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THE HAUSDORFF DIMENSION OF THE HARMONIC MEASURE FOR
RELATIVELY HYPERBOLIC GROUPS

MATTHIEU DUSSAULE AND WENYUAN YANG

Abstract. The paper studies the Hausdorff dimension of harmonic measures on various boundaries of a
relatively hyperbolic group which are associated with random walks driven by a probability measure with
finite first moment. With respect to the Floyd metric and the shortcut metric, we prove that the Hausdorff
dimension of the harmonic measure equals the ratio of the entropy and the drift of the random walk.

If the group is infinitely-ended, the same dimension formula is obtained for the end boundary endowed
with a visual metric. In addition, the Hausdorff dimension of the visual metric is identified with the growth
rate of the word metric. These results are complemented by a characterization of doubling visual metrics for
accessible infinitely-ended groups : the visual metrics on the end boundary is doubling if and only if the group
is virtually free. Consequently, there are at least two different bi-Hölder classes (and thus quasi-symmetric
classes) of visual metrics on the end boundary.

1. Introduction

Relatively hyperbolic groups can admit several interesting compactifications such as the Floyd [18],
Bowditch [5] and Freudenthal [19] (also called end) compactification. The resulting boundaries are com-
pact metrizable spaces on which the groups act and have rich dynamics in terms of convergence actions.
This point of view has found many applications [3] [23]. In addition, these boundaries can be endowed with
two well-known classes of (quasi-)conformal [8] and harmonic measures [35] so they are examples of metric
measured spaces (X, d, ν). The Hausdorff dimension Hdimd(ν) of the triple (X, d, ν) is the infimum of the
Hausdorff dimensions of ν-full subsets, so it is a measurement of the largeness of the measure class of ν.
Comparison of the conformal and the harmonic measures has been an active research problem with origins
in dynamic systems, see [34] [26] [1] [25] [16] [20] [48] to just name a few.

This paper is devoted to computing the Hausdorff dimension formula for harmonic measures on various
boundaries associated with a random walk with finite first moment on a non-elementary relatively hyperbolic
group. Precisely, we compute the Hausdorff dimension of the harmonic measure ν on the Floyd and Bowditch
boundaries endowed respectively with the Floyd and the Floyd shortcut distances. We also compute this
Hausdorff dimension on the end boundary endowed with a visual distance whenever the group is infinitely
ended. Up to a parameter depending only on the chosen distance, we show that

(1) Hdim(ν) =
h

l

where h is the asymptotic entropy and l is the rate of escape in the word metric of the random walk. See
Theorem 1.1 and Theorem 1.3 for accurate statements.

This formula (1) was first obtained by Kaimanovich [32] and Ledrappier [38] on free groups and then by
Le Prince [47] on general hyperbolic groups. A substantial generalization of Le Prince’s results was given
by Tanaka [53] to any proper action with exponential growth on proper hyperbolic spaces with bounded
geometry, and any acylindrical action on possibly improper hyperbolic spaces. In particular, his results do
apply to both the geometrical finite action of a relatively hyperbolic group on a proper hyperbolic space,
and the acylindrical action on its relative Cayley graph [42].

However, the former proper action under bounded geometry assumption forces peripheral subgroups to be
virtually nilpotent [11]. This makes a serious limitation of Tanaka’s result to be applied in this rather general
class of groups. Moreover, visual distances on the Bowditch boundary are very non-canonical, for they can
depend heavily on the choice of a hyperbolic space X on which the group acts, see [28]. On the other hand,
the acylindrical action on the relative Cayley graph does yield the formula (1) for the harmonic measure on
the Gromov boundary of the relative Cayley graph and where the drift is computed in the relative metric.
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2 MATTHIEU DUSSAULE AND WENYUAN YANG

In a certain point of view, this is unsatisfactory since the relative metric on the group is non-proper and the
(non-compact) Gromov boundary here is only a part of the compact Bowditch boundary.

One of our main contributions here is to consider the drift for the word metric and to compute the
Hausdorff dimension associated to the Floyd shortcut distance on the Bowditch boundary, which only depends
on the group and the choice of a word distance.

1.1. Hausdorff dimension of harmonic measures. Let µ be a probability measure on a finitely generated
group G such that the support supp(µ) generates G as a semi-group. We call such a measure admissible.
The measure defines a µ-random walk with step transitions given by p(x, y) = µ(x−1y) for x, y ∈ G. Let

Ω := {x = (ωn)n≥0 : ωn ∈ G}

be the trajectory space of the µ-random walk with the probability measure P, which is the pushforward of
the product measure (GN, µN) under the product map GN → Ω given by

(s1, s2, · · · , sn, · · · ) 7→ (1, s1, s1s2, · · · , wn, · · · ),

where ωn = s1 · · · sn.
Denote by

L(µ) =
∑
g∈G

d(1, g)µ(g)

the expectation of d(1, ω1) and more generally by

L(µ∗n) =
∑
g∈G

d(1, g)µ∗n(g)

the expectation of d(1, ωn) where µ∗n is the n-th convolution power of µ. Equivalently, µ∗n is the law of
the random variable x 7→ ωn. The sequence L(µ∗n) is sub-additive and so 1

nL(µ∗n) has a well defined limit
l called the rate of escape (or drift). Whenever µ has finite first moment (i.e. L(µ) < ∞), Kingman’s
sub-additive ergodic theorem shows that almost surely,

(2) l := lim
n→∞

d(1, ωn)

n
< +∞.

Also define H(µ) =
∑
g∈G µ(g) logµ(g) and H(µ∗n) =

∑
g∈G µ

∗n(g) logµ∗n(g). The sequence H(µ∗n) also
is sub-additive and so 1

nH(µ∗n) has a well defined limit h called the asymptotic entropy. Again, whenever
H(µ) is finite, an application of the ergodic Theorem (see [13] or [34]) shows that

(3) h := lim
n→∞

− log(µ∗n(ωn))

n
< +∞.

The groups G under consideration are assumed to be relatively hyperbolic throughout. There are many
equivalent ways to formulate this notion. To motivate our results, we use the dynamical definition. An action
of G by homeomorphism on a compact metrizable space M is called convergence if the induced action on
the space of triple points is properly discontinuously. Let (Γ, d) denote the Cayley graph of G with respect
to a finite generating set. Then G is called relatively hyperbolic if there exists a Hausdorff compact space M
compactifying every Cayley graph Γ so that the left multiplication of G extends to a minimal geometrically
finite action on the boundary M . See precise definitions in Section 2.1. The compact space M denoted by
∂BG later on is called Bowditch boundary of G. A relatively hyperbolic group G is called non-elementary
if its Bowditch boundary contains more than two points. Equivalently, G fixes no finite subset of ∂BG. In
such a case, G is non-amenable. In particular, the rate of escape and the asymptotic entropy are positive.

There are two natural classes of metrics on the Bowditch boundary. First, by Yaman [58], ∂BG can
be realized as the Gromov boundary of a proper hyperbolic space X on which G acts via a geometrically
finite action. Thus, we can endow ∂BG with the visual metric constructed using the hyperbolic geometry
of X. Second, the Floyd (shortcut) metric is obtained from the Cayley graph (Γ, d) as follows. We fix a
parameter λ ∈ (0, 1) and a basepoint o ∈ G. Rescaling the length of every edge e of Γ to λd(o,e) induces a
new length metric called the Floyd metric δλ on Γ. The Cauchy metric completion of (Γ, δλ) is the so-called
Floyd compactification of Γ on which G acts as a convergence action [36]. By the work of Gerasimov and
Potyagailo [22], [23], there exists λ0 such that whenever λ ∈ [λ0, 1), the Bowditch boundary is an equivariant
quotient of the Floyd boundary where the non-trivial fibers are possible only on bounded parabolic points.
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The Floyd metric can thus be pushforwarded to obtain the so-called shortcut metric δ̄λ on ∂BG [23]. See
more details in Section 2.2.

In [35], Karlsson proved that almost every trajectory converges to a limit point in the Floyd boundary, and
the hitting measure or harmonic measure νF on the Floyd boundary gives a model of the Poisson boundary
of the µ-random walk [31]. The same discussion applies to the Bowditch boundary which gives another
model of the Poisson boundary when endowed with a harmonic measure denoted by νB. We are now ready
to state the first main result.

Theorem 1.1. [Theorem 3.1] Suppose G is a non-elementary relatively hyperbolic group and fix a finite
generating set for G. Also suppose that µ is an admissible probability measure with finite first moment on
G. Then there exists λ0 ∈ (0, 1) such that for every λ ∈ [λ0, 1),

Hdimδλ(νF ) = Hdimδ̄λ(νB) =
−1

log λ

h

l
.

Moreover, the measure νB on (∂BG, δ̄λ) and the measure νF on (∂FG, δλ) are exact dimensional.

Denote by Sn = {g ∈ G : d(1, g) = n} the sphere of radius n in the Cayley graph (Γ, d). We define the
growth rate of (the Cayley graph of) G as

v := lim
n→∞

log ]Sn
n

The two quantities l and v both depending on the word metric of Γ are related to the entropy h which only
depends on the measure µ by the following fundamental inequality

h

l
≤ v

also called the Guivarc’h inequality [12]. This inequality holds for any µ-random walk.
In [45], it is proved that −v

log λ is the Hausdorff dimension of the Floyd and Bowditch boundaries. The
following corollary thus follows from the strictness of the fundamental inequality established in [16, Theo-
rem 1.3, Theorem 1.6] for certain relatively hyperbolic groups. Recall that µ has finite super-exponential
moment if

∑
g∈G exp(cd(1, g))µ(g) is finite for every c > 0.

Corollary 1.2. Suppose G is a non-elementary relatively hyperbolic group and µ is an admissible probability
measure on G with finite super-exponential moment. If one of the parabolic subgroups is virtually abelian of
rank at least 2, or if the Bowditch boundary is homeomorphic to a sphere of dimension at least 2, then

Hdimδ̄λ(νB) < Hdimδ̄λ(∂BG).

1.2. Hausdorff dimension of the end boundary and of harmonic measures with respect to vi-
sual metrics. According to a celebrated result of Stallings [51], [52], any infinitely ended group G splits
nontrivally as an amalgamated product A ∗C B or an HNN extension A∗C , where C is a finite group. The
action on the corresponding Bass-Serre tree satisfies the conditions of [5, Definition 2] and so G is relatively
hyperbolic. Moreover, in the former case, the maximal parabolic subgroups are exactly the conjugates of A
and the conjugates of B. In the later case, they are exactly the conjugates of A. In addition to the Floyd
and Bowditch boundary, G can be compactified using the Freudenthal (or end) boundary introduced by
Freudenthal [19]. The interplay between the end boundary and asymptotic properties of random walks is a
well-studied subject, see for instance [43], [44], [57].

Let ∂EG be the end boundary of an infinitely ended group G. The topology of the end boundary is
independent of the choice of Cayley graph. For every λ ∈ (0, 1), we define a visual metric, extending the
definition of Candellero, Gilch and Müller [6] for free products. This metric was independently studied by
Cornulier in [10]. Fixing a generating set, let Γ be the Cayley graph of G and let ρλ be the visual metric
defined on the end compactification of ∂EG∪Γ. Precisely, define the distance ρλ(ξ, η) = λn between two ends
ξ, η if n is the minimal radius of the ball at a basepoint separating ξ and η. A quasi-isometry f induces a
homeomorphism f̃ between end boundaries. Moreover, this induced homeomorphism is bi-Hölder : for some
α, β > 0, c > 1 and for all pair (ξ, η) of points,

c−1ρλ(ξ, η)α ≤ ρλ(f̃(ξ), f̃(η)) ≤ cρλ(ξ, η)β

which holds more generally for sublinearly bi-Lipschitz equivalence by [9, Corollary 1.4].
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Our second main result is analogous to Theorem 1.1 and computes the Hausdorff dimension of the end
boundary and of harmonic measures with respect to visual metrics. Let us denote by νE the harmonic
measure on the end boundary and h, l the entropy and drift of the µ-random walk. Also, let us denote by v
the growth rate of G.

Theorem 1.3. [Theorem 4.7, Theorem 5.1] Suppose G is a finitely generated group with infinitely many
ends. Also suppose that µ is an admissible probability measure with finite first moment on G. Then, for
every Cayley graph Γ and every λ ∈ (0, 1),

Hdimρλ(νE) =
−1

log λ

h

l

and
Hdimρλ(∂EG) =

−v
log λ

.

Remark 1.4. The second equality was proved for free products with a standard generating set in [6]. Our
proof is very different and applies to any infinitely ended group with any finite generating set.

The archetypal groups with infinitely many ends are free products of the form A ∗ B, where A 6= Z/2Z
or B 6= Z/2Z. Using again the strictness of the fundamental inequality established in [16, Theorem 1.5] for
certain free products, we can state the following corollary.

Corollary 1.5. Suppose G is a free product A ∗ B and assume that A is a non-virtually cyclic nilpotent
group. Let µ be a probability measure on G with finite super-exponential moment. Then,

Hdimρλ(νE) < Hdimρλ(∂EG).

1.3. Doubling property of the end boundary. The study of the harmonic measure associated with a
random walk is closely related to the doubling property of the involved boundary, see [53, Section 4]. We also
refer to [27, Proposition 4.12], where the doubling property is combined with the so-called shadow lemma
to give a short proof of the formula Hdim(ν) = h/l in the setting of hyperbolic groups. It is not known
whether the Floyd boundary equipped with the Floyd distance and the Bowditch boundary equipped with
the shortcut Floyd distance are doubling, see [45, Question 1.7]. On the other hand, to give a more complete
picture, we clarify the situation for the end boundary equipped with a visual distance.

A metric space (X, d) is called doubling if there exists a constant N > 0 such that every ball of radius
δ > 0 can be covered by at most N balls of radius δ/2. Equivalently, for any θ ∈ (0, 1), there exists N(θ) > 0
such that every ball of radius δ can be covered by at most N(θ) balls of radius θδ. The doubling property
is known to be a bi-Hölder invariant. A measure µ on (X, d) is called doubling if there exists a constant C
such that µ(2B) ≤ Cµ(B) for every ball B, where 2B denotes the ball with the same center and a radius
twice as large as B. The existence of a doubling measure on a metric space (X, d) implies that the metric
space (X, d) is doubling. The converse is true for complete metric spaces.

It is well-known that the Patterson-Sullivan measure on the Gromov boundary of a hyperbolic group is
Alhfors regular, hence doubling, for the Gromov’s visual metric, so the Hausdorff dimension of the Patterson-
Sullivan measure equals that of the whole boundary, see [8]. One can construct, as in [59], a class of
Patterson-Sullivan measures on the end boundary through the action on the Cayley graph. Those measures
yield quasi-conformal densities without atoms. This motivates the question whether the Patterson-Sullivan
measure is Alhfors regular or at least doubling on the end boundary endowed with a visual metric.

Our third main result gives a characterization of the doubling property of the end boundary for accessible
infinitely-ended groups. Such groups admit a splitting as a graph of groups over finite edge groups so that
the vertex groups are either finite or one-ended. It is a famous result of Dunwoody [14] that finitely presented
group are accessible.

Theorem 1.6. Let G be a finitely generated, accessible, infinitely-ended group. Let λ ∈ (0, 1) and endow the
end boundary ∂EG of G with the visual metric ρλ. Then, (∂EG, ρλ) is doubling if and only if G is virtually
free.

From the above discussion, the following two corollaries are immediate.

Corollary 1.7. The Patterson-Sullivan measure on the end boundary of an accessible infinitely-ended group
is doubling for the visual metric if and only if the group is virtually free.
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The following one addresses an analogous question [53, Question 4.2] in our setup.

Corollary 1.8. If an accessible infinitely-ended group is not virtually free, then the harmonic measure νE
on the end boundary endowed with a visual metric is not doubling.

A result of David-Semmes [29, Theorem 15.5] says that a metric space is quasi-symmetric to the standard
Cantor ternary set if and only if it is compact, doubling, uniformly perfect and uniformly disconnected.
Precise definitions of the latter two can be found in §11.1 and §14.24 in [29]. It is known that a doubling
space is uniformly perfect and a ultrametric space is uniformly disconnected. The end boundary of a virtually
free group with visual metric is doubling by [8] and thus quasi-symmetric to the standard Cantor ternary
set.

By [29, Corollary 11.3], quasi-symmetric maps between uniformly perfect compact spaces are bi-Hölder.
However, the converse is not true: bi-Hölder homeomorphims are not necessarily quasi-symmetric. Interest-
ing examples are given by the boundaries of the real hyperbolic space H4 and the complex hyperbolic space
CH2 equipped with Gromov’s visual metrics, which are bi-Hölder but not quasi-symmetric, since they can
be distinguished by their conformal dimension. Thus, a bi-Hölder classification of visual metrics on the end
boundary is a reasonable and interesting problem. We refer the reader to [9, Introduction 1D] for further
discussion. Recalling that the doubling property is a bi-Hölder invariant, we obtain the following corollary,
which answers positively a question of Cornulier [10, Question 1.27].

Corollary 1.9. The end boundary of an accessible infinitely-ended group is bi-Hölder equivalent to the
standard Cantor ternary set if and only if it is virtually free.

In particular, the end boundaries of a free group and the free product of two 1-ended groups are not
bi-Hölder equivalent.

Inaccessible groups do exist by work of Dunwoody [15]. The proof of Theorem 1.6 fails generally for
inaccessible groups, but we can still give a result for such groups under some additional assumptions, see
precisely Proposition 6.1.

Finally, let us compare the visual metric on the end boundary with the Gromov’s visual metric coming
from an action of G on a hyperbolic space X. Fix a splitting of an infinitely-ended group G over finite
groups as a finite graph of groups. As explained above, by [5, Definition 2], this splitting makes G hyperbolic
relative to the set of vertex groups. Hence, by Yaman [58], G acts via a geometrically finite action on a
proper hyperbolic space X so that the Bowditch boundary is homeomorphic to the Gromov boundary of
X. If G is accessible and the splitting is terminal, then the end boundary is equivariantly homeomorphic
to the Bowditch boundary, see Section 4.3 for more details. We can thus endow the end boundary with the
Gromov’s visual metric coming from the hyperbolic space X on which G acts. According to [11] and [2], X
can be chosen so that this metric is doubling if and only if the parabolic subgroups are virtually nilpotent.
In such a situation, by Theorem 1.6 the two possible metrics on the end boundary cannot be in the same
bi-Hölder class unless the group is virtually free, for one is doubling and the other is not.

Corollary 1.10. Assume that G is not virtually free and splits over finite groups as a finite graph of virtually
nilpotent groups. Then, there exists a hyperbolic space X on which G acts via a geometrically finite action
such that the visual metric on the end boundary is not bi-Hölder equivalent to the Gromov’s visual metric
coming from this action.

Remark 1.11. Similarly as in Corollary 1.9, we can derive the following result from [11]. Let G1 = H1 ∗ Z
and G2 = H2 ∗Z, where H1 is virtually nilpotent and H2 is one-ended but not virtually nilpotent. Then G1

and G2 admit geometrically finite actions on proper hyperbolic spaces X1 and X2 with bounded geometry
so that their Gromov boundaries endowed with Gromov’s visual metric are homeomorphic to the Cantor
sets but are not bi-Hölder equivalent, for one boundary is doubling and not the other.

Overview and organisation of the paper. In Section 2, we review all the preliminary results we will
need in the following. We recall the definition of relatively hyperbolic groups, the Bowditch boundary, the
Floyd distance and the Floyd boundary. We also give more details about the Hausdorff dimension of a finite
measure on a metric space.

Section 3 is devoted to the proof of Theorem 1.1, which treats separately the upper bound (Proposition 3.6)
and lower bound (Proposition 3.14) for the Hausdorff dimension. The lower bound follows a strategy similar
to the one developed by Tanaka [53]. One of the main tools in [53] is that the random walk sub-linearly
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tracks geodesics [1, ω∞] on the hyperbolic space X on which the group G acts, where ω∞ is the limit of the
random walk in the Gromov boundary of X.

In our situation, the Cayley graph of a relatively hyperbolic group G is generally not hyperbolic anymore,
so it cannot be expected that the random walk stay close to any point on a geodesic [1, ω∞] in the Cayley
graph. However, using Maher-Tiozzo [39] and Tiozzo [55], we can prove that the random walk sub-linearly
tracks word geodesics along transition points, which are the points that are not deep in parabolic subgroups,
see Definition 2.2. Along the way, we also prove that the random walk spends at most sub-linear time in
parabolic subgroups. Precisely, we prove the following result. For a given word geodesic α, let Trα be the
set of transition points on α.

Theorem 1.12. [Proposition 3.2, Corollary 3.4] Suppose G is a non-elementary relatively hyperbolic group
and fix a finite generating set for G. Also suppose that µ is an admissible probability measure with finite first
moment on G. Then,

(4) P (sup d(ωn,Trα) = o(n)) = 1,

where the supremum is taken over all geodesics α from 1 to the limit ω∞ of the random walk in the Bowditch
boundary of G. Moreover,

(5) P
(

sup
U∈P

dU (1, ωn) = o(n)

)
= 1,

where P is the set of all left cosets of a chosen full family of conjugacy classes of parabolic subgroups and
where dU (x, y) is the distance between the projections of x and y on U .

This last result is a weak version (under a finite moment condition) of the results in [50] for finitely
supported random walks. Indeed, it is proved in [50, Theorem 2.3] that such a random walk spends at most
logarithmic time in parabolic subgroups.

With the sublinear tracking of transition points at hand, we use the estimates of Floyd disks by shadows
in [45] to obtain the lower bound of Hausdorff dimension.

In Sections 4 and 5, we prove Theorem 1.3. We first extend the definition of visual metrics introduced in
[6] to any group with infinitely many ends and we show that

Hdimρλ(νE) =
−1

log λ

h

l

in Section 4. Our proof is again similar to the proof in [53]. We introduce the notion of bottleneck : a set V
is a bottleneck between two points x and y if any path from x to y has to pass through a fixed neighborhood
of V . We then replace the sub-linear tracking of transition points by the sub-linear tracking of bottlenecks,
see precisely Proposition 4.9.

We then prove that

Hdimρλ(∂EG) =
−v

log λ

in Section 5. The proof follows the outline of an analogous result for the Bowditch and Floyd boundaries
endowed with the Floyd (shortcut) distance [45]. It is well-known that there exists a continuous and surjective
map from ∂FG to ∂EG (see [36] and [20]). We further observe that the Floyd metric dominates the visual
metric through the map. This gives the desired upper bound of ∂EG by the same bound in [45] on the
Hausdorff dimension of ∂FG. Moreover, inspired by transition points, we use an enhanced version of the
notion of bottlenecks introduced above to construct a sequence of free semi-subgroups of G whose set of ends
has Hausdorff dimension arbitrarily close to −v

log λ . This proves the lower bound of ∂EG. A technical result
in its proof is Proposition 5.13 saying that endowed with visual metric of corrected parameter depending
on λ, the end boundary ∂ET of free semi-groups is bi-Lipschitz embedded into ∂EG with visual metric ρλ.
This greatly simplifies the arguments in [45, Section 3] using Patterson-Sullivan measure to estimate the
Hausdorff dimension of ∂ET .

Finally, Section 6 deals with Theorem 1.6. We consider an accessible infinitely ended group G. Then, G
admits a splitting over finite edge groups as a finite graph of groups G, so that the vertex groups either are
finite or one-ended. If every vertex group is finite, then G is virtually free so that we can assume that one
of the vertex group is one-ended. Denote by H such a vertex group. The unique end ξ of H embeds into
the end boundary of G. We then show that for some fixed θ, the ball of radius λn centered at ξ cannot be
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covered by N(n) balls of radius θλn, where N(n) goes to infinity, as n tends to infinity, which concludes the
proof.

Acknowledgments. W.Y. is grateful to Giulio Tiozzo for explaining the results of [55] to him and also
thanks Yves Cornulier for many helpful comments and corrections about the Hölder structure of the end
boundary. W. Y. is supported by the National Natural Science Foundation of China (No. 11771022).

2. Preliminaries

2.1. Relatively hyperbolic groups. We now properly define relatively hyperbolic groups and recall several
tools and results that will be used in the paper. Let G be a finitely generated group. The action of G on
a compact Hausdorff space T is called a convergence action if the induced action on triples of distinct
points of T is properly discontinuous. Since G is countable, T must be metrizable by [21, Main Theorem].
Equivalently, the action G y T is convergence if and only if every sequence of distinct elements gn in G
contains a subsequence gnk such that gnk · x → a and for all x ∈ X with at most perhaps one exceptional
point.

The set of accumulation points ΛG of any orbit G · x (x ∈ T ) is called the limit set of the action. As
long as ΛG has more than two points, it is uncountable and it is then the unique minimal closed G-invariant
subset of T . The action is then said to be non-elementary. In this case, the orbit of every point in ΛG is
infinite. The action is minimal if ΛG = T .

A point ζ ∈ ΛG is called conical if there is a sequence gn of G and distinct points α, β ∈ ΛG such that
gn · ζ → α and gn · η → β for all η ∈ T \ {ζ}. The point ζ ∈ ΛG is called bounded parabolic if it is the
unique fixed point of its stabilizer in G, which is infinite and acts cocompactly on ΛG \ {ζ}. The stabilizers
of bounded parabolic points are called maximal parabolic subgroups. The convergence action Gy T is called
geometrically finite if every point of ΛG ⊂ T is either conical or bounded parabolic.

Definition 2.1. Let P be a collection of subgroups of G. We say that G is hyperbolic relative to P if there
exists some compact Hausdorff space T on which G acts minimally and geometrically finitely and such that
the maximal parabolic subgroups are exactly the elements of P.

In this situation, Yaman [58] proved that there exists a proper geodesic hyperbolic space X on which G
acts such that the Gromov boundary of X equivariantly coincides with T . Further, Bowditch [5] proved that
the Gromov boundary of such a space X is unique up to homeomorphism, hence so is T . We call T the
Bowditch boundary of G and we will denote it by ∂BG in the following. The union G ∪ ∂BG is called the
Bowditch compactification.

Following Osin [41], we define the relative Cayley graph as follows. We start with the Cayley graph Γ
associated with a finite generating set S. We choose a system P0 of representatives of conjugacy classes of
maximal parabolic subgroups. Such a system is finite by [5, Proposition 6.10]. The relative Cayley graph Ĝ
is obtained by adding one edge of length 1 between every two elements in the same left coset of a parabolic
subgroup in P0. In other words, setting P0 = {P1, ..., PN}, the relative Cayley graph Ĝ is the Cayley graph
associated with the generating set S ∪ P1 ∪ ... ∪ PN . A (quasi-)geodesic in the relative Cayley graph Ĝ is
called a relative (quasi-)geodesic. This graph Ĝ is quasi-isometric to the coned-off graph introduced by Farb
[17] and is hyperbolic in the sense of Gromov.

A sequence gn in G converges to a point ξ in the Gromov boundary ∂Ĝ of Ĝ if and only if it converges to
a conical limit point in the Bowditch compactification [3, Section 8]. We can thus identify ∂Ĝ with the set
of conical limit points. We refer to [56] for more details on the comparison of these two boundaries.

A very useful tool when studying the geometry of a relatively hyperbolic group is the notion of transition
points on a geodesic.

Definition 2.2. Let γ be a (finite or infinite) geodesic in the Cayley graph of G. A point v on γ is said to
be (ε, R)-deep if there exists g ∈ Γ and P ∈ P0 such that the R-neighborhood of v in γ is contained in the
ε-neighborhood of gP . A point v on γ is called an (ε, R)-transition point if it is not (ε, R)-deep.

The following result of Hruska relates transition points and points on relative geodesics.

Lemma 2.3. [30, Proposition 8.13] For every large enough ε and R, there exists C such that the following
holds. Let α be a (finite or infinite) geodesic in G and let α̂ be a relative geodesic with the same endpoints.
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Then, any point on α̂ is within a distance at most C of an (ε, R)-transition point on α. Conversely, any
(ε, R)-transition point on α is within a distance at most C of a point on α̂.

2.2. The Floyd distance and the Floyd boundary. We first recall the definition of the Floyd distance
and the Floyd boundary and their relation with the Bowditch boundary. This boundary was introduced by
Floyd in [18] and we also refer to [35] and [36] for more details.

Let G be a finitely generated group and let Γ denote its Cayley graph associated with a finite generating
set. Let f : N → R be a function satisfying that the sum

∑
n≥0 fn is finite and that there exists λ ∈ (0, 1)

such that 1 ≥ fn+1/fn ≥ λ for all n∈N. The function f is then called the rescaling function or the Floyd
function. In the following, we will always choose an exponential Floyd function, that is the function f will
be of the form f(n) = λn for some λ ∈ (0, 1). Fix a basepoint o ∈ Γ and rescale Γ by declaring the length of
an edge σ to be f(d(o, σ)). The induced shortpath metric on Γ is called the Floyd distance with respect to
the basepoint o and Floyd function f and is denoted by δf,o(., .). Whenever f is of the form f(n) = λn, we
will write δλ,o = δf,o and if o = 1, δλ = δf,o.

The Floyd compactification Γ
F

of Γ is the Cauchy completion of Γ endowed with the Floyd metric.
The Floyd boundary is then defined as ∂FΓ = Γ

F \ Γ. Different choices of basepoints yield bi-Lipschitz
homeomorphisms of the Floyd compactifications. However, the topology may depend on the choice of the
generating set and the rescaling function. Keeping in mind f(n) = λn and a choice of Cayley graph, we will
also call G ∪ ∂FΓ the Floyd compactification of G by abuse of language and we will write ∂FG = ∂FΓ.

The cardinality of the Floyd boundary is 0, 1, 2 or uncountable. Moreover, it is 2 if and only if the group
G is virtually infinite cyclic, see [36, Proposition 7]. Following Karlsson, we say that the Floyd boundary is
trivial if it is finite. We will only have to deal with groups with non-trivial Floyd boundary.

Finally, as mentioned in the introduction, whenever the Floyd boundary is non-trivial, G acts on it as a
convergence action, see [36, Thorem 2]. Also, whenever the Floyd boundary is non-trivial, for any probability
measure µ with finite first moment on G and whose support generates G as a semi-group, the random walk
driven by µ almost surely converges to a point in the Floyd boundary. Letting νF be the law of the limit
point, the pair (∂FG, νF ) is a model for the Poisson boundary, see [35, Section 6, Corollary].

We now assume that G is non-elementary relatively hyperbolic. We denote by ∂BG its Bowditch boundary.
The following is due to Gerasimov.

Theorem 2.4. [22, Map Theorem] There exists λ0 ∈ (0, 1) such that for every λ ∈ [λ0, 1), the identity
of G extends to a continuous and equivariant surjection φ from the Floyd compactification to the Bowditch
compactification of G.

Actually, Gerasimov only stated the existence of the map φ for one Floyd function f0 = λn0 , but then
Gerasimov and Potyagailo proved that the same result holds for any Floyd function f ≥ f0, see [23, Corol-
lary 2.8]. They also proved that the preimage of a conical limit point is reduced to a single point and
described the preimage of a parabolic limit point in terms of the action of G on ∂FG, see precisely [23,
Theorem A]. From now on, the parameter λ will always be assumed to be contained in [λ0, 1).

The Floyd distance can be transferred to a distance on the Bowditch boundary using the map φ. The
resulting distance is called the shortcut metric and we denote it by δ̄λ. It is the largest distance on the
Bowditch boundary satisfying that for every ξ, ζ ∈ ∂FG,

(6) δ̄λ(φ(ξ), φ(ζ)) ≤ δλ(ξ, ζ).

We refer to [24, Section 4] for more details on its construction. The next couple of lemmas will be used later
on.

Lemma 2.5 (Visibility lemma). [36] For every fixed λ, c, there exists a function ϕ : R≥0 → R≥0 such that
for any v ∈ G and any (λ, c)-quasi-geodesic γ in Γ, the following holds. If δλ,v(γ) ≥ κ, then d(v, γ) ≤ ϕ(κ).

Note that [36] only deals with geodesics, but the proof applies to quasi-geodesic with fixed parameters,
see [23] where this and more general cases are discussed.

The big shadow Π(g,R) at g is the set of boundary points ξ in the Bowditch boundary such that there
exists a geodesic ray [1, ξ] intersecting the ball B(g,R).
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Lemma 2.6. [45, Lemma 3.14, Lemma 3.15] For every large enough ε and R, the following holds. Let ξ
be a conical limit point in the Bowditch boundary. Consider a geodesic γ between 1 and ξ and consider any
point g on this geodesic. There exists C1, C2 such that

Π(g,R) ⊂ Bδ̄λ(ξ, C1r)

and if, in addition, g is a (ε, R)-transition point on γ, then

Bδ̄λ(ξ, C2r) ⊂ Π(g,R),

where r = λd(1,g).

Actually, [45, Lemma 3.16] also states that the above statement is true for the Floyd distance, but we
will only need to use it for the shortcut distance in estimating the lower bound of Hausdorff dimensions (see
Lemma 3.9 and Proposition 3.14).

Lemma 2.7. For every g ∈ G, there exists a constant cg > 0 such that the following inclusions hold. For
every point ξ in the Floyd boundary and for every r ≥ 0,

Bδλ(gξ, c−1
g r) ⊂ gBδλ(ξ, r) ⊂ Bδλ(gξ, cgr).

For every point ξ in the Bowditch boundary,

Bδ̄λ(gξ, c−1
g r) ⊂ gBδ̄λ(ξ, r) ⊂ Bδ̄λ(gξ, cgr).

Proof. First, a change a base point induces a bi-Lipschitz inequality for the Floyd distance : for every x, y
in the Floyd compactification, for any basepoints o, o′ ∈ G,

λd(o,o′) ≤ δλ,o(x, y)

δλ,o′(x, y)
≤ λ−d(o,o′),

see [45, (2)]. Now, by definition, the same is true of the shortcut distance, see precisely [45, (3)].
We only give the proof of the lemma for the Floyd distance, the proof for the shortcut distance is

exactly the same. Let ζ ∈ Bδλ(ξ, r). We need to prove that gζ ∈ Bδλ(gξ, cgr) for some cg. Note that
δλ,g(gζ, gξ) = δλ,1(ζ, ξ), so that by the above discussion,

λd(1,g) ≤ δλ,1(gξ, gζ)

δλ,1(ξ, ζ)
≤ λ−d(1,g).

This proves that δλ,1(gξ, gζ) ≤ λ−d(1,g)r and so the right inclusion in the lemma holds for cg = λ−d(1,g). We
immediately deduce the left inclusion, using g−1. �

2.3. Hausdorff dimension of measures. Let (X, d) be a metric space and κ be a Borel measure on X.

Definition 2.8. The Hausdorff dimension of κ is the smallest possible Hausdorff dimension of a set of full
κ-measure :

Hdim(κ) = inf{Hdim(E), κ(Ec) = 0}.
When we want to insist on the choice of the distance, we will write Hdimd(κ).

Evaluating the Hausdorff dimension of a set can be a difficult task, so the following characterization of
the Hdim(κ) as the essential supremum of the local dimensions of κ is very useful. Recall that the essential
supremum κ− sup f of a function f is defined as the infimum of the constants C such that f ≤ C κ-almost
everywhere.

Proposition 2.9. [40, Corollary 8.2] Let κ be a Borel measure on a metric space X. Then,

Hdim(κ) = κ− sup lim inf
r→0

log κ(B(x, r))

log r
.

Definition 2.10. A measure κ on a metric space X is exact dimensional if for κ-almost every x, the above
lim inf is a limit, that is, for κ-almost every x,

lim
r→0

log κ(B(x, r))

log r
= Hdim(κ).
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We will also use the following notation :

Hdim(κ) = κ− sup lim sup
r→0

log κ(B(x, r))

log r
.

By definition, Hdim(κ) ≤ Hdim(κ). Let us say a few words about our strategy for evaluating the
Hausdorff dimensions of harmonic measures ν. We will first prove that for ν-almost every x, we have
lim supr→0

log ν(B(x,r))
log r ≤ −1

log λ
h
l , so that Hdim(ν) ≤ −1

log λ
h
l . We will then prove that for ν-almost every x, we

have −1
log λ

h
l ≤ lim infr→0

log ν(B(x,r))
log r , so that −1

log λ
h
l ≤ Hdim(ν). This will both prove that Hdim(ν) = −1

log λ
h
l

and that ν is exact dimensional.

3. Harmonic measures on the Floyd and the Bowditch boundaries

LetG be a finitely generated non-elementary relatively hyperbolic group and let µ be a probability measure
with finite first moment on G. Throughout this section, we consider the harmonic measure denoted by νB
on the Bowditch boundary ∂BG equipped with the shortcut distance δ̄λ and the harmonic measure νF on
the Floyd boundary ∂FG with the Floyd distance δλ.

Our goal in this section is to prove the following theorem.

Theorem 3.1. For any λ ∈ [λ0, 1) with λ0 ∈ (0, 1) given by Theorem 2.4, we have

Hdimδ̄λ(νB) =
−1

log λ

h

l

and, for any λ ∈ (0, 1),

Hdimδλ(νF ) =
−1

log λ

h

l
.

Moreover, those two measures are exact-dimensional.

3.1. Sublinear deviation from transition points. We denote by Ĝ the relative Cayley graph of G. We
fix large enough ε > 0 and R > 0 satisfying the conclusions of Lemma 2.3 and Lemma 2.6. Whenever α
is a geodesic in the Cayley graph of G, we denote by Trε,R α, or simply by Trα the set of (ε, R)-transition
points on α. We denote by ωn the random walk driven by µ at time n and by ω∞ its almost sure limit in
the Bowditch boundary.

Proposition 3.2. With these notations, we have

P (sup d(ωn,Trα) = o(n)) = 1,

where the supremum is taken over all geodesics α from 1 to ω∞.

Proof. We follow the strategy of [55]. We introduce the function f defined by

f(ω) = sup d(1,Tr α̂),

where the supremum is taken over all geodesics α̂ between ω−∞ and ω∞, where ω−∞ is the limit of the
reflected random walk, see [39, Section 4.1].

Claim 3.3. The function f is measurable and is almost surely finite.

Proof of the claim. First, according to [39, Theorem 1.1], the exit points ω∞ and ω−∞ are conical limit
points and their law ν and ν̌ are non-atomic. Since bounded parabolic points are countable, it follows that
ω∞ and ω−∞ almost-surely are distinct and so there exists a bi-infinite relative geodesic joining them. Hence,
the distance (in the Cayley graph) between 1 and such a relative geodesic is finite. According to Lemma 2.3,
any point on a relative geodesic is within a finite (and actually uniformly bounded) distance of a transition
point on a geodesic in the Cayley graph, so f is almost surely finite.

We now prove that f is measurable. Recall that ∂Ĝ is the Gromov boundary of the relative Cayley graph
that we identify with the set of conical limit points in the Bowditch boundary ∂BG. We just need to prove
that the function

f̃ : (ξ, ζ) ∈ ∂Ĝ× ∂Ĝ 7→ sup d(1,Trαξ,ζ)

is measurable, where the supremum is taken over all word geodesics αξ,ζ from ξ to ζ. We follow the proof of
[55, Lemma 12]. Note that f̃ takes the value +∞ when ξ = ζ. Since there are no atoms at conical points, it
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can be extended to a function that we still denote by f̃ on the double Bowditch boundary ∂BG× ∂BG. To
prove that f̃ is measurable, we just need to prove that for every R ≥ 0, the set

{(ξ, ζ) ∈ ∂BG× ∂BG, f̃(ξ, ζ) > R}

is measurable.
Recall the Bowditch compactification is a metrizable compact space containing the group G as an open

and dense set. Choosing an arbitrary metric and taking a finite cover of ∂BG made of balls of radius 1/k,
k ∈ N, we construct a countable collection of open sets Un such that the sets Un ∩ ∂BG form a countable
base for the topology of ∂BG. Moreover, for each R ≥ 0, only finitely many sets Un intersect the ball B(1, R)
and for each sequence nk going to infinity, the intersection ∩kUnk contains at most one point. For fixed
R ≥ 0, say that a pair of open sets (U, V ) avoids the ball B(1, R) if there exist u ∈ U ∩ G and v ∈ V ∩ G
and there exists a geodesic γ from u to v such that the ball B(1, R) does not intersect Tr γ. Let us define
SR = {(Un, Um) such that (Un, Um) avoids the ball B(1, R)}. This is a countable collection of pairs of open
sets. By definition,

{(ξ, ζ) ∈ ∂BG× ∂BG, f̃(ξ, ζ) > R} ⊂
⋂
N≥1

⋃
min(n,m)≥N

(Un,Um)∈SR

Un × Um.

Conversely, consider (ξ, ζ) in this intersection and assume that f̃(ξ, ζ) < +∞. Then, there are sequences
of points gnk , respectively hmk , converging to ξ, respectively ζ and there is a geodesic γk from gnk to hnk
such that B(1, R) does not intersect Tr γk. Now, since f̃(ξ, ζ) < +∞, there exists a geodesic from ξ to ζ
intersecting some big ball B(1, R′) for some R′ = R′ξ,ζ . Moreover, up to taking R′ large enough, all geodesics
γk also enter B(1, R′). Thus, Arzelá-Ascoli Theorem allows us to choose a sub-sequence of geodesics γkl
converging to a geodesic γ from ξ to ζ, as l tends to infinity. We can also assume that the sub-geodesic of
γkl contained in B(1, R′) is constant. In particular, the limit geodesic γ also satisfies that B(1, R) does not
intersect Tr γ. Hence, f̃(ξ, ζ) > R. This proves that

{(ξ, ζ) ∈ ∂BG× ∂BG, f̃(ξ, ζ) > R} =
⋂
N≥1

⋃
min(n,m)≥N

(Un,Um)∈SR

Un × Um

and so {(ξ, ζ) ∈ ∂BG× ∂BG, f̃(ξ, ζ) > R} is measurable. �

Note that f(Tnω) = d(ωn,Tr[ω−∞, ω∞]), so that |f(Tω)− f(ω)| ≤ d(1, ω1). We deduce that the function
ω 7→ f(Tω)− f(ω) is integrable, since the random walk has finite first moment. Thus, [55, Lemma 7] shows
that 1

nf(Tnω) almost surely converges to 0. Finally, consider a geodesic α0 from 1 to ω∞ and a geodesic α̂0

from ω−∞ to ω∞. Then, with probability one, there exists a transition point xn on α̂0 such that 1
nd(ωn, xn)

converges to 0. We now use that geodesic triangles are thin along transition points. Precisely, according
to [16, Lemma 2.4], xn is within a uniformly bounded distance of a transition point either on α0, or on a
geodesic from 1 to ω−∞. Note that ωn converges to ω∞ and that 1

nd(1, ωn) almost surely converges to l.
Hence, xn also converges to ω∞ and so for large enough n, it cannot be within a bounded distance of a
geodesic from 1 to ω−∞. This proves that 1

nd(ωn,Trα0) also almost surely converges to 0. Using again [16,
Lemma 2.4], we see that 1

n supα d(ωn,Trα) ≤ 1
nd(ωn,Trα0) + C for some uniform C. This concludes the

proof. �

We now deduce that the projection on parabolic subgroup is almost surely sublinear. We choose a
full subset P0 of representatives of conjugacy classes of maximal parabolic subgroups. According to [5,
Proposition 6.10], such a set P0 is finite. In the following, we will denote by P the set of all left cosets
of elements of P0. Let U ∈ P. Whenever x, y ∈ G, we set dU (x, y) = d(πU (x), πU (y)), where πU is the
projection on U and where d is the distance in the Cayley graph of G. Our goal is to prove the following
corollary.

Corollary 3.4. With the above notations, we have

P
(

sup
U∈P

dU (1, ωn) = o(n)

)
= 1.

Before proving this corollary, note the following.
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Lemma 3.5. The sequence fn = supU∈P dU (1, ωn) is sub-additive. That is, for every n,m ≥ 1, we have

fn+m ≤ fn + fm ◦ Tn.

Proof. Consider some U ∈ P. Then, dU (1, ωn+m) ≤ dU (1, ωn) + dU (ωn, ωn+m), which we can rewrite
dU (1, ωn+m) ≤ dU (1, ωn) + dω−1

n U (1, ω−1
n ωn+m). In particular,

dU (1, ωn+m) ≤ sup
U∈P

dU (1, ωn) + sup
U∈P

d(1, ω−1
n ωn+m) = fn + fm ◦ Tn.

This is true for all U ∈ P, which concludes the proof. �

According to Kingman’s Theorem, 1
nfn almost surely converges to some constant lP that we call the

parabolic linear drift. We just need to prove that lP = 0 to prove Corollary 3.4.

Proof of Corollary 3.4. By definition,

sup
U∈P

dU (ωn, ω2n) = sup
U∈P

dω−1
n U (1, ω−1

n ω2n) = sup
U∈P

dU (1, ω−1
n ω2n)

and since ω−1
n ω2n and ωn follow the same law, 1

n supU∈P dU (ωn, ω2n) also almost surely converges to lP .
Combining this with Proposition 3.2, we see that for every positive ε and η, there exists Nε,η such that

with probability at least 1− ε, for all n ≥ Nε,η, we have simultaneously
(a) supα d(ωn,Trα) ≤ ηn, where the supremum is taken over all geodesics α from 1 to ω∞,
(b) |supU∈P dU (ωn, ω2n)− lPn| ≤ ηn,
(c) |supU∈P dU (1, ωn)− lPn| ≤ ηn.
Fix ε and η and set N = Nε,η. For every n ≥ N , there exists a transition point (with fixed parameters) xn
on a geodesic αn from 1 to ω∞, such that d(ωn, xn) ≤ ηn. Then, since for every U ∈ P and for every x, y,
we have dU (x, y) ≤ d(x, y) + c for some fixed c,

sup
U∈P

dU (1, xn) ≤ sup
U∈P

dU (1, ωn) + d(ωn, xn) + c ≤ lPn+ 2ηn+ c

and similarly,
sup
U∈P

dU (xn, x2n) ≤ lPn+ 3ηn+ 2c.

Also,
sup
U∈P

dU (1, ω2n) ≤ sup
U∈P

dU (1, x2n) + ηn+ c.

By definition, x2n is a transition point on a geodesic α2n from 1 to ω∞. Let δ > 0 and consider U ∈ P such
that dU (1, x2n) ≥ supU∈P dU (1, x2n) − δ. Then, according to [49, Lemma 1.13, Lemma 1.15], the geodesic
α2n enters a fixed neighborhood of U and the first point, respectively last point in this neighborhood is
within a bounded distance of πU (1), respectively πU (x2n). Now, xn also is a transition point on αn with
the same endpoints as α2n, so it is within a uniformly bounded distance of a transition point x̃n on α2n.
There are two possibilities : the geodesic α2n enters the neighborhood of U either before or after x̃n. In the
former case, we see that dU (1, x2n) ≤ dU (1, xn) + c′ for some fixed constant c′. In the later case, we see that
dU (1, x2n) ≤ dU (xn, x2n) + c′. In any case, we have that

dU (1, x2n) ≤ max{dU (1, xn), dU (xn, x2n)}+ c′ ≤ lPn+ 3ηn+ 2c+ c′.

Since this is true for every δ > 0, we have supU∈P dU (1, x2n) ≤ lPn + 3ηn + 2c + c′, hence finally, with
probability at least 1− ε,

sup
U∈P

dU (1, ω2n) ≤ lPn+ 4ηn+ 3c+ c′.

Since ε and η are arbitrary, this proves that almost surely,

lim sup
n→∞

1

2n
sup
U∈P

dU (1, ω2n) ≤ 1

2
lP .

Therefore, lP ≤ 1
2 lP and so lP = 0. �
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3.2. Upper-bound for the Hausdorff dimension. In this subsection, we first prove the following.

Proposition 3.6. Under the assumptions of Theorem 3.1, we have

Hdimδ̄λ(νB) ≤ −1

log λ

h

l

and
Hdimδλ(νF ) ≤ −1

log λ

h

l
.

The proof is inspired from the proof of Le Prince for hyperbolic groups [46]. We first show that we only
need to deal with the harmonic measure on the Floyd boundary. Let φ be the map from the Floyd boundary
to the Bowditch boundary given by Theorem 2.4. This map is surjective, equivariant and continuous.
Moreover, the preimage of a conical limit point consists of a singleton.

Lemma 3.7. With the same notations, we have φ∗νF = νB.

Proof. Recall that a measure κ on a set X endowed with an action of G is called µ-stationary if it satisfies
that for every measurable set A ⊂ X,

κ(A) =
∑
g∈G

κ(g−1A)µ(g).

Combining [35, Section 6, Theorem] with [33, Theorem 2.4], we get that the harmonic measure νF on the
Floyd boundary is µ-stationary. Since the map φ is equivariant, φ∗νF also is µ-stationary. Now, νB is the
only µ-stationary measure on the Bowditch boundary, so that φ∗νF = νB . This can be seen by verifying that
the Bowditch compactification satisfies the conditions of [33, Theorem 2.4], which is done for some examples
of relatively hyperbolic groups in [33, Section 9]. This can also be done directly by using results of Maher
and Tiozzo [39]. First, we prove by contradiction that any µ-stationary measure on the Bowditch boundary
has no atom. The following fact is well-known and we include a proof for completeness.

Claim 3.8. Let G be a group acting on a measured space (X,κ) such that κ is µ-stationary and G does not
fix any finite set on X. Then, κ has not atom.

Proof of the claim. If this were the case, then we would choose an atom x ∈ X of maximal measure. Since
the support supp(µ) generates the group G as a semi-group, we would necessarily have κ(g−1x) = κ(x) for
every g, for κ is µ-stationary, so

κ(x) =
∑
g∈G

κ(g−1x)µ(g) ≤
∑
g∈G

κ(x)µ(g).

Hence, the orbit of x would be finite, which is impossible since the group G does not fix any finite set on
X. �

We can apply this claim to our situation because G is non-elementary and so it does not fix any finite
set on the Bowditch boundary. Thus, any µ-stationary measure is uniquely defined by its restriction to the
set of conical limit points and now [39, Theorem 1.1] shows that there is a unique µ-stationary probability
measure on this set, which concludes the proof. �

We deduce the following lemma.

Lemma 3.9. With the above notations, we have

Hdimδ̄λ(νB) ≤ Hdimδλ(νF )

and
Hdimδ̄λ(νB) ≤ Hdimδλ(νF ).

Proof. By (6), δ̄λ ≤ δλ on the set of conical limit points. Hence, for every point ξ such that φ(ξ) is a conical
limit point,

νB (φ(B(ξ, r))) ≤ νB(B(φ(ξ), r)).

Since νB = φ∗νF , νB (φ(B(ξ, r))) = νF
(
φ−1 ◦ φ(B(ξ, r))

)
. We thus get

νF (B(ξ, r)) ≤ νF
(
φ−1 ◦ φ(B(ξ, r))

)
≤ νB(B(φ(ξ), r)).
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This is true for every point ξ such that φ(ξ) is a conical limit point. Since the map φ is surjective and νB
gives full measure to the set of conical limit points, this concludes the proof. �

We thus only need to show that

Hdimδλ(νF ) ≤ −1

log λ

h

l

to prove Proposition 3.6.
We denote by ωn the random walk driven by µ at time n. Let Ω = GN≥0 be the trajectory space of the

random walk. We also denote by x = (e, ω1, ..., ωn, ...) ∈ Ω a sample path, i.e. a trajectory of the random
walk starting from the identity 1. Recall that the random walk ωn almost surely converges to a point ω∞ in
the Floyd boundary.

Lemma 3.10. For P-almost every x = (ωn), we have that

1

n
d(ωn, ωn+1) −→

n→+∞
0.

Proof. Note that d(ωn, ωn+1) = d(1, gn+1) where gn are the increments of the random walk. In particular,
the random variables d(ωn, ωn+1) are independent, identically distributed and are integrable, since µ has
finite first moment. If follows from the law of large numbers that

1

n

n∑
k=0

d(ωk, ωk+1) −→
n→∞

L = E(d(1, ω1)) < +∞.

In particular,

1

n
d(ωn, ωn+1) =

1

n

n∑
k=0

d(ωk, ωk+1)− 1

n

n−1∑
k=0

d(ωk, ωk+1) −→
n→∞

L− L = 0.

This concludes the proof. �

As a corollary, we have the following.

Lemma 3.11. For P-almost every x = (ωn), we have that for every geodesic γn from ωn to ωn+1,

1

n
d(1, γn) −→

n→∞
l.

Proof. Let γn be such a geodesic. Then, we have d(1, γn) ≤ d(1, ωn) + d(ωn, ωn+1) and similarly, we have
d(1, ωn) ≤ d(1, γn) + d(ωn, ωn+1). Since 1

nd(1, ωn) almost surely converges to l by (2) and 1
nd(ωn, ωn+1)

almost surely converges to 0 by Lemma 3.10, we have that 1
nd(1, γn) also almost surely converges to l. �

For every ε,N > 0, we let ΩNε be the set of trajectories x such that for every n ≥ N , we have
(a) d(1, γn) ≥ (l − ε)n
(b) − logµ∗n(ωn) ≤ (h+ ε)n, and
(c) d(ωn, ωn+1) ≤ n
Observe that for every δ > 0, there exists Nε,δ such that

P(Ω
Nε,δ
ε ) ≥ 1− δ.

Indeed, this follows immediately from the almost sure convergence of the following limits

1

n
d(1, γn) −→

n→∞
l,

1

n
d(ωn, ωn+1) −→

n→∞
0,
−1

n
logµ∗n(ωn) −→

n→∞
h

where the last one is called the Shannon-McMillan-Breiman Theorem and is given by (3).
To simplify, we set Ωε,δ = Ω

Nε,δ
ε . Also, for fixed x, we let Cnx be the set of trajectories x′ such that

ω′n = ωn. Finally, for ξ in the Floyd boundary and r > 0, we set

D(ξ, r) = {x : δλ(ω∞, ξ) ≤ r}.
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Lemma 3.12. There exists a set Λε,δ ⊂ Ωε,δ of measure at least 1− 2δ on which the quantity
P(Cnx ∩ Ωε,δ)

µ∗n(ωn)

admits a positive limit. In particular, for every x = (ωn) ∈ Λε,δ, we have

lim sup
n→∞

1

n
logP(Cnx ∩ Ωε,δ) = lim sup

n→∞

1

n
logµ∗n(ωn).

The proof can be found within the proof of [32, Theorem 1.4.1]. We rewrite it for convenience.

Proof. First note that P(Cnx ) = µ∗n(ωn). So P(Cnx∩Ωε,δ)
µ∗n(ωn) is the conditional probability of Ωε,δ with respect

to Cnx , that we denote by P(Ωε,δ|Cnx ). We introduce the σ-algebra A≥n of sample paths determined by the
coordinates ωk, k ≥ n. The tail σ-algebra A∞ is then the intersection of the non-increasing sequence of
σ-algebras A≥n. There is a projection from the path space to the tail boundary that we denote by tail. We
refer to [31] for more details. We let P(A|tail(x)) be the conditional probability P(A|A∞) evaluated at the
sample path x.

The Markov property and the conditional probabilities convergence theorem show that P(Ωε,δ|Cnx ) con-
verges to P(Ωε,δ|tail(x)), see [32, (1.4.4)]. Now, let

Λε,δ = {x ∈ Ωε,δ,P(Ωε,δ|tail(x)) > 0}.
We have

E(P(Ωε,δ|tail(x))) = P(Ωε,δ).

Moreover,
E(P(Ωε,δ|tail(x))) = E(P(Ωε,δ|tail(x)) · 1Λε,δ) + E(P(Ωε,δ|tail(x)) · 1Ωcε,δ

).

Since P(Ωε,δ|tail(x))) ≤ 1 for P-almost every x, we get

P(Ωε,δ) = E(P(Ωε,δ|tail(x))) ≤ P(Λε,δ) + 1− P(Ωε,δ)

that we rewrite P(Λε,δ) ≥ 2P(Ωε,δ)− 1. Therefore, P(Λε,δ) ≥ 1− 2δ, which concludes the proof. �

Lemma 3.13. There exists M ≥ 0 such that the following holds. For fixed ε and δ, for every x ∈ Λε,δ and
every n ≥ Nε,δ, we have

Cnx ∩ Ωε,δ ⊂ D(ω∞,Mnλn(l−ε)).

Proof. Fix x ∈ Λε,δ and let x′ ∈ Cnx ∩ Ωε,δ. Then, ωn = ω′n. Moreover, for every m ≥ Nε,δ, letting γ′m be
a geodesic from ω′m to ω′m+1, we have d(1, γ′m) ≥ (l − ε)m. Thus there exists a path of length d(ω′m, ω

′
m+1)

which stays at distance at least (l − ε)m from 1. Since we also have d(ωm, ωm+1) ≤ m, this proves that

(7) δλ(ω′m, ω
′
m+1) ≤ d(ω′m, ω

′
m+1)λ(l−ε)m ≤ mλ(l−ε)m.

Consequently, for any m > n,

δλ(ω′n, ω
′
m) ≤

m−1∑
k=n

kλ(l−ε)k ≤
∑
k≥0

(n+ k)λ(l−ε)(n+k).

Note that ∑
k≥0

(n+ k)λ(l−ε)(n+k) = nλ(l−ε)n
∑
k≥0

λ(l−ε)k + λ(l−ε)n
∑
k≥0

kλ(l−ε)k.

Since λ < 1, both sums
∑
k≥0 λ

(l−ε)k and
∑
k≥0 kλ

(l−ε)k are finite. Hence, there exists M0 such that∑
k≥0

(n+ k)λ(l−ε)(n+k) ≤M0nλ
(l−ε)n,

so that δλ(ωn, ωm) ≤M0nλ
(l−ε)n. This holds for every m > n, so we have

δλ(ω′n, ω
′
∞) ≤M0nλ

(l−ε)n.

Clearly, we also have x′ ∈ Cnx ∩ Ωε,δ and so δλ(ωn, ω∞) ≤ M0nλ
(l−ε)n. Finally, since by definition of Cnx ,

ωn = ω′n, we get
δλ(ω∞, ω

′
∞) ≤ 2M0nλ

(l−ε)n.

This proves the lemma, setting M = 2M0. �
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We can now finish the proof of Proposition 3.6.

Proof. Our goal is to prove that for νF -almost every ξ,

(8) lim sup
r→0

log νF (B(ξ, r))

log r
≤ −1

log λ

h

l
.

It is thus enough to prove that for P-almost every trajectory x = (ωn), we have

lim sup
r→0

log νF (B(ω∞, r))

log r
≤ −1

log λ

h

l
,

since νF is the law of the random variable ω∞. This shall follow from the statement that for every ε and δ,
for every x ∈ Λε,δ, we have

lim sup
r→0

log νF (B(ω∞, r))

log r
≤ −1

log λ

h+ ε

l − ε
.

Indeed, P(Λε,δ) ≥ 1− 2δ and ε and δ can be chosen arbitrarily small.
Let x ∈ Λε,δ. We need to estimate lim supr→0

log νF (B(ω∞,r))
log r . Since the function x ∈ R 7→ Mxλ(l−ε)x is

eventually decreasing, we can replace r with Mnλ(l−ε)n and make n go to infinity. Thus, it suffices to prove
that

lim sup
n→∞

logP(D(ω∞,Mnλ(l−ε)n))

log λ(l − ε)n
≤ −1

log λ

h+ ε

l − ε
.

In other words, we will prove that for every x ∈ Λε,δ,

lim sup
n→∞

logP(D(ω∞,Mnλ(l−ε)n))

n
≥ −(h+ ε).

Using Lemma 3.13, we see that

lim sup
n→∞

logP(D(ω∞,Mnλ(l−ε)n))

n
≥ lim sup

n→∞

logP(Cnx ∩ Ωε,δ)

n

and using Lemma 3.12, we see that

lim sup
n→∞

logP(Cnx ∩ Ωε,δ)

n
= lim sup

n→∞

logµ∗n(ωn)

n
.

Finally, since x ∈ Λε,δ ⊂ Ωε,δ, for large enough n, log µ∗n(xn)
n ≥ −(h+ ε), so finally

lim sup
n→∞

logP(D(ω∞,Mnλ(l−ε)n))

n
≥ −(h+ ε),

which concludes the proof. �

3.3. Lower-bound for the Hausdorff dimension. The goal of this subsection is the following.

Proposition 3.14. Under the assumptions of Theorem 3.1, we have

Hdimδ̄λ(νB) ≥ −1

log λ

h

l

and
Hdimδλ(νF ) ≥ −1

log λ

h

l
.

Proof. We only prove the result for the measure νB on the Bowditch boundary. According to Lemma 3.9,
the result for the harmonic measure on the Floyd boundary will then follows.

Proposition 3.2 shows there almost surely exists a transition point on a geodesic between 1 and ω∞ such
that 1

nd(ωn, xn) converges to 0. Also, −1
n logµ∗n(ωn) almost surely converges to h by (3) and 1

nd(1, ωn)

almost surely converges to l by (2). For every ε > 0 and N , we let ΩNε be the set of trajectories x such that
for every n ≥ N ,
(a) d(ωn, xn) ≤ εn
(b) (l − ε)n ≤ d(1, xn) ≤ (l + ε)n
(c) − logµ∗n(ωn) ≥ (h− ε)n



HAUSDORFF DIMENSION OF THE HARMONIC MEASURE FOR REL. HYP. GROUPS 17

Then, for every ε, P(∪NΩNε ) = 1. Hence, there exists Nε such that P(ΩNεε ) ≥ 1− ε. We set Ωε = ΩNεε .
We will both need to deal with the set Ωε and the sets ΩNε in the following. We fix N and we fix a

trajectory x ∈ ΩNε and so we also fix the corresponding sequence of transition points xn on the geodesic
between 1 and ω∞. Let Π(g,R) be the big shadow at g, that is, the set of boundary points ξ in the Bowditch
boundary such that there exists a geodesic ray [1, ξ] intersecting B(g,R).

First of all, observe that for all n large enough (i.e. bigger than N and Nε),

P(x′ ∈ Ωε ∩ {ω′∞ ∈ Π(xn, R)}) ≤ P(x′ ∈ Ωε : ω′n ∈ B(xn, 2R+ 3nε)).

Indeed, if the limiting point ξ′ = ω′∞ lies in the shadow Π(xn, R), then there is a point gn on a geodesic from
1 to ξ′ entering the ball B(xn, R), so d(1, gn) is between (l−ε)n−R and (l+ε)n+R. For every x′ ∈ ΩNε with
transition points x′n on [1, ω′∞], we also have that d(1, x′n) is between (l− ε)n and (l+ ε)n, so we deduce that
d(x′n, gn) ≤ R+ 2εn. By (a), d(ω′n, x

′
n) ≤ εn, so we must have d(ω′n, xn) ≤ d(ω′n, gn) + d(gn, xn) ≤ 2R+ 3εn

as desired.
By the defining property (c) of Ωε, we have µ∗n(ω′n) ≤ exp(−n(h− ε)) for any n > Nε, so

P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 2R+ 3nε))

≤ P(µ∗n(ω′n) ≤ exp(−n(h− ε)), ω′n ∈ B(xn, 2R+ 3nε))

and since µ∗n is the law of ω′n, the right-hand side of this inequality can be written as the following sum∑
u∈B(xn,2R+3nε),
µ∗n(u)≤exp(−n(h−ε))

µ∗n(u).

We thus get
P(x′ ∈ Ωε, ω

′
n ∈ B(xn, 2R+ 3nε)) ≤ ]B(1, 2R+ 3nε) exp(−n(h− ε))

and since balls grow at most exponentially, there exists v such that

P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 2R+ 3nε)) ≤ C exp(3nεv) exp(−n(h− ε)).

Hence, for any N and any fixed x in ΩNε , we have

(9) lim inf
n→∞

logP(Ωε ∩Π(xn, R))

−n
≥ h− ε− 3vε

Following [53], we use conditional expectations with respect to the σ-algebra S, which is the smallest
σ-algebra such that the map bnd : x 7→ ω∞ is measurable. Beware that the σ-algebra S and the σ-algebra
A∞ that we used in the proof of Proposition 3.6 can be different. We refer to the discussion in the proof of
[32, Theorem 1.4.1] for more details. We let P(A|bnd(x)) be the conditional probability P(A|S) evaluated at
the sample path x. This is denoted by Pbnd(x)(A) in [53]. Since the harmonic measure νB is the pushforward
of the measure P by the map bnd, one can define a family of conditional probabilities ξ ∈ ∂BG 7→ P(A|ξ)
such that for every measurable set A ∈ ∂BG and every measurable set B in the path-space of the random
walk,

P(B|π−1(A)) =
1

ν(A)

∫
A

P(B|ξ)dνB(ξ).

We then define the set
Fε = {ξ ∈ ∂BG,P(Ωε|ξ) ≥ ε}.

Desintegrating along νB, we have

1− ε ≤ P(Ωε) =

∫
∂BG

P(Ωε|ξ)dνB(ξ)

=

∫
Fε

P(Ωε|ξ)dνB(ξ) +

∫
F cε

P(Ωε|ξ)dνB(ξ)

≤ νB(Fε) + ε.

Therefore, νB(Fε) ≥ 1− 2ε. We now evaluate νB(Fε ∩Π(xn, R)):

νB(Fε ∩Π(xn, R)) = P(ω∞ ∈ Fε ∩Π(xn, R))

≤ P(Ωε ∩Π(xn, R)) + P(Ωcε ∩ {ω∞ ∈ Fε ∩Π(xn, R)})
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By definition, for ξ ∈ Fε, we have P(Ωcε|ξ) ≤ 1− ε, so

P(Ωcε ∩ {ω∞ ∈ Fε ∩Π(xn, R)}) =

∫
Fε∩Π(xn,R)

P(Ωcε|ξ)dνB(ξ)

≤ (1− ε)νB(Fε ∩Π(xn, R)).

Consequently,
ε · νB(Fε ∩Π(xn, R)) ≤ P(Ωε ∩Π(xn, R)).

Thus, (9) yields for every N and every x ∈ ΩNε

lim inf
n→∞

log νB(Fε ∩Π(xn, R))

−n
≥ h− ε− 3vε.

According to Lemma 2.6, there exists some constant C > 0 such that

B(ω∞, Crn) ⊂ Π(xn, R)

where rn = λd(1,xn) satisfies λ(l+ε)n ≤ rn ≤ λn(l−ε). Therefore,

lim inf
n→∞

log νB(Fε ∩B(ω∞, Crn))

logCrn
≥ h− ε− 3vε

− log λ(l + ε)
.

Thus, for any N and any fixed x in ΩNε , we have

lim inf
r→0

log νB(Fε ∩B(ω∞, r))

log r
≥ h− ε− 3vε

− log λ(l + ε)
.

This is true for all N and P(∪NΩNε ) = 1. Hence, for νB-almost every ξ,

(10) lim inf
r→0

log νB(Fε ∩B(ξ, r))

log r
≥ h− ε− 3vε

− log λ(l + ε)
.

We can now conclude the proof, exactly like Theorem 1.1 is deduced from Theorem 3.3 in [53]. Let us
give the details for completeness.

Consider the restriction νB,ε of νB to Fε. Then, (10) yields

Hdim(νB,ε) ≥
h− ε− 3vε

− log λ(l + ε)

and so
Hdim(νB) ≥ h− ε− 3vε

− log λ(l + ε)
.

In particular, the set

Gε =

{
ξ ∈ ∂BG, lim inf

r→0

log νB(B(ξ, r))

log r
≥ h− ε− 3vε

− log λ(l + ε)
− ε
}

has positive νB-measure. We show that Gε is G-invariant. First, recall that the measure νB is µ-stationary.
Since µ generates G as a semi-group, for any g ∈ G, there exists n such that µ∗n(g−1) > 0 and µ∗n(g) > 0.
Note that νB also is µ∗n stationary, so that for any measurable set A,∑

g∈A
νB(gA)µ∗n(g) = νB(A).

In particular, there exists cg,µ > 0 such that

c−1
g,µνB ≤ g−1νB ≤ cg,µνB.

Together with Lemma 2.7, this implies that

νB(B(ξ, r)) ≤ cg,µνB(B(gξ, cgr))

for any ξ ∈ Gε. By taking the limit inf, the constant cg,µ disappears and thus gξ ∈ Gε. Hence, Gε is indeed
G-invariant.

The measure νB is ergodic and νB(Gε) > 0. Consequently, the set Gε has full measure. We thus get that
for νB-almost every ξ,

lim inf
r→0

log νB(B(ξ, r))

log r
≥ h− ε− 3vε

− log λ(l + ε)
− ε.
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Since ε is arbitrary, this shows that for νB-almost every ξ,

(11) lim inf
r→0

log νB(B(ξ, r))

log r
≥ −1

log λ

h

l

and thus concludes the proof. �

We now conclude the proof of Theorem 3.1.

Proof. By Propositions 3.6 and 3.14, it remains to show the exact dimensionality of νB and νF . According
to (8) and Lemma 3.7, for νF -almost every ξ,

lim sup
r→0

log νB(B(φ(ξ), r))

log r
≤ lim sup

r→0

log νF (B(ξ, r))

log r
≤ −1

log λ

h

l
.

Similarly, (11) shows that for νB-almost every ξ,

lim inf
r→0

log νF (B(ξ, r))

log r
≥ lim inf

r→0

log νB(B(φ(ξ), r))

log r
≥ −1

log λ

h

l
.

This shows that both νB and νF are exact dimensional. �

4. Groups with infinitely many ends

In this section, we compute the Hausdorff dimension of the harmonic measure on the end boundary
equipped with a visual metric

4.1. The end compactification. Let Γ be an infinite, connected, locally finite graph. For every edge e
in Γ, we denote by e0 its endpoints. More generally, for every set of edges E, we denote by E0 the set of
vertices that are endpoints of an edge in E. We will also write Γ0 for the set of all vertices of Γ.

Let E be a finite set of edges. Denote by Γ \E the spanning graph of the vertex set of Γ0 \E0: removing
all edges sharing one vertex with one edge in E. Let C(E) be the set of infinite components of Γ \ E.
By definition, there exists at least one edge e for every component C ∈ C(E) such that e0 ∩ C 6= ∅ and
e0 ∩ E0 6= ∅. Note that two components C1, C2 in C(E) are distinct if and only if every path between any
two points x ∈ C1, y ∈ C2 intersects E0. Finally, two points x, y are called separated by E if x and y lie in
distinct components of Γ \ E.

We can define the end compactification of Γ as follows. Consider the directed system F(Γ) of all finite
set of edges in Γ with E < F if E ⊂ F . There is a natural map from C(F ) to C(E) induced by inclusions of
infinite components. The end boundary ∂EΓ is the inverse limit of the directed system C(E) over all finite
set of edges E in Γ. By definition, a point ξ ∈ ∂EΓ is a collection of infinite components CE(ξ) of Γ \ E for
every E ∈ F(Γ), such that CE(ξ) ∩ CE′(ξ) is infinite for any two E,E′. We call ξ an end of Γ. For every
E, the component CE(ξ) of C(E) is uniquely determined by ξ and by abuse of language, we say that CE(ξ)
contains ξ, that we denote by ξ ∈ CE(ξ). We can then extend the definition of separated pair of points to
ends. Two ends ξ 6= ζ are separated by E if CE(ξ) 6= CE(ζ), or equivalently if ξ /∈ CE(ζ). Note that any two
distinct ends are necessarily separated by some E ∈ F(Γ).

The end boundary ∂EΓ defines a compactification of Γ in the following way. One can extend the discrete
topology on the set of vertices Γ0 to a metrizable topology on Γ

E
= Γ∪∂EΓ which makes it a compact space

and such that Γ is dense in Γ
E
. Moreover, a sequence of points xn ∈ Γ converges to an end ξ ∈ ∂EΓ if and

only if for every E ∈ F(Γ), we have that xn lies in CE(ξ) for all but finitely many n.
The topological closure C̄E(ξ) of a component CE(ξ) in the compactification Γ∪∂EΓ is the union of CE(ξ)

with all ζ ∈ ∂EΓ for which CE(ξ) = CE(ζ). Hence, a component C contains ξ if ξ ∈ C̄. Let CEi(ξ) be a
sequence of strictly shrinking components, that is, CEi+1

(ξ) ⊂ CEi(ξ). Then their closures C̄Ei(ξ) yield a
neighborhood basis of ξ.

Let ξ be an end. By definition, there exists a sequence of finite subsets En such that CEn+1(ξ) ⊂ CEn(ξ).
Following Woess [57], we say that ξ is a thin end if the sets En can be chosen so that supn diam(En) is finite.
We say that it is M -thin if supn diam(En) ≤M .

Then end compactification of a finitely generated group G is the end compactification of its Cayley
graph with respect to a finite generating set. The quasi-isometry extends to a homeomorphism between end
boundary, so the topology of the end boundary does not depend on the choice of this generating set and so
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it is well defined. We denote by ∂EG the end boundary of G. This compactification was first introduced by
Freudenthal and is also called the Freudenthal compactification. We refer to [19] for more details.

An infinitely-ended group is called accessible if it admits a splitting over finite edge groups as a finite
graph of one ended or finite vertex groups. Finitely presented group are accessible [14]. The accessibility
is a quasi-isometric invariant by the following graphical characterization [54]. An infinitely-ended group is
accessible if and only if there exists k > 0 such that any two distinct ends are separated by k edges in a
Cayley graph.

Taking limits of geodesics and using Arzelá-Ascoli Theorem, we see that the end boundary is a visual
boundary: any end is connected to any point x in the group by an infinite geodesic and any two distinct ends
are connected by a bi-infinite geodesic. Finally, by results of Stallings [52], G acts on ∂EG as a convergence
group, see also [4, Lemma 5.1].

4.2. Visual metrics. Let G be a finitely generated group with infinitely many ends. In [6], Candellero,
Gilch and Müller defined a visual metric on the set of ends of a free product. We extend their definition
to our situation. Fix a basepoint o ∈ G and fix 0 < λ < 1. We define a distance ρo,λ on ∂EG as follows.
Consider the sequence of finite edge sets Bn, where Bn is the edge set of the subgraph spanned by the vertices
in the closed ball of radius n around o. The inverse limit of the directed system {C(Bn)} is homeomorphic
to ∂EΓ.

Let ξ, ζ be two distinct ends. Let n be the minimal integer such that ξ and ζ belongs to different
components in C(Bn), then define ρλ,o(ξ, ζ) = λn. When the basepoint is the neutral element 1 of the group,
we will simply write ρλ(ξ, ζ).

By definition, the visual metric is ultrametric: for any triple of points x, y, z ∈ ∂EΓ,

ρλ(x, y) ≤ max{ρλ(x, z), ρλ(z, y)}

The next lemma follows directly from the definition.

Lemma 4.1. For every x, y ∈ ∂EΓ in the end boundary and for any choice of basepoints o, o′ ∈ G,

λd(o,o′) ≤ ρλ,o(x, y)

ρλ,o′(x, y)
≤ λ−d(o,o′).

As a consequence, we get the following, which is proved exactly like Lemma 2.7.

Lemma 4.2. For every g ∈ G, there exists a constant cg such that for every end ξ and for every r ≥ 0,

Bρλ(gξ, c−1
g r) ⊂ gBρλ(ξ, r) ⊂ Bρλ(gξ, cgr).

It is well known that the Floyd boundary covers the end boundary, see for example [20, Proposition 11.1]
and [36]. The following lemma allows us to compare the Floyd distance with the visual distance.

Lemma 4.3. The identity of G extends to a 1-Lipschitz surjective equivariant map φ from the Floyd boundary
to the end boundary with the same parameter λ ∈ (0, 1):

ρλ(φ(ξ), φ(ζ)) ≤ δλ(ξ, η)

for any ξ, ζ ∈ ∂FG.

Proof. Consider x, y ∈ G such that ρλ(x, y) = λn, where n is the minimal integer such that x, y are contained
in distinct components of C(Bn). Then any path from x to y has to intersect B(1, n), so δλ(x, y) ≥ λn. Hence,
for any x, y ∈ G,

(12) δλ(x, y) ≥ ρλ(x, y).

Consider now ξ ∈ ∂FG and let xn be a sequence in G converging to ξ. Then, xn is Cauchy for the Floyd
distance and so (12) shows it is also Cauchy for the visual distance. This proves that xn converges to a point
φ(ξ) ∈ ∂EG, which is uniquely determined by ξ. By construction, (12) extends to points in the boundary
and φ is equivariant. �



HAUSDORFF DIMENSION OF THE HARMONIC MEASURE FOR REL. HYP. GROUPS 21

4.3. The end boundary of accessible groups. As explained in Introduction, any infinitely-ended group
is relatively hyperbolic. If it is accessible, the action on its end boundary is geometrically finite. Precisely,
the peripheral structure is given by the “terminal” splitting of the accessible group as a finite graph of groups
over finite edge groups so that every vertex groups are either one-ended or finite. So for accessible groups,
the end boundary is homeomorphic to the Bowditch boundary, whose construction is briefly recalled below.

Let T be the corresponding Bass-Serre tree of the above terminal splitting. Following Bowditch [3], we
can put a compact metrizable topology on T 0∪∂ET , for T is a fine hyperbolic graph. A similar construction
is also given for any (non-)locally finite graph by Cartwright-Soardi-Woess [7].

As a perfect compact space, the Bowditch boundary or the end boundary is homeomorphic to the subspace
of T 0 ∪ ∂ET minus the isolated points coming from the vertices with finite stabilizer. According to the
definition of a geometrical finite action, every point in the Bowditch boundary is either conical or bounded
parabolic. The set of conical points are exactly ∂ET and bounded parabolic points are the vertices in T with
infinite stabilizer, which are the subset of ends in ∂EG corresponding to the left cosets of stabilizer in the
Caylay graph of G. Finally, let us remark that these two types of limit points are precisely thin end and
thick end introduced and studied in [54]. The proof of this fact can be found in [20, Proposition 7.8]

4.4. Hausdorff dimension of the harmonic measure. In this section, we consider a finitely generated
group G with infinitely many ends and we consider a probability measure µ with finite first moment on G.
We denote by ωn the random walk driven by µ. It is a classical fact that ωn almost surely converges to an
end ω∞, and that denoting by νE the law of ω∞, the end boundary (∂EG, νE) is a model for the Poisson
boundary. See for example [33, Theorem 8.4]. We call νE the harmonic measure on ∂EG.

Proposition 4.4. There exists M > 0 such that νE gives full measure to the set of M -thin ends.

Proof. It is proved in [57, Theorem 4.1] that the set of ends of a locally finite graph with infinitely many ends
can be decomposed into the union Ω0 ∪ Ω′, where Ω0 is a dense set in the set of ends consisting of M -thin
ends. When the graph is the Cayley graph of a finitely generated group, the set Ω0 can be constructed as
follows. As explained in the introduction, the group G splits as an amalgamated product A∗C B or an HNN
extension A∗C . In the former case, G is hyperbolic relative to the conjugates of A and B and in the later
case, it is hyperbolic relative to the conjugates of A. In both cases, every element of G can be written with
elements of A, B and C with a normal form, see [57, (9.2),(9.4)] and Ω0 can be described as the set of infinite
words with respect to this normal form, see [57, (9.3),(9.5)]. Moreover, the set Ω′ is constructed as the union
of translates of the set of ends of A and B, see the remarks after [57, (9.3),(9.5)]. We can thus construct
a continuous, surjective and equivariant map ψ from the set of ends ∂EG to the Bowditch boundary of G
with respect to the relatively hyperbolic structure described above. The map ψ is obtained by collapsing the
translate g∂EA of the set of ends of A to the point gα in the Bowditch boundary, where α is the parabolic
limit point fixed by A and similarly with B. It follows from this construction that Ω0 is mapped to conical
limit points. Note that the measure νE is µ-stationary and since ψ is equivariant, the pushforward ψ∗νE also
is µ-stationary on the Bowditch boundary. As explained in the proof of Lemma 3.7, the harmonic measure
νB on the Bowditch boundary is the unique µ-stationary measure, hence ψ∗νE = νB. Moreover, νB gives full
measure to conical limit points. Consequently,

νE(Ω
′) ≤ νE(ψ−1(ψ(Ω′))) = νB(ψ(Ω′)) = 0.

This concludes the proof. �

The following definition is inspired by the work of Derriennic [12] in free groups.

Definition 4.5. Let x, y ∈ G ∪ ∂EG and let M ≥ 0. We say that a set U ⊂ G is a M -bottleneck between x
and y if diam(U) ≤M and any path from x to y has to pass through U .

Similar sets are called transitional sets by Derriennic in [12]. However, to avoid confusion with the
terminology "transition points" in relatively hyperbolic groups, we used the name bottleneck, which will also
be more suited to our use later. The next lemma follows from our definitions.

Lemma 4.6. Let ξ be a M -thin end for M > 0. Then there exists an infinite sequence of distinct sets En in
G with supn≥1{diam(En)} ≤M such that any path from 1 to ξ has to pass successively through each En.

Moreover, for any x 6= ξ ∈ G ∪ ∂EG, there exists n0 > 0 such that any path from x to ξ has to pass
successively through each En, for n ≥ n0. In particular, for all but finitely many n > 0, the sets En are
M -bottlenecks between x and ξ.
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Our goal in the remainder of this section is to compute the Hausdorff dimension of the harmonic measure
with respect to the visual distance. Precisely, we prove the following theorem.

Theorem 4.7. Let (∂EG, νE) be as above and let h, l be the entropy and the rate of escape of the µ-random
walk on G. Then, for any λ ∈ (0, 1),

Hdimρλ(νE) =
−1

log λ

h

l
.

Moreover, νE is exact dimensional.

We will follow the strategy that we used for the harmonic measures on the Bowditch and the Floyd
boundaries. We first give an upper bound.

Proposition 4.8. For νE -almost every ξ in ∂EG,

lim sup
r→0

log νE(Bρλ(ξ, r))

log r
≤ −1

log λ

h

l
.

Proof. The proof of Proposition 3.6 for the Floyd distance again applies here. The only place where the
Floyd distance is used there is in the estimate (7), which states that whenever x, x′ are joined by a geodesic
which stays at distance at least m1 from 1 and which satisfies that d(x, x′) ≤ m2, we have

δλ(x, x′) ≤ m2λ
m1 .

This is again true replacing the Floyd distance δλ by the visual distance ρλ, since we have the better estimate

ρλ(x, x′) ≤ λm1 .

Also note that for λ ≥ λ0, we can give a direct proof. We use the map φ given by Lemma 4.3. By [33,
Theorem 8.3], νE is the only µ-stationary measure on ∂EG. Hence, φ∗νF = νE . The result thus follows from
the same result for the measure νF , which is given by (8). �

To obtain a lower bound, we will use the following result, which says that the random walk almost surely
sublinearly tracks bottlenecks.

Proposition 4.9. There exists M ≥ 0 such that for P-almost every x = (ωn) ∈ Ω, there exists a sequence
of M -bottlenecks Un between 1 and ω∞ satisfying that

1

n
d(ωn, Un) −→

n→∞
0.

Proof. We fix M ≥ 0 as in Proposition 4.4. For every x, y ∈ G ∪ ∂EG, we denote by Bn(x, y) the set of
M -bottlenecks between x and y. We introduce the function f defined by f(ω) = d(1,Bn(ω−∞, ω∞)), where
ω−∞ is the limit of the reflected random walk in ∂EG. Since the measure νE is stationary, it is non-atomic.
Indeed, we can apply the Claim 3.8, for G cannot fix any finite set on ∂EG since it is non-amenable, see
[57, Theorem 2.3]. Hence, ω−∞ and ω∞ are almost surely distinct. According to Proposition 4.4, ω−∞ and
ω∞ are almost surely M -thin ends, so Lemma 4.6 shows that Bn(ω−∞, ω∞) is non-empty. The proof of the
Claim 3.3 thus shows that f is measurable and is almost surely finite.

Note that f(Tnω) = d(ωn,Bn(ω−∞, ω∞)) and so |f(Tω)− f(ω)| ≤ d(1, ω1). Hence, [55, Lemma 7] shows
that 1

nf(Tnω) almost surely converges to 0. Thus, there almost surely exists a sequence of M -bottlenecks
Un between ω−∞ and ω∞ such that 1

nd(ωn, Un) converges to 0.
To conclude, we just need to show that for large enough n, Un is also a M -bottleneck between 1 and ω∞.

Since d(1, ωn) almost surely converges to l, we can assume that for large enough n, d(1, ωn) ≥ (l − ε)n and
so d(1, Un) goes to infinity. Fix a path α from ω−∞ to 1. Then for large enough n, say n ≥ n0, α does not
intersect Un. Consider now any path β from 1 to ω∞. Concatenating α and β yields a path from ω−∞ to
ω∞ which thus crosses Un. By construction, we necessarily have that β intersects Un for n ≥ n0. �

We can now prove the following result.

Proposition 4.10. For νE -almost every ξ in ∂EG,

lim inf
r→0

log νE(Bρλ(ξ, r))

log r
≥ −1

log λ

h

l
.
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Proof. We choose a sequence of points xn ∈ Un, where Un is a sequence of M -bottlenecks between 1 and
ω∞ given by Proposition 4.9. For every ε > 0 and N , we let ΩNε be the set of trajectories x = (ωn) ∈ Ω such
that for every n ≥ N ,
(a) d(ωn, xn) ≤ εn,
(b) (l − ε)n ≤ d(1, xn) ≤ (l + ε)n, and
(c) − logµ∗n(ωn) ≥ (h− ε)n.
Almost surely, 1

nd(ωn, xn) converges to 0, 1
nd(1, ωn) converges to l by (2), and −1

n logµ∗n(ωn) converges to
h by (3). Hence, there exists Nε such that P(ΩNεε ) ≥ 1− ε. We set Ωε = ΩNεε .

We fix N and we fix a trajectory x ∈ ΩNε and so we also fix the corresponding sequence of points xn. For
g ∈ G, we define the partial shadow f(g,M) to be the set of ξ ∈ ∂EG such that g lies in a M -bottleneck
between 1 and ξ. For n ≥ N and n ≥ Nε, we have

P(x′ ∈ Ωε ∩ {ω′∞ ∈ f(xn,M)}) ≤ P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 4M + 3nε)).

Indeed, assume that xn lies in a M -bottleneck V between 1 and ω′∞. Fix a geodesic from 1 to ω′∞. This
geodesic enters V at a point gn which satisfies d(gn, xn) ≤M . In particular, d(1, gn) is between (l− ε)n−M
and (l + ε) + M . There is also a point on this geodesic that enters the bottleneck U ′n at a point g′n,
satisfying d(g′n, x

′
n) ≤M and so we also have that d(1, g′n) is between (l − ε)n−M and (l + ε) +M . Thus,

d(gn, g
′
n) ≤ 2M + 2εn and since d(ω′n, x

′
n) ≤ εn, we get d(ω′n, xn) ≤ 4M + 3εn as required. On Ωε, we have

µ∗n(ω′n) ≤ exp(−n(h− ε)) for any n > Nε and µ∗n is the law of ω′n, so

P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 4M + 3nε)) ≤ ]B(1, 4M + 3nε) exp(−n(h− ε))

and since balls grow at most exponentially, there exists v such that

P(x′ ∈ Ωε, ω
′
n ∈ B(xn, 4M + 3nε)) ≤ exp(4vM) exp(3nεv) exp(−n(h− ε)).

Hence, for any N and any fixed x in ΩNε , we have

(13) lim inf
n→∞

logP(Ωε ∩ f(xn,M))

−n
≥ h− ε− 3vε

We can conclude exactly like in the proof of Proposition 3.14, replacing Lemma 2.7 by Lemma 4.2 and
replacing Lemma 2.6 by the following result, which asserts that partial shadows are sandwiched by balls. �

As before, we define the big shadow Π(g,M) as the set of ξ ∈ ∂EG such that there is a geodesic between
1 and ξ which intersects the ball of radius M centered at g. By definition, f(g,M) ⊂ Π(g,M) for M > 0.

Lemma 4.11. Let ξ ∈ ∂EG and r ≥ 0. Let g be any point on a geodesic between 1 and ξ. Then for any
M ≥ 0 there exist C1, C2 > 0 such that

Π(g,M) ⊂ Bρλ(ξ, C1r)

and if, in addition, g lies in a M -bottleneck between 1 and ξ, then

Bρλ(ξ, C2r) ⊂ f(g,M),

where r = λd(1,g).

Proof. Let ζ ∈ Π(g,M). Denote by h a point on a geodesic α from 1 to ζ such that d(g, h) ≤ M . Also
denote by β the geodesic from 1 to ξ in the statement of the lemma. Consider the path γ connecting ζ to
ξ obtained by following α from ζ to h, then connecting h to g by a geodesic and following β from g to ξ.
By construction, d(1, α) ≥ d(1, g) −M . Hence, ξ and ζ must lie in the same component of C(Bn) where
n = d(1, g)−M . Therefore, ρλ(ξ, ζ) ≤ λn+1 ≤ C1r where C1 = λ−M−1 and so ζ ∈ Bρλ(ξ, C1r).

To prove the second inclusion, set C2 = λM+1 and consider ζ ∈ Bρλ(ξ, C2r). Write ρλ(ξ, ζ) = λn, where
n is the minimal integer such that ξ and ζ lie in different components of C(Bn), so that n ≥ d(1, g) +M + 1.
Then, there exists a path α from ξ to ζ that enters B(1, n) but not B(1, n − 1). In particular, we have
d(g, α) ≥ d(1, α) − d(1, g) > M . Let β be any path from 1 to ζ and consider the path γ obtained by
concatenating α and β, which needs to cross B(g,M), since g is in a bottleneck between 1 and ξ. By
construction of α, β necessarily intersects B(g,M), so ζ ∈ f(g,M). �
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Finally, note that Proposition 4.10 yields

Hdimρλ(νE) ≥
−1

log λ

h

l

and Proposition 4.8 yields

Hdimρλ(νE) ≤ Hdimρλ(νE) ≤
−1

log λ

h

l
.

Hence, Hdimρλ(νE) = −1
log λ

h
l . Moreover, combining these two propositions implies that for νE -almost every

ξ,
log νE(B(ξ, r))

log r
−→
r→0

Hdimρλ(νE)

and so νE is exact dimensional. This concludes the proof of Theorem 4.7. �

5. Dimension of the end boundary

Recall that G is a finitely generated group with infinitely many ends, and (Γ, d) is the Cayley graph with
respect to a finite generating set. In this section, we compute the Hausdorff dimension of the end boundary
∂EG endowed with a visual metric. Define the volume growth of a subgroup H < G as

vH = lim sup
n→∞

log ]{g ∈ H : d(o, g) ≤ n}
n

.

We prove the following.

Theorem 5.1. Let G be a finitely generated group with infinitely many ends. Then, for every λ ∈ (0, 1), we
have

Hdimρλ(∂EG) = − vG
log λ

.

By Lemma 4.3, we have Hdim(∂EG) ≤ Hdim(∂FG) and [45, Lemma 4.1] shows that for any λ ∈ (0, 1),
we have Hdim(∂FG) ≤ − vG

log λ . The remainder of the section is devoted to proving the following proposition,
which will thus conclude the proof of Theorem 5.1.

Proposition 5.2. With the same notations, we have

Hdimρλ(∂EG) ≥ − vG
log λ

.

5.1. Preparatory lemmas. Recall that by [4, Lemma 5.1], the action of G on the end boundary is a
convergence action. Hence, we can consider conical points in ∂EG and hyperbolic elements in the sense of [4]
corresponding to this action. Recall that an element is elliptic if it has finite order and that an infinite order
element is parabolic if it fixes exactly one point on ∂EG and hyperbolic if it fixes exactly two points on ∂EG.
Moreover, if g is parabolic and fixes ξ, then for any ζ, gn · ζ converges to ξ as n→ ±∞, see [3, Section 2] for
more details. It follows from Lemma 4.3 that if g is parabolic for the action on the Floyd boundary, then it
is parabolic for the action on the end boundary. Thus, an element g ∈ G which is hyperbolic for the action
on the end boundary is also hyperbolic for the action on the Floyd boundary. and by [60, Lemma 7.2], such
an element is contracting.

Lemma 5.3. Let f be a hyperbolic element with two fixed points ξ− 6= ξ+ ∈ ∂EG. Then there exists a finite
set Ef ∈ F(Γ) of edges such that for every large enough n0 > 0 and for every n ≥ 2n0, the two elements 1
and fn are separated by fn0Ef . Moreover, d(1, fn0Ef ) ≥ d(1, fn0)− c0 for some uniform constant c0.

Proof. The two distinct ends ξ− 6= ξ+ are separated by a finite set Ef ∈ F(Γ), and since they are fixed by
any power of f , ξ− 6= ξ+ are separated by En := fnEf for any n. Note that n ∈ Z 7→ fn is a quasi-geodesic
so that the two half-rays converge to the corresponding ends ξ− and ξ+. Thus, whenever n0 is large enough,
f−n0 and fn−n0 are separated by Ef for any n ≥ 2n0. Up to translation, 1 and fn are thus separated by
En0

. Moreover, d(1, fn0) ≤ d(1, fn0Ef ) + supx∈Ef d(fn0x, fn0) and since Ef is fixed, the second term in the
right-hand side is uniformly bounded, which concludes the proof. �

Let F be a set of three pairwise independent hyperbolic elements in G. We write Fn = {fn : f ∈ F} for
any n ≥ 1.
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Lemma 5.4. There exists an integer n1 > 0 with the following property for every n ≥ n1. For any g, h ∈ G,
there exist f ∈ F and a finite set Ef of edges separating 1 and fn and such that any path between g−1 and
fnh has to cross Ef .

Proof. Since hyperbolic elements are contracting, by [61, Lemma 2.14], there exist n1, ε > 0 with the following
property: for any n > n1 and fn ∈ Fn the points 1 and fn stay within the ε-neighborhood of any geodesic
[g−1, fnh], so that the path γ = [g−1, 1][1, fn][fn, fnh] is a (1, 4ε)-quasi-geodesic. Let E be provided by
Lemma 5.3 for the element f . Hence, for large enough n0, assuming that n ≥ 2n0, the two elements 1 and
fn are separated by Ef := fn0E.

For given λ, c, we choose n0 to satisfy d(1, Fn0) > c+ λdiam(Ef ) + c0.

Claim 5.5. If γ is a (λ, c)-quasi-geodesic path containing [1, fn] for some λ, c > 0, then the endpoints of γ
are separated by Ef .

Proof of the Claim. Denote by γ1 and γ2 the corresponding subpaths before and after [1, fn]. Observe that
γ1 and γ2 are disjoint with Ef . Indeed, assume by contradiction that x ∈ γ1 ∩ E 6= ∅, the case for γ2 being
symmetric. By Lemma 5.3, the elements 1, fn are separated by Ef and d(1, Ef ) ≥ d(1, fn0)− c0. We then
choose y ∈ [1, f ]∩Ef so that d(1, y) ≥ d(1, fn0)− c0. This yields a subpath α of γ whose endpoints x and y
are at most diam(Ef ) apart. Since x, 1, y are aligned in this order on α, the quasi-geodesicity implies that
d(1, y) ≤ λd(x, y) + c. This contradicts the choice of n0 above.

As a consequence, any path between the two endpoints of γ pass through Ef . Indeed, if there was such a
path disjoint with Ef , we would obtain a path from 1 to fn disjoint with Ef , contradicting Lemma 5.3. �

The proof is concluded by the Claim applied to the (1, 4ε)-quasi-geodesic γ = [g−1, 1][1, fn][fn, fnh]. �

Let r = max{diam(Ef ) : f ∈ F}, where Ef is given by Lemma 5.4. The following definition refines the
notion of bottleneck given in the last section.

Definition 5.6. Let x, y ∈ G ∪ ∂EG and let n1 be given by Lemma 5.4. A (r, F )-bottleneck point between
x, y is a point b ∈ G such that any path between x and y has to cross the r-neighborhood of b[1, f ] for some
f ∈ Fn1 .

Note that if b is a (r, F )-bottleneck point between x and y, then b is in b[1, f ] so it lies in a M -bottleneck
for M = (d(1, Fn1) + 2r) in the sense of Definition 4.5. An immediate result follows by the same argument
in Lemma 4.3.

Lemma 5.7. If b is a (r, F )-bottleneck point between g, h, then the Floyd distance δλ,b(g, h) based at b is
bounded below by a constant depending λ, r, F only.

5.2. Construction of rooted geodesic trees with bottlenecking property. The strategy in proving
Proposition 5.2 is similar to [45]. We shall construct a sequence of rooted quasi-geodesic trees so that the
Hausdorff dimension of their ends tends to the Hausdorff dimension of ∂EG.

Before getting into the construction, we introduce the following definition of ends with the uniform
bottlenecking property, which are uniform conical points in the sense of [45]. We fix r, F and n1 as in
Section 5.1.

Definition 5.8. A path γ in Γ has the L-bottlenecking property for some L > 0 if there exists a sequence
of (r, Fn1)-bottleneck points bi ∈ γ between the endpoints of γ such that sup{d(bi, bi+1) : i ≥ 1} ≤ L and
d(x, {bi+1 : i ≥ 1}) ≤ L/2 for any x ∈ γ.

An end ξ has the L-bottlenecking property for some L > 0 if there exists a geodesic ray [1, ξ] with the
L-bottlenecking property.

Remark 5.9. By definition, an end with L-bottlenecking property must be thin, but the converse is false.

If H is a free semigroup with a free basis B, then the standard Cayley graph T of H with respect to B is
a rooted tree at 1, where every edge with unit length is labeled by a letter in B.

The construction of rooted trees in the proof of Proposition 5.2 will be given by the standard Cayley graphs
of a sequence of free semigroups described in the following lemma. Given n,∆ > 0, define the annulus set

A(n,∆) = {g ∈ G : |d(1, g)− n| ≤ ∆}.
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Lemma 5.10. For any 0 < v < vG, there exists a free semigroup H with a free basis B and a constant
L = L(v) > 0 with limv→vG L(v) =∞ so that the following hold.

(1) There exists a quasi-isometric embedding map Φ from the standard Cayley graph T of H into the
Cayley graph Γ of G, which is induced by the inclusion H ⊂ G and such that each geodesic issuing
from the identity in T is sent to a path with the L-bottlenecking property.

(2) The map Φ extends to a topological embedding ∂Φ of the end boundary ∂EH of H into ∂EG.
(3) We have vH > v and C1 exp(LvH) ≤ ]H ∩ A(1, n,∆) ≤ C2 exp(LvH) for n ≥ 1, where C1 and C2

depend on ∆.

Proof. (1) We set L± = n ± (∆ + d(1, Fn1)). Let W(A) be the set of all finite words over an alphabet
set A. Given a set A ⊂ Γ, we can define an extension map Φ : W(A) → G as follows: for any word
W = a1a2 · · · an ∈W(A), there exists a sequence fi ∈ Fn1 such that the path γ labeled by

(14) Φ(W ) = a1 · f1 · a2 · f2 · · · · · an−1 · fn−1 · an · fn ∈ G,

is a (λ, c)-quasi-geodesic for fixed constants λ, c > 0 depending only on F . Moreover, the path γ labeled by
Φ(W ) has the L+-bottlenecking property. The choice of the points fi is made by iterating the construction
given by Lemma 5.4. Precisely, by [61, Lemma 2.16], one can choose the fi so that γ is a (λ, c)-quasi-geodesic
with fixed λ and c. Then, by the Claim 5.5, the terminal endpoints of the segments labeled by ai (1 ≤ i ≤ n)
give n distinct (r, F )-bottleneck points between 1 and Φ(W ) with pairwise distance between L− and L+.
Those bottlenecks shall be called canonical.

To generate a free semigroup, we need the following property, proved in [61, Lemma 2.19]. There exists a
fixed constant C0 > 0 such that for every large enough n and every C ≥ C0, there exists a C-separated set
A⊂A(n,∆) with the following properties:
(a) ]A �C ]A(n,∆),
(b) there is a common f ∈ Fn1 for each pair (a, a′) ∈ A × A in the path (14) with the L-bottlenecking

property.
If C is taken sufficiently large, then the map Φ : (Af)n → G as above is injective. Indeed, consider two

paths β1 = Φ(W1) and β′1 = φ(W ′1), where W1 = a1f · · · amf and W ′1 = a′1f · · · a′nf . We shall prove the
following stronger fact, used later on in Lemma 5.12. Denote by (β1)+, respectively (β′1)+ the terminal
endpoint of β1, respectively β′1.

Claim 5.11. If d((β1)+, (β
′
1)+) ≤ D, then d(a1, a

′
1) < C for some C = C(D).

By choosing C ≥ C(0) the claim proves the injectivity of Φ. Hence, the set B := Af generates a free
semi-group denoted by H.

Proof of the Claim. Write g = Φ(W1) = (β1)+ and g′ = Φ(W ′1) = (β′1)+. Since the point a1 in β1 is a
(r, F )-bottleneck point between 1 and g, by Lemma 5.7 and Lemma 2.5 applied to the Floyd distance δλ,a1
based at a1, there exists a constant C depending only on r, F such that d(a1, [1, g]) < C. Since d(g, g′) ≤ D,
concatenating the geodesic [1, g] with a geodesic from g to g′ yields a quasi-geodesic α whose parameters
only depend on D. Hence, Lemma 2.5 shows that d(a′1, α) < C ′ where C ′ only depends on r, F and D. Using
again that d(g, g′) ≤ D, we finally obtain that d(a′1, [1, g]) ≤ C ′′. By the choice of a1, a

′
1 ∈ A ⊂ A(n,∆), we

have |d(1, a1)− d(1, a′1)| ≤ 2∆. We deduce that d(a1, a
′
1) < C + C ′′ + 2∆, which concludes the proof. �

(2) Note that the image of each geodesic ray γ in T is a path with the bottlenecking property which
converges to an end in ∂EG. We deduce that the map γ 7→ φ(γ) induces the desired topological embedding.

(3) For a given v, one can choose n big enough such that vH > v for a free semi-group H = 〈Af〉
constructed as above. This is possible since ]A �C ]A(n,∆), and

v = lim
n→∞

log ]A(n,∆)

n
.

See [61, Section 3] for the details. The purely exponential growth

]H ∩N(o, r) � exp(vHr)

follows by standard arguments using the fact that the subgroup H is contracting, as stated there. See an
argument in the proof of [45, Lemma 3.9]. �
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5.3. Completion of proof of Proposition 5.2. We shall first prove that the embedding ∂Φ : ∂EH → ∂EG
is bi-Lipschitz with respect to visual metrics for appropriate choice of parameters. The Hausdorff dimension
of ∂EG will then be bounded from below by that of the ends of the rooted tree T which will be easier to
compute.

Recall T is the standard Cayley graph of H with respect to the free base B = Af whose edges with unit
length are labeled by a letter in B.

Lemma 5.12. Under the assumption of Lemma 5.10, assume that Φ(p) = ξ and Φ(q) = η where p, q ∈ ∂ET .
Let m be the length of the intersection [1, p] ∩ [1, q] where [1, p], [1, q] are geodesic rays in T . Then

ρλ(ξ, η) �L λmL.

Proof. In the proof, let us write

[1, p] = (a1f)(a2f) · · · (amf)(am+1f) · · ·

and
[1, p] = (a′1f)(a′2f) · · · (a′mf)(a′m+1f) · · ·

and denote β1 = Φ([1, p]) and β2 = Φ([1, q]). Those are two rays with the L-bottlenecking property ending
at ξ and η. Let [1, p]∩ [1, q] = s1 · · · sm be a geodesic of length m where si ∈ Af . In other words, ai = a′i for
1 ≤ i ≤ m.

By definition, ρλ(ξ, η) = λn where n is the minimal integer such that ξ and η belongs to different
components of the complement of the ball Bn. Note that n ≥ mL/2. Indeed, the path τ = Φ(s1 · · · sm)
issuing from 1 has the L-bottlenecking property, ends at u = s1 · · · sm and is contained in both β1 and β2.
Thus, there arem bottleneck points between 1 and u with pairwise distance at least L/2, so that the geodesic
[1, u] in the Cayley graph Γ of G has to pass through them in order. We then derive that d(1, u) ≥ mL/2.
Since the path obtained from β1 ∪ β2 \ τ connects ξ to η, the definition of n implies that n > mL/2.

We shall prove the upper-bound n ≤ R := (m+ 1)L+ r, which will conclude the proof. By definition, it
suffices to show that ξ and η belongs to the distinct components of G \BR.

Let b be the second (r, F )-bottleneck point on β1 after the initial subpath τ of β1: it is the terminal
endpoint of am+2 in β1. Thus, any path from 1 to ξ has to cross the r-neighborhood of b[1, f ]. Let
C = C(r + d(1, Fn1)) be the constant given by the Claim 5.11. If A is chosen to be C-separated, then
d(b, β2) > r + d(1, Fn1) and thus, β2 ∩Nr(b[1, f ]) = ∅.

It remains to prove that any path from ξ to η has to intersect the ball BR. If not, let Q be a path from ξ
to η so that Q∩BR = ∅. Recall that b is the (m+1)-th (r, F )-bottleneck point and thus d(1, bf) ≤ (m+1)L.
The value of R implies that BR contains Nr(b[1, f ]). Also recall that β2 ∩Nr(b[1, f ]) = ∅, so concatenating
Q and β2 yields a path Q · β2 from ξ to 1 avoiding the set Nr(b[1, f ]). This is a contradiction, since b is a
(r, F )-bottleneck point between 1 and ξ. As desired, ξ and η lie in different components in the complement
of BR. The proof of the upper bound n ≤ R follows. �

Proposition 5.13. Let α = λL for given λ ∈ (0, 1). Then the embedding ∂Φ from the ends boundary
(∂ET, ρα) into the ends boundary (∂EG, ρλ) is bi-Lipschitz.

Proof. By Lemma 5.12, we see ρα(ξ, η) = αm = λmL �L ρλ(Φ(p),Φ(q)). Thus, the map from ∂ET is
bi-Lipschitz onto its image in ∂EG. �

Let T be any infinite rooted tree, with vertex set V partitioned by depth (distance from the root vertex):
V = ∪n=0Vn. Let Nn and Mn be increasing sequences of positive integers. Say that T is {Mn}-regular
relative to {Nn} if for every n ≥ 1 every vertex x at depth Nn has exactly Mn+1 descendant vertices at
depth Nn+1.

Lemma 5.14. [37, Lemma 2] Let T be an infinite rooted tree with space of ends ∂ET equipped with the visual
metric of parameter α ∈ (0, 1). If there is an increasing sequence of integers Nn satisfying limn→∞

Nn+1

Nn
= 1

such that, for some sequence {Mn} of positive integers, T is {Mn}-regular with respect to {Nn}, then the
Hausdorff dimension of ∂ET (relative to the visual metric ρα) is given by

Hdimρα(∂ET ) = lim inf
n→∞

log |VNn |
−Nn logα

= lim inf
n→∞

log
∏n
j=1Mj

−Nn logα
.
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We apply Lemma 5.14 to the standard Cayley graph T of H, where Mn = ]Af and Nn = n. We obtain

Hdimρα(∂ET ) = lim inf
n→∞

log
∏n
j=1 ]Af

−n logα
=

log ]Af

−L log λ
.

By Lemma 5.10, C1 exp(LvH) ≤ ]Af ≤ C2 exp(LvH), so

Hdimρα(∂T ) ≥ − logC2 + LvH
L log λ

,

where v < vH ≤ vG.
Since a bi-Lipschitz map preserves the Hausdorff dimension, by Proposition 5.13, we have

Hdimρλ(∂EΓ) ≥ − logC2 + Lv

L log λ
.

As v tends to vG, L goes to infinity, so we finally obtain

Hdimρλ(∂EΓ) ≥ − vG
log λ

.

The proof of Proposition 5.2 and thus Theorem 5.1 is complete. �

6. Characterizing the Doubling property: proof of Theorem 1.6

It is well-known that a virtually free group is hyperbolic and that its end boundary endowed with a visual
metric is bi-Hölder to its Gromov boundary endowed with a Gromov’s visual metric. The latter has the
doubling property, since the Patterson-Sullivan measure is doubling (even Ahlfors regular) by the work of
Coorneart [8]. We prove here the following result.

Proposition 6.1. If a finitely generated group admits a splitting over finite edge groups as a finite graph of
groups with at least one one-ended vertex group, then the visual metric is not doubling.

Theorem 1.6 is then a consequence of this proposition. Indeed, accessible groups admit a splitting over
finite edge groups as a finite graph of groups G, so that the vertex groups either are finite or one-ended. In
the former case, the group is virtually free, in the later case, it satisfies the assumptions of Proposition 6.1.

Proof. Consider a splitting over finite edge groups as a finite graph of groups G and let H be a one-ended
vertex group. Notice that a metric space (X, d) is doubling if and only if for any (or some) θ ∈ (0, 1), there
exists N = N(θ) > 0 such that every ball of radius s > 0 can be covered by at most N balls of radius θs.
To prove that the end boundary is not doubling, our strategy will be as follows. We will consider for every
n the ball of radius s = λn centered at the end ξ of G corresponding to the unique end of H. We will prove
that for some fixed θ, this ball cannot be covered by N(n) balls of radius θs(n), where N(n) goes to infinity.
This will conclude the proof. We present the details below.

By the Bass-Serre theory, G is isomorphic to either an amalgamated product H ∗F K or a HNN extension
H∗F over a finite group F , where K might not be one-ended. In what follows, we only consider the
amalgamated product case, the HNN extension case being similar. Let G = H ∗F K so that H and K are
generated by two finite sets S and T respectively and assume for simplicity that both sets S and T contain
F . The normal form given by [57, (9.2),(9.3)] shows that the Cayley graph Γ of G with respect to S ∪ T is
obtained as the disjoint union ⊔

g∈G
{g · Cay(H,S), g · Cay(K,T )}.

glued along cosets gF between g ·Cay(H,S), g ·Cay(K,T ). In particular, for any end η 6= ξ, any path from
η to ξ has to pass through a finite set Fη corresponding to some F -coset in H and any path from 1 to η also
has to pass through Fη. Since we made the assumption that F ⊂ S ∩ T , the diameter of Fη is at most 1,
that is any two distinct vertices in Fη are connected by an edge.

Let Sn := {g ∈ G : d(1, g) = n} be the n-sphere in the Cayley graph Γ of G. By definition of the visual
metric, if ρλ(ξ, η) = λn for n ≥ 1, then every path from ξ and η stays within distance n of the identity
and exits H at some vertex in Fη. Moreover there exists such a path from ξ and η which is disjoint from
Bn−1. Recalling that the diameter of Fη is at most 1, we see that d(1, Fη) ≥ n−1. Assume by contradiction
that d(1, Fη) > n. Then, the sub-path from η to Fη stays in the complement of the ball Bn of radius n.
Indeed, if this were not the case, this sub-path would pass through a point g ∈ B(1, n) and so concatenating
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a path from 1 to g and the path from g to η would yield a path from 1 to η not passing through Fη. Now,
since Cay(H,S) is one-ended, one can join Fη with ξ by a path which also stays in the complement of
Bn, contradicting the fact that any path from η to ξ needs to pass through this ball. Thus, d(1, Fη) ≤ n.
Similarly, if d(1, Fη) ≥ n, then ρλ(ξ, η) ≤ λn. Set s = λn. We can reformulate the above discussion by the
following inclusions :

(15) {η 6= ξ ∈ ∂EΓ : d(1, Fη) ≥ n} ⊆ Bρλ(ξ, s) \ ξ ⊆ {η 6= ξ ∈ ∂EΓ : d(1, Fη) ≥ n− 1}.
Since H is one-ended, it is infinite and it is not virtually cyclic. By Gromov’s polynomial growth theorem,

the growth function of H is at least quadratic, hence super-linear. Therefore, fixing k ≥ 2, the number of
elements in

Sn+k(H) := Sn+k ∩H
grows at least linearly in n and in particular goes to infinity as n goes to infinity.

For any point h ∈ Sn+k(H), choose an end η = η(h) 6= ξ ∈ ∂EΓ so that h lies in Fη. By definition of h,
d(1, Fη) ≤ n + k and since the diameter of Fη is at most 1, we also have d(1, Fη) ≥ n + k − 1. According
to (15), ρλ(ξ, η) ≤ λn+k−1. Thus, η ∈ Bρλ(ξ, s).

Observe that for any two elements h1 6= h2 ∈ Sn+k(H) with d(h1, h2) ≥ 2, we claim that

ρλ(η1, η2) ≥ λn+k+1

where η1 = η(h1), η2 = η(h2). Indeed, d(h1, h2) ≥ 2 implies that Fη1 ∩ Fη2 = ∅. Notice that any path from
η1 to η2 has to pass through both Fη1 and Fη2 , otherwise one would produce a path from 1 to ηi not passing
through Fηi for some i ∈ {1, 2}. Hence, any path from η1 to η2 has to intersect the ball Bn+k+1 and the
claim follows.

We are ready to finish the proof. Set θ = λk+1 and let N(n) be the maximal size of a set Σ ⊂ Sn+k(H)
such that any two elements h, h′ in Σ satisfy that d(h, h′) ≥ 2. Then, N(n) goes to infinity as n goes to
infinity. We can thus produce N(n) points which are θs-separated in Bρλ(ξ, s). In other words, the ball
Bρλ(ξ, s) cannot be covered by N(n) balls of radius θs. Since k is fixed and N(n) goes to infinity as n goes
to infinity, this provides a contradiction with the definition of the doubling property. This concludes the
proof. �
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