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Multifield variational formulations of diffusion initial boundary value
problems

Jorge de Anda Salazar · Thomas Heuzé∗ · Laurent
Stainier

Abstract We present two multifield and one single-field variational principles for the Initial Bound-
ary Value Problem of diffusion. Chemical potential and concentration appear as conjugate variables
in the multifield formulations. The main importance of the proposed formulations is the approach
used to generate the variational principles, where the framework of Generalized Standard Materials is
used for constitutive laws while natural boundary conditions and the balance of mass are used as con-
straints of the optimization problem. This approach allows to derive such principles for multiphysic
problems in a generic manner. A detailed derivation and analysis of the formulations is presented,
where it can be seen their equivalence with the most common strong and weak forms of the prob-
lem using Fick’s laws along with the logarithmic mass action law. From the stationarity condition
with respect to the mass flux of the initially proposed functional, two main relations are identified.
First, the chemical potential appears as the opposite of the Lagrange multiplier that allows to enforce
the balance of mass and natural boundary conditions. Second, a conjugate relation is found for a
given substance between its mass flux and the opposite of the gradient of its chemical potential.
Furthermore, to reduce the number of variables of the initial variational principle, a field reduction is
applied, reaching the model presented by [1] for Fickean diffusion. Nevertheless, the aforementioned
relations cannot be derived from the reduced model. Finally, a numerical implementation is presented
for completeness where we compare the performance of the proposed formulations against the usual
weak form.
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1 Introduction

In his seminal paper [2], Adolf Fick established the mathematical structure of the diffusion process,
giving rise to what is called Fick’s laws. This set of equations, which uses the concentration c and the
mass flux j as state variables, constitutes the most general way to model diffusion. Nevertheless, a
wide variety of models can be derived to describe more specialized diffusion processes. Some of these
more specialized processes of diffusion consist in redefining the constitutive law for the mass flux j,
which can be justified by the introduction of the chemical potential µ.

It is a common practice when using Fick’s laws to solve for the concentration c and if needed
compute the chemical potential µ afterwards through a constitutive law. We refer to this procedure
as a post-process relation. The mass action laws [3] are empirical relations which can be used for such
purpose. However, such post-process relation describes a system where the chemical potential does
not affect the behavior of the system. The importance of the chemical potential as a state variable
was initially highlighted by J. W. Gibbs [4]. More recently, this approach is supported by different
authors, e.g. [5–7]. Lars Onsager took the mathematical description of diffusion a step further, and
suggested that the chemical potential can be understood as the driving force [8] for transport in
irreversible processes. In addition, concepts like the principle of maximum dissipation [8–11], and
thermodynamic fields [12–14] play an important role in the thermodynamics of irreversible processes.
Previous attempts at variational formulations of thermodynamic equations can found in [15,16].

The aim of this work is to present two multifield and one single-field variational principles for the
initial boundary value problem of diffusion. The variational principles proposed in this paper use the
framework of Generalized Standard Materials [17] for the constitutive laws. Balance laws and natural
boundary conditions are imposed as constraints into the system. As a result, the chemical potential
is identified as the opposite of the Lagrange multiplier that allows to enforce the balance of mass and
the natural boundary conditions. Plus, the concentration and chemical potential become conjugate
fields, in essence, thermodynamic fields. Likewise, the proposed variational principles also define the
mass flux j as a conjugate field of the opposite of the gradient of the chemical potential −∇µ through
the conjugate function χ∗ [18]. The conjugate function χ∗ is identified as the dissipation potential
needed to enforce the second principle of thermodynamics in the model. The latter highly contrasts
with the explicit dependence defined by Fick’s first law j(c).

The variational formulation could be applied to any multiphysic problem which has a gradient
flow mathematical structure. Examples are mechanics, heat transfer, diffusion, electricity, magnetism,
and any combination of these. Thus, the multifield modelling of diffusion obtained with the proposed
variational principles opens the path to explore multiphysic problems. The variational principles can
be generalized since the specifics of each physics involved are handled by the functional and the poten-
tials. A parallel formulation could be made with the Hu-Washizu-De Veubeke variational principle in
mechanics [19], and its connection with Hellinger-Reissner, or the minimum potential energy [20], [21],
[22]. In addition, the initial variational principle is formulated as a constrained optimization problem.
Moreover, the variables specific to each branch of physics are described as energetically-conjugated
and can be identified as flux-like, force-like or displacement-like fields. All the former allows to define
the coupling between the different physics under the definition of the potentials.
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From the variational perspective, the existence of a unique solution is linked to a unique sta-
tionary point characterized by the convexity/concavity of the functional with respect to variations.
Systems where material properties depend on the fields can be modeled, provided these dependencies
maintain the respective convexity/concavity of the stationary point. Nevertheless, the consistency of
the variations may be lost once the functional is transformed from continuum to discrete form.

Furthermore, the existence of a variational principle is of interest not just from a continuum view-
point but also from a numerical point of view. The computational aspects gained begin with the
matrix form of the problem which is symmetric. Therefore, several techniques can be explored to
improve the computational cost of the solution. Moreover, since boundary, constitutive and balance
equations are embedded in the functional, the possibility to derive different -not necessarily mono-
lithic∗- numerical strategies which have a mathematical representation and are consistent with the
continuum model is possible.

The outline of the paper is as follows: a detailed derivation and analysis of the principles is pre-
sented in sections 2 and 3, where their respective equivalence with the most common strong and
weak forms of the problem using Fick’s laws and the logarithmic mass action law are illustrated.
Moreover, by applying a field reduction on the initially derived multifield variational formulation, we
reach the model already presented by [1]. Nevertheless, the identification of the chemical potential as
the opposite of a Lagrange multiplier and the conjugate relation between mass flux and the opposite
gradient of the chemical potential cannot be derived from the reduced model. In section 5 the numer-
ical counterpart of the formulation is shown, where we analyze the implications of moving from the
continuum to the discrete setting. In section 6.1 we solve 1D and 2D problems numerically starting
from the presented variational formulation. Finally, in section 7 the conclusions and perspectives of
the work are presented.

2 Diffusion initial boundary value problem formulations

2.1 Strong form

We are interested in the problem of diffusion of a given species within a continuous medium, occupying
a domain Ω. Let us assume that the local state at a material point X ∈ Ω can be described by the
concentration c (expressed as volume fraction, molar fraction, or any other convenient equivalent) of
the diffusing species and its corresponding chemical potential µ. On the one hand, the evolution of
the diffusing species is described by the mass balance equation†.

ċ+ div j = r ∀X ∈ Ω Fick’s second law (1)

where j is the species flux and r the local source. On the other hand, the constitutive laws of the
system are described by

j = −D∇c ∀X ∈ Ω Fick’s first law (2a)

µ = µ	 +RT ln
( c

c	

)
∀X ∈ Ω Logarithmic mass action law (2b)

∗We refer as monolithic numerical strategies, to a discrete system of equations on which all the variables are solved
synchronously.

†For the purpose of the presentation, we focus on the specific problem below, but the same ideas hold to any more
general modelling.
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where D is the diffusion coefficient (we assume isotropy for simplicity), µ	 and c	 the corresponding
reference values for the chemical potential and concentration respectively, R is the universal gas
constant and T represents the temperature at which the process is taking place. The above equations
are supplemented with boundary conditions: the outward flux j̄ is imposed on the part ∂jΩ of the
boundary

j · n = j̄ ∀X ∈ ∂jΩ (3)

where n is the outward unit normal to the boundary, while on the remainder of the boundary
∂µΩ = ∂Ω \ ∂jΩ, the chemical potential µ̄ (or equivalently the concentration c̄) is imposed,

µ(c) = µ̄ ∀X ∈ ∂µΩ . (4)

Finally, we impose the initial condition

c(t = 0) = c0 ∀X ∈ Ω (5)

where for simplicity we consider c0 to be constant within the domain Ω. For simplicity here, we con-
sider the initial conditions of the chemical potential and the concentration as equal to their reference
values (2b), i.e., µ0 = µ	 and c0 = c	. These equations constitute the strong form of the diffusion
initial boundary value problem.

It is usual to define the diffusion problem using only Fick’s laws (2a) and (1) to solve for j and c,
whereas a mass-action law (2b) is imposed after solving for c to obtain µ. This post-process relation
between variables defines an explicit dependence of the form µ(c).

2.2 Weak form

The equivalent weak formulation of the above diffusion initial boundary value problem can be stated
as

∫
Ω

(
∂c

∂t
δc+D∇c ·∇δc

)
dV +

∫
∂Ωj

j̄ δc dS = 0 ∀ δc ∈ V0
c (6)

where δc is a test function and V0
c is its corresponding homogeneous space. Equation (6) encompasses

Fick’s laws. Again as with the strong form, a post-process relation is used to obtain µ through the
mass action law (2b).The admissible solution space is defined as follows

Vc =
{
c ∈ H1(Ω)

∣∣ c = c̄ ∀X ∈ ∂cΩ
}

(7)

where c̄ is the prescribed concentration on ∂Ωc and H1(Ω) stands for the Sobolev space [23]. As it
is for the strong and the weak forms of the problem, often, the constitutive law (2b) is omitted. The
latter being justified by the locality and the explicit dependence of µ with respect to c.

3 Variational principle

A mathematical model relies on three main elements, state variables, their relations and constraints.
To construct a variational formulation the above items can be related to conjugate variables, potentials
plus balance laws and associated boundary conditions respectively.



Multifield variational formulations of diffusion initial boundary value problems 5

3.1 Onsager’s energy rate

Let’s start by using Onsager’s energy rate [9]

Π0[ċ, j] :=

∫
τ

[∫
Ω

(
Ġ(c) + χ∗(j, c)

)
dV +

∫
∂µΩ

µ̄(j · n)dS

]
dt (8)

with G and χ∗ as the internal energy and the dual dissipation potential, j the mass flux, n the out-
ward unit normal and µ̄ a known value of the chemical potential defined at the Dirichlet boundary
∂µΩ. This energy-like representation of the system has also been used by many other authors [24–28,
e.g.]. Since the internal energy G is a state function, the first part of integral (8) only depends on
the initial and final states. The dissipation potential χ∗ depends on the whole history of the field j
and c. Thus, in general, the integral Π0 depends on the history of fields c(X; t) and j(X; t): it is a
path-dependent quantity.

The evolution of the system is obtained by optimizing Onsager’s energy rate (8). However, we
want to enforce this optimum under the constraint of the mass balance (1) and Neumann boundary
condition (3). This leads to a constrained optimization problem. Thus, the primal problem to solve
becomes

{ċ, j} = arg inf
ċ,j
Π0 subject to

{
ċ+∇ · j − r = 0 ∀X ∈ Ω
j̄ − j · n = 0 ∀X ∈ ∂jΩ

By means of the Lagrange multiplier method we can define the following functional

Πλ[ċ, λ1, λ2, j] :=

∫
τ

[∫
Ω

(
Ġ+ χ∗ + λ1(ċ+∇ · j − r)

)
dV

+

∫
∂µΩ

µ̄(j · n)dS +

∫
∂jΩ

(
λ2(j̄ − j · n)

)
dS

]
dt (9)

where λ1 and λ2 are the corresponding Lagrange multipliers.

3.1.1 Optimality conditions

The optimality conditions of the constrained functional Πλ are defined taking its variations.

First variations : The first variations of the functional should vanish since we look for a sta-
tionary point of the functional.

Variation with respect to j : The variation with respect to j of Πλ leads to

< DjΠλ, δj >≡ 0 ⇒


λ1 = −µ̄ ∀X ∈ ∂µΩ
λ1 = λ2 ∀X ∈ ∂jΩ

∇λ1 =
dχ∗

dj
∀X ∈ Ω

(10)

Several interesting facts can be observed. First, (10.a) indicates that the Lagrange multiplier λ1 is
equal to the opposite of the chemical potential at the Dirichlet boundary. Second, equation (10.b)
shows both Lagrange multipliers are actually the same variable. Third, (10.c) states that the opposite
of the gradient of the chemical potential, in essence, the chemical field −∇µ := g is the dual variable
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of the mass flux j through the dual dissipation function χ∗.

Variation with respect to ċ : The variation of Πλ with respect to ċ leads to

< DċΠλ, δċ >≡ 0 ⇒
{
−λ1 =

dG

dc
∀X ∈ Ω (11)

The internal energy is the conjugate function which defines the conjugate relation between the chem-
ical potential and the concentration.

Variation with respect to µ : The variation with respect to the chemical potential, i.e. the opposite
of the Lagrange multiplier yields

< DµΠλ, δµ >≡ 0 ⇒

{
ċ = −∇ · j + r ∀X ∈ Ω
j̄ = j · n ∀X ∈ ∂jΩ

(12)

The use of the opposite of the chemical potential as a Lagrange multiplier dates back to at least as
far as [29]. The stationary conditions of the functional Πλ yield the strong form of the equations
presented in section 2.1. More details about the derivation of first variations of the functional Πλ are
presented in appendix A.

Second variations : The second variations allow to determine the type of the stationary point
of the functional.

Variation with respect to ċ : The second variation of (11) results in

< D2
ċΠλ, δċ

2 > =

∫
τ

[∫
Ω

d2G

dc2
dV

]
δċ2dt ⇒ d2G

dc2


> 0, Πλ admits a minimum with respect to ċ

< 0, Πλ admits a maximum with respect to ċ

= 0, Πλ is neutral with respect to ċ

As shown above the optimal condition for ċ depends on the second derivative of the internal energy.
The definition of G is thus of great importance.

Variation with respect to µ : Due to strong duality properties as stated by [30, § 5.2.3], the
chemical potential, must have an opposite definition compared to the concentration. Thus, we expect
the stationary point of the functional to be a saddle point.

Variation with respect to j : Finally the second variation of Πλ with respect to j, resembles the
second variation with respect to ċ, but now involves the dissipation potential instead of the internal
energy

< D2
jΠλ, δj δj >=

∫
τ

[∫
Ω

d2χ∗

dj2
dV

]
δj δj dt

However, thermodynamic consistency imposes the convexity of χ∗ as it will be shown in section 4.
Therefore, the second derivatives of χ∗ are positive, this gives a minimum condition on j. This opti-
mal condition on j is a way to ensure that the second principle of thermodynamics is satisfied.

3.2 Variational formulations

The functional (9) satisfies our requirements to model the multifield chemical diffusion problem. It
embeds the mass balance and constitutive laws, namely Fick’s first law and mass action law into the
functional and the different potential functions G and χ∗, respectively. Three variational formulations
can be developed according to the number of fields the functional depends on.
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3.2.1 3-Field variational form

Under the assumption that G(c) is convex, replacing the Lagrange multipliers and applying the
divergence theorem to the term containing ∇·j in the functional Πλ (9) yields the 3-Field variational
form shown below.

3-Field variational form :

{j, ċ, µ} = arg inf
ċ, j

sup
µ
Π3[j, ċ, µ] (13a)

Π3[ċ, j, µ] =

∫
τ

[ ∫
Ω

(
Ġ− µċ+ χ∗(c, j)− g · j + µr

)
dV −

∫
∂jΩ

µj̄dS

]
dt (13b)

3.2.2 2-Field variational form

A 2-Field variational form is obtained by replacing the mass flux by the chemical field. Applying the
Legendre-Fenchel transform

χ(g, c) = sup
j

{
g · j − χ∗(j, c)

}
(14)

yields the primal dissipation potential that depends on the concentration and the chemical field.
Using the above substitution leads to the functional

2-Field variational form :

{ċ, µ} = arg inf
ċ

sup
µ
Π2[ċ, µ] (15a)

Π2[ċ, µ] =

∫
τ

[ ∫
Ω

(
Ġ(c)− µċ− χ(g, c) + µr

)
dV −

∫
∂jΩ

µj̄dS

]
dt (15b)

3.2.3 1-Field variational form

A further field reduction can be made so that the optimization is performed with respect to the sole
chemical potential. This leads to the 1-Field variational form. The Legendre-Fenchel transform is
applied to the internal energy to define the following dual potential

G∗(µ) = sup
c
{µc−G(c)} → Ġ∗(µ)− µ̇c = µċ− Ġ(c)

Substituting the internal energy rate by its dual counterpart yields

Π1[µ] =

∫
τ

[ ∫
Ω

(
µ̇c− Ġ∗(µ)− χ(g, c(µ)) + µr

)
dV −

∫
∂jΩ

µj̄dS

]
dt (16)

However, the functional above still contains the concentration field. If we express it in terms of

the chemical potential, i.e. c =
dG∗

dµ
the first two terms cancel each other, therefore the remaining

functional becomes

1-Field variational form :

{µ} = arg sup
µ
Π1[µ] (17a)

Π1[µ] =

∫
τ

[ ∫
Ω

(
− χ(g, c(µ)) + µr

)
dV −

∫
∂jΩ

µj̄dS

]
dt (17b)
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3.3 Equivalence between strong and variational formulations

The equivalence between the strong form and the 3-Field variational formulation has been presented
in section 3.1.1. Now, the field reduction leading to (15) is equivalent to the original strong form of
the problem presented in section 2.1 while the reduced functional (17) is only equivalent to the steady
case of the problem.

3.3.1 2-Field variational form

The variations applied to the 2-Field variational form presented in (15) are shown below.
Variation with respect to ċ : The first variation of Π2 with respect to ċ gives the same result than

that of Π3, since this reduction does not involves the concentration.

< DċΠ2, δċ >≡ 0 ⇒
{
µ =

dG

dc
∀X ∈ Ω (18)

Variation with respect to µ : This process requires an extra step, which is the use of the divergence
theorem after applying the variation to the dissipation function. The outcome being

< DµΠ2, δµ >≡ 0 ⇒

{
ċ = −∇ · ∂χ∂g + r ∀X ∈ Ω
j̄ = ∂χ

∂g · n ∀X ∈ ∂jΩ
(19)

Therefore, the field reduction removes the mass flux and replaces it by ∂χ
∂g . Moreover, the identification

of the chemical potential as a Lagrange multiplier is also lost. These changes however still keep the
equivalence with the strong form if we define j := ∂χ

∂g .

3.3.2 1-Field variational form

Variation with respect to µ : The variation of Π1 (17) with respect to the chemical potential

< DµΠ1, δµ >≡ 0 ⇒

{
∇ · ∂χ∂g = r ∀X ∈ Ω
j̄ = ∂χ

∂g · n ∀X ∈ ∂jΩ
(20)

The above is equivalent with the strong form of the steady problem as long as χ does not have any
dependence on c. In addition, we must define c := ∂G∗

∂µ and j := ∂χ
∂g to retrieve the information of the

state variables.

In the 3-Field formulation Π3, we derived two important relations. First, the chemical potential is
linked to a Lagrange multiplier enforcing the mass balance and Neumann boundary conditions. Sec-
ond, the mass flux is a conjugate variable of the chemical field. The latter relations can not be derived
from the 2-Field formulation Π2. Nevertheless, the system described by both formulations is equiva-
lent. Hence, the 2-Field formulation provides the best compromise between complexity and generality
since it allows for treating transient diffusion problems with a minimum number of independent fields
that are scalar quantities. In contrast, the 3-Field formulation would increase the computational cost
in the discrete setting. Therefore, in the following we use the 2-Field as our main formulation. The
formulation for Π2 is similar to that obtained directly by [1] where they directly adapted the strong
form of the problem to fit into a variational formulation, using a variational derivative. The advan-
tage of our approach resides in the two relations mentioned above which are derived and provide
further knowledge into the system. Furthermore, our approach allows to construct the functional for
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the variational principles using balance laws (as well as Neumann conditions) as constraints, instead
of directly using the strong form of the system, which opens the path to generalize the approach to
multiphysic problems.

4 Specification of the material

Generalized Standard Materials [17] are defined using two scalar functions, a thermodynamic potential
G plus a dissipation one χ, which are both convex functions of their respective arguments, non-
negative (G ≥ 0, χ ≥ 0) and are equal to zero at their origin (G(0) = 0, χ(0, 0) = 0). The internal
energy G and the dissipation potential χ define the constitutive laws of the system.

4.1 The Linear model

4.1.1 Internal energy

A linearized version of the logarithmic mass action law (2b) reads

µ = µ0 +
RT

c0
(c− c0) (21)

Since µ is energetically-conjugate to c through the internal energy G(c) (11), the integral of (21) with
respect to c defines a quadratic potential G(c).

G(c) = µ0c+
1

2

RT

c0
(c− c0)

2
;

dG

dc
= µ0 +

RT

c0
(c− c0) ;

d2G

dc2
=
RT

c0
(22)

4.1.2 Dissipation potential

Multiplying the residual of the mass balance by the chemical potential and integrating over the
domain Ω we get the following energy balance

∫
Ω

µċdV︸ ︷︷ ︸
Ẇint

−


∫
Ω

µrdV −
∫
∂Ω

µj · ndS︸ ︷︷ ︸
Ẇext

 = −
∫
Ω

−∇µ · jdV︸ ︷︷ ︸
D

(23)

where the boundary term and the term on the right hand side have been obtained by using the
divergence theorem. We can rewrite the above equation as

Ẇext − Ẇint = D ≥ 0

where Ẇint, Ẇext andD denote the internal and external energy rates and the dissipation respectively.
This equation is the same as that shown by [1, Eq. 18]. The difference between the external and
internal energy rates of the system must be positive. This last statement imposes a condition on the
dissipation D which should be non-negative. Provided the chemical field and the mass flux j are
energetically-conjugate, the dissipation reads

D :=

∫
Ω

−∇µ · jdV =

∫
Ω

j · gdV =

∫
Ω

∂χ

∂g
· gdV ≥ 0 (24)
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The inequality (24) appears as an entropy-like condition and it is automatically satisfied if χ is convex.
An analog expression can also be written with the dual potential χ∗. The simplest constitutive law
satisfying (24) is a linear relation between the mass flux and the chemical field

j = Dµg (25)

with Dµ > 0. Integrating with respect to g, χ reads

χ(g, c) =
Dµ

2
g · g;

∂χ

∂g
= Dµg;

∂2χ

∂g2
= Dµ (26)

The two potentials (22) and (26) yield linear state and complementary laws respectively and constitute
what we call the Linear model of chemical diffusion. The model is useful for materials having linear
properties, but also for non-linear materials undergoing small deviations.

4.2 The Fickean model

One way to describe non-linear materials is through the Fickean model obtained here.

4.2.1 Internal energy

Integrating the logarithmic mass action law (2b) with respect to c yields the corresponding internal
energy:

G(c) = µ0c+RT

[
c ln

(
c

c0

)
− c+ c0

]
;

dG

dc
= µ0 +RT ln

(
c

c0

)
;

d2G

dc2
=
RT

c
(27)

4.2.2 The dissipation potential

The constitutive law presented in [31] combined with (10.c) yields

j = −cm∇µ = cmg ≡ ∂χ

∂g
(28)

where c is the concentration and m is the mobility, both parameters are non-negative, thus this
constitutive law is in agreement with (24). Using this relation, the obtained dissipation potential
reads

χ(g, c) =
cm

2
g · g;

∂χ

∂g
= cmg;

∂2χ

∂g2
= cm (29)

The potentials in (27) and (29) define the Fickean model. Indeed, the constitutive laws consist of
equations (28) and (2b). Equation (28) is consistent with Fick’s first law (2a), especially with its
diffusion parameter D, as shown hereafter.
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4.3 Relation between the models and the diffusion parameter D

Fickean model : The diffusion parameter D appearing in Fick’s first law (2a) embeds information
from both the logarithmic mass action law (2b) and the complementary law (28). The combination
of both gives the constitutive laws for the chemical potential µ and the mass flux j. Focusing on the
Fickean model, starting from (28) we get

j = cmg (g := −∇µ)

= −cm∇µ

= −cmRT
c
∇c ⇐⇒ (D ≡ mRT )

= −D∇c

The above process shows the equivalence between the diffusion parameter D and the terms mRT .
Since R := NAkB

‡ is a universal parameter −independent of the substance being described− and we
are considering T as constant, the information of the material is enclosed in D as in m through the
equivalence D ≡ mRT . The parameter D encompasses the information from the parameters in the
equations (28) and (2b). This relation relates to the Einstein-Smoluchowski relation, D ≡ mkBT [32].

Linear model : The relation of D is not exclusive to the Fickean model, it can also be related to
the Linear model starting from (25) as follows.

j = Dµg (g := −∇µ)

= −Dµ∇µ

= −Dµ
RT

c0
∇c ⇐⇒ (D ≡ Dµ

RT

c0
)

= −D∇c

In this model, once again D contains information from the involved equations (22) and (25). However,
it also contains an extra dependency with the initial values of the concentration c0, whereas on the
Fickean model, it is completely independent of any field.

4.4 Constitutive models

As a summary, we have set up two different constitutive models. A non-linear one that consists of
the logarithmic mass action law (2b), derived from the internal energy (27.b) and Fick’s first law for
the dissipation rewritten with the chemical field g in (28). This model is referred to as the Fickean
model.

‡NA: Avogadro constant, kB : Boltzmann constant
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Fickean model :

Internal energy

G(c) = µ0c+RT

[
c ln

(
c

c0

)
− c+ c0

]
(30a)

dG

dc
= µ0 +RT ln

(
c

c0

)
(30b)

d2G

dc2
=
RT

c
(30c)

Dissipation potential

χ(g, c) =
1

2

D

RT
cg · g (31a)

∂χ

∂g
=

D

RT
cg (31b)

∂2χ

∂g2
=

D

RT
c (31c)

The second model is the linear counterpart of the Fickean model, and we refer to it as the Linear
model.

Linear model :

Internal energy

G(c) = µ0c+
1

2

RT

c0
(c− c0)

2

dG

dc
= µ0 +

RT

c0
(c− c0)

d2G

dc2
=
RT

c0

Dissipation potential

χ(g, c) =
1

2

D

RT
c0g · g

∂χ

∂g
=

D

RT
c0g

∂2χ

∂g2
=

D

RT
c0

Both models above satisfy the convexity constraints imposed by the modeling on the internal
energy and the dissipation Potential. Therefore, we know a unique solution exists which is linked to
these unique stationary points. It may happen that with other models the considered functional may
loose convexity due to coupling effects. The coupling effects come from the dependency of coefficients
in the dissipation potential, as for instance through the concentration. Moreover, despite the convex-
ity constraint can be satisfied by the non-linear model, it does not guarantee the convexity will still
hold once the model is made discrete. Therefore, we should be careful in this transition. We will go
further in these details in the next section.

The choice between primal and dual functions can be selected in accordance to the field formulation
chosen, see section 3.2. The internal energy G and the dissipation potential χ correspond to the 2-Field
variational formulation, which is the one considered in the sequel.

5 The discrete variational form

This section presents the time and space discretization of the 2-Field variational formulation and
a summary on the consistency between the continuum and discrete formulations. The developments
shown for the 2-Field variational formulation can be extended to the 3-Field and the 1-Field variational
formulations in a straightforward manner.
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5.1 Time discrete incremental variational principle

The time integral (15b) is discretized through n time steps, using implicit finite difference approxi-
mation.

Π2[cn+1, µn+1] =

n∑
i=1

[ ∫
Ω

(
∆G

∆t
− µn+1

∆c

∆t
− χ(gn+1, cn+1) + µn+1fc(tn+1)

)
dV−∫

∂jΩ

µn+1j̄n+1dS

]
∆t

=

n∑
i=1

Πn
2 [µn+1, cn+1] (32)

where the ∆ operator, is the time difference operator, so that ∆G := G(cn+1) − G(cn), and ∆t :=
tn+1 − tn. This changes the problem into n sequential problems, each one corresponding with one
of the n partitions of time. The semi-discrete functional Πn

2 is known as the incremental variational
formulation [33–35], and it is defined as

Πn
2 [µn+1, cn+1] :=

∫
Ω

(
∆G− µn+1∆c−∆tχ(gn+1, cn+1) +∆tµn+1fc(tn+1)

)
dV

−
∫
∂jΩ

∆tµn+1j̄n+1dS (33)

This choice is not the only way to make time discrete in a variational approach [36–39], but this is
the one used here for its simplicity.

5.2 Consistency with the continuum formulation

The continuum variational model should be consistently represented by its discrete counterpart. Clas-
sical finite elements are used to get the set of discrete equations over the discrete domain Ωh. To
verify consistency we check that the discrete version approaches the continuous one as temporal and
spatial discretizations go to zero.

First Variations : As in the continuum case, the first variation of the functional Π2 should
vanish to get the discrete optimal point.

Variation with respect to µh : The variation of Πn
2 with respect to the discrete chemical potential

µh leads to

< DµΠ
n
2 , δµh >≡ 0 ⇒

ch = −∇ · ∂χ∂gh + fc(t) ∀X ∈ Ωh
j̄h = ∂χ

∂gh

∣∣∣
c
· n ∀X ∈ ∂jΩh

This variation gives the discrete mass balance and the prescribed flux condition, which are consistent
with their continuum counterpart.

Variation with respect to ch : The variation with respect to ch leads to

< DċΠ
n
2 , δċh >≡ 0 ⇒

{
µh = dG

dch
−∆t ∂χ∂ch

∣∣∣
gh

∀X ∈ Ωh (34)

A second term has been added in the right-hand-side of the discrete equation (34) with respect to
its continuum counterpart (11). This will lead to an effect of the gradient of the chemical potential
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on the incremental approximation of the concentration. This is a purely algorithmic effect and is not
linked to any physical phenomenon since one can always adjust the discretization by taking cn+α,
α ∈ [0, 1]. In essence, there is always an optimal value of α which can provide the same result than
the classical backward Euler time discretization. The optimal value of α will depend on the chosen
material model and parameters. A similar effect involving hardening has been discussed deeper in
[40]. Nonetheless, the expression (34) remains consistent when the time step tends to zero. The effect
of this incremental approximation is similar to that encountered in the case of visco-plasticity, for
example, as studied in [40]. One way to bring consistency back into the system, is to evaluate the
concentration in the dissipation potential at time tn for the concentration. By doing so, the system
we are solving is not a fully implicit scheme anymore, it becomes semi-implicit. The Semi-Implicit
(SI) and Fully-Implicit (FI) schemes will be considered in numerical applications

2-Field discrete variational form (Semi-Implicit scheme):

{c, µ} = arg inf
c

sup
µ
ΠSI

2 [c, µ] (35a)

ΠSI
2 [c, µ] =

∫
Ωh

(
∆G− µ∆c−∆tχ(g, cn) +∆tµfc(t)

)
dV −

∫
∂jΩh

∆tµj̄dS (35b)

The difference stems from the fact that optimization is performed in the continuum problem with
respect to ċ, while it is done with respect to cn+1 in the discrete version. Therefore, while variations in
the continuum case with respect to ċ and c give different outputs, in the discrete form the variations
with respect to cn+1 are the only available ones due to the implicit time discretization of ċ. On the
other hand, the original formulation yields

2-Field discrete variational form (Fully-Implicit scheme):

{c, µ} = arg inf
c

sup
µ
ΠFI

2 [c, µ] (36a)

ΠFI
2 [c,µ] =

∫
Ωh

(
∆G− µ∆c−∆tχ(g, c ) +∆tµfc(t)

)
dV −

∫
∂jΩh

∆tµj̄dS (36b)

5.3 Newton solver

The Newton method can be used for the solution of the discrete variational form. It transforms the
discrete optimization problem set in (35a), (35b) or in (36a), (36b) −the semi-implicit and fully-
implicit schemes respectively− into a sequence of linear algebra problems.

Using as an example the fully implicit 2-Field variational formulation (36), the residual vector R
and the tangent matrix T are constructed through the following block-matrix form[

Tµµ Tµc
Tcµ Tcc

]
︸ ︷︷ ︸

=:T

[
∆̂µ

∆̂c

]
= −

[
Rµ
Rc

]
︸ ︷︷ ︸
=:R

(37)

where the corrections in each field are denoted by the operator ∆̂. Each block subindex denotes the
field which we need to variate to define the block. In addition, due to the continuity in ΠFI

2 the above
matrix [T] is symmetric (Schwarz’s theorem [41]).
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Since the following solution spaces

Vµ := {µ ∈ H1(Ω); µ = µ̄ ∀X ∈ ∂µΩ} Vc := {c ∈ L2(Ω)}, (38)

where L2(Ω) denotes square integrable functions, are consistent with the 2-Field variational form
(i.e. the gradient of µ is involved while that of c does not appear), the following approximations are
considered:

µh(X, t) =
∑
a

Na(X)µ(a)(t)

ch(X, t) =
∑
p

δ(Xp −X)c(p)(t)
(39)

where Na(X) denotes the finite element shape function associated with node a, δ is the Dirac delta
function and p stand for a Gauss integration points. Hence, the components of each block-residual
and block-matrix read as follow:

R(a)
µ :=

∂ΠFI
2

∂µ(a)
=

∫
Ωh

[
−∆c N (a)

µ ∆t
∂χ

∂g
·∇N (a)

µ

]
dV −

∫
∂jΩh

∆tN (a)
µ j̄dS (40a)

R(p)
c :=

∂ΠFI
2

∂c(p)
=
∑
p

[
dG

dc
(Xp)− µ(Xp)−∆t

∂χ

∂c
(Xp)

]
(40b)

T(a,b)
µµ :=

∂R(a)
µ

∂µ(b)
=

∫
Ωh

−∆t∇N (a)
µ · ∂

2χ

∂g2
·∇N (b)

µ dV (40c)

T(p,q)
cc :=

∑
p

[
d2G

dc2
(Xp)−∆t

∂2χ

∂c2
(Xp)

]
∀ q = p (40d)

T(a,p)
µc :=

∂R(a)
µ

∂c(p)
=
∑
p

[
−N (a)

µ (Xp) +∆t∇N (a)
µ (Xp) ·

∂2χ

∂g∂c
(Xp)

]
(40e)

T(p,a)
cµ :=

∂R(p)
c

∂µ(a)
=
∑
p

[
−N (a)

µ (Xp) +∆t∇N (a)
µ (Xp) ·

∂2χ

∂c∂g
(Xp)

]
(40f)

6 Numerical examples

Numerical examples in one and two space dimensions are shown here. Convergence properties and
consistency between the weak and variational formulations are studied with the 1D results. The 2D
examples we present show different results where the domain is decomposed in two different materials,
both undergoing diffusion.

6.1 Initial Dirichlet discontinuity in 1D

A numerical example of initial-Dirichlet discontinuity is presented which proves interesting enough
to solve numerically, due to the appearance of spurious oscillations even for some implicit scheme. By
doing this, we show how the proposed variational formulation performs when compared with different
formulations.

Initial and boundary conditions are given by the following set of equations
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Parameter Value Units
µ̄ −175.0 · 10−3 J mol−1 (Gibbs)

µ0 −190.0 · 10−3 J mol−1 (Gibbs)
c0 Eq (21) or Eq (2b) mol m−3

R 8.3144598 kg m2 sec−2 K−1 mol−1

T 298.0 K
D 0.84 · 10−9 m2 sec−1

L 1.0 · 10−3 m
tf 1190.47619048 sec

Table 1: Table of parameters
*The values for c0 are made through the models from the given equations.

Boundary conditions

j(0, t) = 0 (41a)

c(L, t) = cext (41b)

Initial conditions

c(x, 0) = c0 ∀x ∈]0, L[

with c0 6= cext
(42)

with the spatial domain defined as Ω :=]0, L[ and temporal domain τ := [0, tf ], with tf := L2/D.
The boundary condition (41a) at the left of Ω imposes a zero flux condition. The condition (41b)
sets a Dirichlet value for the concentration at the right. Finally the initial condition (42) is defined
as constant and imposes a discontinuity between the Dirichlet and the initial values.

The analytical solution of this problem is found in [42]. Two results are presented. First, a solution
based on trigonometric functions that converge rapidly for large values of time t. See [42, p. 24].

c(x, t)− c0
cext − c0

=

(
1− 4

π

∞∑
m=0

(−1)m

2m+ 1
exp

(
−D

[
(2m+ 1)π

2L

]2
t

)
cos

(2m+ 1)πx

2L

)
(43)

The second one is expressed through a series of complementary error functions, which converge rapidly
for all time values except large ones [42, p. 22]

c(x, t)− c0
cext − c0

=

∞∑
m=0

(−1)m
(

erfc
(2m+ 1)L− x

2
√
D t

+ erfc
(2m+ 1)L+ x

2
√
D t

)
(44)

Figure 1 depicts the analytical solution, computed with the values listed in table 1. A plane cutting
the space and time domains at their half is presented in each subfigure for visualization purpose. The
plane in figure 1a describes the evolution of the concentration at all times for x = L/2, while that in
figure 1b can be seen as a snapshot of the space domain at time t = tf/2.

6.1.1 Classical weak form based numerical solution

The matrix and the residual vector are defined as

A(a,b) :=

∫
Ωh

N (a)N (b)dx+

∫
Ωh

D∆tν∇N (a) ·∇N (b)dx

R(a) := c(a)n

[∫
Ωh

N (a)N (b)dx−
∫
Ωh

(
D∆t (1− ν)∇N (a) ·∇N (b)

)
dx

]
+

∫
Ωh

∆t rn+ν dx
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(a) Cross section: time evolution of the solution at the
location x = L/2.

(b) Cross section: snapshot of the solution at time
t = tf/2.

Fig. 1: Analytical solution: plot of the concentration as a function of x and t.

where ν ∈ [0, 1] is the algorithm parameter. Letting ν ≡ 0 gives an explicit scheme, while ν ≡ 1 turns
the system of equations into the Euler implicit scheme. There are two types of spurious oscillations
that may arise in this problem imposing a lower and/or upper bound to the time step. A stability
analysis of the system shows an upper limit condition ∆tmax for the discrete time step ∆t.§ A second
type of spurious oscillations rises as a constraint needed in order to satisfy the discrete maximum
principle in Fick’s second law (1) [43, p. 126]. The critical time step is given by

∆t > ∆tmin where ∆tmin :=
h2min
6Dν

(45)

where hmin is the size of the smallest element.

6.1.2 Implicit scheme vs Semi-implicit schemes

To perform the analysis, we consider the parameters listed in table 1 along with ν = 1 and Nx = 512
spatial elements. We consider Nt equally spaced time steps over a simulation time defined as the

§see [43, p. 124] for an example of an analytical approximation.
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diffusion characteristic time computed with the length of the domain tf = L2/D. Thus, letting
∆t ≡ ∆tmin defines the threshold to obtain the lower boundary for a spurious oscillation

Ntosc :=
tf

∆tmin
=

L2/D

(L/Nx)2/(6D)
= 6N2

x (46)

hence Nt > 6N2
x ensures spurious oscillations will appear with linear elements. The collection of time

steps Ntlist we use to define the tests is Ntlist := {23, 24, . . . , 213}.

The results are presented in figures 2, 3, 4 and 5. Each one is composed of two subfigures. The
one at the top represents the results where the number of spatial elements is fixed with Nx = 512
for all simulations, while the number of temporal steps in each run is selected from Nt ∈ Ntlist , we
reference this process as Test 1. The subfigures at the bottom show the results where the ratio Nx/Nt
is equal for all runs, while Nt is chosen from Nt ∈ Ntlist and Nx is selected accordingly, we call
this simulation Test 2. In specific, we have chosen the ratio Nx/Nt = 1 to ensure we are above the
limit ∆tmin independently of the number of elements Nx selected according to (46). Each subfigure
contains two subplots to show the errors for the concentration (left) and chemical potential (right).
In all subplots, the horizontal and vertical axis show the time step (seconds) and a certain relative
error norm. The numbers between each segment of the curves represent the slope at that segment.
All the errors are computed with respect to the analytical solution.

To identify each run we use the following label system: Scheme + Model + Element type
which are defined as

Scheme := {Fully Implicit (FI), Semi-Implicit (SI)}
Model := {Linear, Fickean}

Element type := {linear(ele lin), quadratic(ele quad)}

L2 relative error at time tf : Figures 2 and 3 show convergence curves for the Linear and Fick-
ean model respectively, using the L2 relative error at time tf . Figures 2a and 3a show the results for
the simulations under the Test 1, while figures 2b and 3b correspond to the Test 2 (with Nx/Nt = 1).

Figure 2 shows that for the Linear model, the error of the chemical potential is one order of
magnitude less than that of the concentration, fact which can not be achieved using a post-process
relation. However, both graphs have a convergence rate of one as expected. As it is for the Fickean
model in figure 3, we also have a convergence rate of one, however, a distinction between semi-implicit
and fully-implicit is observed in the Fickean model. The samples taken for the fully-implicit scheme
have a lower y-intercept on the error. Still, the main difference resides on the scheme used, the type
of element seems not to play a major role. A difference in the order of the error between chemical
potential and concentration can also be observed, but now, the difference in the order of magnitude
is two. A final comparison between errors in the Linear and Fickean model shows that the error for
the chemical potential is the same despite the problem being linear or non-linear, in contrast with the
concentration where the order of magnitude increases by an order of one for the non-linear (Fickean)
model.

Mean L1 relative error per time step: Figures 4 and 5 show the convergence for the Linear
and Fickean model correspondingly, using the L1 relative error per time step. For the Linear model,
fully-implicit or semi-implicit schemes yield the same result, the same holds for the type of element
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(b) Test 2 : Nx/Nt = 1

Fig. 2: Convergence curves plotted for the Linear model, with the L2 relative error computed at time
tf , and Ntlist = {23, 24, . . . , 213}
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(a) Test 1: Nx = 512, Nt ∈ Ntlist
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(b) Test 2: Nx/Nt = 1

Fig. 3: Convergence curves plotted for the Fickean model, with the L2 relative error computed at
time tf , and Ntlist = {23, 24, . . . , 213}
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−linear or quadratic−, or the magnitude of the errors. The Fickean model shows the same differ-
ences between schemes and types of elements in comparison with the relative error at fixed time.
Nevertheless, here the difference of the magnitude of the errors between the concentration and the
chemical potential only differs by one. As shown the pairs (Figure 4a, Figure 4b) and (Figure 5a,
Figure 5b) results show similar results. Therefore, the spatial and temporal discretization seem to
not incorporate further artifacts to the solution besides the aforementioned spurious oscillations.

6.1.3 Weak Form vs Variational Form

Here we compare the fully implicit variational formulation against the weak formulation of the problem
presented in (6). The discretization of the weak formulation has been also implemented using the
backward Euler method for time and classic finite element method for space. The results for the
Linear model and the Fickean model show congruent results. The result obtained from the Fickean
model are shown in figure 6. Both formulations show a similar convergence behavior for each model.
The results for the Fickean model shown in Figure 6 show convergence rate of one as expected,
achieved once the time step is sufficiently fine.

6.2 Diffusion in a 2D composite medium

Let’s consider a 2D square domain which consists of several circular inclusions of different radii
embedded in an arbitrary manner into a matrix. The two components follow the non-linear Fickean
model (see §4.4), but have different material properties, whose values are listed in Table 2. The
material properties of the matrix and the inclusions are set so that the diffusion is faster in the
matrix than in the inclusions. Besides, the simulations presented in this section have been performed
using both the 2-Field Variational formulation (15) and the weak formulation (see §2.2), and run
with the in-house code ZorgLib developed at GeM-Ecole Centrale de Nantes. Next, two different
loading conditions are successively considered below, and allow to compare results obtained with
both formulations.

Parameter Value Units
µ̄ −181.0 · 103 J mol−1 (Gibbs)
c̄ 1000 mol m−3

µ̂0 −5.52 · 10−3 -
c0 Eq (21) or Eq (2b) mol m−3

µ0 −181.0 · 103 J mol−1 (Gibbs)

R 8.3144598 kg m2 sec−2 K−1 mol−1

T 298.0 K
Dmatrix 5.0 · 10−10 m2 sec−1

Dinclusion 5.0 · 10−13 m2 sec−1

∆t 5.0 seconds

Table 2: Table of parameters for the 2D diffusion test case.

6.2.1 Sine loading

Dirichlet boundary conditions are prescribed on the whole boundary of the square domain: the chem-
ical potential is prescribed on the boundary in the 2-Field Variational formulation, and follows a sine
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(b) Test 2: Nx/Nt = 1

Fig. 4: Convergence curves plotted for the Linear model, with the mean L1 relative error per time
step, and Ntlist = {23, 24, . . . , 213}



Multifield variational formulations of diffusion initial boundary value problems 23

10−1 100 101 102 103

Time Step ∆t(s)

10−4

10−3

10−2

10−1

100

Ẽ
c(
N
x)

0.68

0.73

0.77

0.80

0.82

0.84

0.85

0.87

0.88

0.58
0.65

0.70

0.74

0.77

0.79

0.81

0.82

0.84

Concentration

10−1 100 101 102 103

Time Step ∆t(s)

10−5

10−4

10−3

10−2

10−1

Ẽ
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(b) Test 2: Nx/Nt = 1

Fig. 5: Convergence curves plotted for the Fickean model, with the mean L1 relative error per time
step, and Ntlist = {23, 24, . . . , 213}
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Fig. 6: Comparison between convergence curves obtained with the weak and the variational forms,
plotted for the Fickean model. Three types of error are plotted: L2 relative error computed at time
tf (first row), L1 relative error in time (second row), and the mean L1 relative error per time step
(third row). Plots associated with Test 1 are shown on the left, while these associated with Test 2
are shown on the right.

evolution in time:

µprescribed(t) = µ̄f(t), f(t) = 1 + µ̂0 sin

(
2πt

P

)
where µ̂0 is a dimensionless parameter, P = 250 seconds is the loading period. The concentration
defined at boundary nodes in the case of the weak formulation is computed from the prescribed
value of the chemical potential using the mass action law (2b). Some snapshots of the chemical
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potential, extracted from one period of loading, are shown at different times in Figure 7a and 7b for
the variational and weak formulations respectively. The chemical potential is shown as nodal values
for both formulations, as a direct result from the discrete set of equations (40a) for the variational
formulation, and by postprocessing the concentration nodal values with the mass action law (2b) for
the weak formulation.

As expected, the inclusions diffuse slower than the matrix. A good agreement between the two sets
of solution can be observed at the different times, althought slight differences between both appear
at large times. The differences can be attributed to the different approximations performed in the
respective formulations.

6.2.2 One-dimensional mass flow: filling of a cavity

The composite computational domain is now considered as an insulated cavity, which is filled through
a given mass flow. The top, the bottom and the right sides of the computational domain are thus
prescribed a zero mass flux, while a given influx j̄ is prescribed on its left side. The time evolution of
the influx j̄ follows a ramp from the initial value −181.0 · 103 J mol−1 to −180.0 · 103 J mol−1 during
the first 200 seconds, after what it remains constant. Figure 8a and 8b show some snapshots of the
chemical potential field at different times, obtained with the variational and the weak formulations
respectively. The presented snapshots cover a wide time range starting from the homogeneous initial
condition and a very early instant of diffusion to a time where the matrix has almost reached a steady-
state while inclusions still remain transient. Again, a very good agreement is observed between results
obtained with both formulations, especially in inclusions where the highest gradients occur.

7 Conclusions

In this article, we have proposed an approach to build variational principles for the diffusion Initial
Boundary Value problem. This approach has several advantages. The variational principles embed
the mass action law and Fick’s laws leading to a model where all the unknown fields are implic-
itly dependent. This contrasts with usual approaches where the chemical potential and the mass
flux depend explicitly on the concentration. Second, the initially derived variational principle allows
to identify the chemical potential as the opposite of the Lagrange multiplier that allows to enforce
the balance of mass and the natural boundary condition. Third, the relation between the mass flux
and the chemical field as conjugate variables is derived from it. Fourth, it allows to construct three
variational formulations described by one, two or three fields. Fifth, it allows a flexible framework
to represent constitutive models which are thermodynamically consistent. The Linear and Fickean
model have been presented. Sixth, the approach is based on general concepts as the Generalized Stan-
dard Material framework, balance laws, constrained optimization and thermodynamic variables.

As part of the results, we analyzed and checked the consistency of the proposed variational formu-
lations with the strong form of the problem. In equation (15), we arrived at the variational formulation
derived by [1]. However, the same result was reached by proposing a constrained variational problem
and a field reduction, while [1] started from the strong form of the problem, identified the first varia-
tion of some functional using a variational derivative, and deduce its final form through integration.
In addition, we presented and analyzed the numerical results of the 1D initial Dirichlet discontinuity
problem using the 2-Field variational formulation. The numerical results obtained from the 1D and
2D simulations confirmed that the implementation of the variational formulation shows the expected
results in comparison with the weak formulation of the problem, regardless of the mass action law
used for the chemical potential. However, we recall the variational formulation solves for concentration
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(a) Variational formulation.

(b) Weak formulation.

Fig. 7: Sine loading
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(a) Variational formulation.

(b) Weak formulation.

Fig. 8: One-dimensional mass flow
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and chemical potential simultaneously, which contrasts with the post-process step taken to compute
the chemical potential using a weak formulation. Therefore, the variational formulation provides a
more robust model suitable for multiphysic problems, where the interaction of the chemical potential
with other force-like fields needs to be considered simultaneously for the whole system.

From the computational perspective, it is possible to derive different -not necessarily monolithic-
numerical strategies which have a mathematical representation and are consistent with the continuum
model. These strategies can be derived by imposing different algorithmic dependencies between the
unknowns. This is a viable option, since boundary, constitutive and balance equations are embedded
in the functional and potentials of the proposed variational principle.

Finally, the proposed approach can be generalized to multiphysic problems. Constraining On-
sager’s energy rate with a balance law and prescribed flux-like field at the boundary is a mathematical
procedure that enforces these equations into the solution and allows to define energetically-conjugate
variables through the postulated internal energy and dissipation potential. Moreover, the involved
fields can be easily identified as flux-like, force-like or displacement-like fields. The multiphysic cou-
pling can be imposed under the definition of the internal energy and dissipation potential through the
linear and bilinear addition of the respective fields. As an instance, for an electrochemical problem
the coupling occurs between mass flux and electric current [44]. These variables are defined in terms
of the chemical and the electrical field. Using our approach, the mass flux and the chemical field are
energetically-conjugate and a similar relation can be derived for the electric current and the electric
potential. The advantage of the former is that it allows to construct a dissipation potential to impose
the coupling and at the same time to build a variational principle through the procedure proposed in
this work.
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A Optimality conditions of the functional Πλ

This appendix gives details about first variations of the functional Πλ (9), written below with indicial notation:

Πλ[ċ, λ1, λ2, ji] =

∫
τ

[∫
Ω

(
Ġ+ χ∗ + λ1(ċ+ ji,i − r)

)
dV +

∫
∂µΩ

µ̄jinidS +

∫
∂jΩ

λ2(j̄ − jini)dS
]
dt (47)

The term involving the first Lagrange multiplier is first integrated by part, then the divergence theorem is used. One
gets ∫

Ω
λ1ji,idV = −

∫
Ω
λ1,ijidV +

∫
∂µΩ

λ1jinidS +

∫
∂jΩ

λ1jinidS. (48)
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A.1 Variation with respect to j

Substituting (48) into (47) gives

Πλ =

∫
τ

[∫
Ω

(
Ġ+ χ∗ + λ1(ċ− r)− λ1,iji

)
dV +

∫
∂µΩ

(λ1 + µ̄)(jini)dS +

∫
∂jΩ

λ2j̄ + (λ1 − λ2)jinidS

]
dt. (49)

Next, taking the variation of the above equation with respect to j leads to

< DjΠλ, δjk >:=

∫
τ

[∫
Ω

(
∂χ∗

∂jk
− λ1,k

)
δjkdV +

∫
∂µΩ

(λ1 + µ̄)nkδjkdS −
∫
∂jΩ

(λ1 − λ2)nkδjkdS

]
dt (50)

The above first variation should vanish to get the associated stationary conditions. Thanks to the arbitrariness of
variations δj, one gets equations (10)

∂χ∗

∂jk
− λ1,k = 0 ∀X ∈ Ω (51a)

λ1 + µ̄ = 0 ∀X ∈ ∂µΩ (51b)

λ1 − λ2 = 0 ∀X ∈ ∂jΩ (51c)

Equation (51c) shows that the two Lagrange multipliers are the same variable, i.e. λ1 = λ2 = λ. In addition, that
variable is the opposite of the chemical potential according to (51b). Thus we can conclude through equation (51a)
that the opposite of the gradient of the chemical potential −∇µ and the flux j are conjugate variables through the
dual dissipation potential χ∗.

A.2 Variation with respect to ċ

Taking the variation of (47) with respect to ċ gives

< DċΠλ, δċ > :=

∫
τ

[∫
Ω

(
∂G

∂c
+ λ1

)
δċdV

]
dt. (52)

Again the above first variation should vanish to get the associated stationary condition, which leads to (11) thanks to
the arbitrariness of δċ. As a result, the concentration c and the chemical potential µ are conjugate variables through
the internal energy G.

A.3 Variation with respect to µ

The results shown in equation (12) are immediately obtained given that we have shown that the opposite of the
chemical potential −µ is identical to both Lagrange multipliers λ1 and λ2 according to (51c). Thus, by substituting
both Lagrange multipliers by the opposite of the chemical potential in (47) and applying the variation with respect to
the chemical potential directly leads to equation (12).


