construction site must
be less than or equal to its pickup request. This
means that the customer can be delivered and/or
collected partially.

The objective function consists in minimizing the
number of used vehicles, the total duration time, the
total distance, and maximize the number of priority
customers fully served.



4 SCORE BASED HEURISTIC

The MTPDPSPMTW is an NP-hard problem.
Hence, the use of exact optimization methods is not
able to solve this problem in polynomial time, when
the problem concerns the very large real-world data
sets. However, heuristics are more suitable for this
problem. Accordingly, we proposed a new construc-
tion heuristic called SBH (Score Based Heuristic) and
new score criteria adapted to our problem such as dis-
tance, time, customer service urgency, the deadline to
serve a customer, priority (profit delivery and profile
pickup).In this section, we describe this heuristic.

Initially, the heuristic selects a vehicle available
from a heterogeneous fleet. Throughout this work, the
vehicle selection undergone to the following rules: If
the total demand of the sites not yet served is greater
than the maximum capacity in this fleet, then the
vehicle available with the maximum capacity is se-
lected. Otherwise, the vehicle with the minimum ca-
pacity that meets all demands is selected. In the next
step, the heuristic create an empty trip and associate
it to the selected vehicle. This trip is extended by
appending the feasible site j that has the minimum
score based on Cri, j Eq(7) to the sites i (the latest
routed site). A free client j is said feasible if it can
be added to the current route without violating time
window constraint TWj, vehicle capacity constraint
Qk (pallet capacity), Wk (tons capacity) and vehicle
time availability Dk. During the loading of a vehi-
cle at the platform, two cases are possible: either that
the site demand d j is less than the vehicle’s capacity,
in this case, all customer delivery will be loaded into
this vehicle (the customer is fully delivered). other-
wise, the customer is partially delivered in the current
trip. It is probable that two sites or more will be de-
livered partially on the same trip due to atomic deliv-
eries of kits. For example, if we consider a vehicle k
with Qk = 16 and two sites where

−→
d1 = (4 kit1,3 kit3)

and
−→
d2 = (2 kit2,1 kit3). Knowing that kit1,kit2 and

kit3 are composed by 3,2 and 5 palettes, respectively.
Thus 4 kit1 will be delivered to site 1 and 2 kit1 to site
2. As soon as the limit vehicle capacity is reached or
no site can be inserted to the current trip, the vehicle
returns to the platform and a new route is initialized.
If the vehicle availability time has expired a new ve-
hicle is selected. The algorithm converges when all
customers are satisfied or all resources are used. The
main structure of this heuristic is given by algorithm
1.

In this part of our paper, we describe the selec-
tion criteria of the SBH heuristic proposed to the MT-
PDPSPMTW. Firstly, we consider the distance di, j
Eq(1) which allows to select the closest sites to the

current vehicle location. The second criterion is the
travel time Ti, j Eq(2). In addition, we consider the
customer service urgency using all time windows and
their margins Uri j Eq(3) which favors the selection of
sites where their remaining time service is very short.
the fourth criterion is the deadline to serve the site
Ds j Eq(5) this promotes the selection of sites whose
deadlines will expire as soon as possible.

The last are the profit related to delivery Pdi and
pickup Ppi which are represented by Eq5 and Eq6,
respectively. The values of Pdi and Ppi are fixed ac-
cording to real cases. The goal of these criteria is to
foster the serving of the sites with priority. To ensure
continuity of deliveries service for a site, we multiply
the delivery profile Pdi by progress rate delivery as
shown in Eq(7). For example, if a site i has a demand
di such as Q(

−→
d j )=15 palettes and only 10 palettes

are delivered on the current trip.It will have a more
chance than the other sites where the service has not
yet started to be selected on the next trip because the
progress rate delivery of i is ∑

cd j

Q(
−→
d j )

= 10
15 = 0.75,but,

the progress rate delivery of other sites is null. This to
avoid multiplying partial services.

• di j(1) : the distance between the last site visited i
and a site j not yet satisfied either in delivery or
in collection

• Ti j = b j − (bi + si)(2) : the time difference be-
tween the end of service at i and the start of ser-
vice at j

• Uri j = lc
j − (bi + si + ti j) + ∑

1≤k≤|TW j |
k 6=c

ek
j≥bi+si+ti j

lk
j − ek

j +

β

mlc
j + ∑

1≤k≤|TW j |
k 6=c

ek
j≥bi+si+ti j

mek
j +mlk

j

(3): the site ser-

vice urgency when we consider all time windows
and their margins. β = 1 if we allow the use of
time windows margins 0 otherwise.

• Ds j = max
1≤k≤|TW j |

(lk)− (bi + si + ti j)(4): deadline

to serve the site j.

• Pdi =

 5 if site i has priority in deliveries
2 if site i has non-priority in deliveries
0 otherwise

(5)

• Ppi =

 2 if site i has priority in pickup
1 if site i has non-priority in pickup
0 otherwise

(6)



Cri j = γ1
di j

max
j
(di j)

+ γ2
Ti j

max
j
(Ti j)

+ γ3
Uri j

max
j
(Uri, j)

+ γ4
Ds j

max
j
(Ds j)

− γ5 ∑
cd j

Q(
−→
d j )
×

Pd j

max
j
(Pd j)

− γ6
Pp j

max
j
(Pp j)

(7)
where:
cd j is the number of pallets delivered to site j so far.
∑

6
i=1 γi = 1 γi ≥ 0 ∀i ∈ 1, . . . ,6

5 COMPUTATIONAL STUDY

In this section, we describe our experimental re-
sults. Section 5.1 presents the characteristics of the
MTPDPSPMTW test instances. Section 5.2 the con-
figurations for the parameters values of our algo-
rithm using the irace package. The results of detailed
and comprehensive computational studies are sum-
marized in Section 5.3.

5.1 Instance generation

To evaluate the performance of our heuristic, we
designed two groups of MTPDPSPMTW instances
based on DILC real scenarios. The distance between
two sites or between a site and the platform is cho-
sen randomly between 1 and 150 km. For each in-
stance, 20% of sites have a load of a delivery request
in [Q,3Q], 60% in [ 1

3 Q,Q] and 20% lower than 1
3 Q.

The load of a pickup request is lower than 1
3 Q for

all sites, where Q = 16 is the pallet capacity of the
largest vehicles. The percentage of priority requests
waste collection is always fixed at 50%. Each site
can have one, two, or three time windows. The set
of site time windows can be fixed chosen from a list
{[06 : 00−08 : 00 0−30], [11 : 00−14 : 00 30−
0], [17 : 00−20 : 00 30−0]}of predefined or chosen
randomly respecting platform time windows, where
the notation [ei–li mei−mli] correspond to the time
window [ei, li] of site i with upstream delay mei and
downstream delay mli. These time windows are deter-
mined by taking into account the delivery’s unloading
times, Big-bag loading times, and travel times.

In order to evaluate the effectiveness of our heuris-
tics on several real cases, we create a first group of
instances named G1 which contains three basic in-
stances DILC10, DILC20 and DILC100 or 10,20 and
100 designating the number of sites. The number

Algorithm 1: Score Based Heuristic
Input: A MTPDPSPMTW instance;
A list Luns of unsatisfied sites ;
Luns← /0;
A list L f eas of feasible sites ;
L f eas←V ;
Output: A feasible solution

1 Total D←Calculate Total delivery();
2 Total P←Calculate Total pick up();
3 k← Select vehicle() ;
4 vehicleLoad← 0;
5 Availability k← Dk;
6 Create an empty route r for this vehicle and

initialize it with the platform ;
7 vehCount← 1 ;
8 while (vehCount≤ m) AND (Lunsi 6= /0 ) do
9 while (vehicleLoad < Qk) AND

(Availability k < Dk) do
10 Update L f easi ;
11 if L f easi 6= /0 then
12 Let j ∈ L f easi such that

Cri, j = min
j∈L f easi

(Cri, j) referring to Eq.

(7) ;
13 Update(

−→
d j ,
−→p j);

14 Update(Total D,Total P);
15 Connect j to last visited site i ;
16 Update(vehicleLoad);
17 Update(Availability k);
18 Update Lunsi ;
19 else
20 break;
21 end
22 end
23 Connect the last site of the route r to the

platform ;
24 if Availability k < Dk then
25 Create an empty route and initialize it

with the platform;
26 Associate this route to the current vehicle;
27 else
28 k← Select vehicle() ;
29 vehicleLoad← 0;
30 Availability k← Dk;
31 Create an empty route for this vehicle ;
32 vehCount← vehCount +1;
33 end
34 end

of vehicles is 3, 5, and 10 for instances DILC10,
DILC20 and DILC100, respectively. In all instances,
70% of vehicles have a large capacity, Q = 16 and
the leftovers have a small capacity Q = 4. In each in-
stance, we vary the percentage of priority requests de-
liveries from 0%, 30%, 60% and 100%. Then we ob-
tain 4 subgroups. For each subgroup described above,
we vary the percentage of random time windows from
0%, 30%, 70% and 100%. So we have 16 instances
per group, resulting into a total of 48 instances in our



test group G1.
The most representative cases are the instances

DILC100. Consequently, we create a second group of
instances noted G2-100-70-50 where 100 is the num-
ber of clients of which 70 are priority and 50 is the
percentage of sites who have random time windows.
10 instances are generated in this group to assess the
impact of each criterion studied in the section 4 on
behavior of SBH.

5.2 Training SBH parameters

Our heuristics use a score to select the most suitable
site. This score utilizes a set of criteria. In order
to weigh these criteria in the most effective way, we
have chosen the automatic tuning using Iterated Rac-
ing for Automatic Algorithm Configuration (IRACE).
IRACE is a tool based on machine learning methods
to tune optimization algorithms, i.e. automatically
finding good configurations for the parameter values
of a target algorithm. (López-Ibáñez et al., 2016).
We set to 2000 the maximum number algorithms runs
during the tuning for the algorithm runs for all in-
stances. The chosen parameters space for this racing
are γi ∈ [0,1] and ∑

6
i=1 γi = 1. Table 2 shows the best

setting parameters found by irace. These results show
that all parameters are not null, hence the importance
of all proposed criteria to calculate the score.

Table 2: Best configurations found by irace for the SBH
heuristic.

Parameter γ1 γ2 γ3 γ4 γ5 γ6
Value 0.14 0.32 0.1 0.16 0.25 0.012

5.3 Resultats analysis

The SBH heuristic was coded in python. All tests
were carried out on a personal computer with Intel
Core(TM) i7-7920HQ processor at 3.10 GHz and the
Microsoft Windows 10 operation system using 32.00
GB RAM.

Table 3 shows the results obtained by our heuris-
tic to solve the instance DILC 10, 20, and 100 de-
scribed above. These results reveal that the heuris-
tic is able to completely satisfy a high percentage of
priority requests (for example, for the DILC20 group
of instances, we have 93.49% of priority delivery re-
quests completely satisfied, and 98.12% of priority
pickup requests). The heuristic adds a lower percent-
age of partially satisfied requests to complete routes.
It can be observed that the rate of partially satis-
fied requests is higher for priority delivery requests
compared to non-priority delivery requests (18.84%

for partially fulfilled priority delivery requests ver-
sus 6.9% for partially fulfilled non-priority pickup re-
quests for DILC10 instances). The quantities of pick-
up requests are much lower than the delivery quan-
tities, which explains the low percentage of partially
fulfilled requests.

For instances DILC10 we observe that 78.2% of
priority delivery requests are fully satisfied and 18.8%
are partially satisfied. The pallets delivered corre-
spond to 66.6% of the total number of pallets re-
quested. For non-priority delivery requests, 77.1%
are totally satisfied, and 6.9% partially satisfied. The
percentage of pickup requests that are totally satisfied
is also high 77.1% for the priority and 98.4% for the
non-priority. The collected pallets represent 66.6% of
the total.

For instances DILC20, we note that the percent-
ages of priority and non-priority delivery requests
completely satisfied is very high 93.4% and 94.3%,
respectively. The percentages of pickup requests to-
tally satisfied are very lofty 98.12% for both priority
and non-priority requests. This explains the high rate
of pallets delivered 94.9% and collected 98.5%.

Finally, for large instances DILC100, the results
indicate that 53.4% of priority delivery requests are
entirely satisfied and 7.9% are incompletely satisfied.
The percentage of non-priority delivery requests com-
pletely satisfied is 25.6% and 6.3 for the requests par-
tially satisfied. The percentage of pickup requests
fully satisfied is 46.2% for the priority requests and
41.2% for non-priority requests. The rates of pallets
delivered and collected are proportional to the per-
centage of requests served. According to these re-
sults, we conclude that the SBH is effective for all
instances in terms of all metrics. Consequently, our
heuristic algorithm can be used to solve real industrial
cases.

5.4 Impacts of the criteria on SBH’s
behavior

Referring to table 3 we show that instances DILC100
are the most difficult, so we decided to evaluate the
impact of each criterion discussed in Section 4 on the
behavior of our heuristic using instances of G2-100-
70-50 group. To reach these goals, we used the fol-
lowing metrics: The priority deliveries (Figure 1a)
and non-priority deliveries (Figure 1b) metrics are
statistics on the average number of priority and non-
priority delivery sites, respectively. Priority pickup
(Figure 1c) and non-priority pickup (Figure 1d) rep-
resent statistics on the average number of priority and
non-priority sites in pickup. The total distance and to-
tal time are exposed by Figure 2a and 2b, respectively.



The number of material pallets delivered (Figure 2c)
represents the average of the pallets delivered on all
sites priority or non-priority. The number of Big-bag
pallets collected (Figure 2d) designates the average of
pallets collected from all sites.

Figures1 illustrates these statistics which repre-
sent the result of the evaluation of each criterion sep-
arately, i.e. γi = 1 for the ith criterion, and the other
cities are not taken into account. If we consider the
distance criterion only di, j Eq(1), we notice that the
average of priority delivery requests totally satisfied
is quite important 26.5 among 70 (see Figure 1a), as
well as the average of non-priority delivery requests
totally satisfied which is equal to 12 (see Figure 1b).
The same goes for the average of priority and non-
priority pickup requests. We also note that the average
of delivery requests (priority or not) partially satisfied
is high, which contradicts our objective, which aims
to satisfy completely all sites. This can be explained
by the fact that when we use this criterion, the heuris-
tic aims to minimize the total distance traveled by the
fleets of vehicles 5059 km which increases the num-
ber of tours and consequently the number of requests
served in terms of deliveries and pickup without tak-
ing into account priority and complete request fulfill-
ment. Thus, the average of the amount of pallet deliv-
ery and pallet pickup are important that corresponding
to 575.8 and 289.6, respectively. As time is propor-
tional at the distance, we obtain the same results for
both criteria.

If we consider only the site service urgency Uri j
Eq(3), we observe that the average of delivery re-
quests totally satisfied (priority or not) and the av-
erage of pickup requests totally satisfied is very low
compared to the other criteria.This is explained by the
fact that our heuristic selects the site which has the
minimum service time such site can be far from the
current vehicle position which increases routes and
reduce the number of trips. Consequently the num-
ber of sites served and the average of pallets delivered
and collected decreases as shown in the Figure 1.

When we assess the deadline to serve the site Ds j
Eq(4). We note that the average of priority delivery
requests totally satisfied and the average of material
delivered pallets are the smallest 12.5 and 274, re-
spectively. However, the distance traveled by the fleet
of vehicles is the longest 6397 km . This is due to
the behavior of our heuristic that chose the site with
the time service that will expire the earliest. These
sites are often distributed in distant geographical ar-
eas, which proves the results obtained.

When we test the influence of delivery profit Pd j
Eq(5) on heuristic behavior, we notice that the max-
imum of the average of priority delivery requests to-

tally satisfied 28.8 is reached for this criterion and the
average of priority delivery requests partially satisfied
is the smallest 3.1 thanks to the progress rate deliv-
ery which encourages the continuity of site service.
The average of non-priority delivery requests totally
or partially satisfied tends towards zero. The average
of non-priority pickup requests is greater than the av-
erage of priority pickup requests since the majority of
sites served are priority in delivery and not in collect.
The total time is the biggest despite the distance is no
longer this is due to the service time which is bigger.

We find that the pickup profit Pp j Eq(6) allows
us to serve a large number of pickup priority sites as
well as delivery priority sites, since, most of the sites
served, in this case, are priority in pickup and deliv-
eries. For all the criteria we notice that the average
number of partially satisfying pickup requests is very
small, since the quantity ofBig-bag waste generated
by construction sites is low below 3/4 vehicle capac-
ity, which allows them to be collected easily.

Our heuristic SBH combines all the criteria de-
scribed previously in a weighted manner according to
the Table 2. This combination noted H in Figures 1
and 2 allows obtaining good results on all compara-
tive metrics. Indeed, our heuristic satisfies the highest
number of priority delivery requests 34.2, and a sig-
nificant number of non-priority delivery requests 5.8.
The average of pickup requests totally satisfied are
also important compared to the other criteria. The av-
erage amount of pallet delivery and pallet pickup are
comparable to the ones obtained by di, j and Ti, j. The
total time duration taken by our heuristic is highest,
because the priority sites are not necessarily nearby
in addition to the time of loading and unloading of
vehicles.

6 CONCLUSION

In the present paper, we described a new variant
of the vehicle routing problem with pickup and deliv-
ery, named MTPDSPMTW for multi-trip pickup and
delivery problem, with split loads, profits, and multi-
ple time windows. This new variant allows modelling
a real-world problem encountered in the construction
industry. This model combines for the first time char-
acteristics that have been studied separately in the lit-
erature on vehicle routing problems. These are multi-
trip, split loads, profit, time window and the use of
heterogeneous vehicles. The issue is that not all cus-
tomers can be served because the number of vehicles
is limited, and partial service is allowed, so the diffi-
culty arises in selecting the customers to be included
in the tour while prioritizing service satisfaction for
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Figure 1: Comparisons between the impact of each criterion on deliveries and pickup

Table 3: Results of the score based heuristic for solving instance DILC 10, 20, and 100

DILC10 DILC20 DILC100
% of sites 100% satisfied 78.2 93.4 53.4

Priority Delivery % of partially satisfied sites 18.8 5.2 7.9
% of sites 100% satisfied 77.5 98.1 46.2

Pickup % of partially satisfied sites 98.9 0 3.3
% of sites 100% satisfied 77.1 94.3 25.6

Non-Priority Delivery % of partially satisfied sites 6.9 4.8 6.3
% of sites 100% satisfied 98.4 98.1 41.2

Pickup % of partially satisfied sites 0 0 2.3
Distance 1236.4 2522.7 5188.6
Number of hours 31.2 54.3 111.1
Number of trucks 3 4.9 10
% pallet served in deliveries 66.6 94.9 42.2
% pallet served in pickup 85.1 98.5 45.6
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Figure 2: Comparisons between the impact of each criterion on distance, time, and pallets delivered and collected

customers with a high priority (maximizing profit),
and allowing non-priority customers to be included to
to fill the residual capacity and/or time of the vehicles.

We proposed a new insertion score, that is em-
bedded in a construction heuristic (SBH). This score
includes several criteria such as distance, time, cus-
tomer service urgency, the deadline to serve the cus-
tomer, profit delivery, and profile pickup. Numerical
results on real instances show that all criteria have a
non-zero weight in the score and that the combina-
tion of all criteria gives the most significant results
in relation to the objective of maximizing the number
of priority customers completely satisfied. The effec-
tiveness of these results has been validated by our in-
dustrial partners, and have been retained for further
experimentation. The next step is to develop meta-
heuristic approaches to improve obtained results.
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